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Abstract 

In recent years the class of materials known as intermediate valent, Kondo- 
lattice or heavy-fermion systems has aroused much interest. The unusual properties 
of these materials arise from the behaviour of their 4f- (or 5f-)electrons. The strong 
electron--electron interactions within the 4f shell cause the f-bands of  these rare 
earth or actinide metal containing species to show very high masses. Thus the 
densities of states are very high, leading to correspondingly high specific heats and 
magnetic susceptibilities. A mean field theory is described, based on the Anderson 
lattice model, in which these properties are straightforwardly explained. Its 
relationship to the I/N expansion, and the corrections to mean field, are outlined. 
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1. Introduction 
1.1. Generalities 

In recent years a class of  rare earth (RE) and actinide materials has become widely 
studied, termed variously intermediate valent, Kondo-lattice or heavy-fermion 
systems [1-5] (e.g. CeSn3, YbCuA1, SmS, CeA13, UBel3). In these materials the 4f- or 
5f-electrons are itinerant as are the d-electrons in transition metals. However, the very 
strong electron-electron interaction within the tightly bound 4f shell [6, 7] seems to 
be the reason why the f-bands in these materials show high to extremely high 
masses. Accordingly, densities of states in metallic, non-magnetic systems are very 
high, leading to very high specific heats and susceptibilities. The linear coefficient 
of  specific heat at T = 0, 7, may vary from 0.01 to l J m o l - l K  -2 in this range 
of  materials, compared with l to 1 0 m J m o l - l K  -2 for ordinary metals [9]. When 
7 > 0"5Jmo l - lK-2  the heavy-fermion label tends to be applied, or maybe the 
appellation Kondo lattice in the case of a Ce material. Intermediate valent (IV) 
materials are essentially rare earth materials with a somewhat lower 7 than the heavy 
fermion materials, but still much greater than a conventional metal. Examples of  
insulating systems (SmS, SmB6) also exist [2]. In this case, the high effective mass 
manifests itself as an exceedingly narrow energy gap. 

Despite the common property of  having electrons in relatively narrow bands, the 
properties of  the materials with strongly correlated f-electrons have little in common 
with transition metals. In the transition-metal materials a magnetic phase transition 
seems to be the consequence when electron-electron interactions become stronger 
than a critical value. Mass enhancements are moderate. On the other hand, the 
f-electron itinerants show large to huge mass enhancements. When magnetism 
occurs, it is of  a rather different (Ruderman-Kittel  mediated, RKKY)  type to the 
Stonor-Wohlfarth magnetism of transition metals, and seems to indicate a partial 
breakdown in f-electron itinerancy. 

Indeed the f-electron itinerants tend to have a lot in common with magnetic 
(4t"- or 3d-) impurities. The impurities have a low characteristic temperature or energy 
scale TK [9]. Because TK is given by a formula of  the type TK ~ A exp ( -  l/b), where 
b is positive but less than unity, TK can be exceedingly small. Hence the Pauli 
susceptibility and Sommerfeld specific-heat coefficient 7, which go as T~ 1, can be 
extremely large. Giant thermopowers are seen, [ 10] etc. In fact for the IV materials one 
can pursue the analogy with impurities to a remarkable level of  detail in comparison 
with experimental data [11]. 

However, there are many important phenomena which manifest lattice, rather 
than magnetic impurity behaviour. Resistivity goes like T 2 at low temperatures as 
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expected in an interacting Fermi liquid [12]. Especially remarkable is the super- 
conductivity of the heavy Fermion materials which seems not always to be of l -- 0 
type at least in some materials [4]. It is believed that the superconductivity is another 
intrinsic property of  the strong interaction between the fermions, as in liquid He 3 [13]. 
It seems that a new type of  theory is needed to explain the properties of the f-electron 
itinerants, whose electrons suffer such enormous mass enhancement that ordinary 
concepts of perturbation theory are of  little value. 

Here we shall describe mainly the IV systems which seem to be better understood 
at the present time, and especially their low-temperature properties. We shall do 
this from a particular theoretical point of  view, probably the simplest theoretical 
viewpoint available. Where other approaches overlap or take over, we shall refer the 
reader to the literature rather than detail them here. 

1.2. Picture of  the intermediate valent 4 f  ion in a metal 
The picture we have of  an IV 4f ion in a metal (Hirst 1974) underlies the theoretical 

models used in the following. We do not know to what extent it might be applicable 
to a 5f ion such as U. Consider an ion such as Ce. A schematic energy level diagram 
is shown in figure 1. The Ce ion is normally considered to be stable in two valence 
states, trivalent, fl and tetravalent, f0. The f~ state is much higher up in energy because 
of the Coulomb interaction energy [14, 15] 

1 
Urn, = f ~t*fm(1)~4fm(1)Jr, -- r 2 ~ ]  ~*fn(Z)~4f"(2) dr~ dr23 .~ U (1) 

between two electrons occupying a wavefunction ~4r,,, of  magnetic quantum number 
m, on the same atom. The expression (1) overestimates U for two reasons. First the 
electrons move around in the densely occupied 4f shell so as to increase their 

/ 
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nl 

Figure 1. Schematic plot of ground-state energy E of a Ce atom in a metal as a function 
of number of electrons nf in the 4f shell. 
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separation, an intra-orbital correlation effect. Secondly, the extra electron in the 
4f brings with it a screening cloud in the metal, which lowers the energy of 4f 2. 
Nevertheless, if the energy of  the 4f I state is Er, that of  the 4f 2 state may be written 
2Ef + U, where U measured experimentally in a metallic environment [6, 7] is about 
5-8 eV. This estimate may be taken to include the intra- and extra-orbital screening 
effects. 

It is then usually considered that if the f0 and fl states are reasonably close together 
(say up to ,~ 2eV difference), the high-lying f2 state, and the even higher-lying f3 
states, are too high up to be included. The theory then assumes that this system 
is confined in the f0_f~ subspace. The f0 state is non-degenerate. However, the f~ 
state is 14-fold degenerate, split by the spin-orbit interaction into a 6-fold degenerate 
j = 5/2 ground state and an 8-fold degenerate j = 7/2 excited state about 300 meV 
higher up. Usually theory not only neglects the f2 state, but also the f7/2 excited 
state, so that the subspace is reduced to include only f0 and the j = 5/2 subspace 
of  f~. 

In table 1 we list details of  the commonly intermediate-valent ions; Ce, Sm, Eu, 
Yb and Tm. All but Tm have one state non-magnetic, and one magnetic, like Ce. 
Also, Ce f~ and Yb fl3 have their ground states ( j  = 5/2 and 7/2 respectively) well 
separated from the excited states, but there is a much smaller separation for Eu and 
Sm. We also list the g-factors of the ion which are important  in calculating the 
magnetic susceptibility. 

In addition to the spin-orbit  splitting, a crystal-field splitting of  the ground-state 
multiplet may occur [3-5]. This is likely to be especially important  for systems 
with a very low energy scale, i.e. very high ~, such as occurs in heavy fermion/Kondo- 
lattice systems. Some of  these systems approach a situation where the limit for a 
ground-state doublet or quadruplet is more appropriate than the full multiplet 
(e.g. N = 6 for Ce). 

Next we consider how the valences f0 and f~ for cerium are coupled together. We 
imagine that one RE ion is located in a free-electron gas (jellium), whose eigenstates 
are usually taken in spherical coordinates (assume these are stationary states in a large 
spherical box) as Ik, l, lz, ~) ,  where k is the radial quantum number, l = total orbital 
angular momentum, lz is its z-component and a = spin. However, we prefer to 
reorganize these states into Ik, j ,  m,) ,  where j  = l + 1/2 and - j  ~< m <~ j, 

Ik, j , m )  = alk, l, l z -  1 , $ ~  + blk, l, lz + 1 ~ , ~ ,  (2) 

where a and b are Clebsch-Gordon coefficients. The location of  the RE atom at the 
center of the jellium sphere allows mixing between states of  the same quantum number 

Table 1. Details of the commonly intermediate valence ions; J is the ground-state spin and 
g is the gyromagnetic ratio, which is important for calculating the magnetic susceptibility. 

Configuration RE ion J Fermions g g2j( j  q_ 1) 

f0_fl Ce 5/2 e 6/7 6-43 
f6_f5 Sm 5/2 h 2/7 0.71 
f6_f7 Eu 7/2 e 2 63-0 
f14_f13 Yb 7/2 h 8/7 20"57 
f12 Tm 6 7/6 57-2 
f13 Tm 7/2 h 8/7 20"57 
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on the atom and in the jellium, giving matrix elements 

Vk = (ft ,  5/2, mlVtf °, k, 5/2, m>, (3) 

where V is the coupling perturbation. 
We now attempt a fermionic representation of the model so far. The resulting 

'Infinite-U Anderson model' is (taking Fermi level as energy zero) 

H = Eo ~ftmfm + V ~ (ftmCkmPO + e~mf,,P~). (4a) 
m k,m 

Here fro is a Fermion operator describing the state of angular momentum m of f~, and 
C~m is the operator describing Ik, 5/2, m>. E0 is the energy difference E(f i) - E(f°). 
V is the matrix element (3) with k-dependence dropped. P0 is a projection operator 
onto the f0 state and P~ is a projection operation onto the f~ state. Without these 
projection operators, forbidden states f2, f3 would be generated by the successive 
action of f~  on f0. 

Equation (4 a) applies to Ce compounds. It may be applied to Yb compounds by 
takingj  = 7/2, and making an electron-hole inversion (since the valences of Yb are 
ft3, fl4 its magnetic configuration has one hole). For Sm materials one may use (4) with 
electron-hole inversion a n d j  = 5/2, and Eu withj  = 7/2 and no inversion, but in the 
last two cases caution is needed because of the narrow gap from the ground state to 
the first excited-state multiplet. 

Finally, we should mention that there exists a 'Kondo limit' of (4 a) when E0 
becomes large and negative, and the fl state behaves like a spin. Charge fluctuations 
to f0 are suppressed and the model describes a spinj  interacting with an electron gas 
via an exchange interaction J = V2/Eo. The resulting SU(N) f~ Kondo,  or Coqblin- 
Schrieffer [16] model may be derived from (4 a) by a Schrieffer-Wolff transformation, 
to give 

H = ~ ekCtkmCkm- J ~ C~'m'f~fm'Ckm. (4b) 
k, rn kk'mm' 

1.3. Phenomenology 
In this article we consider systems which have normal Fermi-liquid ground states. 

Let us concentrate on systems in which crystal fields do not split the ground-state 
multiplet significantly, i.e. the IV rather than the heavy fermion or Kondo-lattice 
systems. 

First let us draw attention to some remarkable scaling properties approximately 
obeyed by IV systems [17-19]. To provide some motivation, imagine for a moment 
that they consist of non-interacting electrons and that the rare earth ions are non- 
interacting impurities. The linear coefficient of specific heat per RE site at T = 0, ?, 
is given in a non-interacting electron gas by 

if2 
7 = -~k~UQf, (5) 

where ~r is defined as the density of states per RE atom per channel m for our impurity 
in the electron gas, and N = 2j + 1 is the number of channels. 

Now we apply a magnetic field h, yielding a Zeeman term in the Hamiltonian 
(using spherical symmetry around each ion) 

Hz = glib ~ mnfm, (6) 
m 
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where nrm = f2fm, g is the g factor and #B the Bohr Magneton. We neglect coupling 
to the non-f  electrons whose susceptibility is small. The linearly induced f-polarization 
in the mth channel will be 6(nfm) = hg#Bofm. Hence the moment  is 

= 2 (7) M g#" 2 ~<'fm~ = hg2#,Qf ~ m2. 
m m 

Therefore, the susceptibility Z = OM/Oh is 

Z = N(#~/3)~f, (8) 

where we define 

J 
/~er = 3g2#~ ~ m2 = g~l.t~j(j + 1). (9) 

m = - - j  

From (5) and (9), we see that there should be a proportionality 

Z _ 7 (10) 

for all materials in this class. In figure 2 we plot [17, 18] the two sides of (10) for a 
number of materials (we have not attempted to bring the plot fully up to date) and 
we see that it is indeed valid despite a wide range of  ~ and #o~. This implies something 
about the electrons in IV systems behaving like non-interacting quasi-particles and the 
rare earth ions behaving a lot like non-interacting impurities. Of  course, it does not 
imply that we really have non-interacting electrons, otherwise ~ could never reach the 
high values observed in many IV materials. 
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Figure 2. T = 0 magnetic susceptibility ;( plotted against linear coefficient of specific heat 7 
for various intermediate valence compounds. Straight lines are equation (37). 
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Figure 3. (a), (b), (c) contain, respectively, plots of magnetic susceptibility [20], electronic 

specific heat [21] and magnetization [20] of YbCuA1 against temperature (in (a), (b)) or 
magnetic field (c). The continuous curve is the exact solution of the 8-channel Kondo 
model (nf = 1) [22, 23] with T x = 100K (equation (12)), TK = 9 8 K  (equation (44)). 
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Figure 4. 
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of the maximum in z(T), after [19]. 

Next consider the plot of  Z against temperature [20] in figure 3 (a), where results 
are illustrated for YbCuA1. We see that Z at low temperatures is constant, the Pauli 
susceptibility just considered. At high temperatures, Z has the Curie-type behaviour 

Z = (#~/3k, T). (11) 

At intermediate temperatures Z has a maximum, which is characteristic of  IV 
materials. The general behaviour of z(T)  illustrated in figure 3 (a) is typical, only Z(0) 
and the temperature Tm,x at which X peaks being characteristic of  individual materials. 

Let us now plot Z0 - Z(0) against 1/Tmax, as done in figure 4 [19]. We see that there 
is a clear scaling: systems with large Z0 have small Tmax (e.g. YbCuA1), and the reverse 
is also true. 

Another correlation is between X(0) and the average number of  f-electrons 
<nf) = ~-~m ( f2 f , , ) ,  i.e. the mean valence. This plot is shown in figure 5 for ytterbium 
materials [19]. There are inaccuracies in the <nf) measurements, but it is seen that 
systems with large Z0 are close to the magnetic (f13 for Yb) valence, and systems with 
small Z near to the non-magnetic (f14) valence. 

We see that there is a remarkable universality in the properties of IV systems 
[17-19]. They can be approximately categorized by a single number, a susceptibility 
Z0, or equivalently an energy scale Tmax, which varies systematically with valence. If 
Tm,x is known, one can predict Z0 and 7- 

Finally we shall see that the individual curves of  x(T) [20], electronic specific heat 
C~(T) [21] and magnetization M(h) [20] illustrated in figure 3 for YbCuA1 can 
even be understood in detail on the basis of the impurity model. We start from 
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Figure 5. Plot of T = 0 magnetic susceptibility against valence for Yb intermediate valence 
(IV) compounds, after [19]. Full curve is equation (35) with A 0 = 0.19 eV; broken curve 
is Zc from (38). 

the model (4), the Infinite-U SU(N) Anderson model. This model has been exactly 
solved by Bethe ansatz techniques [22-28]. The remarkable solution is difficult and 
technical [22-27], and we shall not dwell on it here. However, we shall quote the 
results. 

First of all we note that YbCuA1 is found experimentally to lie exceedingly close 
to the f~3 limit (figure 5). Therefore (given that apart from having j = 7/2 this 
one-hole system is equivalent to f] cerium), Yb in YbCuA1 is capable of being treated 
in the Kondo limft [22~6], i.e. by (5 b) rather than by (5 a). In the Kondo regime the 
model has only one characteristic energy scale T~, the Kondo temperature, which may 
be defined as T z in 

= 1 2 • • 1)/Tz. (12) z(0) ~g~.j( j  + 

(Another temperature To = N T  z is also frequently introduced. Wilson's characteristic 
energy scale Tw in the high-temperature region is Tw = T z exp (1 + C - 3/2N)/ 
2rcF(1 + 1/N) where C is Euler's constant and F the Gamma function.) When this 
is done [29] all the other thermodynamic properties, z(T),  specific heat Cv(T) and 
magnetization M(h) at T = 0 are seen to fit remarkably well [29] (see figure 3). 
YbCuA1 is seen to have impurity-like thermodynamics. 

We now turn to developing approximate solutions to our model (4). We are 
motivated partly by a desire for pedagogical simplicity. Additionally, there are 
non-thermodynamic properties (photoemission spectra, transport properties) which 
cannot be calculated within the Bethe ansatz technique even for one impurity. Most 
important however, we wish to develop the theory of the lattice, which unlike the 
single RE impurity is not exactly soluble. Such a solution should clearly help us to 
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understand the impurity-like thermodynamics and scaling properties which have been 
alluded to in this section. Furthermore it should give a coherent ground state and enable 
transport properties like the T 2 resistivity at low temperatures and the thermopower 
to be calculated. 

In addition, a goal is to understand the Tm ion as an impurity and in a lattice 
situation such as TmSe. This ion poses problems because of the degeneracy of both 
valences. It is hoped that study of this ion will be helpful in understanding the very 
important uranium materials, since the U ion, usually considered to be f2_f3, poses 
similar problems. 

1.4. Origins of mean field, 1/N expansions 
In many areas of condensed matter physics a step forward has been taken when 

the mean-field solution to a particular problem was identified. In the case of (4) and 
its relatives the mean-field solution has been found in the last few years and it does seem 
to provide a foundation upon which basic understanding of the intermediate-valent 
and heavy-fermion state may rest. 

The origins of this development lie in early work by Yoshimori and Sakurai [30] 
in 1970 on the spin -1 Kondo problem. This predates Wilson's solution [9], and had 
these authors correctly calculated the ~/y ratio by introducing Gaussian fluctuations, 
as they nearly did, the understanding of the Kondo problem would have been 
advanced by several years. However, their solution may have seemed an arbitrary 
approximation at that time. 

Lacroix and Cyrot [31] extended these ideas to the lattice of spin -1 Kondo 
impurities and first developed many ideas which form the centre of this article. Up to 
this point, the mean-field solution to the spin-½ Kondo impurity and lattice remained 
curiosities. However developments were in train which were to change this, involving 
the use of 1/N expansion techniques in attacking models such as (4). The nomenclature 
here involves a degeneracy factor N, which in our problem is N --- 2j + 1, and is the 
degeneracy of the magnetic configuration of the 4f ion. The general principle of a 1/N 
expansion is first to find the diagrams which have the maximal number of internal 
summations over m (i.e. degeneracy factors N) in each order. These form the leading-N 
approximation. Higher-order approximations may also be feasible by summing 
diagrams with next-to-maximal number of internal summations, etc. 

An approach to the solution of (4 a) existed by using a non-Feynman diagram 
technique invented by Keiter and Kimball and independently by Hewson and 
Movaghar. The technique was first applied to the present problem by Bringer and 
Lustfeld [17]. Ramakrishnan and Sur [34] showed how this could be organized into 
finite summable classes of diagrams by use of the 1/N expansion concept, and many 
others followed in his footsteps [35, 36]. Identical expressions were obtained by a 
variational procedure [37]. When the dust had settled it was realized, by careful 
comparison with the exact solution to (4) [36] that the Ramakrishnan-Keiter- 
Kimball approach correctly gave the first two orders in 1/N in the expansion of 
calculated quantities. Since N = 6 or 8 in IV systems, this is an adequate accuracy 
for many purposes. 

A little after Ramakrishnan and Sur, Read and Newns [38], picking up an idea of 
S. Chakravarty (unpublished preprint) set out to solve (4) in the Kondo limit (4 b) by 
a 1/N expansion technique. In their technique, the leading order in 1/N is the 
mean-field theory, and the next order is represented by the fluctuations around mean 
field. For the first time in a 1/N technique, they were able to derive the Z/7 ratio 
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correctly, the goal so nearly reached in 1970 by Yoshimori and Sakurai [30]. The 
mean-field approximation had emerged into clear definition as the leading term in a 
1/N expansion, and deviations between mean field and exact results could be identified 
as 1/N corrections. 

Finally the necessary extension to make treatment of  the full Hamiltonian (4 a) 
possible opened up with Piers Coleman's 'slave boson' trick [39]. Now mean-field 
approximation [40] and the 1/N corrections [40, 41] for the full Hamiltonian (4 a) were 
worked out. Whereas the Keiter-Kimball  technique has proved extremely difficult 
to apply to the lattice, a way to treat the lattice of  IV ions had now been opened 
up. Mean field [43, 42] and recently 1/N correction calculations have been done 
extensively on the lattice [41-45]. 

In mean field the solution to (4) [38, 40] is just a narrow quasi-particle resonance 
at the Fermi level. Its shape is Lorentzian, its degeneracy N = 2j + 1, and it satisfies 
the Friedel sum rule in that its occupied area holds (nf) electrons (figure 6). The 
centre of the resonance is located at TK above eF" The density of states per channel 
at ev in the resonance is to be identified with pf in the phenomenological approach of  
equations (5)-(10). 

In the case of  lattice models, the mean-field theory gives a renormalized or 
quasi-particle band structure [4245]. The ground state is coherent. In the case of 
insulating IV systems ( S m S . . . )  [43, 46], this allows for a picture in terms of  a 
conventional insulator in which bands below the gap are filled, and bands above it are 
unoccupied, except that the gap can be very narrow, as indeed is observed. 

Finally, we come to the anomalous case of Tm [47, 48], with both valences 
magnetic, and for this a different type of mean-field solution has to be developed, as 
described for the first time in this paper. 

In the following we shall consider these topics in more detail, starting with the 
Anderson impurity model (4a), then considering two impurities, various lattice 
models, and finally thulium. 

2. Anderson impurity 
2.1. Bosonized model 

The basic model for the large-N treatment is the infinite-U Anderson model (4). 
This is most conveniently written in terms of the Coleman bosons [39] as 

H = Eo ~f~fm + Ho + V ~ (f~c~mb + C*~mf~b'~), (13a) 
m k,m 
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where 

~k Ckm Ckm" 
k,m 

In (13a), the bosons have replaced the projectors in (4a); they work as follows. 
Suppose the system is in a state ]b ~ f0>, by which we mean one boson, zero f-electrons. 
Now if (13a) acts on this state, the f~Ckmb term will convert the state to [b°fl> 
(the other terms in H leave the state unchanged or annihilate it). Further application 
of  H leads to thef~ck,,b term annihilating the state Ib°f ' >, but the c~mfmb t returns the 
ib 1 f0> state. 

Therefore, starting with either Ib°f ~ > or [b' f0>, (13) never leaves the subspace of 
these states. No f2, f 3 . . .  states are ever created, so the bosons work like the projectors 
in (4a). But if we had started with a state such as ]b ~ f~ >, then the forbidden [b°f 2 > 
would be created. It is necessary to eliminate such states, and this is done by 
introducing a constraint [40] 

Q = nf -Jr btb = 1, (13b) 

where nr = E m  f~fm" In reality, (13 a) plus (13 b) are equivalent to (4 a). In working 
with (4 b), Read and Newns introduced a similar constraint nr = 1. Note that the 
operator Q commutes with (4 a), as n r does with (4 b). 

In fact the correct way to handle (13) involves some relatively cumbersome 
formalism, e.g. path-integral technique, [38, 40] in order to handle the constraint 
(13b). However, the purpose of  the present article is to dwell minimally on such 
details. We shall try to find intuitive and formally simple procedures to derive the 
essential results. 

2.2. Large-N approximation 
At low temperatures, it is found adequate to introduce the constraint in an average 

way [38, 40]. As if introducing a Legendre transformation to a grand canonical 
representation from a particle-number representation, we go to a new Hamiltonian 

H = Eon f + Ho + V ~ (f~ckmb + h.c.) + y(nr + b t b  - 1), 
km 

o r  

H = ~ f n f  Jr H o -k- V ~ (ftmCkmb + h.c.) + (er - Eo)( btb - 1), (14) 
km 

where we redefine ~f = E0 + 7 as a quasiparticle f-level. If we look for a state of (14) 
which is stationary with respect to variations in 7, then the constraint <Q> = 0 will 
be satisfied for that state. 

Now to give an idea of how the selection of diagrams in powers of  1IN proceeds, 
we imagine a Feynman graph expansion for the free energy of  (14) in powers of V 
[38, 40]. This is perfectly possible since only normal boson and fermion operators are 
found in (14). Some of  the diagrams we obtain are illustrated in figures 7 (a) and 7 (b). 

In order to organize the diagrams in powers of N, conventions (which prove 
self-consistent) are helpful: firstly we take the vertex V as of  order 1/x/N. N is the 
degeneracy N = 2j + 1 of  the f~ state, there being N values of  m. Secondly, the 
propagator G o (and of  course G ° ) are considered N-independent. Then we see that 
figure 7 (a) is of  order N and is the leading-N diagram. Figures 7 (b), (i), (ii a), (iii) etc. 
are of order 1, these are called the Gaussian fluctuation or RPA corrections to mean 
field [38, 40]. The diagram of  (lib) is of even higher order in 1IN. The two levels, 
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(a) 

(b) 

0 

(i) 

D ( ]  (~)~., + , + + . . .  
g × 

( iia) ( iii ) 

i I 
I I 

(iib) 

Figure 7. Diagrams contributing to free energy of single impurity. The series (a) represent the 
leading-N diagrams. The diagrams (i), (iia) and (iii) in (b) represent the next order in 
1/N. Diagram (iib) is of still higher order in 1/N. In (a) full line represents bare 
f-propagator, broken line represents bare k-propagator, cross represents z ~/2 V vertex. 
Notation of (b) is the same except fermion lines include all z ~/2 V scatterings, while wavy 
line represents boson propagator. 

figures 7 (a) and (b), are what have been calculated so far. In fact the assumption that 
Gris of  order 1 is not strictly valid for the model of  (13). But Read [40] has shown that 
this does not in fact matter: after careful consideration it is found that one can 
organize the diagrams of  figure 7 as if Gf were O(1). Therefore in this article we shall 
adhere to the large-N procedure which was first used by Ramakrishnan [34]. 

Another  approach is to replace (13b) by the constraint due to Coleman [41] 
Q = Nq,  where if we were treating a cerium system q = 1/6. Now (13 b) only 
corresponds to an f0_fl model for N = 6, but it is argued that the large-N limit 
may be taken in this new way and then N put equal to 6 at the end, with no less 
validity than in the conventional procedure. Since the number of  f-electrons is now 
proportional to N (and > 1 for N >> 6), the fractional occupation of  the f-level is 
N-invariant and so Gf may be taken as O(1). We shall not use this procedure here, to 
keep our large-N procedure the same as that of  most  of  the literature at present. 

2.3. M e a n - f i e l d  approx imat ion:  energy  scale 
Now in order to get any non-trivial result from figure 7 (a) we need to put in the 

effect of  the bosons in some average way. This is where the mean- f ie ld  concept enters 
[38, 40]. We replace b and b t by their expectation values 

( b  t )  = ( b )  = z 1/z. (15) 

Now (14) is replaced by the single-particle Hamiltonian 

H = efnr + Ho + ZI/2v Z (ftmCkm "~ h . c . )  -]- (Ef - -  Eo)(Z -- 1). 
k,m 

(16) 

z = 1 - (nf )  (17a) 

The mean-field parameters er and z in (16) are determined by minimizing the 
free energy of (16). Taking the expectation value, differentiating, and using the 
Hel lman-Feynman theorem 8(H(2)) /82  = ( 8 H / ~ 2 ) ,  where 2 is a parameter  in H, we 
obtain 
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( a )  I- x - - - x  + x - - - ~  . . . .  ~ + . . .  

(b) r.: . . . .  x - - - +  ----~---× ~ - - - + . . .  

Figure 8. Diagrams contributing to Gf in (21) and Gfc in (25); notation as for figure 7 (a). 

and 

z - ' / 2 V U ~  (f2Ckm) = Eo - el. (17b) 
k 

To calculate the expecta t ion values in (17) we need to calculate p ropaga tors .  In  (17 a) 
we need the f - f  p r o p a g a t o r  Gf(e), described by the series in figure 8 (a). We m a y  in 
mean-field theory,  essentially one-body  theory, use re tarded p ropaga to r s .  Summing  
f rom figure 8 (a) we obta in  

G f ( ~ )  ~--- [/3 - -  / ; f -  r ( e ) ] - ' ,  (18) 

where the self-energy F(e) is (s = 0 +) 

V 2 
F(e) = ~ z ~ --ircV 20, (19) 

e - ek + is 

and 

k 

(18) becomes 

A o = ~V20, A = ~zV20,  (20) 

Gr(e) = 1/(e - ef + iA), (21) 

where the density of  f-states, 0r = - n-~ Gr, is then given by  

rc ~A 
0r(e) = (e _ Er)2 + A 2. (22) 

We see that  A is the renormalized lifetime broadening of  the f-level, which is shifted to 
er, the renormal ized f-level energy. 

The  expectat ion value ( n r )  is now obta ined f rom (22) as a Friedel-like expression 

( n f )  = of(~)Of(e)d~ N t a  n i A , T =  0, (23) 
r~ 

where f (~)  is the Fermi  function. N o w  we have seen that  V is to be taken  as o f  order  
N 1/2. We shall see below tha t  er is O(1). Then A/~f is O(1 /N)  and  the arc tangent  m a y  
be expanded to give 

(n f )  =-- nr ~ NA/~er.  (24) 

Since O < nf < 1, we see tha t  A/~fis o f  order  nr/N. Thus  because there are Nchanne l s  
in the quasipart icle resonance,  its filling factor  can only be small in order  for nf to be 
less than unity. 

In (19) we m a k e  the usual  a s sumpt ion  that  the band  o f  k-states  is wide, so that  the 
real par t  o f  F is effectively cons tan t  and only contr ibutes  an uninterest ing shift which 
is ignored. Then  defining 
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Hence we arrive at the picture of  the density of f-states already illustrated in 
figure 6. The density of states is a Lorentzian centred on er, of width 2A. Its filling 
factor is small: we illustrate the case N = 6, nf = 1. In Yb systems the Lorentzian 
would be nearly filled in order to allow for ~ 1 hole; we recall that Yb systems are 
obtained by electron-hole inversion of Ce systems. The quantities A and Er are related 
by (24). A itself tends to be small, because of  the renormalization factor z = 1 - nf 
in (20), especially when nf lies very near to unity. 

An explicit expression for the energy scale may be obtained from the other 
self-consistency relation (17 b). The expectation value Zk (f~ek,,,) may be obtained 
from the f-conduction electron propagator Grc, given by the series from figure 8 (b) as 

Gfc = zmVGfG °, G°(e) = ~ E  - E~I + is '  (25) 

so that 
Z1/2 V 

Im ff(~)Gr(e)G°(E) dE. (26) ( f ~ c k , , , )  = 

If we introduce the assumption that the conduction band consists of a constant 
density of states (DOS) 0 above a lower band edge D, 

~(E) = ~0(E + D), (27) 

where O(x) is the unit step function, then (26) becomes 

(f~Ckm) = --Z'/2A° Im fo de 
~zV o E - -  Ef + iA f ( E )  (28)  

z'/2 Ao (~  + A2 ) 
- 2VTz In D2 , T =  0. (29) 

In (28) we have used (19) and in (29) we assumed D >> er. Now inserting (29) into 
(17b) gives the equation for the energy scale 

E0 - E f  - In . (30) 
7~ 

The equation (30) has an analytic solution for large negative E0, the Kondo limit. 
Then we may drop Ef from the left-hand side of (30), to get 

(E~ + N)  1/2 = TK = O exp (TzEo/NAo). (31) 

The energy scale (31) can be very small as E0 becomes large and negative. This is 
associated with nr approaching unity and z thus approaching zero. The expression (31) 
indeed is correct in the large-N limit of  the model (4), whose exact solution is known 
and whose energy scale may also be obtained by scaling arguments without involving 
the large-N approximation. 

Note that the motivation for making V of  order N 1/2 is seen in (31). Such a choice 
makes the energy scale independent of N. We may define the energy scale to be T~ in 
the Kondo limit: in general, we may define the solution (El + N)  t/2 ~ Er to (30) to be 
an energy scale TA. Equations (23) and (30) may be combined into one by introducing 
[38] a single complex quantity Z = er + iA, which now obeys 

Z0 - Z = (NA0/Tr) In (Z/D), (32) 

where Z0 = E0 + iA0. TA is then defined as TA -- IZI. 
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2.4. Low-temperature thermodynamics 
Mean field is a non-interacting quasiparticle theory. The specific heat and suscep- 

tibility may be calculated using Sommerfeld theory. Since er is small, ~ ,~ ~r, and thus 
we may use the f-density of  states as a reasonable approximation to the total density 
of  states in most  materials. Then we simply repeat the arguments of  § 1.3, with Qr now 
identified as the density of  states (22) defined at the Fermi level e = 0. Hence we 
obtain for 7 and X 

7 = ½k2N~f(0) "~ ½~nf/~f, N large, (33) 

1 2 1 2 17 = ~#e~NQr(0) - (34) x#~ernr/er, N large, 

,-~ 1 2 n~ 1 
- -  x#eer 1 - -  nf NAo' N large, (35) 

where 

2 Peer = gZ#~j(j + 1) (36) 

is the effective moment  of  the RE atom in its degenerate configuration. It is seen that 
we get back (10) for the 17/y ratio in mean field (MF) 

X/7 z 2 2 = #eff/(rc kB). (37) 

We should now compare the M F  results with the exact Bethe ansatz solutions. 
Considering first the Kondo  limit nr = 1, the results for t7 and 7 f rom Bethe ansatz 
are [24, 26] 

z = # b l ( 3 r J ,  7 - 5 

These results involve the characteristic energy scale T z. T x may  be given by (31) 
(though in fact it depends on cut-off procedures introduced into the model). At large 
N, the expressions for 17, (12) and (34), can therefore be considered to be the same, 
since TK tends to Er at large N. 

The expression for 7 cannot  be identified with that of  (33) by adjustment of  T x, 
since the 17/7 ratio 

Y ~2k~ 1 + . 

characteristically differs from (37) by a factor which can be as large as two for N = 2. 
However, it is only 15% for N = 6 and 12% for N = 8. In any case, the factor 
approaches one for N large. Thus all M F  results do approach the exact solution as 
N ~ oo. For  nf < 1, 17(nf) has been carefully investigated by Hewson and Rasul [36], 
and found to be in excellent agreement with the exact result, as illustrated in figure 9. 
The corrections to 17/7 also get smaller as nf decreases [40, 49] (see § 9). Hence we 
conclude that for low temperatures and fields, the M F  results are in good accord with 
exact solutions. 

Looking now at correlations with experimental IV systems, we notice that it 
follows from (37) that mean-field theory explains the correlation in figure 2 which is 
observed empirically, if we could be satisfied with a treatment based on non-interacting 
impurities. 
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Figure 9. T = 0 magnetic susceptibility Z of 8-channel U = 0% Anderson impurity model 
against scaled f-level energy e~'. The full line is the Bethe ansatz [26] result, the points are 
from calculation to leading and next leading order in 1IN [36]. 

Table 2. Specific-heat linear coefficient 7, susceptibility Z and other parameters (see text for 
definition) for various compounds involving intermediate-valence species. 

Z(0) y A ef - eF 
Compound (10-3EMUmo1-1) (mJmol IK-l)  R vf(0) (meV) (meV) 

YbCuA1 25"5 260'0 1-04 1-0 3"23 - 7"8 
Y0.1Yb0.9 CuA1 27-5 1 "0 3"0 - 7'2 
YbCu2 Si2 16-0 135-0 1-26 1"0 6'4 - 15"5 
YbA13 4.7 45'0 1"07 1-0 17'7 -42-7  
YbAI2 0-41 16'8 0-25 1"0 52.0 - 125-0 
CeSn 3 1-46 53-0 0-94 0.9 18.9 37.0 
CePd3 1-47 37.0 1.36 0-9 18'9 37.0 
aCe 0"51 12"8 1-36 0"3 8"6 54"0 

Secondly, we illustrate in figure 5 the result o f  plott ing equat ion (35) with 
Do = 0" 19 eV [40]., I t  is seen to fit quite well to the data  (which we should remember  
involves considerable inaccuracy in determining nf). These theoretical results (35) and 
(10) would in any case be very little different if we used the exact Bethe ansatz 
solutions rather than the M F  results (33)-(35). It  is interesting to see what  values we 
get for D and ef if we fit Z (or ~) to experimental results for a representative sample 
o f  IV compounds  [11]. This is done  [11] in table 2, where we used (33), (34) and (22) 
wi thout  taking the N --* oe limit. We see that  ~v values for IV systems go down to 

8 meV for YbCuA1. 
Another  quant i ty  which it is interesting to calculate is the charge susceptibility 

Zc = O ( n f ) / a E o .  

This is done by recalculating the s tat ionary point  at a funct ion of  E0, when we obtain 
in the large-N limit [40] 

Zc = - nf2(1 - nr)z/(NAo), (38) 

)~c is seen to differ greatly f rom Z as given in (35). Whereas  Z diverges in the K o n d o  
limit nf ---r 1, Zc becomes zero there. This is indeed a reasonable result, since in the 
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Kondo limit the f-level is reduced to a spin which does not change its occupation. Zc 
against nf is plotted on figure 5 (note scale factor); it is seen to be rather small. 

It is interesting to obtain the ground-state energy Eg in mean field [40]. This is readily 
done starting from (40) below; if the arctangent is linearized (leading-N approximation) 
the integral performed and (30) used, we obtain in leading-N approximation 

Eg = Eo - er. (39) 

2.5. Higher temperatures and fields 
Now it is interesting to see what happens as we go away from the stationary point 

(er, A), which is the solution to (32), obtained at zero temperature and zero field h. Let 
us add the Zeeman term (6) into the mean-field Hamiltonian (16). Then at finite 
temperature it is easy to derive the results 

'I: ( ) F = - ~ def(e) tan-~ - 1 (40) D ~ -- ef "q- hm + (~f -- E0) A 

for the free energy, and the self-consistency equation (prime implies derivative) 

_ ~fOOoodeff,(e) l n Z -  hmzK - -e  +--Ao = 0, 

where 

Z = e f +  iA, z K = Dexp  ( 0 + iA0) 

To calculate, say, C~ to O(Z3), first one sets h = 0 and expands Z to 0(T2), obtaining 
(41 a, b). The result is substituted into (40) to get the Sommerfeld-like expansion for 
F, but this differs from the completely non-interacting problem because of the 
T-dependence of the mean field variables. Similarly, one may calculate X and the 
moment M to O(T 2) and O(h 2) respectively. 

The results are rather complicated in general, but in the large-N limit we obtain 
more simply [38, 40] 

rr 2 T 2 nf 
ef = TA -q- 6----'~A ' (41a) 

~3 T2nr 
A = A ° + ~ ( n r -  2), (41b) 

f /~2 T 2 ] ;((T) = ;~o(1 + ~cT 2) = Zo 1 + ~ ( 5 n  2 -  20nf + 30) , (41c) 

C~(T)  -- ~r(1  + ~ o r  ~) = ~ r  1 + N - ~ I  (5n~ - 20n~ + 42) , (41 d)  

[ (hj)Z ( 5 n 2 -  20nf+  18)] m ( h )  = zoh(1 + t~h 2) = zoh 1 + 

nr(r) = nf(O) 1 + --~ ~ ( 1  - n 0 , ( 2  - n ~ )  . 

(41 e) 

(41f) 
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Comparison of expansion coefficients for mean-field large-N values, the exact Bethe 
ansatz results and experimental data on YbCuAI. 

~2/2 2.77z 2 j2 /10  
Large-N 4.93 27 1.2 

Exact -~ 5.4 ~- 35 1.9 
YbCuA1 > 0 18 1.9 

We see from (41 a, b) that ef increases with T, but A decreases. For  all values of 
nf, Z and ~ have positive T 2 coefficients and M(h) has a positive h 3 coefficient. This 
positiveness is typical of the large-N situation. If  we consider the special case nf = 1, 
without taking the N ~ oo limit, all these coefficients turn out to be proportional to 
sin (37r/N), i.e. they are positive for N > 3. This result is actually found to be in 
agreement with exact solutions [22, 23]. As seen from figure 3, all the curves do turn 
upwards initially at the N-value N = 8, for which the figure 3 curves are calculated. 
But the exact solutions show that for N < 3 the curvature is negative. 

In table 3 we illustrate the values of the •, Cv and M coefficients obtained in the 
Kondo limit, nr = 1, for N = 8. We see that the mean-field values are in fair 
agreement with the exact Bethe ansatz results for N = 8 [22, 23]. They are also in fair 
agreement with experimental data on YbCuAI [20, 21]. 

Equation (41 e) shows the correlation ofnrwith T: nrincreases with T(up to nf = 1 
at T ~ TA). In [11] we considered the variation 0fnrwith T o f a  number of experimental 
IV systems and showed it did indeed follow this sign in all cases. The variation of  n r 
occurs over a very narrow temperature range for YbCuA1 (Mattens, Holscher, Tuin, 
Moleman and de Boer, preprint), which is to be expected as T A is small for this 
material (table 2). 

A qualitative discussion of  the figure 4 trend of X against 1/T A is possible here. 
may be written from (34) in the large-N limit 

1 2 
Z = ~/-telrnf/TA. 

Hence for a moderate range ofnf  (say 0.5 to 1), X scales with T£ 1 , while from (41 c) 
we see that the temperature dependence scales as T/TA (although the maximum is not 
determined at the T 2 level, the positive T 2 coefficient ensures the existence of a 
maximum in X). Hence we can qualitatively understand the correlation in figure 4. 

In order to explore higher temperature and fields than can be reached with the 
expansions (41), equations (39) and (40) can be treated numerically: in fact (40) was 
solved by a complex Newton-Raphson procedure and the result substituted in (39) 
(Newns, unpublished work). 

We carried out computations in the Kondo limit nf = 1, keeping N = 8 in the 
mean-field formulae. It is found that A, which decreases with T to O(T 2) (41 b), 
vanishes at a critical temperature ~ 0"6TK. Results for Cv(T), z(T) and M(h) are 
illustrated in figure 10. It is seen that while MF  is very accurate for T ~< 0.25 TK, 
because of this phase transition results at high temperature are very poor. A similar 
phase transition in h would be evident in figure 10 (c) were it carried to higher field. 
A similar comparison is given by Coleman [41] using his version of  large-N theory. 

In conclusion, for large-N mean field works excellently at low temperatures and 
fields, but fails disastrously at higher temperatures and fields. In this, mean field is in 
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Figure 10. Plots of (a) Specific heat Cv in units of TK against T; (b) magnetic susceptibility 
against T; and (c) magnetization against h, plots for the 8-channel, integral-valent 
U = oo Anderson model. The full curves are given by the mean-field solution. The exact 
solutions are the dot~lash curves [22] in (a), (b) and the upper full curve [23] in (c). In 
(c), the circles are experimental points [20]. 
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interesting contrast to another approach, the non-crossing approach (NCA) [50], 
which sums all non-crossing diagrams in the Keiter-Kimball approach, but is not 
systematic in 1/N. The NCA gives divergent results at very low temperatures, but 
correct results at high and intermediate temperatures [50, 51]. 

2.6. Cut-offs and crystal fields 
Notice that (27) only contained the lower band cut-off D. If we introduce a square 

band with upper cut-off E so that a real part of G o is defined 

+ O , (42) G°(e) = - ino0(~ - D ) O ( E -  ~) + o ln 

then in the Kondo limit (31) becomes (Newns, unpublished work) 

TK = D~-~/NE ~/N exp (nEo/NAo). (43) 

We see that the upper cut-offonly appears as a 1/Neffect, but at N -- 2 its appearance 
restores electron-hole symmetry (though the prefactor in (43) is not exact for N = 2) 
[51, 52]. 

Crystal-field effects have been discussed by various authors, using exact Bethe 
ansatz procedures [53, 54] and within a large-N formulation [37]. The latter approach 
may be equivalently formulated in mean field. Suppose that the N levels are split into 
two subsets, a set at E0 of degeneracy N~ and a set at E0 + A of  degeneracy N2, 
where we assume A > 0. the splitting A now appears directly in ~f in (16), and 
(30) generalizes to 

Eo--  ~f = - -  N t ln  + N21n (44) 
n D " 

The expression for TK may be written down from (44) in the limit A, (--Eo) >> TK: 

ef = TK = T°(T°IA) u2/u', (45) 

Where ~ is given by (31). Equation (45) is well known [37, 53, 54] and shows that 
although there is a reduction of  the energy scale due to crystal fields, the reduction 
is by a power of ( ~ / A ) .  

3. Anderson S U ( N )  Dimer 
3. I. Model and mean field 

The case of two Anderson impurities 1 and 2 at a distance R apart in an electron 
gas has considerable importance as a first step in the lattice problem. This problem 
has been discussed by Jayaprakash et al. [55] and Lacroix et al. [56] for spin ½ and by 
Coleman [42] and by Rasul (unpublished work) for the SU(N) case. Recently the 
spin-½ case has been treated by Wilson's [9] numerical renormalization group 
procedure [57]. The mean-field approach to the SU(N) case was carried out by 
Dharamvir (unpublished). In the SU(N) case let us start by introducing the Lagrange 
multipliers for the Q-constraints, when the Hamiltonian for two f-sites and 1 and 2 
may be written, in an obvious notation 

H = H0 + E0(nf, + nr2) + V ~ [ftmlekmb I q- f~2CRm exp (ik- FI) b2 + h.c.] 
k,m 

+ ?~(b~bl + nf, - 1) + ?2(b~b2 + nr2 - 1), (46) 

introducing two Lagrange multipliers ?~ and 72. We now wish to make a mean-field 
approximation. To do this, the assumption is that the symmetry of the model is retained, 
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i.e. ( b ~ ) =  ( b 2 ) =  z 1/2, 71 = ~2 = e f -  E0. The symmetry of  the mean-field 
Hamiltonian lends itself to use of  even and odd f-states f+ = (fl  +- f:)x/2, in terms 
of  which the mean-field Hamiltonian H '  becomes 

where 

H '  = Ho + ef(nr+ + nf_) + z 1/2 Z (Vk+ft+mCk'~ + Vk-ft-mCkm + h.c.) 
k,m 

-k- 2 ( e f -  Eo)(Z -- 1), (47) 

Vk_+ = (1/x/2)V(1 + exp ( ik-  R)). (48) 

Now scatterings from + to - through Ik) vanish, but we need the lifetime broadenings 
within the + ,  - channels 

]-1 ( sinkRkR'] A_+(e) = - ~ ] V k + [ E / ( e -  ek + is) = A _ I  _+ ] ,  e = ~ / 2 .  (49) 

Writing down the self-consistency conditions, analogous to the single-impurity ones, 
for the large-N limit, at T = 0 

N fo de (A+ + A ), (50) 
= ~- o ( ~ - - e ~ ) 2  2(1 - z) = nf+ + nf_ 

or using (22)-(23), 

1 - z = NA/(rref) = {(nf+ + nf_), (51) 

we retrieve the same result as in the single-impurity case. The second relationship is 

4(E0 - ef) = ~ (Vk+(ft+mc~,) + Vk_(ft_mCUm) + C.C., (52) 
k,m 

or, to leading order in 1/N, 

4(E0 - er) ~ _ 2___NN f0 de (A+ + A_)/(e - er), 
"~, J -  D 

i.e. using (49) 

(E 0 -- el) = (NA°/lr) In (er/D). (53) 

Again, the same equation is obtained as for the single-impurity case. At large distances, 
we see from (49) that both odd and even levels have the same width. 

At small distances, R ,~ k f  l, A_ is seen from (49) to become very small and 
the odd level is a narrow and unoccupied one lying above the Fermi level at el. 
Then, assuming we are near the Kondo limit, nr+ ~ 2, nf_ " ~  0, SO from (50) 
A+ = 21rTK/N = 2A. So we have the odd level with vanishing width, and the 
even level with twice the width of the single impurity resonance. The energy scale, 
however, remains TK. We illustrate the density of states in the even and odd channels 
in figure 11. 

3.2. R K K Y  interaction 
It is necessary for understanding the properties of  both the SU(N) dimer and 

lattice to estimate the R K K Y  interaction. This interaction is associated with the bare 
energy scale, and in the SU(N) dimer occurs when an electron occupies the same 
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Figure 11. Sketch of f-density of states in even and odd channels (+,  - respectively) for two 
RE impurities a distance R apart. Left hand two curves for R = oo, right hand two 
curves for kFR = 1.1. 

m 2 - ~ -  + oC: D - oC . . . .  ? 
E+IR) E_IR) 2E+(cx~) 

Figure 12. Diagrams for RKKY energy of two RE impurities at distance R apart, assuming 
mth channel occupied in both impurities. Full line, bare f-propagator, broken line, bare 
k-propagator, with parity + or - indicated on diagram. Vertex is Vk+ - . 

m-state of  each impurity. Since this situation does not violate the requirement that 
0 < nf < 1 on each impurity, (a special situation arising because symmetry is 
broken) we can treat the problem as a one-body problem with the original (4 a), 
without need of the P-operators.  

The interaction energy ERKKY is then given by the diagrams of  figure 12. Using 
Feynman rules we have for the contribution from the even and odd channels E+ 
and E 

V 4 1 k~ f dco g+ (k)g+_ ( -  k)g+ (k')g+ ( -  k ')  . (54) E+ (g) 
8E~ 2hi - ( o J  - ek + is sgn ek)(09 -- g'k' "~- iS sgn ek,) 

where g+(k) = I 4- exp ( i k - R ) .  In (54) the propagator  (09 - E0) -t  has been 
trunctated to - E o ~, the R K K Y  interaction being calculated perturbationally, i.e. it 
applies when E0 is large negative and we are near the Kondo  limit. Now carrying out 
the og-integral in (54) we obtain 

ERKr~y = E+(R) + E (R) -- 2 E + ( ~ ) ,  

as 

2J 2 ( Q(e~ dek f Q(e,,) dez fk(l  sin k R  sin k ' R  (55) 
ERKKY - -  R E 3 k 3 k '  - - f k ' )  ek -- e,, ' 

J is defined a s  ~,'r2/E 0 in § 1.2. 
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The usual case for which (55) is evaluated is for parabolic bands, ek = k2/2m *, 
Ok = (k/kv)OF, (OF = Q(eF)), whence 

ERKKY = 87~(JQF)2gFF(2kFR)t~mm , , (56) 

where 

F(x)  = (x cos x - s inx)/x  4. 

In (56) we have inserted from" since the interaction is zero unless m = m'. 

(57) 

3.3. R K K Y  and mean f ie ld  
At this point we encounter a problem with mean field. The energy in mean field 

of two SU(N) impurities in the large-N limit will be, from the results of §3.1, 
2(E0 - ef). The energy of two nearly-Kondo impurities if they break symmetry and 
go into a 'magnetically locked' state will be ,-~ 2E0 - ERKKY (R). In particular E~KKY 
becomes attractive at small R, so what happens to the Kondo states if ERKKV < -- 2er? 
Presumably the Kondo states are radically altered if R is smaller than the value 
satisfying [42] 

1 (NJQF)2D ) 
( k F R )  3 < C N 2  

~ t 
or (58) 

(kFR) 3 ~ C \uE0 ,/ TK" ) 

In (58) we have explicitly displayed the N-dependence and kept all other quantities of 
order N °. C is a constant of order unity. 

We see that if we are in the N ~ ~ limit then R can be arbitrarily small with- 
out destroying the Kondo effect; the R K K Y  is an effect of rather high order in 
1/N. But because of the factor D/TK, the right-hand side of  (58) might still be 
large, at large but finite N. We discuss the problem more quantitatively in the next 
section. 

Indeed the phenomenon of  'ferromagnetic locking' of the spins at small R occurs 
and has been discussed for SU(2) by Jayaprakash et al. [55]. They found that at 
small R a new Kondo energy scale TK took over, corresponding to compensation by 
the host of the block spin formed of the two impurity spins ferromagnetically locked 
together. This work has been generalized by Dharamvir to the SU(N) case, and the 
situation found that the new energy scale took over precisely at an R given by (58) 
(Dharamvir, Read and Newns, unpublished work). Therefore, although formally an 
effect of high order in 1/N, the R K K Y  energy can take over if TK is tOO small because 
it involves unrenormalized quantities. 

Very recently a numerical renormalization group calculation by Jones and 
Varma [57] for two spin -1 impurities has generated novel results not altogether in 
accord with conclusions based on the inequality (58) or the work of [55]. Jones and 
Varma conclude that, in the case where the R K K Y  coupling is ferromagnetic then 
the two impurity moments are coupled together irrespective of whether TK is larger 
or smaller than the R K K Y  coupling. However, only a small correction to the 
temperature scale [57] is found, so the implications for heavy-fermion systems may 
ultimately be essentially of perspective. 
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4. The SU(N) Anderson lattice 
4.1. Mean-field solution 

The lattice of an IV compound such as CeSn3 is a complex entity. We have s,p 
bands originating on the Sn and Ce sites, and 5d bands originating on the Ce sites, 
as well as the 4f band in which the strongest electron-electron interactions are 
occurring [43, 58]. This situation is one which can only be handled realistically by 
numerical band-structure programs and is not well adapted to the many-body type of 
theoretical approach. 

Accordingly theorists introduce the SU(N) lattice model. In this model the 
f-states are described realistically, and a realistic feature of the spd band complex, 
its high degeneracy, is retained. But the 'host' spd bands are assumed to have 
the same N-fold degeneracy as the f-sites, and the mth host band is assumed to 
hybridize only with the mth impurity f-level, this model is an artificial extension of the 
conventional SU(2) spin concept to SU(N), its advantage being its comparative 
simplicity. The model is assumed, following the single-impurity model, to have 
U =  oo. 

The SU(N) lattice model may accordingly be written [40, 42-45] in bosonized 
form 

H = H o + E o 2  nr` + V~,,(fitmcimbi + h.c.), 
i im 

with the set of constraints 

(59 a) 

Qi = n f i  '1- btibi = 1. 

In (59), Cim is a localized conduction-band state on site i defined by 

Cim = N~ -1/2 ~ ckm exp (ik- Ri), (59b) 
k 

where N~ = number of lattice sites. The specialized features of the SU(N) model are 
that we assume one atom per unit cell, we have hybridization only between the mth 
f-level and the mth conduction state (59b), and we shall assume that only one 
conduction band of k-states, where k lies in the Brillouin zone (BZ), is involved in the 
hybridization. 

A mean-field approximation is introduced in which (b!)  = <b  i ) = Z 1/2, where 
(bi) is assumed site-independent to retain translational invariance. Similarly, the 
constraint is included by a term (er - E0) £; (nri + b~bi - 1), again chosen to be 
translationally invariant. Then the mean-field Hamiltonian can be written [40, 42-45] 

O" = 2 F'knkm "~- 2 8fnfi "~- -71/2 V 2 (fitmCim .3i- b . c . )  + (~f - E 0 ) ( z  - 1) ~, 1, 
k,m i i,m i 

or in k-space as 

H' = 2 [eknkm + eff~mfkm + Z'/2V(fktmC),m + h.c.) + ( ~ f -  Eo)(Z - 1)1, 
k,m 

(60 a) 

(60 b) 

where 

fk = N, -~/2 ~ f +  exp (ik" Ri). 
i 
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Figure 13. Renormalized band structure of a heavy-fermion system along one direction in k 
space for a particular m value. The assumptions made are that ~k = COS k, er = --0'2 
and zV 2 = 0.1. 

Equation (60b) describes a renormalized band-structure problem in which the 
renormalized f-level ~f hybridizes through the renormalized matrix element z ~/2 V with 
the k bands, conserving m (see figure 13). The energy bands are [41, 4245]  

E~ = ½{er + ek +_ [(/~f - -  /3k) 2 "~ 4zV2]'I2}. 

However, for many purposes, such as the self-consistency equations, it is more 
convenient to work with propagators.  

The self-consistency equations are obtained by differentiating (60) with respect to 
ef and z ~/2 

1 - ( n f )  = z ,  (61a) 

V Re ~, ( f~c , , , )  = E0 - el. (61 b) 
m 

The calculation of (61) may be done by introducing the retarded Green functions for 
the system. This follows closely the work of  Lacroix and Cyrot  [31 ]. We introduce the 
conduction-band propagators  per channel 

~ (  zV  2 ) 1  (62a) 
Go(co) = Ns - l  co + i s -  ak co - - ~ ' +  is ' 

a result following straightforwardly from (60 b). Also we introduce the f-propagator  

zV  2 1 
Gf(co) = (co _ ~f + is)2Go(co) + co - er + is" (62b) 

Now since the unperturbed conduction-band density of  states per channel is 

Im 
Q0(co) = ~ (co - ~k + is) ~, (63) 

7 c N  s 
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the per turbed DOS 0c --- - n - I  Im Go(co) is given by (per channel) 

G(co) = Q0[co - (zV2/co - el)]. (64) 

Similarly, the DOS in  the f-subspace is given by 

V2Z ( -zV2-- ~ (65) 
~f(o)  - ( ~ o - - ~ f ) 2 0 °  o o - e l / "  

Suppose we specialize to a rectangular  form for the density o f  states 00 

g0(co) = (2D) - tO(  co + D)O(D - co), (66) 

where O(co) is the step function,  then (64) and (65) become 

0¢(co) = (2D)-1[O( co -- G)®(~b -- co) + ®(co -- e~)®(ea -- co)] (67) 

and 

V2z 
0r(co) - 2D(~o -- er) z [10(co -- 8,)O(~b -- co) + ®(CO -- e~)®(ed -- co)]. (68) 

In equat ion (68) we have int roduced the band edges e , . . .  ed, which are seen f rom 
(64) to be given by 

co - (V2z/co - ~f) = + D ,  (69) 

and take the values, in ascending order  

q = ½ { e r -  D - [(el + 0 )  2 + 4zV2] ' / :}]  

eb = ½{el + D [(el - D) 2 + 4zV2]'/2} t (70) 

8 c = 1 { 8 f  - -  O -Jr [(Sf "]- D) 2 + 4zV2] '/2 } 

ed = ½{er + D + [(er -- D) 2 + 4zV2] '/2} 

The densities of  states 0c and Or are illustrated in figure 14. Notice the enhancement  
near er in Or, which however  has been chosen to be modest,  for clarity o f  illustration. 

To  the self-consistency equat ions derived from minimizing the ground-state 
energy with respect to er and z we need also to add a condit ion from varying chemical 
potential  p in order  to fix the number  o f  particles correctly. F r o m  the He l lman-  
Feynman theorem, we obtain by varying ~r 

nf  = I - -  _7, 

where, from (68), 

V2z r~ dco NV2z  ( 1 1 ) (71) 
nr = S ~ J ~ a ( c o  - - e l )  2 - 2D ~ -  # ~r - e, " 

By varying # we get a condi t ion for  conservation of  the total number  of  electrons n 

n = nr + N(#  - ~,)/2D. (72) 

By varying z we obtain 

N V z  I/Z(fi~Cim ) = E0 - 8f. (73) 
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Figure 14. Density of states of SU(6) metallic heavy-fermion systems, f-DOS above abscissa, 
from equation (68), conduction-DOS below abscissa, from equation (67). Parameters 
are: unperturbed conduction band has rectangular DOS between - D  and D, D = 1, 
n = 3, V 2 = 0'825, E0 = -2-595, nr = 0-8. Renormalized parameters calculated self- 
consistently from (71)-(74). 

Here  ( f ~ C i m )  m a y  be o b t a i n e d  f rom Grc = z I/2 VG°G¢ = z t/2 V(a~ - so) - j  G~, whence 
f rom (67) 

N V  2 
~i ~ de (e - ef) - l  = N V 2 ( 2 D )  - I  In [(st - /l)/(er - ea)]. (74) E0 - ef - 2D a 

4.2. The 'metal l ic '  case 
In this subsect ion we cons ider  the typical  metal l ic  case [40], where  the to ta l  n u m b e r  

o f  e lect rons  n = nc + nf is o f  o rde r  N/2 .  The  band  edges m a y  then be a p p r o x i m a t e d  
by  

~ ~- - D  - V2z/(~f + D ) , I  

e c ~ ~,f "3V V 2 Z / ( ~ f  AV D),  [ 

~ D - V2z/(ef  - D) .  ) 

(75) 
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Introducing the familiar notations 

TA = e l - # ,  /~0 = E o - , U ,  "[ 
( 

A o = zcV2/2D, A ztV2z/2D,) 

(71)-(74) may be written [40] 

nf = N~-IA/TA =- 1 - A/A0, ) 

nf + N(# + D)/2D = n, 

- ( N A o / n ) l n [ T A / ( D  + #)]  = TA --  /~o. 

From (77) we deduce, at T = 0 

(76)  

(77) 

n f  = (1  -]- ~TA/NAo) -l. 

The results (77) are similar to those for a single impurity [40, 42, 43]. In figure 14 we 
have solved (71), (72) and (74) and plotted the DOS and position of # for a typical 
metallic case with n = 3, N = 6 (for remaining parameters see figure caption). We 
have chosen a case with TA very large (~-- 0.4D) for convenience in plotting, so 0f(eF) 
is not very large, but the qualitative features are clear. 

The susceptibility and specific heat may be obtained from the density of states at 
the Fermi level [40] 

} Zo = ~.--~.2 + , 
3#o~r (78) 

Y = 3 + " 

Here we have included in calculating X a coupling of  h to conduction electrons 
with the same g factor as for f-electrons. These results are seen to be the same as for 
the single impurity equations (33) and (36), to leading order in 1/N, provided the small 
contribution from the conduction electrons is neglected. 

The charge response is found to differ from that for a single impurity, the charge 
susceptibility being given by [40] 

dn r -n~(1 - nf)rc/NA o 
Zc = dE0 = 1 + n~(1 - nr)2nD/N2ho" (79) 

This result is of order - N / 2 D ,  the charge response for the conduction electrons, 
unless the f-occupation is exceedingly close to 0 or 1. This is very small relative to X0 
because 2D >> TA. The reason for the appearance of the conduction-band density 
of  states, is that if we raise the f-level Eo, - 6 n f  electrons flow into the conduction 
band and raise # there by ~#c "~ 6nfN/2D. This greatly exceeds the small decrease 
6#'~ ~ -6n f /TA of # in the f band. Hence is it the 'negative feedback' associated with 
the low conduction-band density of  states which controls Z¢. 

This much discussed difference between the lattice and sample impurity probably 
does not exist, or is greatly reduced, in real systems [18] due to interactions not present 
in the simplified Anderson lattice model. In such systems the lost 6nr electrons from 
an f-site reappear in the local screening cloud in the conduction band around the site 
(Friedel sum rule). At a distance of  about ,~ 1.5 A away from the site a negligible effect 
of 6nf on the conduction electrons is seen and there is no #-shift. Since this is the 
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typical distance between 4f sites in IV materials, we expect the negative feedback effect 
to be negligible or greatly reduced. That this is actually true is seen by the measurable 
changes of valence in materials such as YbCuA1 or CeSn3 [59] with a change in Tfrom 
0 to -~ TA. This is just what would be expected from the impurity formula (41f). If  
negative feedback were operating, enormous temperatures of order 2 D I N  would be 
needed to generate an equivalent change in valence. 

Thus we see that when Nis  large little difference between the SU(N) lattices in the 
metallic case and the single-impurity case has emerged so far, though the eigenstates, 
being of Bloch type are very different. 

4.3. Power series f o r  Gf 
Another technique for examining the large-N behaviour of the lattice is to expand 

the propagators, e.g. Gf, in powers of V: 

Gf(~)  = U s ' ~  o {gf (~) -~- g°(8)Z VZg°(e)g°(e) + g°(e)[zV2g°(e)g°(e)]2 + . . . } 
k 

(80a) 

where g°(e) = (~ - ef + is) -l and g ° = (e - ek + is) -1. Now since V2is defined to 
be of order 1/N (see discussion following equation (27)), the terms in (80) form a 1/N 
expansion. The first makes no contribution to the DOS, so selecting only the second 
we have to leading order in N-1 

Of(/3) "~ O o ( 1 3 ) z V 2 / ( l ~  - -  /~f)2 ( 8 0 b )  

which shows that the corrections in principle coming from the argument of 00 in (65) 
are of higher order in 1/N. A similar result is found for other propagators and this 
will carry over into the self-consistency relations (71)-(74). Hence the use of the 
expansion (80) provides an alternative demonstration that the self-consistency 
relations and thermodynamic properties are impurity-like. 

4.4. The insulating case: n = N 
An interesting feature of the SU(N) lattice is that it seems to conceptually describe 

the insulating case of IV systems [41, 43]. In the case where the total number of 
electrons per RE site n = N, we have exact filling of the lower band between ea and 
eb, and hence an insulator (figure 14). By juggling with (71) and (75) (first and third 
equations) plus (69), we obtain for the band edges relative to ef (here 0 ~< nf ~< 1) 

~a 

gb 
(81) 

/3 c 

~d 

In (81) the third equation defines TA. From (74), the energy scale TA is given by 

TA = 2D 1 -- exp L NA0 [ (82) 

where A0 is defined in (76). 
In figure 15 we have sketched the solution to the self-consistency equations 

(71)-(74) for N = n = 6, nr = 5.25. This is the electron-hole inverse of the situation 
just described. Figure 15 qualitatively resembles SmS. The bands split into what is 

e f -  2D[1 -- nr/N] + O(TA), ] 

~f TA, 

ef + TAnf/(N - nf), 

~,f "q- 2Dnf /N  + O(TA). J 
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Figure 15. Density of states of SU(6) model for gold-SmS type of heavy-fermion system (only 
f-DOS illustrated). Calculation as for figure 14, with n = 6, V z = 0.492, E 0 = 1-39, 
nf-- 5.25. 

close to a description of a narrow filled f-band separated by a gap from a wider 'host' 
band (in SInS it is the Sm d-band). Figure 14 nevertheless qualitatively describes gold 
SmS; E 0 is above the 'host' band, and (nf)  is closer to 5 than 6, implying considerable 
fd mixing. In black SmS, presumably E0 is below - D, giving an exceedingly narrow 
f-band with (nf)  close to 6. 

In figure 16, we illustrate a version of the phase transition in SmS within the 
SU(N) model. Black SmS (upper portion) has n~ very close to 6, because E 0 is 
below - D .  It has an exceedingly narrow f-band separated by a wide gap from the 
conduction band of  the host. In gold SInS (lower portion) there will be some increase 
in V as a result of the volume contraction (we allowed only for a slight increase), but 
mainly E0 is pushed into the 'host'  band. Now we have a very-narrow-gap insulator, 
the f-band being relatively wide. 

According to (81) the gap is of  order TAN/(N - nf) i.e. ,,~ T A (with electron-hole 
inversion the gap is TgN/nf). Hence in gold SmS we may speak of a 'Kondo '  or 
many-body gap. The latter expression is more accurate, because in SmS the z-factor 
is only ~ 1/4, and most of  the heavy mass really comes from a reduction in V due to 
the effect of  projecting the hopping matrix elements [60] between the ground states of 
f5 and f6. 

We should note that somewhat different discussions of SmS within the quasi- 
particle formulation have been given. Martin [61] considers strongly crystal-field split 
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Figure 16. Comparison of black- and gold-type SmS in SU(6) model with n = 6. The 
conduction band DOS Qc is illustrated. The f-DOS is too narrowly peaked to be plotted, 
and is replaced by arrows. Parameters are E0 = - 1.88, V z = 0-0264 in the black case, 
resulting in n r = 5-95 (Sm 2°5÷ ); E 0 = - 1.40, V 2 = 0.0305 in the gold case, resulting in 
nf = 5-25 (Sin 2'75+). 

Sm levels interacting with realistic SmS d-bands. Read and Newns consider [43] SU(6) 
(non-crystal-field split) f-levels hybridizing with the realistic SmS d-bands, following 
[62] an early suggestion of  Anderson that some of  the f-bands are unhybridized, 
so that the gap will be between er and the lowest point of  the hybrid conduction 
band. 

4.5. R K K Y  interaction: stability towards magnetic ordering 
Those IV systems having nf exceedingly close to one develop a very low energy 

scale TI( "~ NA0(I - n f ) .  Of  course, they have accordingly huge susceptibilities and 
specific heats since these qualities are of  order 1/TK. A refinement is that T~: may be 
lower than the crystal-field splitting, when the energy scale may be estimated from the 
expression (45). These nf ~ 1, high-susceptibility and specific-heat materials are 
termed Kondo  lattices (sometimes overlapping 'heavy-fermion'  materials, though the 
latter class is more general). 

Another characteristic energy of  the lattice is the magnetic interaction between 
spins on different sites which originates in the R K K Y  interaction (see § 3.2.). This 
interaction does not vary so critically when nf ~ 1 as the T K energy scale. Therefore 
as nf ~ 1 the magnetic energy will exceed the 'kinetic energy' ~ TK of, the lattice, 
leading to the onset o f  magnetic order. In fact there has been a question raised in the 
literature [42, 63, 64] as to how Kondo-latt ice/IV materials can be stable against 
ordering, due to the smallness of  TK or TA in these materials. In this section we shall 
address this problem briefly, and show by order-of-magnitude estimates that at least 
within the SU(N)  model the boundary of  the Kondo-lattice region is extensive enough 
to explain the experimental data. Part  of  the answer is that for N large, the leading-N 
energy TK dominates over the R K K Y  interaction which is a higher-order effect (§ 3.2) 
in 1/N. 

The R K K Y  interaction [71] between two f-sites in the SU(N)  lattice a distance R 
apart  is given in the case of  a parabolic band ek = k2/2m* b y  (56): 

Ei.t(m, m') = 6,,~,(8rc/N2)(Jo#r)ZeFF(2keR), (83) 

where the R K K Y  interaction is 

F(x) = (x cos x - sin x)/x 4, 
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and eF is the DOS of the conduction band at 0F. J0 is given by 

do = Nvz/IEor, (84) 

and (83) is only valid when E0 lies well below ep. Notice that in (84) we have defined 
J0 as of order one by introducing the factor N, V being defined to be of  order N 1/2. 
Hence E~, t is formally of  order N -2. 

The R KKY interaction is responsible for magnetism in RE metals, in whose 
magnetic state site occupations have a definite value of  m constituting a superlattice 
[8]. This state contrasts with the normal Fermi-liquid ground state discussed above, 
where m-values are equally occupied on all sites (no symmetry breaking). The normal 
Fermi liquid and magnetic states will, in three dimensions, be separated by a phase 
boundary. As indicated above, a rough estimate of the condition for magnetism, along 
the lines of  Jullien and Doniach [63] and Read, Newns and Doniach [42] is to compare 
the magnetic energy with the energy of the normal Fermi-liquid (FL) state. In the 
large-N limit we may use the value for one impurity for this energy. The condition for 
stability of  the normal FL  ground state against magnetism is then, if D'  = /~ + D, 
essentially as we discussed in § 3.3 

T A = O' exp (-- 1/eFJo) > (8rcZ/2N2)(JoQF)2D'F(2keR), (85) 

where Z is the number of  nearest neighbours of a given site with the same m-value as 
the site, and K an average distance to such near neighbours. Calculations on simple 
models (unpublished) suggest that this is adequate as an estimate of  the energy of  the 
magnetic lattice. Notice that in the large-N limit the normal FL state is stable. In fact 
the condition (85) is satisfied if 

TA/D' > C/(2N In N)  2, (86) 

where 

C = 4xZF(2kFR). (87) 

This shows that two factors favour stability of  the normal FL state: N being large and 
2kFR being large. This goes some way to explaining the existence of  normal 'Kondo- 
lattice' Fermi liquids in nature with remarkably low T A. Thus supppose Z = 8, 
N = 6 and kFR -- 2~ (a reasonably conservative choice), then with D' = 2 eV (86) 
gives 

TA > 2K,  (88) 

quite a low limit on T A. 
Now the type of  Kondo-lattice systems which lie near the phase boundary, e.g. 

CeA13, [4, 66] have low TA, and the TA values are normally less than the crystal-field 
splitting A, which as we have seen (equation (32)) in the case of splitting into 
an N~-degenerate ground-state manifold leads to a new energy scale 

T~ = TA(TA/A) N2/N', 

where N2 = N - NI. If  we assume that crystal fields do not alter the R K K Y  
interaction, then TA replaces T~ in (85) and we can write (86) in terms of  T~ instead 
of TA: 

T~/D > C/(2N In N) z. (89) 
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Hence provided the energy scale including crystal-field splitting satisfied an inequality 
of order (89), the Kondo lattice will be non-magnetic as pointed out earlier [64]. This 
is indeed possible because the T~s are not so low, the (TA/A) N2m~ factor being only an 
order of magnitude or so. 

Thus to summarize this section, Kondo lattices such as CeAI3 are believed to lie 
near the magnetic phase-transition boundary, as shown for example by the fact that 
CeA12 is [1-4] magnetic. We can understand their stability by the fact that their TA s 
(or rather T~s) lie above the critical value for that particular lattice. However, the 
critical value is quite low because of the largeness of N and because of the large 
RE-RE distances. 

The condition for magnetic instability is similar to the condition (58) in the 
two-impurity problem for the moment to lock together and form a new low-energy 
scale. The difference from the bulk problem is here, of course, due to the lack of a 
phase transition in zero space dimensions. 

4.6. Comparison with other approaches 
There is no exact solution available for the SU(N) lattice as there is for the SU(N) 

U = ~ impurity problem. Variational treatments [67-70] are available which 
provide some basis for comparison (also Oguchi, preprint). These treatments, based 
on the original Gutzwiller variational treatment of the Hubbard model [70], are 
essentially zero-temperature techniques though some extension to higher temperature 
has been made [68]. These treatments also generate a renormalization factor z of the 
f-conduction-band hopping-matrix element, which in Brandow's approach [67] is 
z = 1 - nr, as in mean field. However, in the Ueda-Rice approach ([68], also 
Oguchi, preprint) a slightly different result, 

z = (1 -- nf)/(1 -- nf/N), 

is obtained. This leads to a correction to the exponent of the Kondo temperature 
(31, 76). Fazekas [69] applied the variational approach to a lattice with a concentration 
c of RE impurities, and showed that the renormalization factor z becomes 
z = c(1 - nf)/(l - cnr/N), while the Kondo exponential becomes 

Now mean field, being a leading-N result, is compatible with all these results. However, 
we notice that Fazekas' corrected energy scale resembles that of Jones and Varma [57] 
in the two-impurity problem if we identify c with (inter-impurity distance) 3, which 
corroborates the results of  Fazekas and [68]. 

A completely different approach (to the spin-½ lattice) was formulated by Yoshimori 
and Kasai [71], whose chief assumption was the locality in space of the f-electron 
self-energy. With this assumption, a calculation of many properties including very 
plausible results for the resistivity was possible. 

A set of very useful Fermi-liquid relations, leading to conclusions on the Z/7 ratio 
and resistivity, for example, has been obtained by Yamada et al. [7], whose work is 
discussed in § 9. 

5. Free-electron Anderson lattice 
Another model, differing from the SU(N) lattice model, which is sometimes 

thought to provide a useful model of IV systems [60], is the free-electron Anderson 
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lattice in which the conduction bands are plane waves. Assuming one RE atom per 
unit cell i, with orbital angular momentum l ' ,  the model may be written in the same 
way as (59), except now H0 is written in terms of the plane waves [k + g, a )  

H0 = ~ ~k+onk+g,o, (90) 
k ,g ,o  

where k is a Bloch-wave vector inside the first BZ, and [k + g) ,  of energy 
ek+g = ½Jk -4- g]2, is a plane-wave state belonging to reciprocal-lattice vector g, and 
spin a = _ 1/2. The interaction part of the Hamiltonian in (59) is written using a 
redefined localized conduction-band state Cim 

%' = 2 (41rNs)'/2 Y+"-~(Ftk+g)atm~Ck+g, ~ exp [i(k + g ) -  Ri], (91) 
k ,g ,a  

where Yt~(f~) is a spherical harmonic and the almo = ~11, m - ~, ~ I jm)  are CG coef- 
ficients; j is assumed to be 5/2 or 7/2. The volume of the lattice is v, assuming box 
normalization of the plane waves. The matrix element V is 

V = - -  f :  r 2 dr f ( r )V(r ) j t (kr ) ,  (92) 

where f ( r )  is the radial f-function and J~(o) the order-/spherical Bessel function. 
Suppose we now make the mean-field approximation, the effective single-particle 

Hamiltonian may again be written as (60), with the modifications (90)-(92). For 
simplicity in further considerations, let us confine ourselves to a spinless model in 
which N = 2l + 1; spin in any case may be regarded as a 1/N effect. The mean-field 
Hamiltonian is 

H '  = ~ ek+,nk+g -4- 2 ernim -4- Vz m ~, (f~Cm -4- h.c.) -4- ( e l -  Eo)(Z -- 1) 2 1, 
k,g i,m i,m i 

(93) 
where 

% = ~, (4rcN~) m Y+,,~(f~k+g)ek+g exp [i(k + g)-  R,]. (94) 
k,g 

An approach to trying to calculate the propagators, which now become matrices 
in m and m', is through a series expansion such as (80). In the present case the series 
expansion for the trace of Gr starts off as (dropping the trivial term (e - ~r) -~) 

T r ( G f -  G ° ) = V2NNs 
2 (8 8f)2(G "~ is) k,g - -  - -  ~ k + g  

V4NZN~ p,(09¢ ) 1 P/(Ogg,) 1 
+ ~ (~ er) 3 (e gk+g' + is) (e + is) + " ' "  (95) k,g,g, - - - gk+g 

In (95) P~(0) is the / th  Legendre polynomial and 0gg, is the angle between k + g and 
k + g ' .  

Now suppose only one conduction band lies in the vicinity of el, i.e. only g = 0 
is important. Then (95) becomes 

Tr (Gf - G°) V V2N V V4N2Ns + + . . .  
N~ + ( ~ -  s,,)2(~_ ~K + is) + ( ~ -  ar)3(a-  aK + is) 2 

(96) 
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where K is a vector anywhere in k-space. Recalling that V 2 is of  O(1/N),  we see that 
the terms in (96) are both  of  the same order. Although the leading term constitutes the 
large-N limit of  the impurity result, the second term is not down by 1/N and we do 
not retrieve the impurity result as the large-N limit. 

In order to retrieve the impurity result as the large-N limit of  the free-electron 
Anderson-lattice model, it seems that we have to scale the lattice parameter  wi thN,  
a scaling with N 1/3 being a simple choice. Now there are many  bands interacting with 
the f-levels, as in (95). The second term in (95) contains an extra factor Ns/v, and this 
now scales as N -l. In fact each term of  order V 2r in the expansion (95) formally 
contains N 1-r and the first term is left as the large-N limit, as desired. 

As a check on whether the formal classification in powers of  1/N holds numerically 
we performed some calculations of  the terms in the series (95), on a simple cubic lattice 
whose parameter  scaled as (2l + 1) 1/3, for various energies e. The results, illustrated 
in figure 17 as a function of  energy, do bear out the trend for the ratio of  the second 
to the first term in (95), though there is quite a lot of  oscillation. Attempts to extend 
our calculation to higher orders encountered divergences which we have so far been 
unable to deal with. 

The physics underlying this scaling of  lattice parameter  with N is that the number 
of  conduction bands near ef should increase as N increases (as it does in the SU(N) 
lattice) otherwise we do not get enough bands to hybridize with the f-states. The 

o 

2 / %0 
o 

I 

/ 
z ~ .. .e-2 ... ,~ ." 

, 1 = 3  " . .  

~ ' - 4  ~ 

0 I I I 
0 0 . 2  0 . 4  

E F 

Figure 17. Ratio R of imaginary part of the second term of (95) to imaginary part of the first 
term, both evaluated at eF, plotted against ee, for various angular momenta l. The 
decrease in R with increasing l demonstrates the approach to the impurity model as the 
large-/limit. 



Mean-field theory 835 

2J2(4~z)2P f~f dk k 2 fo d k ' - -  Eint (m, m) 

where 

choice of lattice parameter scaling with N ensures that the number of conduction 
electrons (and thus number of occupied conduction electron states) scales with 
f-electron degeneracy. We would argue that in practice metallic IV and heavy-fermion 
systems indeed do have a number of conduction electrons of order of or exceeding N 
(e.g. CeSn3, CeA13, YbCuAI have 15, 12 and 7 valence electrons), justifying this 
approach. 

In order that in the large-N limit the self-consistency relations should approach the 
impurity ones, first of all (nr) should tend to the impurity value. Given that the 
imaginary part of (95) is replaceable by its first term as N ~ ~ ,  then the foregoing 
result is assured on integrating over energy e up to eF- The other expectation value 
required, ~"m (ftm Cm), is also related to (5.6) 

( f~  Cm} ~ --Tzlm f~_~ de Tr [(e - e f ) G f  - 1], (97) 

and so indeed the self-consistency relations reduce to the impurity ones in the large-N 
limit provided we accept that higher terms in (95) vanish relative to the first. 

The susceptibility Z of  the f-electrons may be written 

~( OC m.~ ~ ~ (nm), (98) 

where we have made ef = e,, m-dependent. Again the quantity (n, , )  is expressed in 
terms of afro m which possesses an expansion similar to (95). Formally, with scaling of 
the lattice parameter a s  N 1/3, the expansion is dominated by the first term as N ~ 
leading to an impurity-like susceptibility as N ~ ~ .  However, no numerical checks 
have been done in this case as to the validity of the formal result. 

The RKKY interaction may also be estimated in this model. If  we quantize along 
the axis between two sites i a n d j  where the spins are located, we retrieve the diagrams 
of figure 6. The RKKY energy is given by 

k,2 
g,, (kR)gm (k'R), (99 a) 

~k -- ~k" 

gm(kR) = 2n ~j-I dx exp (ikRx) IY, m(x)l 2. (99b) 

One limit of (99) is the Siemann-Cooper one [73], appropriate when krR -.~ ~ at 
fixed l (in fact krR >> l(l + 1)). However, this limit is not the appropriate one in our 
case where R is scaling like l 1/3. Assuming, on the contrary, that l ~ ~ at fixed R, m 
we obtain a different limit. Taking m = 0, which is expected to give the largest 
interaction, we obtain in the large-/limit 

32~z2 J~ dk" e-kk'2 j°(k'R) ~ (100) 
Eint(0 , 0) ~ fkoF dk k2Jo(kR) I~ 

~k~, 
where N = 2l + 1 and Jo(x) is the ordinary Bessel function ofzeroeth order. Equa- 
tion (100) shows that again the R K K Y  interaction is of order N -2, and therefore that 
the Kondo-lattice phase is stable in the large-N limit as shown by Coleman [39] and 
Read et al. [42]. 

In this subsection, we have followed a different line of reasoning (employing 
k-space Green functions) to that in [42] which employed real-space Green functions. 
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The latter proofs seem to demonstrate the same results as in the foregoing but the 
convergence of  the real-space summations was a doubtful point. Suspiciously, the N 1/3 
scaling of  lattice constraint did not seem necessary in the real-space derivations. It is 
seen to be much more difficult to give convincing proofs of  the large-N limit in the 
free-electron Anderson-lattice model than in the SU(N) Anderson lattice, which is 
also much more tractable for other purposes, e.g. calculating 1/N corrections. In point 
of realism the free-electron Anderson lattice is also little better than the SU(N) lattice. 
Therefore we think the SU(N) lattice (sometimes referred to as the 'spherical cow' 
model) is the best paradigm for an analytically tractable IV lattice model. 

6. Realistic lattice models 
In the foregoing, we have considered two model lattices, the SU(N) and free- 

electron lattice models, which lend themselves to analytic calculations, e.g. retrieval 
of  the impurity model as the large-N limit. The SU(N) lattice also readily enables the 
case of the insulating IV system to be derived. However, one needs to assure oneself 
that the real features of  IV systems s-, p-, d- as well as f bands, and relatively complex 
structures, may be taken into account in our picture. 

From a model-Hamiltonian point of view we may write a more general extension 
of (59) as 

H = ~ 8kpnkp,r "q- E o ~f~firn -b 
kpa im 

+ + - 1).  
i 

[V(kpo', m)f~Ckp~rb i exp ( - i k "  Ri) + h.c.] 
kpa, im 

(1011 

In (101) we retain for simplicity a lattice with one RE per unit cell; k is the Bloch 
wave-vector, p host-band index, a spin, and i denotes the RE site (or unit cell) location 
Ri. bi is once more the boson on site i, the remaining notations being analogous 
to (59). The transfer matrix element V(kpa, m) between band [kp) of  spin a to the 
f-state of  angular momentum m at site R0 is now relatively complex. 

In mean-field approximation (101) may be written 

H = ~ hk + ( e l -  E o ) ~  (z + nfi - -  1), (102) 
k i 

where, writingfkm = Ns -~/2 Eefm exp ( ik .  Re), 

hk = ~ ekpnkp~ + er ~f~,,fkm + Z'/2Nls/2 ~ [V(kpa, m)f~,,ckp~ + h.c.]. (103) 
p,a m pa, m 

Now in order to proceed, we would have to calculate the band structure of the 
Hamiltonian hk. This is not easy because no reliable procedure exists for calculation 
of  the matrix elements V(kpa, m). 

In fact, we chose to employ the established and computationally efficient linearized 
muffin-tin orbital (LMTO) procedure [74]. Our procedure is best explained if we start 
by neglecting relativistic effects. Assuming that there is one atom per unit cell, and 
neglecting spin orbit, the LMTO Hamiltonian is, per spin, 

h k = CtfL, L + ½atPr(--)[sk(1 - -  ] ) s k ) - I ] L ' L f D I ( - - ) .  (104) 

In (104), L = (l, m), tr is the atomic-sphere radius, SkL,L are the structure constants, 
C/is an effective centre of  the lth band, while aq~ 2 is a potential parameter of  the lth 
band. S k depends only on crystal structure. 
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Now in order to write the model Hamiltonian equivalent to (104) requires us to 
ignore spin-orbit interaction and take m as pure orbital z-angular momentum, so 
(103) modifies to 

* z'/ZNs '/z ~ [V(kp, m)f],,ockp~ + h.c.]. (105) hk,~ = ~ epnkp~ + ef ~fkm~fkm, + 
p m p , m  

Now (103) are in different representations; (103) employs a local basis throughout, 
(105) employs a local basis for I = 3, and a band-index basis for l = 0, 1, 2. However, 
it is evident that z ~/2 and q~3 ( - )  both control the f-to-host hopping amplitude, and that 
ef and C3 control the f-level. 

The procedure we use [43] is based on the argument that the s, p and d bands of  
the system can be adequately calculated using the local density function (LDF) 
approximation. In this approximation, (104) may be iterated to self-consistency in the 
parameters G ,  q~. This is done for l = 0, 1, 2, 3. Then, using the analogy between 
(104) and (105), we renormalize the quantities ~P3(-) and Ca (73 is negligible). 

In fact there are large spin-orbit correction terms to (104) whose effect is to shift 
up the fv/z band so it is empty. The operative analogy is really between C5/2 and e~, and 
~o5/2(-) and fl/2, in (103) but our empirical procedure is adequate since we are not 
interested in its effect on the empty 7/2 band, only on the 5/2 band. 

Our calculation was done on CeSn3. First a relativistic LD F  calculation was 
performed [44], then ~o 3 ( - )  and C3 were altered to renormalised values ~3 ( - )  and C3. 
These two parameters were controlled so as first to approximately satisfy the condition 

z = 1 - <nf> = [~F(--)/~03(--)l z. (106) 

Secondly we require that the specific heat, given by 

= (zt2/3)kZaO(eF), (107) 

be in agreement with the experimental value, from which we deduce that the density 
of states Q(eF) should be 306 Ry-  ~. 

It proved unnecessary to modify C3, within the errors of our procedure, a fortu- 
itous result. The value of z = [(p3(--)/~03(--)] 2 was 0"11, in fair agreement with 
1 - (nf)  = 0-14, considering that in the LMTO theory the definition of  (nr)  might 
differ somewhat from that appropriate to (103). 

A first effect of  introducing the renormalization effect z is on the pressure. We find 
that the pressure changed from - 3 4 4  kbar in LDF to --39 kbar, a value which 
reflects the greatly reduced attractive contribution of  the f-electrons to the ground- 
state energy. 

The effect on the effective masses at the Fermi level is seen in table 4. We see that 
the renormalized effective masses are mostly much heavier, but one becomes lighter. 

Table 4. Comparison of LDF, rescaled and experimental band masses. 

LDF Rescaled Experimental 
calculated mass mass mass Plane in 

m* /m m* /m m* /m Brillouin zone 

4-12 0-5-0-6 0-45 FXM 
0.3-1-7 3.2-12 FXM 
0.2-1.2 1.0-4-4 4.6 FXM 
0.3-1.2 6-12 9 FXM 
0-3-1' 1 2-6 4.2-4.4 XMR 
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Density of states from the renormalized band structure of CeSn 3 [44], Fermi level 
as energy zero. The j  = 5/2 DOS forms the single peak just above ~F. 

The renormalized masses are in much better agreement with experiment than are the 
LDF ones, including the predicted lighter mass for the small area F orbit which is 
indeed observed. The density of  states in the renormalized band structure is illustrated 
in figure 18. We find that there is a narrow 5/2 peak ~ 10meV above er, and an 
unoccupied 7/2 peak much higher up. Qualitatively this resembles the Lorentzian 
density of  states found for one impurity and which is the large-N limit of the 
foregoing lattice models. But quantitatively, the agreement with a Lorentzian is poor; 
a Lorentzian density of  states satisfying (nr)  = 0.89, 0(~r) = 308 Ry -~, requires 
8f -m-- 34meV. But, the peak in the DOS in figure 18 is at only 10meV above er. 

We see that the renormalized band-structure calculation gives a reasonable picture 
of the pressure, effective masses, f-occupation and density of  states in CeSn3, while the 
LDF procedure does not. The density of  states near ee is qualitatively, but not 
quantitatively, described by a Lorentzian resonance in the 5/2 channel. 

7. T h e  U = oo H u b b a r d  m o d e l  

Up to now we have considered the U = ~ Anderson model and its extensions 
to the lattice. Another simpler model which has been used in the development 
of  the theory of  heavy-fermion systems is the Hubbard model. One regime where 
this model has recently been applied is to the lattice model of  normal liquid He 3 
[75]. In this application the model is specified to have one fermion per site and 
N = 2 (half-filled case), in which case Brinkman and Rice considered the mass 
enhancement as U approaches a critical value Uc (at which the metal-insulator 
transition occurs) from below. However, in heavy-fermion systems another regime, 
where U is very large and the occupation differs from half-filling, would be more 
appropriate [68]. 
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We are then led to consider a Hubbard model with U = 0o. Within the large-N 
philosophy we shall assume it is N-fold degenerate, and also assume SU(N) symmetry. 
The model then takes the form 

H = t X fit~jmbJ bt, (108) 
(/j)m 

where we have assumed that only nearest neighbours i, j ,  denoted ( / j ) ,  are coupled 
by the hopping-matrix element t. The constraint on (108) is 

Qi = ~ f ~ f m  + b~bi = 1, (109) 
m 

on each site i. 
In mean-field theory, (109) is implemented only on average by adding the Lagrange 

multiplier term ef(Qi - 1) to H, and b, and b~ are replaced by z 1/2, to give 

Hmf = zt  ~ fi~m£m + I~f ~ (nri + z -- 1) (110) 
(ij)m i 

(110) represents a non-interacting Hubbard model with renormalized hopping 
parameter zt, and f-energy level shifted from zero to er. Varying ef and z leads to the 
self-consistency equations 

N fu 1 nr - I m X  de - 1 - z (111) 
re -¢ e - ek + is 

and 

t ~ ( f t ~ m f j m )  = - -  t N Im ~ ff  de exp [ik • (Rj - Ri)] 
j,m re e - -  '~k + i s  

In (112) the j-sum is only over the nearest neighbours to i. Defining 

1 I m ~  1 
~(e) - re e -  ek + i s '  

(111) may be written 

--ef. (112) 

(113) 

rj~deQ(e) --- 1 - z. (114) N 

By means of  a well known trick, involving the fact that j is the nearest neighbour 
of i, i.e. 

ek = ef + zt ~, exp [ ik .  (Rj - Ri)], (115) 
i 

(112) may be rewritten in the form 

U f .  de (e - ef) (e) = - e l ,  (116)  

involving the first moment of Q(e). 
Thus (114) and (116) show that the self-consistency relation only involves the 

density of states. Taking then a simple model form for the bare density of  states 

= 1/2D, - D  < e < D, 

o0(e)  = 0, lel > D, (117) 
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we have 

= 1/2zD, - z D  < 8 < zD, 

0(5) = 0, [5[ > zD, (118) 

and (114) and (116) become 

nf = (N/2zD)(I~ -- ef + z 0 )  = 1 -- z, (119) 

( N / Z z D ) [ l ( e f -  I~) 2 - l(zD) 2] = --efz. (120) 

The self-consistent relation (120) here, in contrast to the Anderson case does not 
contain a logarithm; hence there is no exponentially small Kondo temperature found 
in the Hubbard model. This is perhaps a point against the Hubbard and in favour of 
Anderson-lattice models of  heavy-fermion materials, since the materials are precisely 
those where the characteristic temperature is very low. From (119) and (120) 

er = Dnf[1 - (nf/N)]. (121) 

As usual, ~ and 7 are Fermi-liquid properties given by the DOS at #; 

N 
Zo = ½j ( j  + 1)(g/t.) 2 2D(1 -- nf) '  (122a) 

n 2 N 
7 = -~- k~ 20(1 - nf)" (122b) 

These quantities become very large as nr ~ 1, qualitatively as in the Anderson-lattice 
models. 

It is straightforward to solve (119) and (120) for p and obtain the charge suscepti- 
bility 

1 dnr 1 

Zc n~ d# 2Dn~ 1 + N 
\ lv / 

The ground-state energy of  the model is 

E0 = N f" de e~f(e) + ef(z - 1), (124) 

- (1 - n0nf[1 - (nf/N)]D. (124) 

We see that the SU(N) Hubbard  model in mean field has some points in common with 
the SU(N) Anderson lattice, e.g. Z and 7 diverge as nf ~ 1, but no exponentially small 
Kondo temperature appears. The band narrows by the factor (1 - nr) and shifts 
upwards until it is close to the original upper band edge. However, the charge 
susceptibility, although it is small (of order 1/2D for large N, nr ~ 1), does not vanish 
as nf ~ 1 as it does in the Anderson models. 

The Brinkman-Rice theory [75], in the large-U limit, also has a similar mass- 
enhancement, equivalent to z = 2(1 - nr) as nr ~ 1. Our mean-field theory is thus 
in agreement with the Brinkman-Rice variationally derived theory, except for the  
extra factor discussed in §4.6, which is essentially a 1IN correction. The mean-field 
approach has the advantage of  simplicity and straightforward extension to finite (low) 
temperatures. 

In one dimension, the N = 2 Hubbard model is exactly soluble for any U and any 
nr. It is found that in the U ~ ~ limit at fixed nf < 1 the susceptibility diverges, 
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contrary to (122a). We believe this is a peculiar result of the low dimensionality, 
arising from the fact that in one dimension the impenetrable particles cannot cross one 
another, and behave like spins. This physical argument is also applicable to any N, 
and if correct suggests that g should also diverge as U ~ ~ for any nfat N > 2. Then 
(122 a) could not be correct in one dimension. At higher dimensionalities the particles 
can get round each other and the problem disappears. The argument in this paragraph 
seems then to introduce some doubt as to whether mean field is the true large-N limit 
of this model, but it is only intuitive since we do not have the exact solution to 
Hubbard for N > 2. 

H 

with a constraint 

8. Tm impurity 
The Tm ion differs from the Ce, Yb, Sm and Eu ions (at least in their ground 

states) in that its two valence states, fl2 and f~3, are both magnetic, with degeneracies 
13 and 8, respectively. Indeed TmSe is completely different in its properties from other 
IV materials, presumably due to this feature of the RE ion [76]. Even greater interest 
in the case of ions with two magnetic valences comes from the U ion, which is 
probably fluctuating between the f2 and f3 states [77]. The U ion is of  great importance 
in forming heavy-fermion materials such as UBel3 which are also superconducting, 
probably as non-s-wave single superconductors and therefore of  great fundamental 
interest. 

Previous treatments have considered the Tm ion within a variational framework, 
without use of the large-N expansion [47]. In order to establish results with less 
ambiguity, Read et  al. [48], using however the Keiter-Kimball formalism, repeated 
this calculation in a large-N framework; they obtained energy scales analytically for 
the first time and checked them against Haldane-scaling results. They were able to 
establish the validity of the leading-N calculation in which limit the calculation of [47] 
is correct. Nunes, Rasul and Gehring (preprint) extended this approach to the U ion, 
using however an extension of the variational technique [37] to treat the f0 ft_f2 
problem. In the following we rederive the results of [48] by the slave-boson approach, 
introducing a modified mean-field technique. This allows the procedures of [48] to be 
extended to the lattice. 

In this section we shall consider an fl f2 ion (the equivalent to fl2_fl3) in the 
somewhat artifical model which has SU(N) symmetry used by Read et al. [48]. This 
means that fl has degeneracy N, f2 has degeneracy N ( N  - 1)/2. If N = 8, the f2 
degeneracy of the model is 28, in contrast to 13 for Tm 3+. The degeneracy of the f2 
is thus exaggerated by the SU(N) model. It is important for large-N theory that the 
ratio of the f2 to fl degeneracy be itself proportional to N, as it is in the SU(N) model. 

The model of the fl_f2 SU(N) impurity is then, in bosonized form, 

y, * h.c.), 025) (bmnfrmCkn -t- C, kCkmCkrn "AI- E f  2f~nfrn "JI- V ~ ~f'~ 
k,m m k, rnen 

Q = X b~.bm.+ Xftmfr~ = 1. 
m>n n,z 

(126) 

(125) a tensor boson bin. = - b . m ,  n ~: m,  with N ( N  - 1)/2 Now we have in 
independent components, which describes the f2 state, while the fermion f,, describes 
the fl state. The energy Ef is defined as Er --- Et - E2, where El is the total energy 
of the fl state, E2 of the fz state, (eF taken as energy zero). 
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Figure 19. (a) The f-conduction band self-energy I~(~o) introduced into the model for a Tm 
impurity in leading order in 1/N. Full line, f-propagator, broken line, k-propagator. (b) 
Expression for E(¢o) in terms of itself. Filled circles indicate V-vertex in (125), wavy line 
is tensor boson. (c) Self-energy correction to f-line in leading order. 

The mean-field theory of  (125) and (126) is presented here for the first time. First 
we introduce the Lagrange multiplier procedure as before, to get the Hamiltonian 

H" = ~ I?,kC~kmCkrn "Jr- I?,f 2 f ~ f  m + V ~, (bmnftmCtkn q- h.c.) 
k , m  m kmn 

with 7 = (~r -- El) as the Lagrange multiplier. The meaning of  (127) seems to be that 
~f is the energy difference ( E  l - -  / ;0),  and 7 is the difference (E2 -- t0), where e0 is the 
energy of the ground-state singlet, in the notation of  [48]. 

Now we cannot just take the expectation value (b,m), as before, because the boson 
being a tensor would break SU(N) symmetry. However (127) is a conventional 
Hamiltonian for which we can use Feynman diagrams. We introduce a self-energy 
Y,(o)) which has the gauge symmetry-breaking property of the (b )  expectation value 
in fl_f0 theory, i.e. it has an f-line entering and a k-line leaving (figure 19 (a)). Then 
we write a self-consistent equation for Y. in terms of  itself (figure 19 (b)). In figure 19 (b) 
the wavy line represents the tensor boson. Because of  the internal summation over m, 
figure 19 (b) represents the ieading-N diagram. 

In order to evaluate figure 19(b), we introduce conventional Feynman T = 0 
diagrams for the fermion propagators, G ° and G °. The propagator for the boson is 

D(t) = - i (Tb t(O)b(t)), 
(128) 

D(o)) = 1 / ( c o -  7 + is). 

The fermion propagators are 

G O ( c o )  = 1 / ( (D - -  8f 71- i s )  

1 (129) 
~G°(~o) = k~ ----- - - i r c sgne , .  
k o ) - -  ek + issgn~k 
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First working with an unrenormalized f-propagator, the diagram of  figure 19 (b) 
yields the expression 

z(co) ( U -  1)V 2 
= 21ri fc dco' D(co + co')Gf(co')Z(co') ~ G°(co'), (130) 

k 

where C is a contour along the real axis completed in the upper half plane. Introducing 

Z(co) = Z(o)G°(co) ~, G°(co), (131) 
k 

(130) becomes 

(co - ~f )Z(o)  
( N  - 1) V 2 Z(co') 

- 2rci- ~ G°(co) f~ dco' co' . (132) c o +  - y + i s  

Distorting the contour in (132) to encircle the cut in Z(co), which may be introduced 
a s  

valid on the real axis, we have 

(co - -  8 f ) Z ( c o )  - -  

Z = X + i Y  

(N -- 1)V 2 X G°(c°) r° Y(CO') dco' 
(133) 

7~ k j - ° °  ('0 -~- (D'  - -  Z 

In fact, the integral in (133) is non-singular. Taking the imaginary part of  (133) 
we have 

(09 -- ef)Y(co) = F co' ' (134) 
~ CO -']- q -  E f  - -  ~f 

where F = V2(N - 1)0. 
Finally, we introduce the leading-N sdf-energy, figure 19 (c), of  the f-propagator. 

This results in a correction in the (co - el) factor in (134), which becomes 

co - e f ~  co -- e f -  F n d # e '  + c o + E l - e l "  (135) 

Inserting this into (134), we may write the result 

Y(co)(co - ef) = r fo [Y(co') + Y(co)] dco' (136) 
co if" CO' -'[- E l - -  ef  " 

This is a homogeneous equation from which er may be determined in terms of the 
known quantity Er = E~ - E2. It is identical to equation (3.15) of  [48]. 

In [48] we have solved the integral equation by several methods. There are two 
Kondo limits, nf = 1 and nf = 2, so the energy scale vanishes at both the limits. 
Actually, results even in the Kondo limit depend on whether D or lEd goes to infinity 
first; the former case is considered here. The energy scale ~f is defined with respect to 
an f~ state itself renormalized by the self-energy of  figure 19 (c). We introduce a 
characteristic scale T* by 

T* - Ef + F In (D/T*). (137) 

Then 

In the f2 Kondo limit 

er = er -- F In (D/T*). (138) 

~f = D exp ( - -EF) ,  (139) 
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Figure 20. Energy lowering ~r of singlet ground state of Tm impurity model below N-multiplet, 
as a function ofn r. Note that the Kondo limit o f n f  ~ 1 differs from that ofnr ~ 2. Full 
line, variational solution to (136), broken line numerical solution. 

while in the f~ Kondo limit 

~f = (T*2/D) exp (EF), (140) 

where F = ( N -  1)V20. 
A numerical solution of  the integral equation in the D ~ oo limit is illustrated in 

figure 20. It shows that the two Kondo limits are asymmetrical, as indicated by the 
different formulae (139) and (140). 

In this section we have, we believe for the first time, given correctly the mean-field 
approach to the f~ f2 (Tm-like) impurity. In this way the Varma-Yafet  [47] integral 
equation (136), known to be correct in the large-N limit, has been rederived. 

The mean-field derivation is more canonical than the one previously used. It 
provides a natural explanation of why the function Y(co) was found in [48] (where it 
is termed B(~o)) to be peaked at small - ~o; this is becase of  the factor Gf(co) defined 
into it. Most importantly, the mean-field approach is straightforwardly extensible to 
the lattice. It is then found that, as for the f0_f~ SU(N) lattice, we get back a band 
structure having N = 8-fold degeneracy and the same energy scale as for the single 
impurity (Newns, unpublished work). 

Unfortunately, the large-N theory of the SU(N) f~_f2 model seems to lead 
qualitatively to very similar physics to that of the f0_f~ model. We do not arrive at 
a simple explanation [48] of  the magnetism of TmSe, and of  the very low or zero 
Kondo temperature of  Tm impurities [48], based on the magnetism of  both of  the Tm 
valence states, as had been expected [76]. 

9. Beyond mean field 
In this section we wish to diverge slightly from the central theme of  this article and 

indicate briefly the nature of  some of the effects found by going beyond the mean-field 
approximation. 
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First of all, there is no true symmetry breaking. This is a consequence of the local 
gauge symmetry of the model, i.e. the fact that Qi commutes with H, where Qi in (59) 
is the generator of  a rotation in phase of bi and f ,  for example 

exp (-i~bQi ) b~ exp (iq~Q,) = b~ exp (iq~) 

for an arbitrary phase angle ~b. Only physical quantities, such as f~ fm ,  transforming 
like unity under the gauge transformation, may have non-zero expectation values. 
Consequently the boson autocorrelation function does not approach a constant at 
large times, but falls off as the inverse (1/N)th power of the time, indicating that 
symmetry is nearly, but not quite, broken [40]. 

Next, while mean-field theory gives a picture of non-interacting quasiparticles, in 
reality there is quasiparticle-quasiparticle interaction leading first of all to thermo- 
dynamic effects such as deviations in the X/7 ratio from unity. Possible approaches to 
calculating such effects are via exact solutions, Fermi-liquid theory or calculating 
terms of order (1 IN)  in the slave boson or other 1/N approaches. A good approximation 
to the Z/~ ratio for the infinite-U SU(N) impurity is obtained by calculating the 1/N 
corrections to mean field (figure 7 (b)) as [43] 

n2kaBZ/#~ 7 = N/[N -- 1 + ( n r -  1)2]. (141) 

This agrees up to leading and next-leading order in 1IN with the exact linear 
relation between ~(, y and Zc found by Fermi-liquid theory [49], and with the numerical 
work of Zhang and Lee [35]. Equation (141) shows that Z/7 is 1 for small nf (the infinite 
U has little effect here) and 1 + 1/(N - 1) for nf -~ 1, the exact result for a Kondo 
impurity [24-28, 49]. 

For the lattice, the Fermi-liquid theory of the SU(N) model seems not yet to have 
been considered correctly, but for the spin-½ lattice Fermi-liquid theory [72] is unable 
to determine ~/7 even in the Kondo limit. It only gives constraints on various 
quantities. By carrying out the fluctuation corrections to mean field, X(0) and Cv(T)  
have been calculated recently [44, 45]. The X/Y ratio is claimed to be 1 + N -1 + O(N -2) 
in the Kondo limit [44, 45]. An interesting result is the presence of  a T 3 In T term in 
the specific heat, though this is now believed to be small (A. J. MiUis, preprint). 

In mean field, the density of states for the single impurity problem is the Lorentzian 
of figure 6. However, this is the quasiparticle density of states. If  we wish to calculate 
the density of states of 'real electrons', we have to start from the Green function 
G~ (t) = - i< Tf,, (t)b* (t)f~ (0)b(0)). In mean field, this is just z times the quasiparticle 
Green function Gf so that z is the renormalization factor by which the quasiparticle 
DOS is to be multiplied to get the 'real electron' DOS [40, 42]. However, if we 
calculate G~ beyond mean field (say to O(1/N)) it amounts to convolution of Gf with 
the bubble-sum (RPA) boson propagator [41]. This introduces an asymmetry into the 
quasiparticle peak, due to the infrared singularity of the conduction electrons, and 
adds a satellite approximately at Ef plus the excitation energy of the boson, i.e. at 
ef + (E0 - el) = E0 [37, 42]. This satellite is clearly seen in the ultraviolet photo- 
emission (UPS) spectra of Ce IV systems [6]. It is very broad, of width NA0 [37, 42]. 
The theory and comparison with experiment for UPS and other spectroscopies have 
been studied in great detail by Gunnarsson and Schonhammer [37, 41]. 

For impurities a very interesting transport property is the thermopower S ( T )  
[10]. Recently an identity for the T-linear coefficient of S has been established by 
Kawakami, Usuki and Okiji (preprint), valid for the SU(N) Anderson model 

S ( T )  = 2Qz/eN)~T cot (nnf/N). (142) 
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Thermopowers. The values calculated from equation (42) are compared to experi- 
mental values. 

Experiment Theory 
7 SIT SIT 

(mJ K -2) (#V K -2) (#V K -2) 

YbCuA1 260 - 4.0 - 5.1 
YbCu2 Si2 135 - 1.0 - 2.65 
YbA13 45 - 0.6 - 0.88 
C e S n  3 53 0" 13 0"99 
CePd3 37 1.5 0'70 

Equation (142) shows that S I T  should be positive for Ce compounds, negative for Yb 
compounds (where N = 8, nf = 7-8) and should scale with gamma. In fact, since the 
effect of  going beyond mean field is only a factor (1 - 1/N) in 7 the mean-field 
approximation to (142), would be adequate. In table 5 we test (142) in actual IV 
materials [10]. The results are good for the Yb materials, except for YbCu2Si2 
wherethe discrepancy is probably due to crystal-field effects, but quantitatively poor 
for the Ce materials. This may be essentially a test of  how good a local or impurity-like 
approximation is. 

As has long been known, in the dilute limit the resistivity at zero temperature of an 
ensemble of  SU(N) impurities of  concentration n i is (n  = concentration of electrons): 

2~ni (__~) 
Q = ne2k F N s i n  2 . (143) 

Essentially the T = 0 resistivity is related [27] only to the cross-section and thus to 
the sine squared of the phase shift, which is itself related to nr by the sum rule. The 
temperature dependence of  ~ has been discussed by Houghton et al. [78]. Similarly a 
simple result exists for the zero-temperature magnetoresistance [24]. 

The resistivity of the perfect lattice, however, vanishes if there is no quasiparticle- 
quasiparticle interaction and is thus zero in mean field. It is also zero even in the 
presence of  quasiparticle~luasiparticle interactions, in the absence of  the periodic 
lattice. Studies using the 1/N approach show that Q scales with (T/TK) 2 at low 
temperatures, [41] in agreement with experimental data [79]. 

10. Conclusion 
In all the models considered in this paper mean-field approximation involves 

breaking the local gauge symmetry on lattice site i by introducing an expectation value 
(bi)  of  the non-gauge-symmetric boson bi on site i. Strictly speaking (bi)  is zero. 
In fact there is a power-law decay of the boson autocorrelation function in time 
which seems to ensure that breaking symmetry in this way at low temperatures 
is non-catastrophic but can be corrected by adding well behaved corrections of  order 
1/N. 

The mean-field approximation, and also the approximation of  satisfying the 
constraint Q = 1 in only an average way, are valid only at very low temperatures 
T < TK. In this regime, we see that mean field can be extremely accurate (figure 10) 
provided the number of  channels N is reasonably large. 

Mean field applied to the single impurity leads to a simple N-channel Lorentzian 
quasiparticle resonance near the Fermi level. The width of the resonance is renormalized 
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(in the Ce case) by the z = 1 - nf factor from its value in the absence of  electron- 
electron iflteraction. The resonance adjusts its position so as to contain the correct 
number of  f-electrons, i.e. it is above eF for Ce (N --- 6, nr ~< 1), and below eF for 
Yb (N = 8, nr ~> 7). Specific-heat coefficient ~ and magnetic susceptibility Z are 
simply related to the density of  states at eF, which can be very high if nf ~ 1. The 
thermopower in mean field is related to the energy derivative of  the DOS at ~F, and 
is positive for Ce and negative for Yb materials. Similarly, quantities such as d2x(T)/dT 2 
and d 3 Cv(T) /dT  3 at T = 0, and d3M(h)/dh 3 at h = 0 are nearly related to the second 
derivative of  the density of  states at eF, and are positive. All the above properties of  
impurity systems scale inversely with the characteristic energy scale Tr, which may be 
very small. 

For  the lattice, mean field leads to a picture of non-interacting quasiparticles in 
bands whose mass is increased by the renormalization factor z-1 = (1 - / , / f ) - i .  Once 
again the high specific heats and susceptibilities are related to the inverse temperature 
scale T~ 1 . In the case of  insulating IV systems, a simple explanation is provided in 
terms of a filled quasiparticle band separated by an absolute gap (which is narrowed 
by ~ z) from an empty band. In the limit of  large N, the metallic IV systems are shown 
(most convincingly in the SU(N) model), to have impurity-like thermodynamic 
properties. 

Based on the result just mentioned we can make contact between the theoretical 
results for the lattice and experimental observations on IV systems, which closely 
resemble the SU(N) impurity as regards their thermodynamic properties. 

Improvement of  mean field takes the form of calculating additional terms in the 
1IN expansion. I f  this is done to order l /N  (involving RPA-like diagrams for the 
boson field), we can obtain such physical quantities as the f0 satellite in the UPS 
spectrum and non-zero resistivity of the Anderson lattice. In addition, smaller effects 
such as deviations from unity in the X/7 ratio can be obtained. 

In the case of  the thulium ion, which has both valences magnetic, a tensor rather 
than scalar boson has to be introduced. A different kind of formulation of  mean field 
is needed to avoid breaking SU(N) symmetry. 

Finally, we see that heavy-fermion superconductivity is a low-temperature 
problem (T ~ TK), and large-Nprocedures, starting out from mean field, seem a very 
useful starting point for approaching it. 
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