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Radiationless Electromagnetic
Interference: Evanescent-Field
Lenses and Perfect Focusing
R. Merlin

Diffraction restricts the ability of most electromagnetic devices to image or selectively
target objects smaller than the wavelength. We describe planar subwavelength structures capable
of focusing well beyond the diffraction limit, operating at arbitrary frequencies. The structure
design, related to that of Fresnel plates, forces the input field to converge to a spot on the focal
plane. However, unlike the diffraction-limited zone plates, for which focusing results from the
interference of traveling waves, the subwavelength plates control the near field and, as such, their
superlensing properties originate from a static form of interference. Practical implementations of
these plates hold promise for near-field data storage, noncontact sensing, imaging, and
nanolithography applications.

The closely related problems of electro-
magnetic imaging and focusing beyond
Abbe’s diffraction limit, set by ~l/n,

where l is the vacuum wavelength and n is the
refractive index (1), have received considera-
ble attention in the past decade, motivated in
part by optical studies using subwavelength
apertures to probe the near field (2) and related
work at microwave frequencies (3). Various
schemes have been developed to improve the
resolution, involving, for example, sharp tips
(4, 5), coherent control (6) and far-field time-
reversal mirrors (7), and values as small as
~l/100 have been reported for the THz range
(8). Subwavelength focusing necessarily involves
the evanescent components of the field, that
is, the near field. Because of this, standard
interference techniques or geometrical optics
methods do not apply. More recently, negative
refraction has emerged as a topic of interest to
near-field studies (9, 10), following proposals
of perfect lensing (11–14) and the subsequent
experimental verification of negative refrac-
tion at microwave frequencies (15, 16) and
imaging beyond Abbe’s limit with negative-
permittivity slabs (17, 18). In this work, an ap-
proach to subwavelength focusing is described
that uses patterned, planar structures to induce
convergence of the near field. The focusing
effect described is reminiscent of, but the
physics is substantially different from, that of
both negative refraction slabs and Fresnel
zone plates (19).

Let F be one of the cartesian components of
the electric (E) or the magnetic (H) field , and
assume that all the field sources are mono-
chromatic, with time dependence given by e−iwt

(w is the angular frequency), and that they lie to
the left of a particular plane, defined as z = 0.
Then, for z ≥ 0, F satisfies the Helmholtz
equation ∇2F + k2F = 0 and can thus be ex-

pressed in the angular-spectrum-representation
form (20, 21)

Fðx; y; zaÞ ¼ 1

4p2

þ∞

∫∫∫∫
−∞

Fðx′; y′; zbÞ

� ei½qxðx− x′Þþqyðy− y′Þþkðza − zbÞ�dx′dy′dqxdqy ð1Þ
providing an exact relationship between the
solution to the wave equation in two arbitrary
planes, parallel to each other, z = za > 0 and z =
zb > 0. Here, k = 2p/l and

k ¼
(
ijðq2x þ q2y − k2Þ1=2j q2x þ q2y ≥ k2

jðk2 − q2x − q2yÞ1=2j q2x þ q2y < k2

ð2Þ

With the sources located in the half-space z < 0,
the choice of signs in Eq. 2 is dictated by the
requirements that the homogeneous and in-
homogeneous (or evanescent) solutions to the
wave equation must travel and decay in the
positive z direction, respectively.

According to Eq. 1, the field in the region
z ≥ 0 is determined by the boundary values
F(x,y,0). Hence, the question of focusing (for
both the subwavelength and the conventional,
diffraction-limited cases) becomes that of iden-
tifying the sources needed to generate the field
profile at z = 0 that converges to a spot of a
predetermined size at the focal plane, z = f.
Although the angular-spectrum representation
shows that F(x,y,0) is, in turn, uniquely deter-
mined by the focal-plane values, F(x,y, f ), the
answer to the focusing problem is not unique,
and the search for the optimal solution is not
trivial, because “focal spot” is, at best, an elec-
tromagnetically vague concept. The difficulty
here is that the wrong choice of F(x,y, f ) may
result in a field that is unsuitable for applica-
tions, that diverges, or that does not exist (every-
where in a region or at certain points), or in a
boundary field that is difficult to implement in

practice. In our approach, F(x,y,0) is defined by
the transmission properties of subwavelength-
patterned planar structures that behave, in some
sense, like the evanescent-wave counterparts to
Fresnel’s zone plates (19). Similar to the latter
structures, the waves exit our plates in a pattern
set by the plate design, which forces them to
converge to a spot on the focal plane, as pre-
scribed by Eq. 1. Unlike the Fresnel plates,
which rely on interference involving radiative
components of the field, and are thus subjected
to Abbe’s constraint, our plates affect primarily
the evanescent waves leading to interference ef-
fects that are electrostatic or magnetostatic in
nature and, as a result, the spot size can be
arbitrarily small. As with other near-field effects,
our plates’ ability to focus at large distances is
severely limited by the exponential decay of the
near field which, in practical applications,
constrains the focal length to dimensions much
smaller than l.

The proposed plates can be tailored to give
subwavelength focal patterns of various types
and symmetries. We concentrate on two key
geometries displaying cylindrical and azimuthal
symmetry. In the cylindrical or two-dimensional
case, ∂F / ∂x = 0, the perfect focus is a line, and
Eq. 1 becomes

Fðy; zaÞ ¼ 1

2p

þ∞

∫∫
−∞

Fðy′; zbÞ

� ei½qðy− y′Þþkðza − zbÞ�dy′dq ð3Þ
where k(q) is given by Eq. 2 with q2x þ q2y→q2.
For electromagnetic fields propagating in the +z
direction that have azimuthal symmetry, such as
the axicon (22) and Bessel beams (23), the
tangential f component of the electric field, as
well as the z and radial r component of H
vanish, whereas the nonzero components Y =
Hf or Er obey

Yðr; zaÞ ¼
þ∞

∫∫
−∞

Yðr′; zbÞJ1ðqr′ÞJ1ðqrÞ

� eikðza−zbÞr′dr′qdq ð4Þ

Replacing the Bessel function J1 by J0, one obtains
the corresponding expression for Ez. Note that
eiq0yexp½ikðq0Þz� and J1(q0r) exp[ik(q0)z] are,
respectively, solutions of Eqs. 3 and 4 for
arbitrary q0 that become evanescent modes for
|q0| > k. For |q0| < k, the corresponding fields are
the well-known diffraction-free plane waves and
Bessel beams. These states and, more generally,
source-free electromagnetic fields with compo-
nents of the form fq0ðrÞexp½ikðq0Þz�, where r is
a vector normal to the z axis, play a crucial role
in near-field lensing.

Our approach to subwavelength focusing
relies on a property of the near field that, to the
best of our knowledge, has not been considered
before. Assume that fq0 exp½ikðq0Þz� is part of a
full solution to Maxwell’s equations and that a
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certain field component (cartesian or otherwise)
at the source plane, z = 0, is of the form
MðrÞ × fq0ðrÞ where M is a modulation func-
tion, which is characterized by the length scale
L ≳ ‘ ≡ 2p/|q0| and satisfies the requirements
specified below. Then, it can be shown for |q0| >> k
that the field converges to a focal spot of res-
olution defined by ‘, after propagating through a
distance of order L. This effect is illustrated for
both the two-dimensional and azimuthally sym-
metric case in Fig. 1. The basic concepts of near-
field lensing are best understood in the cylindrical
geometry. In Eq. 3, take Fðy; 0Þ ¼ MðyÞeiq0y
and integrate to calculate F(y,z). For |q0| >> k,
the relevant states are evanescent waves. We can

therefore approximate k(q) ≈ i|q| so that
Fðy; zÞ ≈∬eiqye−jqjzMðy′Þeiðq0−qÞy ′dy′dq=2p (in
this approximation, F is harmonic, i.e., ∇2F ≈ 0,
for arbitrary M). Lensing occurs for a wide
variety of modulation functions. Mathematically,
a sufficient condition for focusing is that M
should have one or more poles in the complex
plane with nonzero imaginary components. To
prove this, we assume that M(y) is a real and
even function, with poles at ± iL. Performing a
simple integration we obtain, for q0 > 0,
Fðy; zÞº Le-q0Lgðy; zÞ where

gðy; zÞ ¼ eq0ðiyþL−zÞ − 1

iyþ L − z
þ

�

ðiyþ Lþ zÞeq0ðiyþL−zÞ þ ð−iyþ Lþ zÞ
y2 þ ðzþ LÞ2

�
ð5Þ

As anticipated, the expression inside the
brackets leads to focusing at z = L such that, for
L >> ‘, jFðy; LÞjº Le�q0Ljsinðq0y=2Þ=yj (note
that the singularity at z = L and y = 0 is
removable and that the second term gives a
small correction of order ‘/L to the resolution).
Because there are no phases associated with
evanescent waves, it should come as a surprise
that the lensing process shows telltale signs of
conventional interference, particularly in the way
the waves contributing to Eq. 3 add up con-
structively and destructively at the focal plane.
Because it involves nonradiative modes, we will
refer to this unconventional form of focusing as
radiationless interference.

Figure 1A shows plots of |F(y,z)|2, obtained
from Eq. 3, for fq0 ¼ eiq0y andM = (1 + y2 / L2)–1.
This form of M is the simplest one for an even
function with poles at y = ± iL. The calculations
are consistent with Eq. 5 and support our con-
tention that, for L ≳ ‘, the focal length and the
resolution are determined, independently, by
the modulation length, L, and the length scale
of the unperturbed field component, ‘. As shown
in Fig. 1B, the modulated azimuthally symmetric
field (ringlike focus) exhibits a similar effect.

Although our study so far has been limited to
simple poles located in the imaginary axis, it can
be shown that (i) focusing can also be attained
with higher-order poles, (ii) modulation func-
tions with multiple poles give multiple foci, and
(iii) the real and imaginary part of a given pole
determine, respectively, the off-axis position of
the focal spot and the corresponding focal
length. Within this context, it is of interest to
apply our analysis to a negative-refraction slab
that exhibits perfect focusing at n = –1 (11).
For |1 + n| << 1 and a source consisting of a
line of dipoles, the expression for the field is
known analytically (13, 14). In particular, if the
slab thickness is d and the source is at a distance
d/2 from the nearest slab surface and, therefore,
its image is at d/2 from the other surface (11),
the evanescent field at the exit side of the slab
can be written as MðyÞeiq0y where

MðyÞº coshðpy=2dÞ − i sinhðpy=2dÞ
coshðpy=2dÞ þ i sinhðpy=2dÞ ð6Þ

and q0 = –ln|1 + n| / d (14). As expected, M
exhibits a pole at y = id/2, reflecting the image
location and, moreover, the expression for q0 is in
perfect agreement with the known slab resolu-
tion (13, 14, 24). Because M has an infinite
number of additional poles at y = i(d / 2 + 2pd),
where p > 0 is an integer, a near-perfect slab will
exhibit not just one, but an infinite number of
images for which the intensity decays exponen-
tially with p. These additional images are due to
multiple reflections arising from the slight im-
pedance mismatch at the slab-vacuum interfaces.

For the two-dimensional geometry, the above
results can be trivially extended from the simple
sinusoidal to the general case of a periodic field
P‘(y), of period ‘. It is apparent that, for values at
the source plane given byFðy; 0Þ ¼ MðyÞP‘ðyÞ,
the field will converge at z = L to a focal spot of
size ~‘ . This suggests the path for a practical
implementation of cylindrical near-field lensing.
As a periodic field can be simply realized by
letting a plane wave go through an array of pe-
riodically placed slits or ribbons, it is clear that a
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Fig. 2. Radiationless interference. (A) Schematic showing a subwavelength plate, represented as a modulated array of linear current sources at z = 0
and the plane showing the focal line. L/ℓ = 3; see Eq. 7. (B) Contour plot of ln|Hy|. (C) Contour plot of |Hy(z,y) / Hy(z,0)|

2. The dashed white line at z = L
denotes the focal plane.
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Fig. 1. Subwavelength focusing. (A) Two-
dimensional case: |F(y,z)|2 versus y/ℓ from Eq. 3 where
F(y,0)ºeiq0 y /(1 + y2/L2) and L/ℓ = 2.5. (B) Azi-
muthally symmetric geometry: |Y(r,z)|2 versus q0r
from Eq. 4 whereY(r,0)ºJ1(q0r)/(1 + r2/L2) and
L/ℓ = 8. The contour plots show the focal line (A) and
ring (B) at z = L.
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field of the form M(y)P‘(y) can be obtained by
introducing a slowly varying modulation in, say,
the width or the properties of the material of
which an element is made. Similarly, in the case
of azimuthal symmetry, a Bessel beam can be
used together with a set of concentric rings of
properly modulated width placed at radii satis-
fying J1(q0r) = 0. The technology for manu-
facturing plates of this kind for microwave
applications has been available for quite some
time, whereas nanofabrication methods involv-
ing, for example, electron and focused ion beam
lithography, can be used for the infrared and
optical range. An important consideration in the
design of a near-field plate is to avoid as much
as possible the presence of terms giving a back-
ground that could overwhelm the sharp features
of the field. An example of background-free
focusing is shown in Fig. 2. These results are for
the diffraction of a plane wave by a set of rib-
bons of very narrow width << ‘ and parameters
such that the total current density is j = ( jx,0,0)
where

jxºdðzÞ∑
∞

s¼ −∞

ð−1Þsdðy − s‘Þ
ð1þ s2‘2=L2Þ ð7Þ

(the incident electric field is parallel to the
cylindrical axis). Such an array of currents, with
the sign varying from one element to the next,
can be realized at infrared and optical frequen-
cies by alternating material with positive and
negative permittivity and, in the microwave re-

gime, by using a set of interchanging capacitive
and inductive elements. Figure 2B shows a con-
tour plot of the y component of the diffracted
magnetic field (logarithmic scale). These results
are similar to those reported for negative-index
slabs (14, 25), thereby revealing the close rela-
tionship between the two phenomena (26).
Finally, to help ascertain the origin of radiation-
less interference, we show in Fig. 2C a linear
plot of the field intensity, normalized to its largest
value at a given z. Reflecting a property of the
zeros of Hy, the figure clearly shows behavior
reminiscent of beam coupling in that the dif-
fraction of the beam produced by a particular
current source is prevented by the presence of
its neighbors. It is only after the intensity of its
neighbors has decreased a sufficient amount that
the central beam is allowed to spread, and the
point at which this happens determines the focal
length.
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Coherent Optical Spectroscopy of a
Strongly Driven Quantum Dot
Xiaodong Xu,1 Bo Sun,1 Paul R. Berman,1 Duncan G. Steel,1* Allan S. Bracker,2
Dan Gammon,2 L. J. Sham3

Quantum dots are typically formed from large groupings of atoms and thus may be expected to
have appreciable many-body behavior under intense optical excitation. Nonetheless, they are
known to exhibit discrete energy levels due to quantum confinement effects. We show that, like
single-atom or single-molecule two- and three-level quantum systems, single semiconductor
quantum dots can also exhibit interference phenomena when driven simultaneously by two optical
fields. Probe absorption spectra are obtained that exhibit Autler-Townes splitting when the
optical fields drive coupled transitions and complex Mollow-related structure, including gain
without population inversion, when they drive the same transition. Our results open the way for
the demonstration of numerous quantum level–based applications, such as quantum dot lasers,
optical modulators, and quantum logic devices.

The quantum optoelectronic properties of
semiconductor quantum dots (QDs) have
featured prominently in numerous pro-

posals, including quantum computing, single-
photon sources, and quantum repeaters (1–3).
QDs are particularly attractive for these applica-
tions because they behave in many ways as
simple stationary atomic or molecular systems
(4) with discrete states where the electron-hole
pair can be treated as a well-defined composite-
particle state (5).

Whereas strong optical excitation of a semi-
conductor creates a many-body problem because

of the extended nature of the wave function (6),
confinement of thewave function inQDs leads to
strong energy-level shifts between one exciton
and two or more exciton states, enabling the
system to be considered as a relatively simple
few-level problem. The strong-field excitation
regime of the transition from the ground state to
an excited state such as the exciton, a Coulomb
bound electron-hole pair, is then defined by
WR >> 2g where the Rabi frequency WR ¼ mE

ℏ ,
g
p

is a transition linewidth (full width at half-
maximum, in Hz), m is the transition dipole
moment, and E is the amplitude of the optical
electric field. For time scales less than g−1, strong
excitation leads to Rabi oscillations (7–10) in
time. The effect of vacuumRabi splitting (11) has
also been observed in a single QD embedded in a
nanocavity (12–14).

Under strong continuous wave (CW) narrow-
band resonant optical excitation of a simple
atomic system, the fluorescence emission spec-
trum, which is a narrow emission line at low
power (the emission width is the laser band-
width), consists of three peaks referred to as the
Mollow triplet (15). A simple picture of the ori-
gin of this emission pattern is understood from a
dressed-atom picture (16). Figure 1B shows the
dressed-state picture with fully quantized atom-
field states, when the driving-field frequency w is
equal to the electronic frequency w0. In this limit,

1The H. M. Randall Laboratory of Physics, The University of
Michigan, Ann Arbor, MI 48109, USA. 2The Naval Research
Laboratory, Washington, DC 20375, USA. 3Department of
Physics, University of California–San Diego, La Jolla, CA
92093, USA.
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