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m is the offective mass of o carrier In the conduction
band; h = B/I,
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Following the proceduro of Ref, 11, we obtals
tstem of aquations that mplies to any quasiclastio car-
e scattering mechanism;
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- ), reprosents symmetrization of a tensor of
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We shall find a solution of Eq. (13) on tho assumption
that only the "cold" carriers (of energy £ = T) are trana-
ferred from the conduction band and
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in the conduction band, We therefore obi
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for ¥ = 1 (corresponding o the seattering by acoustic
phonons) a calculation of the funetion §z(x) on & computer
shows thal if 1< % < 15 then ihis funotion rises woa iy
d almost linearly from 0 to 0.93 (1 = 1) and from
01581 = 2) and thon it e, >19) it comatog s
toally constant: §, = 0.97 and §, ~ 0.55 (5, = 0). 1t
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=3 (scattering by lonlzed impuritios), then

In the shsence of & maguetic field, we find that
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e shall assume that linoasly polasized light travels
along the OZ axls and that  longitudinal field i

long the OX axts (we shall aseum thit the iy
open-cirouited along the OX and OZ directions).
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excitation mechanism which can be described by Ba. (3).

Linearly polarized light (and a nonoqullibrium of the
ect of the m

tional momentu
taxized also by a spectal angular dependence sin 29 =i
can be used to Identify this effect experimentally.
sign of the 0dd magnetoresistance depends also on o sgn
of the quantity xeprosenting the nature of quasiclastic
scattring. 1t should be polated ot (e skt
possibility of the appear an 0dd tntorhand photo-
Tangastorestatance elect was “ine dvav 1 o, 11, 1A
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e follows from Eq. (20) that, I pastiular,  trans-
verso photo-ome differs from zero e
cently a transverso photo-emf was obsorv vty
tallyinGaSe crystale ot  modllicaion) as o result
of th "+ Interband transition, ! _An analyeis of the
Sonaits seporiod in Rer, 14 by magns of £4, s) domon-
strates an anomalously high mobility uph of photoexcited
optically alignad carriers compared with the mobility of
thermalized and dark oarriors (1): uph ~ 10%;. This
shows that optical alignment of the carrier momenta erd
ballistic motion axe manlfestod in these experiments.

‘The exprossions glven n Eq. (30) are responsible for
another "anomalous" effect;  the Hall effect duc o photo-
carrlers In a longitudinal magnetic ficld. It was first
considered In Ref, 12 in the speclfio case of the scatter-
ing by acoustic phonons and forbidden transitions. The
expression (26) for the current I allows for the possi-

‘bility of extstence of a photostimulated intexband longi-
dinal magoetoreslst:
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Whore (Ap/p)1 15 the Tusualt even transverse magueto-
resistance, The depondence (32) can be explained as
follows. A polarized electromagnatic wave stimulates
the appesrance of a statle electric field along the OY
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s, The presence of a magnetic field along the OX
s "rotates® this field () in the direction of the 0Z
axis, The return nxot
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Translated by A, Tybulewicz

Two-particle tunneling in a normal metal. i
A. L. Shelankov
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Tt is shown that at low temperatures the resist

e of a tunnel contact between @ normal metal and a
semiconductor is determined by two-particle tunn

eling (Andreey reflcction). The ohmic resistance at 7
of Andreev reflection at & boundary with

and the excess current are caleulated. A theory
transmittance is constructed.

e current—voltage characteristic of o funnel NIS
{uniact formed by a normal

“efliclency of single-particle processes in funnel con-
dance at low temporatures,

Oné offiex mechanism exists for charge exchange
treon ¥ and S metals: the transler of two electrons of

iency of two-particle processes s datermined by
llowing considerations. Tho probability of two eloc-
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arbitrary

{xons tunneling, which is proportional to the square of
0 tunnel transittance, Is small compared with tho
probability of single-parttcle tunneling, On the ofhey

therefore expect that at faixly
low temperatures of nonactivation twoo

processes, despite their low probabiliy, woul
effective mechaniom of tunnel conduotanco than single..
particle processes,

The purpose of the present paper 1s to sot up a theory
of the NIS contact taking two-particle process into account. )

o caleulate the current through the.
to obiain the prob of different excitation scattering

channels at the NIS boundary, taking into account the finjse
transmittance of the tumnel layer

contact it is sufflcient
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