Trimer V³⁺ Spin Singlet State and Pseudo Gap in LiVS₂ Studied by ⁵¹V and ⁷Li Nuclear Magnetic Resonance

Tetsu TANAKA, Yu KAWASAKI^{*}, Shigeki ENDOU, Satoshi KIMURA, Yukiichi IDETA, Yutaka KISHIMOTO, Takashi OHNO, Naoyuki KATAYAMA^{1,2}, Minoru NOHARA^{1,2}, and Hidenori TAKAGI^{1,2,3}

Department of Quantum Materials Science, University of Tokushima, Tokushima 770-8506 ¹Department of Advanced Materials Science, University of Tokyo, Kashiwa, Chiba 277-8561 ²CREST, Japan Science and Technology Agency

³The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-0198

(Received November 27, 2008; accepted February 20, 2009; published April 27, 2009)

To clarify the electronic state in a two-dimensional triangular lattice LiVS₂, we have performed ⁵¹Vand ⁷Li-NMR measurements. Below the phase transition temperature T_c of about 310 K from the paramagnetic state to a nonmagnetic state, the Knight shift of both ⁵¹V and ⁷Li does not depend on temperature. The ⁵¹V and ⁷Li spin–lattice relaxation rates $1/T_1$ show the exponential temperature dependence below T_c , which indicates a gap structure of the electronic state. These results are in agreement with a trimer singlet of V³⁺ spins below T_c . The increase in ⁷Li $1/T_1$ above T_c indicates the existence of the pseudo gap and agrees with the increase in paramagnetic susceptibility with increasing temperature and with the small entropy change at T_c compared with that in LiVO₂.

KEYWORDS: LiVS₂, two-dimensional triangular lattice, trimer spin singlet, Knight shift, spin–lattice relaxation DOI: 10.1143/JPSJ.78.054709

1. Introduction

The novel critical phenomenon appearing near the Mott critical point is one of the most important topics in solid state physics. When geometrical frustration is added to a typical Mott insulator system, the antiferromagnetic insulator phase becomes unstable and an ambiguous ground state (for example, spin singlet state and spin liquid) appears. The electromagnetic properties of a two-dimensional triangular lattice (so-called spin frustration system) have received new attention. In a two-dimensional antiferromagnetic S = 1/2Heisenberg triangular lattice, two spins can be antiparallel, but the third spin cannot be antiparallel to both of the former two spins; thus, they are oriented 120° to each other at the ground state without long-range ferromagnetic or antiferromagnetic ordering. Na_rCoO₂ has a triangular lattice and becomes a superconductor when an appropriate quantity of H_2O is added into an interlayer,¹⁾ where the superconducting phase appears close to the magnetic phase. It may be considered that LiVS₂ would become a superconductor when, for example, H₂O or a certain molecule is added. Cooper pairing might be caused by the spin frustration when we could weaken the spin gap and develop the metallic phase.

Rudorff *et al.*, Imai *et al.*, Tian *et al.*, Onoda *et al.*, and Pen *et al.* have studied the phase transition and spin dynamics of a triangular lattice LiVO₂.²⁻⁴⁾ Its magnetic susceptibility is nearly constant below the phase transition temperature T_c of ~500 K from the nonmagnetic state to the paramagnetic state, abruptly increases at T_c , and decreases slowly obeying the Curie–Weiss law above T_c with increasing temperature. The electrical resistivity also decreases suddenly at T_c . Superlattice diffractions have also been observed below T_c . From these results, Goodenough and coworkers have suggested a singlet state of triangular clusters of $V^{3+}-V^{3+}-V^{3+}$ bonded ions, that is, a trimer.^{5,6)}

Since van Laar and Ijdo synthesized LiVS₂,⁷⁾ the interesting physical properties of $\text{Li}_x \text{VS}_2$ ($0 \le x \le 1$) (for example, metal-insulator transition and spin singlet insulator transition) have been reported.⁸⁾ LiVS₂ could also be a good candidate for the study of a spin system with a twodimensional triangular lattice. Above the phase transition temperature T_c of about 310 K, the magnetic susceptibility χ of LiVS₂ decreases slowly with decreasing temperature but suddenly decreases below T_c as if it were nonmagnetic.⁸⁾ With decreasing temperature, the conductivity σ of LiVS₂ increases very slowly above T_c (metallic behavior) but decreases suddenly and approaches a value of two orders of magnitude smaller below T_c . These abrupt decreases in χ and σ indicate that a spin singlet V³⁺ trimer is being formed, that is, LiVS₂ is paramagnetic at high temperatures and becomes nonmagnetic below $T_{\rm c} \sim 310 \,\rm K$ by the trimerization of V³⁺ spins, as discussed in LiVO₂.^{3,4)} As reported in LiVO₂, the superlattice structure has also been observed below the phase transition temperature T_c .⁸⁾ To investigate the electronic state of LiVS₂ from a microscopic point of view, we have performed ⁵¹V- and ⁷Li-NMR spectral analysis, and spin-lattice relaxation rate measurements.

2. Experimental

The powder sample has been synthesized by solid state reaction. The detailed preparation method for LiVS₂ is reported elsewhere.⁸⁾ The synthesized sample has been examined crystallographically with an X-ray diffractometer and magnetically with a superconducting quantum interference device (SQUID) magnetometer and electrical resistivity measurements. The obtained data agree with those reported previously.⁹⁾ The hysteretic behavior of the temperature dependence of χ shows that the transition from the nonmagnetic state to the magnetic state is of the first order and occurs at 303–316 K during heating and at 300–312 K during cooling. From the middle of each temperature range of the transition, $T_c = 310$ K and $T'_c = 306$ K are defined.

^{*}E-mail: yu@pm.tokushima-u.ac.jp

We enclose the powder sample in a capsule made of Stycast 1266 (Emerson & Cuming) with a heat exchanger He gas to prevent a possible degeneration of the sample in the atmosphere. When the sample is cooled across the phase transition temperature, we change the temperature of the sample at a rate lower than -2 K/min to avoid a probable disorder of Li⁺ ions.

The ⁵¹V- and ⁷Li-NMR measurements have been performed at temperatures between 4.2 and 470 K by employing a laboratory-built phase-coherent pulsed NMR spectrometer. We have measured the NMR spectrum by tracing the integrated spin–echo signal as a function of an external magnetic field using a box-car integrator. The ⁷Li-NMR spectra above 340 K are obtained by the Fourier transformation of the spin echo. The nuclear spin–lattice relaxation rate $1/T_1$ has been obtained by measuring the recovered longitudinal nuclear magnetization M(t) at the time t after a saturating pulse. The predicted functional expression for M(t) for ⁵¹V nuclei with I = 7/2 is the sum of four exponential terms,

$$\frac{M(\infty) - M(t)}{M(\infty)} = 0.019 \exp\left(-\frac{t}{T_1}\right) + 0.0682 \exp\left(-\frac{6t}{T_1}\right) + 0.206 \exp\left(-\frac{15t}{T_1}\right) + 0.714 \exp\left(-\frac{28t}{T_1}\right), \quad (1)$$

where the coefficients have been obtained by theoretical calculation for the transition between $I_z = -1/2$ and +1/2 spin levels.¹⁰⁾ The fitting of M(t) to the measured data points is good and gives $1/T_1$ at each temperature. The observed recovery of ⁷Li longitudinal nuclear magnetization is single exponential and the relaxation rate $1/T_1$ is well defined in the entire measured temperature range.

3. Results and Discussion

We show the ⁵¹V-NMR spectrum measured at 15.25326 MHz at 77.3 K in Fig. 1. The spectrum shows resonance peaks at 1.298, 1.316, 1.333, 1.354, 1.358, 1.373, 1.394, and 1.408 T in the polycrystalline sample, which is the so-called powder pattern for nuclei with I = 7/2. Here, the splitting (36G) of the central line into two lines is induced by a second-order perturbation of the nuclear quadrupole interaction added to the Zeeman interaction. We estimate the quadrupole coupling constant v_{Q} to be 0.42 MHz from the distance between the satellite lines, which is comparable to 0.47 MHz for LiVO₂. The asymmetric parameter $\eta = (V_{xx} - V_{yx})$ $V_{yy})/V_{zz}$ in LiVS₂ is estimated to be 0.11 and is much smaller than $\eta = 0.40$ in LiVO₂.^{3,11)} The electric field gradients at $^{51}\mathrm{V}$ nuclei in LiVS_2 are more symmetric than those in LiVO₂. This is consistent with the fact that the NMR spectra in LiVO₂ are broader than those in LiVS₂.¹¹⁾

The ⁵¹V-NMR spectra have been measured at a higher magnetic field to gain a higher signal-to-noise ratio. The ⁵¹V-NMR spectra measured at the fixed frequency of 129.1 MHz at several temperatures are shown in Fig. 2. We should note that LiVS₂ shows hysteretic behavior in the temperature dependence of both χ and σ ,^{8,9)} which indicates that this phase transition is of the first order. We have measured all the present NMR spectra at a fixed temperature after the temperature is increased from its lowest value.

Fig. 1. ⁵¹V-NMR spectrum at 15.25326 MHz and 77 K.

Fig. 2. $^{51}\text{V-NMR}$ spectra of LiVS_2 measured at 129.1 MHz at several temperatures.

We have observed seven split peaks in the ⁵¹V-NMR spectra, where each peak is indicated by a triangle for 9.8 K, as shown in Fig. 2.12) The splitting of the central line is not clear in these spectra. The width of the line increases because of the small splitting of this line, which is expected to be about 5 G for this experimental condition. We estimate the quadrupolar coupling constant v_0 to be 0.42 MHz, which is in agreement with that estimated from the spectra observed at a low magnetic field. v_0 does not depend on temperature over the measured temperature range between 9.8 and 305 K within the sensitivity of our apparatus, indicating that the lattice around V is not markedly changed by temperature below T_c . No spectrum can be observed above $T_c = 310 \text{ K}$ because its intensity decreases rapidly, which may be due to the decrease in spin-spin relaxation time T_2 , as shown in the inset figure in Fig. 4, and the increase in line width due to the phase transition from the nonmagnetic insulating state to the paramagnetic metallic state. We have carefully searched for the spectrum that

Fig. 3. Temperature dependence of Knight shift ${}^{51}K$ (squares) and ${}^{7}K$ (circles) measured at 129.1 MHz in LiVS₂. Error bars represent the corresponding FWHM values of the ${}^{51}V$ - and ${}^{7}Li$ -NMR spectra.

shifted to another resonance field owing to paramagnetism above T_c , but we cannot find the signal.

We show the temperature dependence of the Knight shift ${}^{51}K$ estimated from the resonance magnetic field of the ${}^{51}V$ -NMR central line by squares in Fig. 3. Error bars indicate the corresponding full width at half maximum (FWHM) in the ⁵¹V-NMR spectra. ${}^{51}K \sim 0.55\%$ does not depend on temperature in the measured temperature range below $T_{\rm c}$. This temperature-independent Knight shift provides evidence for the nonmagnetic state below T_c . Since V^{3+} spins vanish because of a trimer singlet state below T_c ⁸, the positive value of ${}^{51}K$ indicates that a core-polarization interaction is not dominant for the hyperfine field at ${}^{51}V$ site in LiVS₂, which is consistent with the discussion which will be given below on the observed temperature dependence of $1/T_1$. These results indicate that LiVS₂ is nonmagnetic below T_c and that ${}^{51}K$ and χ mainly originate from the Van Vleck orbital angular momentum.

The constant value of ${}^{51}K \sim 0.55\%$ below $T_{\rm c}$ is comparable to that reported in LiVO₂.³⁾ In contrast, the value of χ below T_c in LiVS₂ is twice as large as that in LiVO₂.^{3,8)} Generally, the Knight shift K_{orb} coming from the orbital contribution is given by $K_{\text{orb}} = 2\chi_{\text{orb}} \langle 1/r^3 \rangle$, where χ_{orb} is an orbital component of χ and $\langle 1/r^3 \rangle$ is the expectation value of $1/r^3$ over the 3*d*-wave function. $(1/r^3)$ for the V ion in LiVS₂ is about one-half that in LiVO₂, and the 3*d*-wave function of the V ion spreads over a wider area in LiVS₂ than in LiVO₂, which is consistent with the following point. The lattice constant a, the distance between the V³⁺ ions in $LiVS_2$, is larger than *a* in $LiVO_2$, and *c*, the distance between the V^{3+} ion plane and the S^{2-} ion plane in LiVS₂, is smaller than c in LiVO₂.^{3,8)} By considering these situations, it is suggested that the covalent coupling between V^{3+} and S^{2-} ions in LiVS₂ is stronger than that between V^{3+} and O^{2-} ions in LiVO₂, and the degree of two-dimensionality in $LiVS_2$ might be lower than that in $LiVO_2$.

Next, we report the nuclear spin-lattice relaxation rate $1/T_1$. The measured recovery of ⁵¹V nuclear magnetization

Fig. 4. Temperature dependence of ⁵¹V nuclear spin–lattice relaxation rate $1/T_1$ measured in LiVS₂. The solid curve represents the fitting of an activation-type curve to the data points between 150 and 300 K, giving an energy gap of ~1900 K. The temperature dependence of $1/T_2$ is shown in the inset in the upper left.

M(t) after the saturating pulse is well fitted to eq. (1) given in §2 and gives $1/T_1$ at each temperature.¹²⁾ Figure 4 shows the temperature dependence of the obtained ⁵¹V $1/T_1$. $1/T_1$ is nearly constant below ~100 K and increases exponentially with increasing temperature up to $T_c \sim 310$ K. The temperature dependence of $1/T_1$ in LiVS₂ resembles that in LiVO₂,³⁾ which suggests that the electronic states of these compounds are similar below T_c . This exponential behavior indicates that the spin excitation mode or the electronic density of states has an energy gap Δ and $1/T_1$ varies following

$$1/T_1 \propto \exp(-\Delta/k_{\rm B}T),$$
 (2)

where $k_{\rm B}$ is the Boltzmann constant. The solid curve in Fig. 4 shows the best fitted curve of eq. (2) to the data points between 150 and 300 K, and the energy gap Δ is estimated to be about 1900 K. The inset in Fig. 4 shows the Arrhenius plot of $1/T_1$ against 1/T between 150 and 300 K. This activation-type temperature dependence of $1/T_1$ indicates that the thermally excited V³⁺ spins over this energy gap yield a temperature-independent spin–lattice relaxation.

On the other hand, the observed Knight shift ${}^{51}K$ is independent of temperature, as discussed above. Thermally excited V³⁺ spins do not contribute to ${}^{51}K$, which means that the hyperfine field and the core polarization at ${}^{51}V$ nuclei due to thermally excited V³⁺ spins are very small compared with the hyperfine field due to the orbital moment. This estimated energy gap 1900 K is comparable to but slightly larger than the gap 1600 K observed in LiVO₂.³⁾ The energy gap ~1600 K reported in LiVO₂ seems to be very small when it is compared with ~1900 K in LiVS₂, because $T_{\rm c} \sim 500$ K in LiVO₂ is higher than $T_{\rm c} \sim 310$ K in LiVS₂.

The nearly constant behavior of $1/T_1$ below 100 K may be caused by independent fluctuations of the paramagnetic impurity V spins observed as a Curie tail in χ at low temperatures.⁸⁾ The existence of this energy gap 1900 K provides evidence for the formation of the trimer spin singlet

Fig. 5. ⁷Li-NMR spectra of LiVS₂ measured at 129.1 MHz at several temperatures.

state in LiVS₂. This trimer spin singlet state is also supported by the superlattice observed in the electron diffraction.⁸⁾ A honeycomb-type diffuse streak is observed by electron diffraction in a metallic phase in LiVS₂. This diffuse streak becomes weak just above T_c , and therefore, this diffuse streak does not come from the thermal vibration or lattice defect, and it can be due to the development of the long-range ordering for V³⁺ spin trimerization.

We have also measured ⁷Li-NMR. Figure 5 shows the ⁷Li-NMR spectra at several temperatures. Their FWHM is ~ 22 G and very small. Each ⁷Li-NMR spectrum is considered to be composed of the overlapped central and two satellite lines because the quadrupole interaction is generally small for ⁷Li. The ⁷Li Knight shift ⁷K is determined from the peak resonance field at each temperature. The circles in Fig. 3 show the temperature dependence of ⁷K. ⁷K = 0.07% is very small and does not depend on temperature, which is consistent with the nonmagnetic state below $T_c = 310$ K. This small ⁷K is considered to be due to the Fermi contact interaction with some staying 2s electron.

The observed recovery of ⁷Li longitudinal nuclear magnetization is single exponential and the relaxation rate $1/T_1$ is well defined in the entire measured temperature range. The obtained temperature dependence of $1/T_1$ is shown in Fig. 6. $1/T_1$ is nearly constant below 100 K, which is consistent with the constant $1/T_1$ for ⁵¹V, and is considered to be due to the independent fluctuation of impurity V spins. The $1/T_1$ of ⁷Li below 100 K is $\sim 0.75 \text{ s}^{-1}$ and that of 51 V is 0.11 s⁻¹. The $1/T_1$ due to the localized impurity V spin fluctuation is proportional to $\gamma^2 A^2$, where γ and A are the gyromagnetic ratio and hyperfine coupling constant due to impurity V spins, respectively. The ratio of the $1/T_1$ of ⁷Li to that of ⁵¹V, ⁷ $(1/T_1)/^{51}(1/T_1)$, is written as $^{7}(1/T_{1})/^{51}(1/T_{1}) = (^{7}\gamma/^{51}\gamma)^{2}(^{7}A/^{51}A)^{2}$, where $^{7}\gamma$, $^{51}\gamma$, ^{7}A , and ${}^{51}A$ are the nuclear gyromagnetic ratios of ${}^{7}Li$ and ${}^{51}V$, and the hyperfine coupling constants of $^7\mathrm{Li}$ and $^{51}\mathrm{V}$ due to impurity V spins, respectively. $0.75/0.11 = 6.81 = 2.19 \times$ $({}^{7}A/{}^{51}A)^2$ because ${}^{7}\gamma = 16.5466 \text{ MHz/T}$ and ${}^{51}\gamma = 11.193$ MHz/T. Thus, ⁷A is estimated to be $1.76 \times {}^{51}A$. This result

Fig. 6. Temperature dependence of ⁷Li nuclear spin–lattice relaxation rate $1/T_1$ measured in LiVS₂. The temperature dependence of FWHM of the ⁷Li-NMR spectra in LiVS₂ is also shown in the inset.

Fig. 7. Arrhenius plots of $1/T_1$ values of 51 V (squares, 150–300 K) and 7 Li (circles, 270–310 and 315–470 K) against 1/T.

may indicate that the impurity V spins are situated closer to Li^+ ions than to V^{3+} ions, which is consistent with the tendency that impurity V is apt to be crystallographically intercalated between the planes.⁸⁾

In Fig. 7, we show the Arrhenius plot of the ⁷Li $1/T_1$ data points above 270 K by circles. In this figure, the data points of ⁵¹V $1/T_1$ are also shown by squares. We determine the gap Δ to be 1900 K from the slope of the solid line in the temperature range from 270 to 310 K, which agrees with 1900 K estimated from ⁵¹V $1/T_1$, as can be seen by the same slope of the dotted line.

The increase in the $1/T_1$ values above $T_c \sim 310$ K indicates the existence of spin gap⁸⁾ or Li⁺ ion diffusion. The inset figure in Fig. 6 shows the temperature dependence of the full width at half maximum (FWHM) of the ⁷Li-NMR

spectrum. This FWHM is independent of temperature in the observed temperature range, that is, the motional narrowing of the ⁷Li-NMR spectrum does not occur. Thus, Li⁺ ion diffusion is not so important for the $1/T_1$ of ⁷Li, and the increase in $1/T_1$ above 310 K proves the existence of spin gap. The existence of spin gap is supported by the facts that the Pauli paramagnetic susceptibility χ of LiVS₂ is smaller than that of LiVSe₂, although the electronic density of states in LiVS₂ is higher than that in LiVSe₂, and that χ increases with increasing temperature above T_c in LiVS₂.⁸⁾ These results indicate that the Pauli paramagnetic susceptibility is suppressed because the short-range ordering of the spin singlet develops and the pseudo gap is formed. The fact that the change in the entropy of LiVS₂ at $T_c \sim 310$ K is about one-half as small as that of LiVO2 also supports the existence of the pseudo gap.^{8,13)} This pseudo gap can be estimated to be 720 K from the slope of the dash-dotted line fitted to the data points between 315 and 470 K in Fig. 7.

We give some comments on the superconductivity in $LiVS_2$. A $[Pd(dim)_2]_2^{-}$ ion in a two-dimensional triangular lattice organic compound $EtMe_3P[Pd(dim)_2]_2^{14,15}$ has a lone pair of electrons and reveals a dimmer spin singlet state at low temperatures. This organic compound becomes metallic under pressure, and the superconducting phase appears below 5 K in the phase boundary between the spin singlet insulator and the metallic state. However, the superconductivity cannot be observed in $LiVS_2$ even if we suppress the spin trimer singlet insulator phase by replacing S with Se (LiVSe₂: simple metal), which indicates that the pseudo gap might be one of the factors that suppress the superconductivity phase.⁸)

4. Conclusion

We have investigated the properties of a two-dimensional triangular lattice LiVS₂ in the temperature range between 4.2 and 470 K by ⁵¹V and ⁷Li-NMR measurements. The Knight shifts ⁵¹K and ⁷K of ⁵¹V and ⁷Li-NMR do not depend on temperature and have small positive values of 0.55 and 0.07% below the transition temperature T_c , respectively, which proves the existence of a nonmagnetic state below T_c . Both of the ⁵¹V and ⁷Li spin–lattice relaxation rates $1/T_1$ reveal the activation-type temperature dependence below T_c , providing evidence for the gap structure of the electronic state with an energy gap of 1900 K. These results agree with a trimer singlet of V³⁺ spins below T_c . Below ~100 K, the

 $1/T_1$ values of both ⁵¹V and ⁷Li are almost constant. From these constant values, we have estimated that the hyperfine field ⁷A at ⁷Li due to impurity V spins is about twice as large as the hyperfine field ⁵¹A at ⁵¹V due to impurity V spins. This result may indicate that the paramagnetic impurity V spins are situated closer to Li⁺ than to V³⁺.

Above T_c , the $1/T_1$ of ⁷Li shows again the activation-type temperature dependence. However, the FWHM of the ⁷Li-NMR spectrum is independent of temperature, which means that motional narrowing does not occur and Li⁺ ion diffusion does not contribute to ⁷Li relaxation. We can consider that the pseudo gap has already been developed above T_c and is estimated to be 720 K from the slope of the Arrhenius plot of the $1/T_1$ of ⁷Li above T_c . This result is consistent with the increasing behavior of susceptibility with increasing temperature above T_c and with the anomalously small change in entropy at T_c in LiVS₂ compared with that in LiVO₂.

- K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R. A. Dilanian, and T. Sasaki: Nature 422 (2003) 53.
- W. Rudorff and H. Becker: Z. Naturforsch. B 9 (1954) 614; K. Imai, M. Koike, H. Sawa, and H. Takei: J. Solid State Chem. 114 (1995) 184; W. Tian, M. F. Chisholm, P. G. Khalifah, R. Jin, B. C. Sales, S. E. Nagler, and D. Mandrus: Mater. Res. Bull. 39 (2004) 1319.
- M. Onoda, T. Naka, and H. Nagasawa: J. Phys. Soc. Jpn. 60 (1991) 2550.
- H. F. Pen, J. van den Brink, D. I. Khomskii, and G. A. Sawatzky: Phys. Rev. Lett. 78 (1997) 1323.
- J. B. Goodenough: Magnetism and the Chemical Bond (Wiley, New York, 1963) p. 269.
- J. B. Goodenough, G. Dutta, and A. Manthiram: Phys. Rev. B 43 (1991) 10170.
- 7) B. van Laar and D. J. W. Ijdo: J. Solid State Chem. 3 (1971) 590.
- N. Katayama: Doctor Thesis, Department of Advanced Materials Science, University of Tokyo (2008).
- D. W. Murphy, C. Cros, F. J. Disalvo, and J. V. Waszczak: Inorg. Chem. 16 (1977) 3027.
- 10) A. Narath: Phys. Rev. 162 (1967) 320.
- J. Kikuchi, S. Kambe, H. Yasuoka, Y. Ueda, K. Tomimoto, and J. Akimitsu: J. Phys. Soc. Jpn. 60 (1991) 3620.
- 12) T. Tanaka, Y. Kawasaki, Y. Takagishi, Y. Ideta, Y. Kishimoto, T. Ohno, N. Katayama, M. Nohara, and H. Takagi: J. Phys. Chem. Solids 69 (2008) 3142.
- 13) S. Niitaka et al.: private communication.
- 14) Y. Ishii, M. Tsumura, and R. Kato: J. Phys. Soc. Jpn. **76** (2007) 033704.
- 15) Y. Shimizu, H. Akimoto, H. Tsuji, A. Tajima, and R. Kato: Phys. Rev. Lett. 99 (2007) 256403.