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Abstract

In recent years the class of materials known as intermediate valent, Kondo-
lattice or heavy-fermion systems has aroused much interest. The unusual properties
of these materials arise from the behaviour of their 4f- (or 5f-)electrons. The strong
electron—electron interactions within the 4f shell cause the f-bands of these rare
earth or actinide metal containing species to show very high masses. Thus the
densities of states are very high, leading to correspondingly high specific heats and
magnetic susceptibilities. A mean field theory is described, based on the Anderson
lattice model, in which these properties are straightforwardly explained. Its
relationship to the 1/N expansion, and the corrections to mean field, are outlined.
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1. Introduction
1.1. Generalities

In recent years a class of rare earth (RE) and actinide materials has become widely
studied, termed variously intermediate valent, Kondo-lattice or heavy-fermion
systems [1-5] (e.g. CeSn;, YbCuAl, SmS, CeAl;, UBe,;). In these materials the 4f- or
5f-electrons are itinerant as are the d-electrons in transition metals. However, the very
strong electron—electron interaction within the tightly bound 4f shell [6, 7] seems to
be the reason why the f-bands in these materials show high to extremely high
masses. Accordingly, densities of states in metallic, non-magnetic systems are very
high, leading to very high specific heats and susceptibilities. The linear coefficient
of specific heat at T = 0, y, may vary from 0-01 to 1Jmol~'K~? in this range
of materials, compared with 1 to 10mJmol~'K~? for ordinary metals [9]. When
7 2 0-5Jmol~'K~? the heavy-fermion label tends to be applied, or maybe the
appellation Kondo lattice in the case of a Ce material. Intermediate valent (IV)
materials are essentially rare earth materials with a somewhat lower y than the heavy
fermion materials, but still much greater than a conventional metal. Examples of
insulating systems (SmS, SmBy) also exist [2]. In this case, the high effective mass
manifests itself as an exceedingly narrow energy gap.

Despite the common property of having electrons in relatively narrow bands, the
properties of the materials with strongly correlated f-electrons have little in common
with transition metals. In the transition-metal materials a magnetic phase transition
seems to be the consequence when electron—electron interactions become stronger
than a critical value. Mass enhancements are moderate. On the other hand, the
f-electron itinerants show large to huge mass enhancements. When magnetism
occurs, it is of a rather different (Ruderman—Kittel mediated, RKKY) type to the
Stonor-Wohlfarth magnetism of transition metals, and seems to indicate a partial
breakdown in f-electron itinerancy.

Indeed the f-electron itinerants tend to have a lot in common with magnetic
(4f- or 3d-) impurities. The impurities have a low characteristic temperature or energy
scale Ty [9]. Because Tx is given by a formula of the type Tx ~ 4 exp (— 1/b), where
b is positive but less than unity, Tx can be exceedingly small. Hence the Pauli
susceptibility and Sommerfeld specific-heat coefficient y, which go as Ty', can be
extremely large. Giant thermopowers are seen, [10] etc. In fact for the IV materials one
can pursue the analogy with impurities to a remarkable level of detail in comparison
with experimental data [11].

However, there are many important phenomena which manifest lattice, rather
than magnetic impurity behaviour. Resistivity goes like 72 at low temperatures as
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expected in an interacting Fermi liquid [12]. Especially remarkable is the super-
conductivity of the heavy Fermion materials which seems not always to be of / = 0
type at least in some materials [4]. It is believed that the superconductivity is another
intrinsic property of the strong interaction between the fermions, as in liquid He® [13].
It seems that a new type of theory is needed to explain the properties of the f-electron
itinerants, whose electrons suffer such enormous mass enhancement that ordinary
concepts of perturbation theory are of little value.

Here we shall describe mainly the IV systems which seem to be better understood
at the present time, and especially their low-temperature properties. We shall do
this from a particular theoretical point of view, probably the simplest theoretical
viewpoint available. Where other approaches overlap or take over, we shall refer the
reader to the literature rather than detail them here.

1.2. Picture of the intermediate valent 4f ion in a metal
The picture we have of an IV 4fion in a metal (Hirst 1974) underlies the theoretical
models used in the following. We do not know to what extent it might be applicable
to a 5f ion such as U. Consider an ion such as Ce. A schematic energy level diagram
is shown in figure 1. The Ce ion is normally considered to be stable in two valence
states, trivalent, f' and tetravalent, f°. The f? state is much higher up in energy because
of the Coulomb interaction energy [14, 15]

1
Upy = [l (Din (1) 7 YWD A dr} > U 0
1 2
between two electrons occupying a wavefunction y,;,,, of magnetic quantum number
m, on the same atom. The expression (1) overestimates U for two reasons. First the
electrons move around in the densely occupied 4f shell so as to increase their

n¢

Figure 1. Schematic plot of ground-state energy F of a Ce atom in a metal as a function
of number of electrons #; in the 4f shell.
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separation, an intra-orbital correlation effect. Secondly, the extra electron in the
4f brings with it a screening cloud in the metal, which lowers the energy of 4f2
Nevertheless, if the energy of the 4f' state is E;, that of the 4f* state may be written
2E; + U, where U measured experimentally in a metallic environment [6, 7] is about
5-8¢V. This estimate may be taken to include the intra- and extra-orbital screening
effects.

It is then usually considered that if the f® and f' states are reasonably close together
(say up to ~2¢eV difference), the high-lying f? state, and the even higher-lying f*
states, are too high up to be included. The theory then assumes that this system
is confined in the f°—f' subspace. The f° state is non-degenerate. However, the f'
state is 14-fold degenerate, split by the spin-orbit interaction into a 6-fold degenerate
Jj = 5/2 ground state and an 8-fold degenerate j = 7/2 excited state about 300 meV
higher up. Usually theory not only neglects the f? state, but also the f’” excited
state, so that the subspace is reduced to include only f° and the j = 5/2 subspace
of f'.

In table 1 we list details of the commonly intermediate-valent ions; Ce, Sm, Eu,
Yb and Tm. All but Tm have one state non-magnetic, and one magnetic, like Ce.
Also, Ce f' and Yb f** have their ground states (j = 5/2 and 7/2 respectively) well
separated from the excited states, but there is a much smaller separation for Eu and
Sm. We also list the g-factors of the ion which are important in calculating the
magnetic susceptibility.

In addition to the spin—orbit splitting, a crystal-field splitting of the ground-state
multiplet may occur [3-5]. This is likely to be especially important for systems
with a very low energy scale, i.e. very high y, such as occurs in heavy fermion/Kondo-
lattice systems. Some of these systems approach a situation where the limit for a
ground-state doublet or quadruplet is more appropriate than the full multiplet
(e.g. N = 6 for Ce).

Next we consider how the valences f° and f' for cerium are coupled together. We
imagine that one RE ion is located in a free-electron gas (jellium), whose eigenstates
are usually taken in spherical coordinates (assume these are stationary states in a large
spherical box) as |k, I, [,, 6>, where k is the radial quantum number, / = total orbital
angular momentum, /, is its z-component and ¢ = spin. However, we prefer to
reorganize these states into |k, j, m,>, where j =/ + 1/2 and —j < m < j,

Ikaj’ m> = alka l’ lz B %9 T> + b|k: 17 lz + %7 l>, (2)

where a and b are Clebsch—Gordon coefficients. The location of the RE atom at the
center of the jellium sphere allows mixing between states of the same quantum number

Table 1. Details of the commonly intermediate valence ions; J is the ground-state spin and
g is the gyromagnetic ratio, which is important for calculating the magnetic susceptibility.

Configuration RE ion J Fermions g gIJ+ 1)
of! Ce 5/2 e 6/7 6-43
i Sm 52 h 2/7 0-71
£o_£7 Eu 72 e 2 63-0
R Yb 7/2 h 8/7 20-57
12 Tm 6 7/6 572
£13 Tm 72 h 8/7 20-57
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on the atom and in the jellium, giving matrix elements
Vi = (£ 52, miVIf, k, 5/2, m), (3)

where V is the coupling perturbation.
We now attempt a fermionic representation of the model so far. The resulting
‘Infinite-U Anderson model’ is (taking Fermi level as energy zero)

H = E ) fafu+ V) (flcimPs + chufuPy). (4a)
m k,m

Here f,, is a Fermion operator describing the state of angular momentum m of f', and
Cun 18 the operator describing |k, 5/2, m)>. E, is the energy difference E(f') — E(*).
V is the matrix element (3) with k-dependence dropped. P, is a projection operator
onto the f state and P, is a projection operation onto the f' state. Without these
projection operators, forbidden states f?, {* would be generated by the successive
action of ;! on f°.

Equation (4 a) applies to Ce compounds. It may be applied to Yb compounds by
taking j = 7/2, and making an electron—hole inversion (since the valences of Yb are
'3, f"its magnetic configuration has one hole). For Sm materials one may use (4) with
electron-hole inversionand j = 5/2, and Eu withj = 7/2 and no inversion, but in the
last two cases caution is needed because of the narrow gap from the ground state to
the first excited-state multiplet.

Finally, we should mention that there exists a ‘Kondo limit’ of (4a) when E,
becomes large and negative, and the f' state behaves like a spin. Charge fluctuations
to f° are suppressed and the model describes a spin j interacting with an electron gas
via an exchange interaction J = V?*/E,. The resulting SU(N) ' Kondo, or Cogblin—-
Schrieffer [16] model may be derived from (4 a) by a Schrieffer—Wolff transformation,
to give

H = Z 6kcltmckm —J 2 clt'm’frlfm'ckm' (4 b)

k.m kk'mm’

1.3. Phenomenology

In this article we consider systems which have normal Fermi-liquid ground states.
Let us concentrate on systems in which crystal fields do not split the ground-state
multiplet significantly, i.e. the IV rather than the heavy fermion or Kondo-lattice
systems.

First let us draw attention to some remarkable scaling properties approximately
obeyed by IV systems [17-19]. To provide some motivation, imagine for a moment
that they consist of non-interacting electrons and that the rare earth ions are non-
interacting impurities. The linear coefficient of specific heat per RE site at T = 0, y,
is given in a non-interacting electron gas by

2

T
v = 3 kiNe, ©
where g, is defined as the density of states per RE atom per channel m for our impurity
in the electron gas, and N = 2j + 1 is the number of channels.
Now we apply a magnetic field 4, yielding a Zeeman term in the Hamiltonian
(using spherical symmetry around each ion)

Hy = gu, ) mny,, (6)
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where 1, = ff,,, g is the g factor and uy the Bohr Magneton. We neglect coupling
to the non-f electrons whose susceptibility is small. The linearly induced {-polarization
in the mth channel will be 6{n;,> = hguzom. Hence the moment is

M = gy z g,y = hgzu]z;Qmez. (M
Therefore, the susceptibility y = 0M/0h is
1 = N@s/3er @®)
where we define
Jj
e = 3¢ ) m = Zuj(j + D). 9
m=—j

From (5) and (9), we see that there should be a proportionality

X Y
ﬂgﬂ w’ k123 (10)

for all materials in this class. In figure 2 we plot [17, 18] the two sides of (10) for a
number of materials (we have not attempted to bring the plot fully up to date) and
we see that it is indeed valid despite a wide range of y and 4. This implies something
about the electrons in IV systems behaving like non-interacting quasi-particles and the
rare earth ions behaving a lot like non-interacting impurities. Of course, it does not
imply that we really have non-interacting electrons, otherwise y could never reach the
high values observed in many IV materials.
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Figure 2. T = 0 magnetic susceptibility y plotted against linear coefficient of specific heat y
for various intermediate valence compounds. Straight lines are equation (37).
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Figure 3. (a), (b), (c) contain, respectively, plots of magnetic susceptibility [20], electronic
specific heat [21] and magnetization [20] of YbCuAl against temperature (in (a), (b)) or
magnetic field (c). The continuous curve is the exact solution of the 8-channel Kondo
model (7; = 1) [22, 23] with T, = 100K (equation (12)), Ty = 98K (cquation (44)).
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Figure 4. Plot of the inverse of T = 0 magnetic susceptibility, ¥, against temperature T,
of the maximum in y(7"), after [19]. '

Next consider the plot of y against temperature [20] in figure 3 (), where results
are illustrated for YbCuAl. We see that y at low temperatures is constant, the Pauli
susceptibility just considered. At high temperatures, x has the Curie-type behaviour

1= (uia/3ksT). (11)

At intermediate temperatures y has a maximum, which is characteristic of IV
materials. The general behaviour of x(7T') illustrated in figure 3 (a) is typical, only x(0)
and the temperature T, at which y peaks being characteristic of individual materials.

Let us now plot y, = x(0) against 1/7,,,, as done in figure 4 [19]. We see that there
is a clear scaling: systems with large y, have small 7, (e.g. YbCuAl), and the reverse
is also true.

Another correlation is between y(0) and the average number of f-electrons
) = X, {fit £, 1.€. the mean valence. This plot is shown in figure 5 for ytterbium
materials [19]. There are inaccuracies in the {n;) measurements, but it is seen that
systems with large y, are close to the magnetic (f** for Yb) valence, and systems with
small y near to the non-magnetic (f'*) valence.

We see that there is a remarkable universality in the properties of IV systems
[17-19]. They can be approximately categorized by a single number, a susceptibility
%o, OF equivalently an energy scale T}, which varies systematically with valence. If
T,... is known, one can predict y, and y.

Finally we shall see that the individual curves of x(T') [20], electronic specific heat
C,(T) [21] and magnetization M(h) [20] illustrated in figure 3 for YbCuAl can
even be understood in detail on the basis of the impurity model. We start from
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Figure 5. Plot of T = 0 magnetic susceptibility against valence for Yb intermediate valence
(IV) compounds, after [19]. Full curve is equation (35) with A, = 0-19eV; broken curve
is x, from (38).

the model (4), the Infinite-U SU(N) Anderson model. This model has been exactly
solved by Bethe ansatz techniques [22-28]. The remarkable solution is difficult and
technical [22-27], and we shall not dwell on it here. However, we shall quote the
results.

First of all we note that YbCuAl is found experimentally to lie exceedingly close
to the " limit (figure 5). Therefore (given that apart from having j = 7/2 this
one-hole system is equivalent to f' cerium), Yb in YbCuAl is capable of being treated
in the Kondo limit [22-26], i.e. by (5 b) rather than by (5 a). In the Kondo regime the
model has only one characteristic energy scale T, the Kondo temperature, which may
be defined as T, in

20) = $2uj(j + D/T,. (12)
(Another temperature T, = NT, is also frequently introduced. Wilson’s characteristic
energy scale Ty, in the high-temperature region is Ty, = T exp(1 + C — 3/2N)/
2al’(1 + 1/N) where C is Euler’s constant and I the Gamma function.) When this
is done [29] all the other thermodynamic properties, y(T), specific heat C,(T) and
magnetization M(h) at T = 0 are seen to fit remarkably well [29] (see figure 3).
YbCuAl is seen to have impurity-like thermodynamics.

We now turn to developing approximate solutions to our model (4). We are
motivated partly by a desire for pedagogical simplicity. Additionally, there are
non-thermodynamic properties (photoemission spectra, transport properties) which
cannot be calculated within the Bethe ansarz technique even for one impurity. Most
important however, we wish to develop the theory of the lattice, which unlike the
single RE impurity is not exactly soluble. Such a solution should clearly help us to
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understand the impurity-like thermodynamics and scaling properties which have been
alluded to in this section. Furthermore it should give a coherent ground state and enable
transport properties like the 77 resistivity at low temperatures and the thermopower
to be calculated.

In addition, a goal is to understand the Tm ion as an impurity and in a lattice
situation such as TmSe. This ion poses problems because of the degeneracy of both
valences. It is hoped that study of this ion will be helpful in understanding the very
important uranium materials, since the U ion, usually considered to be f*>~f>, poses
similar problems.

1.4. Origins of mean field, 1/N expansions

In many areas of condensed matter physics a step forward has been taken when
the mean-field solution to a particular problem was identified. In the case of (4) and
its relatives the mean-field solution has been found in the last few years and it does seem
to provide a foundation upon which basic understanding of the intermediate-valent
and heavy-fermion state may rest.

The origins of this development lie in early work by Yoshimori and Sakurai [30]
in 1970 on the spin-1 Kondo problem. This predates Wilson’s solution [9], and had
these authors correctly calculated the y/y ratio by introducing Gaussian fluctuations,
as they nearly did, the understanding of the Kondo problem would have been
advanced by several years. However, their solution may have seemed an arbitrary
approximation at that time.

Lacroix and Cyrot {31] extended these ideas to the lattice of spin-} Kondo
impurities and first developed many ideas which form the centre of this article. Up to
this point, the mean-field solution to the spin-4 Kondo impurity and lattice remained
curiosities. However developments were in train which were to change this, involving
the use of 1/N expansion techniques in attacking models such as (4). The nomenclature
here involves a degeneracy factor N, which in our problem is N = 2j + 1, and is the
degeneracy of the magnetic configuration of the 4f ion. The general principle of a 1/N
expansion is first to find the diagrams which have the maximal number of internal
summations over m (i.e. degeneracy factors N) in each order. These form the leading-N
approximation. Higher-order approximations may also be feasible by summing
diagrams with next-to-maximal number of internal summations, etc.

An approach to the solution of (4a) existed by using a non-Feynman diagram
technique invented by Keiter and Kimball and independently by Hewson and
Movaghar. The technique was first applied to the present problem by Bringer and
Lustfeld [17]. Ramakrishnan and Sur [34] showed how this could be organized into
finite summable classes of diagrams by use of the 1/N expansion concept, and many
others followed in his footsteps [35, 36]. Identical expressions were obtained by a
variational procedure [37]. When the dust had settled it was realized, by careful
comparison with the exact solution to (4) [36] that the Ramakrishnan—Keiter—
Kimball approach correctly gave the first two orders in 1/N in the expansion of
calculated quantities. Since N = 6 or 8 in IV systems, this is an adequate accuracy
for many purposes.

A little after Ramakrishnan and Sur, Read and Newns [38], picking up an idea of
S. Chakravarty (unpublished preprint) set out to solve (4) in the Kondo limit (4 5) by
a 1/N expansion technique. In their technique, the leading order in 1/N is the
mean-field theory, and the next order is represented by the fluctuations around mean
field. For the first time in a 1/N technique, they were able to derive the y/y ratio
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Figure 6. Plot of quasi-particle density of states (22) for a Ce impurity with n, ~ 1.

correctly, the goal so nearly reached in 1970 by Yoshimori and Sakurai [30]. The
mean-field approximation had emerged into clear definition as the leading term in a
1/N expansion, and deviations between mean field and exact results could be identified
as 1/N corrections.

Finally the necessary extension to make treatment of the full Hamiltonian (4 a)
possible opened up with Piers Coleman’s ‘slave boson’ trick [39]. Now mean-field
approximation [40] and the 1/N corrections [40, 41] for the full Hamiltonian (4 a) were
worked out. Whereas the Keiter—Kimball technique has proved extremely difficult
to apply to the lattice, a way to treat the lattice of IV ions had now been opened
up. Mean field [43, 42] and recently 1/N correction calculations have been done
extensively on the lattice [41-45].

In mean field the solution to (4) [38, 40] is just a narrow quasi-particle resonance
at the Fermi level. Its shape is Lorentzian, its degeneracy N = 2j + 1, and it satisfies
the Friedel sum rule in that its occupied area holds {(n;) electrons (figure 6). The
centre of the resonance is located at T above ¢;. The density of states per channel
at gp in the resonance is to be identified with ¢, in the phenomenological approach of
equations (5)—(10).

In the case of lattice models, the mean-field theory gives a renormalized or
quasi-particle band structure [42—45]. The ground state is coherent. In the case of
insulating IV systems (SmS . . .) [43, 46], this allows for a picture in terms of a
conventional insulator in which bands below the gap are filled, and bands above it are
unoccupied, except that the gap can be very narrow, as indeed is observed.

Finally, we come to the anomalous case of Tm [47, 48], with both valences
magnetic, and for this a different type of mean-field solution has to be developed, as
described for the first time in this paper.

In the following we shall consider these topics in more detail, starting with the
Anderson impurity model (44), then considering two impurities, various lattice
models, and finally thulium.

2. Anderson impurity
2.1. Bosonized model
The basic model for the large-N treatment is the infinite-U Anderson model (4).
This is most conveniently written in terms of the Coleman bosons [39] as

H = Ey ) fifu+ Hy+ VY (flcimb + clufubh), (13 a)
m k,m
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where

Hy = ) &ChnCin-
k,m

In (13 a), the bosons have replaced the projectors in (4a); they work as follows.
Suppose the system is in a state |b'f°), by which we mean one boson, zero f-electrons.
Now if (13a@) acts on this state, the ] ¢;,b term will convert the state to [b°f')
(the other terms in H leave the state unchanged or annihilate it). Further application
of H leads to the £} c,,b term annihilating the state [b°f' >, but the cf,.f,,b" returns the
[b'f*> state.

Therefore, starting with either [b°f') or [b'f*), (13) never leaves the subspace of
these states. No £2, f>. . . states are ever created, so the bosons work like the projectors
in (44). But if we had started with a state such as [b'f'), then the forbidden [b°f*)
would be created. It is necessary to eliminate such states, and this is done by
introducing a constraint [40]

Q0 = n+bb =1, (13b)

where n; = 2, fi1f,,. In reality, (13 a) plus (13 b) are equivalent to (44). In working
with (4b), Read and Newns introduced a similar constraint n; = 1. Note that the
operator Q commutes with (4 a), as n; does with (4 b).

In fact the correct way to handle (13) involves some relatively cumbersome
formalism, e.g. path-integral technique, [38, 40] in order to handle the constraint
(13 b). However, the purpose of the present article is to dwell minimally on such
details. We shall try to find intuitive and formally simple procedures to derive the
essential results.

2.2. Large-N approximation
At low temperatures, it is found adequate to introduce the constraint in an average
way [38, 40]. As if introducing a Legendre transformation to a grand canonical
representation from a particle-number representation, we go to a new Hamiltonian

H = Epn+ Hy + VY (ficmb + he) + yine + 56 — 1),
km

or

H = en+ Hy+ VY (flemb + he) + (& — E)@'d — 1), (14
km .

where we redefine &, = E, + 7y as a quasiparticle f-level. If we look for a state of (14)
which is stationary with respect to variations in y, then the constraint (@) = 0 will
be satisfied for that state.

Now to give an idea of how the selection of diagrams in powers of 1/N proceeds,
we imagine a Feynman graph expansion for the free energy of (14) in powers of V
[38, 40]. This is perfectly possible since only normal boson and fermion operators are
found in (14). Some of the diagrams we obtain are illustrated in figures 7 () and 7 ().

In order to organize the diagrams in powers of N, conventions (which prove
self-consistent) are helpful: firstly we take the vertex V as of order 1/{/N. N is the
degeneracy N = 2j + 1 of the f' state, there being N values of m. Secondly, the
propagator Gf (and of course G)) are considered N-independent. Then we see that
figure 7 (a) is of order N and is the leading-N diagram. Figures 7 (b), (i), (ii @), (iii) etc.
are of order 1, these are called the Gaussian fluctuation or RPA corrections to mean
field [38, 40]. The diagram of (ii b) is of even higher order in 1/N. The two levels,
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(@) @ = O + O + (i:) T oees

(b) @+'+‘+...

@) (iia) (iii)

|

|

]

} (iib)

Figure 7. Diagrams contributing to free energy of single impurity. The series (@) represent the
leading-N diagrams. The diagrams (i), ({iia) and (iii) in (b) represent the next order in
1/N. Diagram (iib) is of still higher order in 1/N. In (a) full line represents bare
f-propagator, broken line represents bare k-propagator, cross represents z/2J vertex.

Notation of (b) is the same except fermion lines include all z'* V scatterings, while wavy
line represents boson propagator.

figures 7 (@) and (b), are what have been calculated so far. In fact the assumption that
G;is of order 1 is not strictly valid for the model of (13). But Read [40] has shown that
this does not in fact matter: after careful consideration it is found that one can
organize the diagrams of figure 7 as if G; were O(1). Therefore in this article we shall
adhere to the large-N procedure which was first used by Ramakrishnan [34].
Another approach is to replace (13b) by the constraint due to Coleman [41]
Q = Ng, where if we were treating a cerium system g = 1/6. Now (135) only
corresponds to an f°—f' model for N = 6, but it is argued that the large-N limit
may be taken in this new way and then N put equal to 6 at the end, with no less
validity than in the conventional procedure. Since the number of f-electrons is now
proportional to N (and > 1 for N » 6), the fractional occupation of the f-level is
N-invariant and so G; may be taken as O(1). We shall not use this procedure here, to
keep our large-N procedure the same as that of most of the literature at present.

2.3. Mean-field approximation: energy scale
Now in order to get any non-trivial result from figure 7 (a) we need to put in the
effect of the bosons in some average way. This is where the mean-field concept enters
[38, 40]. We replace b and b by their expectation values

By = by = 2 (15)
Now (14) is replaced by the single-particle Hamiltonian

H = gm+ Hy + 22V ) (fice, + he) + (& — E)(z — 1) (16)
km

The mean-field parameters ¢ and z in (16) are determined by minimizing the
free energy of (16). Taking the expectation value, differentiating, and using the
Hellman—Feynman theorem 0 H(4)>/0A = (0H/0i), where 1is a parameter in H, we
obtain

z = 1= {n (17a)
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Figure 8. Diagrams contributing to G; in (21) and G, in (25); notation as for figure 7 ().

and
e PYNY flewy = Ey — &. (17b)
k

To calculate the expectation values in (17) we need to calculate propagators. In (17 @)
we need the f—f propagator G(¢), described by the series in figure 8 (a). We may in
mean-field theory, essentially one-body theory, use retarded propagators. Summing
from figure 8 (@) we obtain

Gi(e) = [e — & — F@)I, (18)
where the self-energy F(e) is (s = 07)

Fie) = Z zV

— o~ —in? 19
NP — inV*g, 19

and
e = ) 8e — &)
k

In (19) we make the usual assumption that the band of k-states is wide, so that the
real part of Fis effectively constant and only contributes an uninteresting shift which
is ignored. Then defining

Ay, = Vi, A = nzVip, (20)
(18) becomes
Gi(e) = /(¢ — & + iA), 21
where the density of f-states, ¢ = —n ' G, is then given by
'A

= = 22
R (22)
We see that A is the renormalized lifetime broadening of the f-level, which is shifted to
&, the renormalized f-level energy.
The expectation value {n;) is now obtained from (22) as a Friedel-like expression

ay = [, feewd = > tan1<§>, T =o, @3)

where f(¢) is the Fermi function. Now we have seen that V is to be taken as of order
N~'2.We shall see below that & is O(1). Then A/e;is O(1/N) and the arctangent may
be expanded to give

{ngy = ny ~ NA/me,. (24)

Since O < n; < 1, we see that A/e;is of order n;/N. Thus because there are N channels
in the quasiparticle resonance, its filling factor can only be small in order for #; to be
less than unity.
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Hence we arrive at the picture of the density of f-states already illustrated in
figure 6. The density of states is a Lorentzian centred on g, of width 2A. Its filling
factor is small: we illustrate the case N = 6, n, = 1. In Yb systems the Lorentzian
would be nearly filled in order to allow for ~ 1 hole; we recall that Yb systems are
obtained by electron-hole inversion of Ce systems. The quantities A and g are related
by (24). A itself tends to be small, because of the renormalization factorz = 1 — »;
in (20), especially when #; lies very near to unity.

An explicit expression for the energy scale may be obtained from the other
self-consistency relation (17 5). The expectation value Z, {f, ¢, > may be obtained
from the f-conduction electron propagator G, given by the series from figure 8 (b) as

1

G — 172 0 0 — 25
v = ZPVGG, G') ;———s_gkﬂs, (25)
so that
_Zl/ZV
Y ey = ———Im [f)Gi(e)G(e) de. (26)
k

If we introduce the assumption that the conduction band consists of a constant
density of states (DOS) ¢ above a lower band edge D,

oe) = ef(e + D), 27

where 6(x) is the unit step function, then (26) becomes

—z'7A 0 de
1 Z Qom0 5
LSy =~ Im [ e /) (28)
2RA, (6 + &
= N%m< &) T=0 (29)

In (28) we have used (19) and in (29) we assumed D > ¢. Now inserting (29) into
(17 b) gives the equation for the energy scale

NAC 2 27172
E, — & — nmﬁ”ﬁ)] (30)

The equation (30) has an analytic solution for large negative E;, the Kondo limit.
Then we may drop & from the left-hand side of (30), to get

(& + M)'? = Ty = D exp (nEy/NA,). 3N

The energy scale (31) can be very small as E, becomes large and negative. This is
associated with napproaching unity and z thus approaching zero. The expression (31)
indeed is correct in the large-N limit of the model (4), whose exact solution is known
and whose energy scale may also be obtained by scaling arguments without involving
the large-N approximation.

Note that the motivation for making V of order N~ '?is seen in (31). Such a choice
makes the energy scale independent of N. We may define the energy scale to be Ty in
the Kondo limit: in general, we may define the solution (g7 + A?)'? ~ g to (30) to be
an energy scale T, . Equations (23) and (30) may be combined into one by introducing
[38] a single complex quantity Z = g + iA, which now obeys

Zy— Z = (NAy/n) In (Z/D), (32)
where Z, = E, + iA,. T, is then defined as T, = |Z|.
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2.4. Low-temperature thermodynamics
Mean field is a non-interacting quasiparticle theory. The specific heat and suscep-
tibility may be calculated using Sommerfeld theory. Since & is small, ¢ < g, and thus
we may use the f-density of states as a reasonable approximation to the total density
of states in most materials. Then we simply repeat the arguments of § 1.3, with ¢; now
identified as the density of states (22) defined at the Fermi level ¢ = 0. Hence we
obtain for y and y

7 = tkaNe(0) = Jhkin/er, N large, (33)
X = SHeaNo(0) =~ Lulnefe;, N large, (34)
o
o~ e T— an_Ao’ N large, (35)
where
pa = gusi(j + 1 (36)

is the effective moment of the RE atom in its degenerate configuration. It is seen that
we get back (10) for the y/y ratio in mean field (MF)

Wy = wal(wky). (37

We should now compare the MF results with the exact Bethe ansatz solutions.
Considering first the Kondo limit n; = 1, the results for y and y from Bethe ansazz

are [24, 26]
K1 (N-—1
z = ory. v = 20 (5.
T 3T,\ N

These results involve the characteristic energy scale T,. T, may be given by (31)
(though in fact it depends on cut-off procedures introduced into the model). At large
N, the expressions for y, (12) and (34), can therefore be considered to be the same,
since Tk tends to ¢ at large N.

The expression for y cannot be identified with that of (33) by adjustment of T,

since the y/y ratio
2
X Herr 1
—_ = 1 _— .
" n2k§< Tty o 1)

characteristically differs from (37) by a factor which can be as large as two for N = 2.
However, it is only 15% for N = 6 and 12% for N = 8. In any case, the factor
approaches one for N large. Thus all MF results do approach the exact solution as
N — . Forn, < 1, x(n;) has been carefully investigated by Hewson and Rasul [36],
and found to be in excellent agreement with the exact result, as iltustrated in figure 9.
The corrections to y/y also get smaller as n; decreases [40, 49] (see §9). Hence we
conclude that for low temperatures and fields, the MF results are in good accord with
exact solutions.

Looking now at correlations with experimental IV systems, we notice that it
follows from (37) that mean-field theory explains the correlation in figure 2 which is
observed empirically, if we could be satisfied with a treatment based on non-interacting
impurities.
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Figure 9. T = 0 magnetic susceptibility y of 8-channel U = oo, Anderson impurity model
against scaled f-level energy ¢*. The full line is the Bethe ansaiz [26] result, the points are
from calculation to leading and next leading order in 1/N [36].

Table 2. Specific-heat linear coefficient y, susceptibility y and other parameters (see text for
definition) for various compounds involving intermediate-valence species.

2(0) 7 A & — &f
Compound (107EMUmol™!) (mJmol 'K R w0 (meV) (meV)

YbCuAl 255 260-0 1-:04 10 323 —78
Y, Yby, CuAl 27-5 : 1-0 30 —72
YbCu,Si, 16:0 1350 126 10 64 —155
YbAL 4-7 450 107 10 177 —42-7
YbAL 0-41 168 025 10 520  —1250
CeSn, 1-46 53-0 094 09 189 37.0
CePd, 1-47 370 136 09 189 37.0
aCe 0-51 12:8 136 03 86 54-0

Secondly, we illustrate in figure 5 the result of plotting equation (35) with
Dy = 0-19¢eV [40]..1t is seen to fit quite well to the data (which we should remember
involves considerable inaccuracy in determining n;). These theoretical results (35) and
(10) would in any case be very little different if we used the exact Bethe ansatz
solutions rather than the MF results (33)—(35). It is interesting to see what values we
get for D and ¢ if we fit y (or y) to experimental results for a representative sample
of IV compounds [11]. This is done [11] in table 2, where we used (33), (34) and (22)
without taking the N — oo limit. We see that g values for IV systems go down to
~8meV for YbCuAl.

Another quantity which it is interesting to calculate is the charge susceptibility

Xc = 0<m)[0K,.

This is done by recalculating the stationary point at a function of E,, when we obtain
in the large-N limit [40]

te = —nmi(l — nIm/(NA), (38)

xc is seen to differ greatly from y as given in (35). Whereas y diverges in the Kondo
limit n; — 1, y. becomes zero there. This is indeed a reasonable result, since in the
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Kondo limit the f-level is reduced to a spin which does not change its occupation. y
against n; is plotted on figure 5 (note scale factor); it is seen to be rather small.

It is interesting to obtain the ground-state energy E, in mean field [40]. This is readily
done starting from (40) below; if the arctangent is linearized (leading-N approximation)
the integral performed and (30) used, we obtain in leading-N approximation
E, = E, — ¢. 39)

g

2.5. Higher temperatures and fields
Now it is interesting to see what happens as we go away from the stationary point
(&¢, A), which is the solution to (32), obtained at zero temperature and zero field A. Let
us add the Zeeman term (6) into the mean-field Hamiltonian (16). Then at finite
temperature it is easy to derive the results

1 D . A A
F = ; Z‘ J’—D d8f(8) tan (m) -+ (8( — EO) <A_0 - 1) (40)

for the free energy, and the self-consistency equation (prime implies derivative)

_ z '[“’ de ¢f () In (ﬂ:ﬁ) + mZ _ 0,
m e Tx A,
where
. T .
Z = g+ 1A, 1x = Dexp [N_AO (E, + 1A0)].

To calculate, say, C, to O(T?), first one sets # = 0 and expands Z to O(T?), obtaining
(41 a, b). The result is substituted into (40) to get the Sommerfeld-like expansion for
F, but this differs from the completely non-interacting problem because of the
T-dependence of the mean field variables. Similarly, one may calculate ¥ and the
moment M to O(T?) and O(k?) respectively.

The results are rather complicated in general, but in the large-N limit we obtain
more simply [38, 40]

n*T*n
g = Ty + 6T, £ (41a)
3T2
A= K+ Z‘WTﬂ(nr —2), (41b)
5 ©T?
2T = 2 + kT?) = 1 + 0T (5 — 20m + 30)|,  (4lc)
2 TZ
CT) = yT( + B, T?) = y [1 * o7 (52 — 20m, + 42)}, (41d)
_ N Wy .,
M) = ph(l + ph?) = yoh|1 4+~ (5nt — 20n; + 18) (4le)
3077
7.[2 T2
n(T) = m(0) [1 + e -me - nf)]. (41/)
A



Mean-field theory 817

Table 3. Comparison of expansion coefficients for mean-field large-N values, the exact Bethe
ansatz results and experimental data on YbCuAl.

K B, 7
/2 277 J310
Large-N 493 27 1-2
Exact ~54 ~35 19
YbCuAl >0 18 19

We see from (41 a,b) that ¢ increases with T, but A decreases. For all values of
n;, ¥ and y have positive 77 coefficients and M(h) has a positive 4* coefficient. This
positiveness is typical of the large-N situation. If we consider the special case n; = 1,
without taking the N — oo limit, all these coefficients turn out to be proportional to
sin (3n/N), i.e. they are positive for N > 3. This result is actually found to be in
agreement with exact solutions [22, 23]. As seen from figure 3, all the curves do turn
upwards initially at the N-value N = 8, for which the figure 3 curves are calculated.
But the exact solutions show that for N < 3 the curvature is negative.

In table 3 we illustrate the values of the y, C,, and M coefficients obtained in the
Kondo limit, #; = 1, for N = 8. We see that the mean-field values are in fair
agreement with the exact Bethe ansarz results for N = 8[22, 23]. They are also in fair
agreement with experimental data on YbCuAl [20, 21].

Equation (41 e) shows the correlation of n,with T': n;increases with T'(up ton; = 1
at T ~ T,).In[11] we considered the variation of n; with T of a number of experimental
IV systems and showed it did indeed follow this sign in all cases. The variation of #;
occurs over a very narrow temperature range for YbCuAl (Mattens, Holscher, Tuin,
Moleman and de Boer, preprint), which is to be expected as T, is small for this
material (table 2).

A qualitative discussion of the figure 4 trend of y against 1/T, is possible here. y
may be written from (34) in the large-N limit

X = %Ir‘gﬁnf/TA-

Hence for a moderate range of n; (say 0-5 to 1), y scales with 7', while from (41 ¢)
we see that the temperature dependence scales as T/7), (although the maximum is not
determined at the 77 level, the positive T2 coefficient ensures the existence of a
maximum in y). Hence we can qualitatively understand the correlation in figure 4.

In order to explore higher temperature and fields than can be reached with the
expansions (41), equations (39) and (40) can be treated numerically: in fact (40) was
solved by a complex Newton—Raphson procedure and the result substituted in (39)
(Newns, unpublished work).

We carried out computations in the Kondo limit #; = 1, keeping N = 8 in the
mean-field formulae. It is found that A, which decreases with T to O(T?) (41 b),
vanishes at a critical temperature ~0-6T¢. Results for C,(T'), y(T) and M(h) are
illustrated in figure 10. It is seen that while MF is very accurate for T < 0-25 T,
because of this phase transition results at high temperature are very poor. A similar
phase transition in # would be evident in figure 10 (c) were it carried to higher field.
A similar comparison is given by Coleman [41] using his version of large-N theory.

In conclusion, for large-N mean field works excellently at low temperatures and
fields, but fails disastrously at higher temperatures and fields. In this, mean field is in
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Figure 10. Plots of (a) Specific heat Cy in units of Ty against T; (b) magnetic susceptibility
against T; and (c) magnetization against h, plots for the 8-channel, integral-valent
U = oo Anderson model. The full curves are given by the mean-field solution. The exact
solutions are the dot—dash curves [22] in (a), (b) and the upper full curve [23] in (c). In

(¢), the circles are experimental points [20].
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interesting contrast to another approach, the non-crossing approach (NCA) [50],
which sums all non-crossing diagrams in the Keiter—Kimball approach, but is not
systematic in 1/N. The NCA gives divergent results at very low temperatures, but
correct results at high and intermediate temperatures [50, 51].

2.6. Cut-offs and crystal fields
Notice that (27) only contained the lower band cut-off D. If we introduce a square
band with upper cut-off E so that a real part of G° is defined

D
G%:) = —inpb(e — D)IE —¢) + ¢In Z—t—E’, (42)

then in the Kondo limit (31) becomes (Newns, unpublished work)
Tx = D'""WEYW exp (nE,/NA,). (43)

We see that the upper cut-off only appears as a 1/N effect, butat N = 2 its appearance
restores electron—hole symmetry (though the prefactorin (43) is not exact for N = 2)
[51, 52].

Crystal-field effects have been discussed by various authors, using exact Bethe
ansatz procedures [53, 54] and within a large-N formulation [37]. The latter approach
may be equivalently formulated in mean field. Suppose that the N levels are split into
two subsets, a set at E, of degeneracy N, and a set at E, + A4 of degeneracy N,,
where we assume 4 > 0. the splitting 4 now appears directly in & in (16), and
(30) generalizes to

N g &+ A4
Ey— g = ;(Nllnﬁf—}-NzlnfD ) (44)
The expression for Ty may be written down from (44) in the limit 4, (— Ey) > Tk:
g = Tx = TR(@R/A™™, (45)

Where Ty is given by (31). Equation (45) is well known [37, 53, 54] and shows that
although there is a reduction of the energy scale due to crystal fields, the reduction
is by a power of (Tg/A4).

3. Anderson SU(N) Dimer

3.1. Model and mean field
The case of two Anderson impurities 1 and 2 at a distance R apart in an electron
gas has considerable importance as a first step in the lattice problem. This problem
has been discussed by Jayaprakash ez al. [55] and Lacroix et al. [56] for spin 1 and by
Coleman [42] and by Rasul (unpublished work) for the SU(N) case. Recently the
spin-4 case has been treated by Wilson’s [9] numerical renormalization group
procedure [57). The mean-field approach to the SU(N) case was carried out by
Dharamvir (unpublished). In the SU(N) case let us start by introducing the Lagrange
multipliers for the Q-constraints, when the Hamiltonian for two f-sites and 1 and 2

may be written, in an obvious notation

H = Hy+ Efny + np) + V) [flicmbi + flz6um exp (ik * R) b, + hecl
k,m

+ yl(b“)l +ny -+ Vz(bzbz + np — 1), (46)

introducing two Lagrange multipliers y, and y,. We now wish to make a mean-field
approximation. To do this, the assumption is that the symmetry of the model is retained,
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ie. (b)) = <by) =z 9 =7y, = g — E,. The symmetry of the mean-field
Hamiltonian lends itself to use of even and odd f-states f, = (f; + fz)\/ 2, in terms
of which the mean-field Hamiltonian A’ becomes

H, = HO + 8f(nl'+ + nf~) + Zl/z Z (I/k-{-flmckm + I/;(~.fimckm + h‘c')
k,m

+ 20 — Eg)(z — 1), (47
where

Vie = (1/4J/2¥V(1 £ exp (ik - R)). (48)

Now scatterings from + to — through |k vanish, but we need the lifetime broadenings
within the +, — channels

sin kR
kR

A () = —%ZIV,(iIZ/(s—sk+is) = A(l + >, e = k2. (49)
X

Writing down the self-consistency conditions, analogous to the single-impurity ones,
for the large-N limit, at 7 = 0

0 de

-2 = motm = 2, e G A (0)

or using (22)-(23),
1 —z = NA/(rng) = Y, + n;), (51)
we retrieve the same result as in the single-impurity case. The second relationship is
Wy =) = ), (BeeSlntind + Ve {flnCn) + 0 (52)

or, to leading order in 1/N,
2N o
UE, — &) =~ — [ de (A + A — &),

i.e. using (49)
(B, — &) = (NA/n) In (&/D). (53)

Again, the same equation is obtained as for the single-impurity case. At large distances,
we see from (49) that both odd and even levels have the same width.

At small distances, R < k!, A_ is seen from (49) to become very small and
the odd level is a narrow and unoccupied one lying above the Fermi level at ¢.
Then, assuming we are near the Kondo limit, n,, ~ 2, n,_ ~ 0, so from (50)
A, = 2rTx /N = 2A. So we have the odd level with vanishing width, and the
even level with twice the width of the single impurity resonance. The energy scale,
however, remains Ty . We illustrate the density of states in the even and odd channels
in figure 11.

3.2. RKKY interaction
It is necessary for understanding the properties of both the SU(N) dimer and
lattice to estimate the RKKY interaction. This interaction is associated with the bare
energy scale, and in the SU(N) dimer occurs when an electron occupies the same
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KeR = keR=11

Figure 11. Sketch of f-density of states in even and odd channels (+, — respectively) for two
RE impurities a distance R apart. Left hand two curves for R = oo, right hand two
curves for kg R = 11,

(e)+(9e) - ()
E+(R) E_(R) 2E+(OO)

Figure 12. Diagrams for RKKY energy of two RE impurities at distance R apart, assuming
mth channel occupied in both impurities. Full line, bare f-propagator, broken line, bare
k-propagator, with parity + or — indicated on diagram. Vertex is ¥, .

m-state of each impurity. Since this situation does not violate the requirement that
0 < n; < 1 on each impurity, (a special situation arising because symmetry is
broken) we can treat the problem as a one-body problem with the original (4a),
without need of the P-operators.

The interaction energy Ergxy is then given by the diagrams of figure 12. Using
Feynman rules we have for the contribution from the even and odd channels E,
and E_

ve ZJ' g: (K)g, (— kg, (k)g, (— k)

E = o3 - ; .
= (R) 8E; 2mi & ((u — & + issgng)(® — & + issgn &)

(54)

where g, (k) = 1 + exp (k- R). In (54) the propagator (w — E,)"' has been
trunctated to — E; !, the RKKY interaction being calculated perturbationally, i.e. it
applies when E, is large negative and we are near the Kondo limit. Now carrying out
the w-integral in (54) we obtain

Erexy = E.(R) + E_(R) — 2E, (),

as

2J? j‘Q(sk) de, '[Q(Ek) dey L0 = 1) sin kR sin k'R (55)

E RKKY >
— &

J is defined as V¥/E, in §1.2.
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The usual case for which (55) is evaluated is for parabolic bands, g, = k*/2m*,
0x = (k/kp)er, (¢r = 0(er)), whence

Exxy = 8n(Jy QF)2 epF(2kpR)0 (56)
where
F(x) = (xcosx — sin x)/x* (57

In (56) we have inserted 4, since the interaction is zero unless m = m’.

3.3. RKKY and mean field
At this point we encounter a problem with mean field. The energy in mean field
of two SU(N) impurities in the large-N limit will be, from the results of §3.1.,
2(E, — &). The energy of two nearly-Kondo impurities if they break symmetry and
go into a ‘magnetically locked’ state will be ~2E; — Epggy(R). In particular Egyyy
becomes attractive at small R, so what happens to the Kondo states if Ergxy < — 2¢:7
Presumably the Kondo states are radically altered if R is smaller than the value
satisfying [42]

3 1 (NJop)*D

(krR) < C NI,
or (58)

1 (NA,Y D
3 << — _0 —
keR)" 5 CN2 <nE0> T,

7

In (58) we have explicitly displayed the N-dependence and kept all other quantities of
order N°. C is a constant of order unity.

We see that if we are in the N — oo limit then R can be arbitrarily small with-
out destroying the Kondo effect; the RKKY is an effect of rather high order in
1/N. But because of the factor D/Ty, the right-hand side of (58) might still be
large, at large but finite N. We discuss the problem more quantitatively in the next
section.

Indeed the phenomenon of ‘ferromagnetic locking’ of the spins at small R occurs
and has been discussed for SU(2) by Jayaprakash ef al. [55]. They found that at
small R a new Kondo energy scale Ty took over, corresponding to compensation by
the host of the block spin formed of the two impurity spins ferromagnetically locked
together. This work has been generalized by Dharamvir to the SU(V) case, and the
situation found that the new energy scale took over precisely at an R given by (58)
(Dharamvir, Read and Newns, unpublished work). Therefore, although formally an
effect of high order in 1/N, the RKKY energy can take over if T is too small because
it involves unrenormalized quantities.

Very recently a numerical renormalization group calculation by Jones and
Varma [57] for two spin-} impurities has generated novel results not altogether in
accord with conclusions based on the inequality (58) or the work of [55]. Jones and
Varma conclude that, in the case where the RKKY coupling is ferromagnetic then
the two impurity moments are coupled together irrespective of whether T, is larger
or smaller than the RKKY coupling. However, only a small correction to the
temperature scale [57] is found, so the implications for heavy-fermion systems may
ultimately be essentially of perspective.
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4. The SU(N) Anderson lattice
4.1. Mean-field solution

The lattice of an IV compound such as CeSn, is a complex entity. We have s,p
bands originating on the Sn and Ce sites, and 5d bands originating on the Ce sites,
as well as the 4f band in which the strongest electron—electron interactions are
occurring [43, 58]. This situation is one which can only be handled realistically by
numerical band-structure programs and is not well adapted to the many-body type of
theoretical approach.

Accordingly theorists introduce the SU(N) lattice model. In this model the
f-states are described realistically, and a realistic feature of the spd band complex,
its high degeneracy, is retained. But the ‘host’ spd bands are assumed to have
the same N-fold degeneracy as the f-sites, and the mth host band is assumed to
hybridize only with the mth impurity f-level. this model is an artificial extension of the
conventional SU(2) spin concept to SU(N), its advantage being its comparative
simplicity. The model is assumed, following the single-impurity model, to have
U= .

The SU(N) lattice model may accordingly be written [40, 42—45] in bosonized
form

H = Hy+ E ) ny+ V) (fhemb + he), (59 a)

with the set of constraints
0 = ny + bjbi = L
In (59), c,, is a localized conduction-band state on site i defined by

em = N o exp (ik - R), (59)
k

where N, = number of lattice sites. The specialized features of the SU(N ) model are

that we assume one atom per unit cell, we have hybridization only between the mth

f-level and the mth conduction state (595b), and we shall assume that only one

conduction band of k-states, where k lies in the Brillouin zone (BZ), is involved in the

hybridization.

A mean-field approximation is introduced in which <bf) = (b,> = z'? where
{b;> is assumed site-independent to retain translational invariance. Similarly, the
constraint is included by a term (¢ — E,) I, (n; + blb;, — 1), again chosen to be
translationally invariant. Then the mean-field Hamiltonian can be written [40, 42-45]

H = ) &y + ), &g + 2%V ) (ficm + he) + (6 — E)z — D) L,
k,m i im i
60a)
or in k-space as
H = ) [l + efinfin + 2P V(fbstn + 0e) + (6 — E)z — DI, (60b)
k.m
where

foo= N2t exp Gk - Ry).
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Figure 13. Renormalized band structure of a heavy-fermion system along one direction in k&
space for a particular m value. The assumptions made are that &, = cos k, & = —0-2
and zV? = 0-1.

Equation (605b) describes a renormalized band-structure problem in which the
renormalized f-level ¢ hybridizes through the renormalized matrix element z'2 ¥ with
the k bands, conserving m (see figure 13). The energy bands are [41, 42-45]

EE = Yo+ & % [ — &) + 42072}

However, for many purposes, such as the self-consistency equations, it is more
convenient to work with propagators.

The self-consistency équations are obtained by differentiating (60) with respect to
& and z'7?

1 — <y z, (61a)
VRe ) {fihemy = Ey — &. (61b)
The calculation of (61) may be done by introducing the retarded Green functions for

the system. This follows closely the work of Lacroix and Cyrot [31]. We introduce the
conduction-band propagators per channel

. zV? !
= N s — g — —— |, 62
G (w) A Z(a) + is — g pra——s 1S> (62q)
a result following straightforwardly from (60 b). Also we introduce the f-propagator
zV? 1

W = e KOt T T

(62b)
Now since the unperturbed conduction-band density of states per channel is

a@ = -~ Y@ at it ©3)
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the perturbed DOS g, = —n~'ImG,(w) is given by (per channel)

e(@) = gl — @V/w — &) (64
Similarly, the DOS in, the f-subspace is given by

0@ = omafo - 25, 69)
Suppose we specialize to a rectangular form for the density of states g,

o0(w) = (D) 'O(w + DYO(D — w), (66)
where ®(w) is the step function, then (64) and (65) become

2.(w) = (2D)7'[O(w — &), — ) + O@ — &)O@E — )]  (67)

and
(w) = S — [O(w — &)0(& — 0) + O )0 - (68)
O¢ - 2D((l)—8f)2 w a & @D — & (sd_w -
In equation (68) we have introduced the band edges ¢, . . . ¢4, which are seen from

(64) to be given by
o — (Vzjo — &) = +D, (69)
and take the values, in ascending order
g = Ye — D — [(& + D) + 42V}
& = e+ D — [(g — D) + 42171}
g, = {eg — D + [(& + DY + 4zV*1"}
&g = e+ D+ [(& — DY + 4zV?)?)

(70)

The densities of states ¢, and g, are illustrated in figure 14. Notice the enhancement
near & in o, which however has been chosen to be modest, for clarity of illustration.

To the self-consistency equations derived from minimizing the ground-state
energy with respect to g and z we need also to add a condition from varying chemical
potential g in order to fix the number of particles correctly. From the Hellman—
Feynman theorem, we obtain by varying &

He = 1 — z,
where, from (68),
Viz o do NV?z 1 1
= N — = — . 1
e 2D La (w — &) 2D <8f —-—n g~ sa) )
By varying u we get a condition for conservation of the total number of electrons n
n = m+ N@u — ¢)/2D. (72)

By varying z we obtain

NVZ B flem> = Ey — & (73)



826 D. M. Newns and N. Read

T4

t
Py
—+2
1
N
H e
-D 123 0O ¢—— D
}
P

Figure 14. Density of states of SU(6) metallic heavy-fermion systems, {-DOS above abscissa,
from equation (68), conduction-DOS below abscissa, from equation (67). Parameters
are: unperturbed conduction band has rectangular DOS between —D and D, D = 1,
n =23, V* = 0825 E, = —2-595, n; = 0-8. Renormalized parameters calculated self-
consistently from (71)-(74).

Here {f! ¢;,> may be obtained from G;, = z'*VG}G, = z"*V(w — &) ' G,, whence
from (67)

By - o = 2o [ de(e— ) = NV2QDY Il — W — e)) (74

4.2. The ‘metallic’ case
In this subsection we consider the typical metallic case [40], where the total number
of electrons n = n, + n,is of order N/2. The band edges may then be approximated
by

12

—D — Vz/(¢ + D),
& + V?z/(e — D),
& + Viz/(e; + D),
D — Vz/(g, — D).

&,

i

&,

(75)

¢

&

It

&4
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Introducing the familiar notations
Ty, = & —u, Eo=Eo—H,
A, V2D, A = anz/2D,}
(71)-(74) may be written [40]
n = Nn'A/Ty, = 1 — A/A,,
n,+ N(@u + D)2D = n, an
— (NAm) In [TA /(D + )] = T, — E,.
From (77) we deduce, at T = 0
n = (1 + nT,/NA) ™"

(76)

The results (77) are similar to those for a single impurity [40, 42, 43]. In figure 14 we
have solved (71), (72) and (74) and plotted the DOS and position of u for a typical
metallic case with n = 3, N = 6 (for remaining parameters see figure caption). We
have chosen a case with T, very large (~0-4D) for convenience in plotting, so ¢.(¢y)
is not very large, but the qualitative features are clear.

The susceptibility and specific heat may be obtained from the density of states at

the Fermi level [40]
_ L (N . n
o= 35\ T T,)

ki (N
7 = /5= + )
3 \2b T,
Here we have included in calculating y a coupling of 4 to conduction electrons
with the same g factor as for f-electrons. These results are seen to be the same as for
the single impurity equations (33) and (36), to leading order in 1/N, provided the small
contribution from the conduction electrons is neglected.

The charge response is found to differ from that for a single impurity, the charge
susceptibility being given by [40]

dn; —ni(1 — n)n/NA,
dE, 14 n2(1 — m)*nD/N?A,’

(78)

L = 79
This result is of order — N/2D, the charge response for the conduction electrons,
unless the f-occupation is exceedingly close to 0 or 1. This is very small relative to ¥,
because 2D » T,. The reason for the appearance of the conduction-band density
of states, is that if we raise the f-level E,, — dn, electrons flow into the conduction
band and raise u there by du. ~ on;N/2D. This greatly exceeds the small decrease
oui ~ —ong/T, of uin the f band. Hence is it the ‘negative feedback” associated with
the low conduction-band density of states which controls ..

This much discussed difference between the lattice and sample impurity probably
does not exist, or is greatly reduced, in real systems [18] due to interactions not present
in the simplified Anderson lattice model. In such systems the lost dn, electrons from
an f-site reappear in the local screening cloud in the conduction band around the site
(Friedel sum rule). At a distance of about ~ 1-5 A away from the site a negligible effect
of dn; on the conduction electrons is seen and there is no p-shift. Since this is the
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typical distance between 4f sites in IV materials, we expect the negative feedback effect
to be negligible or greatly reduced. That this is actually true is seen by the measurable
changes of valence in materials such as YbCuAl or CeSn; [59] with a change in T from
0to ~T,. This is just what would be expected from the impurity formula (41 f). If
negative feedback were operating, enormous temperatures of order 2D/N would be
needed to generate an equivalent change in valence.

Thus we see that when N is large little difference between the SU(NV) lattices in the
metallic case and the single-impurity case has emerged so far, though the eigenstates,
being of Bloch type are very different.

4.3. Power series for G,
Another technique for examining the large-N behaviour of the lattice is to expand
the propagators, e.g. G, in powers of V:

G(e) = N ; {gl(e) + 2@V (gl ) + L@V’ + ...}

80a)

where g{() = (¢ — & + is) 'and g} = (¢ — & + is)~'. Now since V2 is defined to
be of order 1/N (see discussion following equation (27)), the terms in (80) form a 1/N
expansion. The first makes no contribution to the DOS, so selecting only the second
we have to leading order in N ™!

e:(e) ~ oo(zV?/(e — &), (800)

which shows that the corrections in principle coming from the argument of g, in (65)
are of higher order in 1/N. A similar result is found for other propagators and this
will carry over into the self-consistency relations (71)-(74). Hence the use of the
expansion (80) provides an alternative demonstration that the self-consistency
relations and thermodynamic properties are impurity-like.

4.4. The insulating case: n = N
An interesting feature of the SU(V) lattice is that it seems to conceptually describe
the insulating case of IV systems [41, 43). In the case where the total number of
electrons per RE site n = N, we have exact filling of the lower band between ¢, and
&, and hence an insulator (figure 14). By juggling with (71) and (75) (first and third
equations) plus (69), we obtain for the band edges relative to & (here 0 < n; < 1)

& — 2D[1 — n/N] + O(T,),

I

Ba
&g = & — Ty,

b £ A 1)
& = & + Tam/(N — ny),

Sd = Sf + 2an/N + O(TA)

In (81) the third equation defines T,. From (74), the energy scale T, is given by

T, = 2D (1 _ %) exp [W] (82)

where A, is defined in (76).

In figure 15 we have sketched the solution to the self-consistency equations
(7)~(74)for N = n = 6, n; = 5-25. This is the electron—hole inverse of the situation
just described. Figure 15 qualitatively resembles SmS. The bands split into what is
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Figure 15. Density of states of SU(6) model for gold-SmS type of heavy-fermion system (only
f-DOS illustrated). Calculation as for figure 14, with n = 6, V? = 0492, E, = 1-39,
ne = 525.

close to a description of a narrow filled f-band separated by a gap from a wider ‘host’
band (in SmS it is the Sm d-band). Figure 14 nevertheless qualitatively describes gold
SmS; E, is above the ‘host’ band, and {#;) is closer to 5 than 6, implying considerable
fd mixing. In black SmS, presumably Ej is below — D, giving an exceedingly narrow
f-band with {n;)> close to 6.

In figure 16, we illustrate a version of the phase transition in SmS within the
SU(N) model. Black SmS (upper portion) has n; very close to 6, because E, is
below — D. It has an exceedingly narrow f-band separated by a wide gap from the
conduction band of the host. In gold SmS (lower portion) there will be some increase
in V as a result of the volume contraction (we allowed only for a slight increase), but
mainly E, is pushed into the ‘host’ band. Now we have a very-narrow-gap insulator,
the f-band being relatively wide.

According to (81) the gap is of order Ty N/(N — n;)i.e. ~ T, (with electron-hole
inversion the gap is T, N/n;). Hence in gold SmS we may speak of a ‘Kondo’ or
many-body gap. The latter expression is more accurate, because in SmS the z-factor
is only ~ 1/4, and most of the heavy mass really comes from a reduction in ¥ due to
the effect of projecting the hopping matrix clements [60] between the ground states of
f* and f°.

We should note that somewhat different discussions of SmS within the quasi-
particle formulation have been given. Martin [61] considers strongly crystal-field split
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Figure 16. Comparison of black- and gold-type SmS in SU(6) model with » = 6. The
conduction band DOS g, is illustrated. The f-DOS is too narrowly peaked to be plotted,
and is replaced by arrows. Parameters are F, = — 1-88, V2 = 0-0264 in the black case,
resulting in n; = 595 (Sm*®*); E, = —1-40, ¥? = 0-0305 in the gold case, resulting in
ne = 525 (Sm*™*).

Sm levels interacting with realistic SmS d-bands. Read and Newns consider [43] SU(6)
(non-crystal-field split) f-levels hybridizing with the realistic SmS d-bands, following
[62] an early suggestion of Anderson that some of the f-bands are unhybridized,
so that the gap will be between ¢ and the lowest point of the hybrid conduction
band.

4.5. RKKY interaction. stability towards magnetic ordering

Those IV systems having »; exceedingly close to one develop a very low energy
scale Ty ~ NA,(1 — n). Of course, they have accordingly huge susceptibilities and
specific heats since these qualities are of order 1/Tx . A refinement is that Ty may be
lower than the crystal-field splitting, when the energy scale may be estimated from the
expression (45). These n; — 1, high-susceptibility and specific-heat materials are
termed Kondo lattices (sometimes overlapping ‘heavy-fermion’ materials, though the
latter class is more general).

Another characteristic energy of the lattice is the magnetic interaction between
spins on different sites which originates in the RKKY interaction (see §3.2.). This
interaction does not vary so critically when n; — 1 as the Ty energy scale. Therefore
as n; — 1 the magnetic energy will exceed the ‘kinetic energy’ ~ Ty of.the lattice,
leading to the onset of magnetic order. In fact there has been a question raised in the
literature [42, 63, 64] as to how Kondo-lattice/IV materials can be stable against
ordering, due to the smallness of Ty or T, in these materials. In this section we shall
address this problem briefly, and show by order-of-magnitude estimates that at least
within the SU(N') model the boundary of the Kondo-lattice region is extensive enough
to explain the experimental data. Part of the answer is that for N large, the leading-N
energy Ty dominates over the RKKY interaction which is a higher-order effect (§3.2)
in 1/N.

The RKKY interaction [71] between two f-sites in the SU(N) lattice a distance R
apart is given in the case of a parabolic band ¢, = k*/2m* by (56):

Ei(m, m') = 0, (81/N*)(Joor) e, F(2ksR), (83)
where the RKKY interaction is

F(x) = (xcosx — sin x)/x*
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and g is the DOS of the conduction band at ¢;. J; is given by
Jo = NV?||E,, (84)

and (83) is only valid when E, lies well below ¢.. Notice that in (84) we have defined
J, as of order one by introducing the factor N, V being defined to be of order N ',
Hence E,, is formally of order N2

The RKKY interaction is responsible for magnetism in RE metals, in whose
magnetic state site occupations have a definite value of m constituting a superlattice
[8]. This state contrasts with the normal Fermi-liquid ground state discussed above,
where m-values are equally occupied on all sites (no symmetry breaking). The normal
Fermi liquid and magnetic states will, in three dimensions, be separated by a phase
boundary. As indicated above, a rough estimate of the condition for magnetism, along
the lines of Jullien and Doniach [63] and Read, Newns and Doniach [42] is to compare
the magnetic energy with the energy of the normal Fermi-liquid (FL) state. In the
large-N limit we may use the value for one impurity for this energy. The condition for
stability of the normal FL ground state against magnetism is then, if D" = y + D,
essentially as we discussed in §3.3

Ta = D’ exp (—1/es]y) 2 (8nZ/2N*)(Jyer)’ D'F(2krR), ®5)

where Z is the number of nearest neighbours of a given site with the same m-value as
the site, and R an average distance to such near neighbours. Calculations on simple
models (unpublished) suggest that this is adequate as an estimate of the energy of the
magnetic lattice. Notice that in the large-N limit the normal FL state is stable. In fact
the condition (85) is satisfied if

T,/D' > C/2N In N)?, (86)
where
C = 4nZFQkR). 87)

This shows that two factors favour stability of the normal FL state: N being large and
2k R being large. This goes some way to explaining the existence of normal ‘Kondo-
lattice’ Fermi liquids in nature with remarkably low T,. Thus supppose Z = 8,
N = 6 and k.R = 2z (a reasonably conservative choice), then with D’ = 2eV (86)
gives

T, > 2K, (88)

quite a low limit on Tj.

Now the type of Kondo-lattice systems which lic near the phase boundary, e.g.
CeAl,, [4, 66] have low T, and the T, values are normally less than the crystal-field
splitting 4, which as we have seen (equation (32)) in the case of splitting into
an N,-degenerate ground-state manifold leads to a new energy scale

A = Ta(Ta/A™™M,

where N, = N — N,. If we assume that crystal fields do not alter the RKKY
interaction, then T, replaces T, in (85) and we can write (86) in terms of T} instead
of T,:

©/D > C/(2N In N (89)
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Hence provided the energy scale including crystal-field splitting satisfied an inequality
of order (89), the Kondo lattice will be non-magnetic as pointed out earlier [64]. This
is indeed possible because the T5s are not so low, the (T, /4)**™ factor being only an
order of magnitude or so.

Thus to summarize this section, Kondo lattices such as CeAl, are believed to lie
near the magnetic phase-transition boundary, as shown for example by the fact that
CeAl, is [1-4] magnetic. We can understand their stability by the fact that their T, s
(or rather T%s) lie above the critical value for that particular lattice. However, the
critical value is quite low because of the largeness of N and because of the large
RE-RE distances.

The condition for magnetic instability is similar to the condition (58) in the
two-impurity problem for the moment to lock together and form a new low-energy
scale. The difference from the bulk problem is here, of course, due to the lack of a
phase transition in zero space dimensions.

4.6. Comparison with other approaches

There is no exact solution available for the SU(N) lattice as there is for the SU(N)
U = oo impurity problem. Variational treatments [67-70] are available which
provide some basis for comparison (also Oguchi, preprint). These treatments, based
on the original Gutzwiller variational treatment of the Hubbard model [70], are
essentially zero-temperature techniques though some extension to higher temperature
has been made [68]. These treatments also generate a renormalization factor z of the
f-conduction-band hopping-matrix element, which in Brandow’s approach [67] is
z =1 — n, as in mean field. However, in the Ueda-Rice approach ([68], also
Oguchi, preprint) a slightly different result,

z = (1 = n)/(1 — m/N),

is obtained. This leads to a correction to the exponent of the Kondo temperature
(31, 76). Fazekas [69] applied the variational approach to a lattice with a concentration
¢ of RE impurities, and showed that the renormalization factor z becomes
z = ¢(1 — n)/(1 — cnz/N), while the Kondo exponential becomes

o[ -]

Now mean field, being a leading-N result, is compatible with all these results. However,
we notice that Fazekas’ corrected energy scale resembles that of Jones and Varma [57)
in the two-impurity problem if we identify ¢ with (inter-impurity distance) 3, which
corroborates the results of Fazekas and [68].

A completely different approach (to the spin-{ lattice) was formulated by Yoshimori
and Kasai [71], whose chief assumption was the locality in space of the f-electron
self-energy. With this assumption, a calculation of many properties including very
plausible results for the resistivity was possible.

A set of very useful Fermi-liquid relations, leading to conclusions on the y/y ratio
and resistivity, for example, has been obtained by Yamada et al. [7], whose work is
discussed in §9.

5. Free-electron Anderson lattice
Another model, differing from the SU(N) lattice model, which is sometimes
thought to provide a useful model of IV systems [60], is the free-electron Anderson
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lattice in which the conduction bands are plane waves. Assuming one RE atom per
unit cell {, with orbital angular momentum /’, the model may be written in the same
way as (59), except now H, is written in terms of the plane waves [k + g, o)

Hy = ) tiofiigo (90)
k.g.0
where k is a Bloch-wave vector inside the first BZ, and [k + g), of energy
&+ = 31k + gl is a plane-wave state belonging to reciprocal-lattice vector g, and
spin ¢ = + 1/2. The interaction part of the Hamiltonian in (59) is written using a
redefined localized conduction-band state ¢,

Cm = ), ENYP Y (Qucsg)ims Cicrar &XP fitk + @) - Ril, ©n
k.g,0
where Y,(Q) is a spherical harmonic and the a,,, = <|l, m — 0, a|jm) are CG coef-
ficients; j is assumed to be 5/2 or 7/2. The volume of the lattice is v, assuming box
normalization of the plane waves. The matrix element V is

v = (%)l [ P ar sV @)k, ©2)

where f(r) is the radial f-function and j,(¢) the order-/ spherical Bessel function.

Suppose we now make the mean-field approximation, the effective single-particle
Hamiltonian may again be written as (60), with the modifications (90)—~(92). For
simplicity in further considerations, let us confine ourselves to a spinless model in
which N = 2/ + 1; spin in any case may be regarded as a 1/N effect. The mean-field
Hamiltonian is

H = ) tcglirg + ), &t + V27 Y (fheim + he) + (e = E)e — D ) 1,
kg im im i

93)
where

Cm = ). (ATN)'"P Y, Qi g)curg €xp ik + @) - Ry 94)
k.g
An approach to trying to calculate the propagators, which now become matrices
in m and n?’, is through a series expansion such as (80). In the present case the series
expansion for the trace of G; starts off as (dropping the trivial term (¢ — &)™")

V2NN,
Tr (G, — G¥) = s ;
(G r) g;,(ﬁ — &) (e — xpg + 15)
V4 N2N? 1 1
—Pl,y) —m8M8M M P(O,,)) ————— ... (95
k,;g, (e — &) (Og) (6 — &pyg -+ i5) 1(059) (6 — &g + 15) + ©3)

In (95) P(6) is the /th Legendre polynomial and 0,, is the angle between k + g and
k+g.

Now suppose only one conduction band lies in the vicinity of g, i.e. only g = 0
is important. Then (95) becomes

Tt (G — GY) ) VN . VANEN,
N, TR — ) — g + is) 2 (e — &) — & + is

gt

(96)
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where K is a vector anywhere in k-space. Recalling that ¥ is of O(1/N), we see that
the terms in (96) are both of the same order. Although the leading term constitutes the
large-N limit of the impurity result, the second term is not down by 1/N and we do
not retrieve the impurity result as the large-N limit.

In order to retrieve the impurity result as the large-N limit of the free-electron
Anderson-lattice model, it seems that we have to scale the lattice parameter with'N,
a scaling with N'? being a simple choice. Now there are many bands interacting with
the f-levels, as in (95). The second term in (95) contains an extra factor N, /v, and this
now scales as N~'. In fact each term of order ¥* in the expansion (95) formally
contains N'™" and the first term is left as the large-N limit, as desired.

As a check on whether the formal classification in powers of 1/N holds numerically
we performed some calculations of the terms in the series (95), on a simple cubic lattice
whose parameter scaled as (2/ + 1), for various energies . The results, illustrated
in figure 17 as a function of energy, do bear out the trend for the ratio of the second
to the first term in (95), though there is quite a lot of oscillation. Attempts to extend
our calculation to higher orders encountered divergences which we have so far been
unable to deal with.

The physics underlying this scaling of lattice parameter with N is that the number
of conduction bands near & should increase as N increases (as it does in the SU(N)
lattice) otherwise we do not get enough bands to hybridize with the f-states. The

N
T
i

Figure 17. Ratio R of imaginary part of the second term of (95) to imaginary part of the first
term, both evaluated at &, plotted against g, for various angular momenta /. The
decrease in R with increasing / demonstrates the approach to the impurity model as the
large-/ limit.
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choice of lattice parameter scaling with N ensures that the number of conduction
electrons (and thus number of occupied conduction electron states) scales with
f-electron degeneracy. We would argue that in practice metallic IV and heavy-fermion
systems indeed do have a number of conduction electrons of order of or exceeding N
(e.g. CeSn;, CeAl;, YbCuAl have 15, 12 and 7 valence electrons), justifying this
approach.

In order that in the large-N limit the self-consistency relations should approach the
impurity ones, first of all (n;> should tend to the impurity value. Given that the
imaginary part of (95) is replaceable by its first term as N — oo, then the foregoing
result is assured on integrating over energy ¢ up to &z. The other expectation value
required, X, {f,C,,>, is also related to (5.6)

T fiewy ~ |7, de T [ ~ )G — 1) o)

and so indeed the self-consistency relations reduce to the impurity ones in the large-N
limit provided we accept that higher terms in (95) vanish relative to the first.
The susceptibility y of the f-electrons may be written

roc 3 o n, ©®)
i 08y
where we have made ¢, = &, m-dependent. Again the quantity <{n,,> is expressed in
terms of Gy,,, which possesses an expansion similar to (95). Formally, with scaling of
the lattice parameter as N'?, the expansion is dominated by the first term as N — o
leading to an impurity-like susceptibility as N ~ co. However, no numerical checks
have been done in this case as to the validity of the formal result.
The RKKY interaction may also be estimated in this model. If we quantize along
the axis between two sites i and j where the spins are located, we retrieve the diagrams
of figure 6. The RKKY energy is given by

En(m, m) = 27°(4n?P [\ dk 2 L2 ¢, (kR)g, (K'R), (99a)

& — &

where
g.(kR) = 2= L_l dx exp (ikRx) | Y7 (x). 99 b)

One limit of (99) is the Siemann—Cooper one [73], appropriate when kR — oo at
fixed I (in fact kR > [(I + 1)). However, this limit is not the appropriate one in our
case where R is scaling like /', Assuming, on the contrary, that / — oo at fixed R, m
we obtain a different limit. Taking m = 0, which is expected to give the largest
interaction, we obtain in the large-/ limit

32m2 03 ke

E'int(os O) ~ _]\72—_~ 0

7 1,72 ’
dk K2Jy(kR) [ i’ k7 Jy(K'R) (100)

0 & — &
where N = 2/ 4+ 1 and J;y(x) is the ordinary Bessel function of zeroeth order. Equa-
tion (100) shows that again the RKKY interaction is of order N ~2 and therefore that
the Kondo-lattice phase is stable in the large-N limit as shown by Coleman [39] and
Read et al. [42].

In this subsection, we have followed a different line of reasoning (employing
k-space Green functions) to that in [42] which employed real-space Green functions.
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The latter proofs seem to demonstrate the same results as in the foregoing but the
convergence of the real-space summations was a doubtful point. Suspiciously, the N'/3
scaling of lattice constraint did not seem necessary in the real-space derivations. It is
seen to be much more difficult to give convincing proofs of the large-N limit in the
free-electron Anderson-lattice model than in the SU(N) Anderson lattice, which is
also much more tractable for other purposes, ¢.g. calculating 1/N corrections. In point
of realism the free-electron Anderson lattice is also little better than the SU(NV) lattice.
Therefore we think the SU(N) lattice (sometimes referred to as the ‘spherical cow’
model) is the best paradigm for an analytically tractable IV lattice model.

6. Realistic lattice models

In the foregoing, we have considered two model lattices, the SU(N) and free-
electron lattice models, which lend themselves to analytic calculations, e.g. retrieval
of the impurity model as the large-N limit. The SU(N) lattice also readily enables the
case of the insulating IV system to be derived. However, one needs to assure oneself
that the real features of IV systems s-, p-, d- as well as f bands, and relatively complex
structures, may be taken into account in our picture.

From a model-Hamiltonian point of view we may write a more general extension
of (59) as

H = ) aong, + By ) fitfi + ). [V(kpo, m)ficipebiexp (—ik - R) + hc)

kpo im kpo,im

+ ) y,(blb, + ny — 1), (101)

In (101) we retain for simplicity a lattice with one RE per unit cell; k is the Bloch
wave-vector, p host-band index, ¢ spin, and i denotes the RE site (or unit cell) location
R;. b; is once more the boson on site i, the remaining notations being analogous
to (59). The transfer matrix element V(kpo, m) between band |kp) of spin ¢ to the
f-state of angular momentum m at site R, is now relatively complex.

In mean-field approximation (101) may be written

H = Yh+@E—E)) @+n—1), (102)
k i
where, writing f,,, = N,”'? Z, f,. exp (ik * R)),

he = ) tghge + & ) finfn + 22N Y [Vikpa, m)filucge + hec (103)
Y X m pom
Now in order to proceed, we would have to calculate the band structure of the
Hamiltonian A, . This is not easy because no reliable procedure exists for calculation
of the matrix elements V(kpo, m).

In fact, we chose to employ the established and computationally efficient linearized
muffin-tin orbital (LMTO) procedure [74]. Our procedure is best explained if we start
by neglecting relativistic effects. Assuming that there is one atom per unit cell, and
neglecting spin orbit, the LMTO Hamiltonian is, per spin,

K = Cop, + %aq;,,(—)[Sk(l - YSk)_l]L'L(PI(_)- (104)

In (104), L = (I, m), o is the atomic-sphere radius, S¥, are the structure constants,
C, is an effective centre of the /th band, while 6¢? is a potential parameter of the /th
band. S* depends only on crystal structure.



Mean-field theory 837

Now in order to write the model Hamiltonian equivalent to (104) requires us to
ignore spin—orbit interaction and take m as pure orbital z-angular momentum, so
(103) modifies to

hk(r = Z Spnkpa + & Zﬁc’,;no'.ﬁ\'ma + Zl/zjvsl/2 z [V(kp9 m).fktnackpa + hC] (105)
I m p.m
Now (103) are in different representations; (103) employs a local basis throughout,
(105) employs a local basis for / = 3, and a band-index basis for/ = 0, 1, 2. However,
itis evident that z'/2 and ¢,(—) both control the f-to-host hopping amplitude, and that
& and C; control the f-level.

The procedure we use [43] is based on the argument that the s, p and d bands of
the system can be adequately calculated using the local density function (LDF)
approximation. In this approximation, (104) may be iterated to self-consistency in the
parameters C,, ¢,. This is done for / = 0, 1, 2, 3. Then, using the analogy between
(104) and (105), we renormalize the quantities @;(—) and C, (y, is negligible).

In fact there are large spin—orbit correction terms to (104) whose effect is to shift
up the f;, band so it is empty. The operative analogy is really between Cs;, and ¢, and
¢s,(—) and f'2, in (103) but our empirical procedure is adequate since we are not
interested in its effect on the empty 7/2 band, only on the 5/2 band.

Our calculation was done on CeSn,. First a relativistic LDF calculation was
performed [44], then ¢;(—) and C, were altered to renormalised values ¢;(—) and G,.
These two parameters were controlled so as first to approximately satisfy the condition

z = 1 =<y = [x(=)o:s(—)- (106)
Secondly we require that the specific heat, given by
v = (7/3)knoler), (107)

be in agreement with the experimental value, from which we deduce that the density
of states g(e;) should be 306 Ry

It proved unnecessary to modify C;, within the errors of our procedure, a fortu-
itous result. The value of z = [@;(—)/@;(—)I was 0-11, in fair agreement with
1 — (n;)> = 0-14, considering that in the LMTO theory the definition of {#;) might
differ somewhat from that appropriate to (103).

A first effect of introducing the renormalization effect z is on the pressure. We find
that the pressure changed from —344kbar in LDF to —39%kbar, a value which
reflects the greatly reduced attractive contribution of the f-electrons to the ground-
state energy.

The effect on the effective masses at the Fermi level is seen in table 4. We see that
the renormalized effective masses are mostly much heavier, but one becomes lighter.

Table 4. Comparison of LDF, rescaled and experimental band masses.

LDF Rescaled Experimental
calculated mass mass mass Plane in
m*/m m*/m m*/m Brillouin zone
4-12 0-5-0-6 0-45 'XMm
0-3-1-7 3-2-12 'Xm
0-2-1-2 1-0-4-4 4-6 I'XM
0-3-12 6-12 9 I'XM

0-3-11 2-6 4-2-4-4 XMR
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Figure 18. Density of states from the renormalized band structure of CeSn, [44], Fermi level
as energy zero. The j = 5/2 DOS forms the single peak just above &;.

The renormalized masses are in much better agreement with experiment than are the
LDF ones, including the predicted lighter mass for the small area I' orbit which is
indeed observed. The density of states in the renormalized band structure is illustrated
in figure 18. We find that there is a narrow 5/2 peak ~ 10meV above ¢, and an
unoccupied 7/2 peak much higher up. Qualitatively this resembles the Lorentzian
density of states found for one impurity and which is the large-N limit of the
foregoing lattice models. But quantitatively, the agreement with a Lorentzian is poor;
a Lorentzian density of states satisfying {n;> = 0-89, o(g;) = 308 Ry~', requires
& = 34meV. But, the peak in the DOS in figure 18 is at only 10 meV above .
We see that the renormalized band-structure calculation gives a reasonable picture
of the pressure, effective masses, f-occupation and density of states in CeSn;, while the
LDF procedure does not. The density of states near & is qualitatively, but not
quantitatively, described by a Lorentzian resonance in the 5/2 channel.

7. The U = oo Hubbard model

Up to now we have considered the U = oo Anderson model and its extensions
to the lattice. Another simpler model which has been used in the development
of the theory of heavy-fermion systems is the Hubbard model. One regime where
this model has recently been applied is to the lattice model of normal liquid He’
[75]. In this application the model is specified to have one fermion per site and
N = 2 (half-filled case), in which case Brinkman and Rice considered the mass
enhancement as U approaches a critical value U, (at which the metal-insulator
transition occurs) from below. However, in heavy-fermion systems another regime,
where U is very large and the occupation differs from half-filling, would be more
appropriate [68].
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We are then led to consider a Hubbard model with U = oo. Within the large-N
philosophy we shall assume it is N-fold degenerate, and also assume SU(N) symmetry.
The model then takes the form

H =t ) fifa.blb, (108)
ijdm
where we have assumed that only nearest neighbours i, j, denoted <ij », are coupled
by the hopping-matrix element . The constraint on (108) is

Qi = ) fisfim + BB = 1, (109)

on each site i.
In mean-field theory, (109) is implemented only on average by adding the Lagrange
multiplier term &(Q; — 1) to H, and b, and 5] are replaced by z'?, to give

Hy =zt ) fhfm+ &)+ 2z = 1) (110)
Kiism 7
(110) represents a non-interacting Hubbard model with renormalized hopping

parameter zz, and f-energy level shifted from zero to &. Varying ¢; and z leads to the
self-consistency equations

N 1 1
and
N » , exp [ik < (R, — R))]
1 f = — f— i LZC
zj; St SomD tnlm;jj de e & (112)
In (112) the j-sum is only over the nearest neighbours to i. Defining
1 i
= — -1 _ 113
o) nmz‘s—sk+1s (113)
(111) may be written
Nj“ deo(e) = 1 — 2. (114)

By means of a well known trick, involving the fact that j is the nearest neighbour
of i, i.e.

& = &+ zt ) exp [ik+ (R, — R))], (115)
(112) may be rewritten in the form
Sf e - e = e (116)

involving the first moment of g(e).
Thus (114) and (116) show that the self-consistency relation only involves the
density of states. Taking then a simple model form for the bare density of states

=1/2D, —D <e< D,
()

(117)
=0, le| > D,
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we have
= 1/2zD, —:zD < ¢ < zD,
o(e) { o, o > 2D, (118)
and (114) and (116) become
ne = (N2zD)(u — g + zD) = 1 — z, (119)
(N2zD)[3e; — pf — D] = —sz. (120)

The self-consistent relation (120) here, in contrast to the Anderson case does not
contain a logarithm; hence there is no exponentially small Kondo temperature found
in the Hubbard model. This is perhaps a point against the Hubbard and in favour of
Anderson-lattice models of heavy-fermion materials, since the materials are precisely
those where the characteristic temperature is very low. From (1 19) and (120)

& = Dnl — (n;/N)). (121)
As usual, y and y are Fermi-liquid properties given by the DOS at u;

o N

o = 30U+ 1)(gﬂn)2m, (122 a)
n N

7= gkém. (1225)

These quantities become very large as n; — 1, qualitatively as in the Anderson-lattice
models.

It is straightforward to solve (119) and (120) for y and obtain the charge suscepti-
bility

1 dn 1
1, = _2d_f = ) (123)
i CH 2Dn [ 1 + L _ 3
! N N
The ground-state energy of the model is
E, = N j“ de e0;(e) + &(z — 1), (124)
= —( = nongl — (ne/N)ID. (124)

We see that the SU(NV) Hubbard model in mean field has some points in common with
the SU(N) Anderson lattice, e.g. y and y diverge as n; — 1, but no exponentially small
Kondo temperature appears. The band narrows by the factor (1 — ne) and shifts
upwards until it is close to the original upper band edge. However, the charge
susceptibility, although it is small (of order 1/2D for large N, n; — 1), does not vanish
as n; — 1 as it does in the Anderson models.

The Brinkman—Rice theory [75], in the large-U limit, also has a similar mass-
enhancement, equivalent to z = 2(1 — ;) as #; — 1. Our mean-field theory is thus
in agreement with the Brinkman—Rice variationally derived theory, except for the.
extra factor discussed in §4.6, which is essentially a 1/N correction. The mean-field
approach has the advantage of simplicity and straightforward extension to finite (low)
temperatures.

In one dimension, the N = 2 Hubbard model is exactly soluble for any U and any
ne. It is found that in the U — oo limit at fixed n; < 1 the susceptibility diverges,
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contrary to (1224). We believe this is a peculiar result of the low dimensionality,
arising from the fact that in one dimension the impenetrable particles cannot cross one
another, and behave like spins. This physical argument is also applicable to any N,
and if correct suggests that y should also diverge as U — oo for any n;at N > 2. Then
(122 a) could not be correct in one dimension. At higher dimensionalities the particles
can get round each other and the problem disappears. The argument in this paragraph
seems then to introduce some doubt as to whether mean field is the true large-N limit
of this model, but it is only intuitive since we do not have the exact solution to
Hubbard for N > 2.

8. Tm impurity

The Tm ion differs from the Ce, Yb, Sm and Eu ions (at least in their ground
states) in that its two valence states, f'? and £, are both magnetic, with degeneracies
13 and 8, respectively. Indeed TmSe is completely different in its properties from other
IV materials, presumably due to this feature of the RE ion [76]. Even greater interest
in the case of ions with two magnetic valences comes from the U ion, which is
probably fluctuating between the f? and f* states [77]. The U ion is of great importance
in forming heavy-fermion materials such as UBe;; which are also superconducting,
probably as non-s-wave single superconductors and therefore of great fundamental
interest.

Previous treatments have considered the Tm ion within a variational framework,
without use of the large-N expansion [47]. In order to establish results with less
ambiguity, Read et al. [48], using however the Keiter—Kimball formalism, repeated
this calculation in a large-N framework; they obtained energy scales analytically for
the first time and checked them against Haldane-scaling results. They were able to
establish the validity of the leading-N calculation in which limit the calculation of [47]
is correct. Nunes, Rasul and Gehring (preprint) extended this approach to the U ion,
using however an extension of the variational technique [37] to treat the f*—f'-f?
problem. In the following we rederive the results of [48] by the slave-boson approach,
introducing a modified mean-field technique. This allows the procedures of [48] to be
extended to the lattice.

In this section we shall consider an f'-f? ion (the equivalent to f'*~f'®) in the
somewhat artifical model which has SU(V) symmetry used by Read et al. [48]. This
means that f' has degeneracy N, 2 has degeneracy N(N — 1)/2. If N = 8, the {2
degeneracy of the model is 28, in contrast to 13 for Tm**. The degeneracy of the 2
is thus exaggerated by the SU(N ) model. It is important for large-N theory that the
ratio of the f? to f' degeneracy be itself proportional to N, as it is in the SU(N') model.

The model of the f'—f? SU(N) impurity is then, in bosonized form,

H = Y 6clntin + E) fifu + V ) (bufich, + he), (125)
k,m m

km#n

with a constraint

Q = ) Blubw + ) fifw = 1 (126)
Now we have in (125) a tensor boson b,, = —b,,, n # m, with N(N — 1)/2
independent components, which describes the f state, while the fermion f,, describes
the f! state. The energy E; is defined as E; = E, — E,, where E, is the total energy
of the f! state, E, of the f? state, (g taken as energy zero).
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Figure 19. (a) The f-conduction band self-energy Z(w) introduced into the model for a Tm
impurity in leading order in 1/N. Full line, f-propagator, broken line, k-propagator. (b)
Expression for Z(w) in terms of itself. Filled circles indicate V-vertex in (125), wavy line
is tensor boson. (c) Self-energy correction to f-line in leading order.

The mean-field theory of (125) and (126) is presented here for the first time. First
we introduce the Lagrange multiplier procedure as before, to get the Hamiltonian

H = z Ekc};mckm + & z.frjl-fm + vV z (bmnfni-cltn + h'C')
k.m m kmn

+ v[ Y bhubp — 1], (127)

withy = (¢ — E;) as the Lagrange multiplier. The meaning of (127) seems to be that
& is the energy difference (E;, — g;), and v is the difference (E, — &), where g is the
energy of the ground-state singlet, in the notation of [48].

Now we cannot just take the expectation value <{b,,, >, as before, because the boson
being a tensor would break SU(N) symmetry. However (127) is a conventional
Hamiltonian for which we can use Feynman diagrams. We introduce a self-energy
X(w) which has the gauge symmetry-breaking property of the (b) expectation value
in f—f° theory, i.e. it has an f-line entering and a k-line leaving (figure 19 (a)). Then
we write a self-consistent equation for X in terms of itself (figure 19 (b)). In figure 19 (b)
the wavy line represents the tensor boson. Because of the internal summation over m,
figure 19 (b) represents the leading-N diagram.

In order to evaluate figure 19 (b), we introduce conventional Feynman 7 = 0
diagrams for the fermion propagators, Gf and G;. The propagator for the boson is

D(r) —i(Tb"(0)b(2)>,
D(w) = /(@ — y + is).
The fermion propagators are
Gl = 1w — & + is)

1 . (129)
~ —im sgn g,.

(128)

; G} (w)

zw—ek+issgnak
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First working with an unrenormalized f-propagator, the diagram of figure 19 (b)
yields the expression

— 2

where C'is a contour along the real axis completed in the upper half plane. Introducing
Z(w) = ()G () ), G(®), (131)
k

[ do’ D@ + )G ()EW) Y G, (130)
k

(130) becomes
Z(w)
W+ o —y+is

— D2
S L e | o

Distorting the contour in (132) to encircle the cut in Z(w), which may be introduced
as

(0 — &)Z(w) =

(132)

Z = X+1iY

valid on the real axis, we have

(133)

(@ — &)Z(w) = w; GY@) [* _Y_(E’L“’/Z

@+ o —

In fact, the integral in (133) is non-singular. Taking the imaginary part of (133)
we have

Y(o) do’
o + Ef — Sf’

@ — &)Y = T[ -

where I' = V(N — l)o.
Finally, we introduce the leading-N self-energy, figure 19 (c), of the f-propagator.
This results in a correction in the (w — &) factor in (134), which becomes

(134)

0 , 1
w—eﬁw—gf—rLDds8,+w+Ef_8f. (135)
Inserting this into (134), we may write the result
A 0 [Y(@) + Y(w)] do’
— = . 1
Y) = o) = T [ (136)

This is a homogeneous equation from which ¢ may be determined in terms of the
known quantity E; = E, — E,. It is identical to equation (3.15) of [48].

In [48] we have solved the integral equation by several methods. There are two
Kondo limits, #; = 1 and n; = 2, so the energy scale vanishes at both the limits.
Actually, results even in the Kondo limit depend on whether D or |E;| goes to infinity
first; the former case is considered here. The energy scale  is defined with respect to
an f' state itself renormalized by the self-energy of figure 19 (c). We introduce a
characteristic scale T* by

T* = —E + T'ln(D/T*). (137)
Then
& = & — T'ln(D/T*. (138)
In the f? Kondo limit
& = Dexp(—ED), (139)
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Figure 20. Energy lowering & of singlet ground state of Tm impurity model below N-multiplet,
as a function of n;. Note that the Kondo limit of n; — 1 differs from that of n; — 2. Full
line, variational solution to (136), broken line numerical solution.

while in the f' Kondo limit
& = (T**D)exp (ED), (140)

where I' = (N — D)V?.

A numerical solution of the integral equation in the D — oo limit is illustrated in
figure 20. It shows that the two Kondo limits are asymmetrical, as indicated by the
different formulae (139) and (140).

In this section we have, we believe for the first time, given correctly the mean-field
approach to the f'-f? (Tm-like) impurity. In this way the Varma—Yafet [47] integral
equation (136), known to be correct in the large-N limit, has been rederived.

The mean-field derivation is more canonical than the one previously used. It
provides a natural explanation of why the function ¥(w) was found in [48] (where it
is termed B(w)) to be peaked at small — w; this is becase of the factor G;(w) defined
into it. Most importantly, the mean-field approach is straightforwardly extensible to
the lattice. It is then found that, as for the f°~f' SU(N) lattice, we get back a band
structure having N = 8-fold degeneracy and the same energy scale as for the single
impurity (Newns, unpublished work).

Unfortunately, the large-N theory of the SU(N) f'-f? model seems to lead
qualitatively to very similar physics to that of the f°—f! model. We do not arrive at
a simple explanation [48] of the magnetism of TmSe, and of the very low or zero
Kondo temperature of Tm impurities [48], based on the magnetism of both of the Tm
valence states, as had been expected [76].

9. Beyond mean field
In this section we wish to diverge slightly from the central theme of this article and
indicate briefly the nature of some of the effects found by going beyond the mean-field
approximation.
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First of all, there is no true symmetry breaking. This is a consequence of the local
gauge symmetry of the model, i.e. the fact that Q; commutes with H, where @, in (59)
is the generator of a rotation in phase of b, and f;, for example

exp (—i9Q) by exp (i9Q;) = b, exp (i¢)
for an arbitrary phase angle ¢. Only physical quantities, such as f;} f,,,, transforming
like unity under the gauge transformation, may have non-zero expectation values.
Consequently the boson autocorrelation function does not approach a constant at
large times, but falls off as the inverse (1/N)th power of the time, indicating that
symmetry is nearly, but not quite, broken [40].

Next, while mean-field theory gives a picture of non-interacting quasiparticles, in
reality there is quasiparticle-quasiparticle interaction leading first of all to thermo-
dynamic effects such as deviations in the y/y ratio from unity. Possible approaches to
calculating such effects are via exact solutions, Fermi-liquid theory or calculating
terms of order (1/N ) in the slave boson or other 1/N approaches. A good approximation
to the y/y ratio for the infinite-U SU(N ) impurity is obtained by calculating the 1/N
corrections to mean field (figure 7 (b)) as [43]

Ckix/uly = NN — 1+ (n — 171 (141)

This agrees up to leading and next-leading order in 1/N with the exact linear
relation between , y and y. found by Fermi-liquid theory [49], and with the numerical
work of Zhang and Lee [35]. Equation (141) shows that y/y is 1 for small #, (the infinite
U has little effect here) and 1 + 1/(N — 1) for n; — 1, the exact result for a Kondo
impurity [24-28, 49].

For the lattice, the Fermi-liquid theory of the SU(N ) model seems not yet to have
been considered correctly, but for the spin-} lattice Fermi-liquid theory [72] is unable
to determine y/y even in the Kondo limit. It only gives constraints on various
quantities. By carrying out the fluctuation corrections to mean field, ¥(0) and C,(T')
have been calculated recently [44, 45]. The y/y ratioisclaimed tobe 1 + N~! + O(N?2)
in the Kondo limit [44, 45]. An interesting result is the presence of a T° In T term in
the specific heat, though this is now believed to be small (A. J. Millis, preprint).

In mean field, the density of states for the single impurity problem is the Lorentzian
of figure 6. However, this is the quasiparticle density of states. If we wish to calculate
the density of states of ‘real electrons’, we have to start from the Green function
Gi(f) = —i(Tf,, (b (1) £} (0)b(0)). In mean field, this is just z times the quasiparticle
Green function G; so that z is the renormalization factor by which the quasiparticle
DOS is to be multiplied to get the ‘real electron’ DOS [40, 42). However, if we
calculate Gf beyond mean field (say to O(1/N)) it amounts to convolution of G; with
the bubble-sum (RPA) boson propagator [41]. This introduces an asymmetry into the
quasiparticle peak, due to the infrared singularity of the conduction electrons, and
adds a satellite approximately at E; plus the excitation energy of the boson, i.e. at
& + (Ey — &) = E [37, 42). This satellite is clearly seen in the ultraviolet photo-
emission (UPS) spectra of Ce IV systems [6]. It is very broad, of width NA, [37, 42].
The theory and comparison with experiment for UPS and other spectroscopies have
been studied in great detail by Gunnarsson and Schonhammer {37, 41].

For impurities a very interesting transport property is the thermopower S(T')
[10]. Recently an identity for the T-linear coefficient of S has been established by
Kawakami, Usuki and Okiji (preprint), valid for the SU(N) Anderson model

S(T) = 2=n/eN)yT cot (mng/N). (142)
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Table 5. Thermopowers. The values calculated from equation (42) are compared to experi-
mental values.

Experiment Theory
¥ S/T S/T
(mIK~?) (VK™ (VK™
YbCuAl 260 —40 -51
YbCu, Si, 135 —-1-0 —2-65
YbAlL 45 -06 —0-88
CeSn, 53 0-13 0-99
CePd, 37 1'5 0-70

Equation (142) shows that S/T should be positive for Ce compounds, negative for Yb
compounds (where N = 8, n; = 7-8) and should scale with gamma. In fact, since the
effect of going beyond mean field is only a factor (1 — 1/N) in y the mean-field
approximation to (142), would be adequate. In table 5 we test (142) in actual IV
materials [10]. The results are good for the Yb materials, except for YbCu,Si,
wherethe discrepancy is probably due to crystal-field effects, but quantitatively poor
for the Ce materials. This may be essentially a test of how good a local or impurity-like
approximation is.

As has long been known, in the dilute limit the resistivity at zero temperature of an
ensemble of SU(N) impurities of concentration #;is (n = concentration of electrons):

- % N sin? (%”‘) (143)
Essentially the T = 0 resistivity is related [27] only to the cross-section and thus to
the sine squared of the phase shift, which is itself related to n; by the sum rule. The
temperature dependence of ¢ has been discussed by Houghton et al. [78]. Similarly a
simple result exists for the zero-temperature magnetoresistance [24].

The resistivity of the perfect lattice, however, vanishes if there is no quasiparticle—
quasiparticle interaction and is thus zero in mean field. It is also zero even in the
presence of quasiparticle—quasiparticle interactions, in the absence of the periodic
lattice. Studies using the 1/N approach show that g scales with (T/Tx)* at low
temperatures, [41] in agreement with experimental data [79].

10. Conclusion

In all the models considered in this paper mean-field approximation involves
breaking the local gauge symmetry on lattice site i by introducing an expectation value
{b;> of the non-gauge-symmetric boson b; on site i. Strictly speaking <{b,) is zero.
In fact there is a power-law decay of the boson autocorrelation function in time
which seems to ensure that breaking symmetry in this way at low temperatures
is non-catastrophic but can be corrected by adding well behaved corrections of order
1/N.

The mean-field approximation, and also the approximation of satisfying the
constraint ¢ = 1 in only an average way, are valid only at very low temperatures
T < Tx. In this regime, we see that mean field can be extremely accurate (figure 10)
provided the number of channels N is reasonably large.

Mean field applied to the single impurity leads to a simple N-channel Lorentzian
quasiparticle resonance near the Fermi level. The width of the resonance is renormalized
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(in the Ce case) by the z = 1 — n, factor from its value in the absence of electron—
electron interaction. The resonance adjusts its position so as to contain the correct
number of f-electrons, i.e. it is above ¢, for Ce (N = 6, n; < 1), and below ¢ for
Yb (N = 8, n; > 7). Specific-heat coefficient y and magnetic susceptibility y are
simply related to the density of states at ¢,, which can be very high if n; - 1. The
thermopower in mean field is related to the energy derivative of the DOS at &r, and
is positive for Ce and negative for Yb materials. Similarly, quantities such as d?y(T")/d T*
and *Cy(T)/dT* at T = 0,and d* M(h)/di’ at h = 0 are nearly related to the second
derivative of the density of states at &5, and are positive. All the above properties of
impurity systems scale inversely with the characteristic energy scale Ty, which may be
very small.

For the lattice, mean field leads to a picture of non-interacting quasiparticles in
bands whose mass is increased by the renormalization factor z~' = (1 — n;)~". Once
again the high specific heats and susceptibilities are related to the inverse temperature
scale Tx'. In the case of insulating IV systems, a simple explanation is provided in
terms of a filled quasiparticle band separated by an absolute gap (which is narrowed
by ~ z) from an empty band. In the limit of large N, the metallic TV systems are shown
(most convincingly in the SU(N) model), to have impurity-like thermodynamic
properties.

Based on the result just mentioned we can make contact between the theoretical
results for the lattice and experimental observations on IV systems, which closely
resemble the SU(N) impurity as regards their thermodynamic properties.

Improvement of mean ficld takes the form of calculating additional terms in the
1/N expansion. If this is done to order 1/N (involving RPA-like diagrams for the
boson field), we can obtain such physical quantities as the f° satellite in the UPS
spectrum and non-zero resistivity of the Anderson lattice. In addition, smaller effects
such as deviations from unity in the y/y ratio can be obtained.

In the case of the thulium ion, which has both valences magnetic, a tensor rather
than scalar boson has to be introduced. A different kind of formulation of mean field
is needed to avoid breaking SU(N) symmetry.

Finally, we see that heavy-fermion superconductivity is a low-temperature
problem (" < Tg), and large-N procedures, starting out from mean field, scem a very
useful starting point for approaching it.
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