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Equilibrium states of the one-dimensional classical electron gas are considered in detail.
It is proved that this system is in a crystalline state, at all temperatures and densities.

INTRODUCTION

The electron gas which consists of charged particles moving in an uniform
neutralizing background has been the subject of many investigations with different
motivations depending on the suspected domain of applications: equilibrium
properties of strong electrolyte solutions, physics of high temperature plasma,
electron correlation in solids [1]. We would like to recall however, that it is not
yet known whether such a system has a correct thermodynamic behavior [2].
In fact approximate treatments of the classical version of the model, as well as
numerical studies, indicate an instability at moderately low temperatures or high
densities [3].

This paper is concerned with the equilibrium properties of this model in one
dimension, with neglect of quantum effects. Under such circumstances the system
has indeed a normal thermodynamic behavior and some of his thermodynamic
properties have been obtained ten years ago by Baxter [4]. He was however
especially interested in the possible differences with a system of equal number
of positive and negative charged particles, analyzed by Lenard and Prager [5]. He
found that although the thermodynamics of the two systems does differ, the discre-
pancy is small. Both systems are correctly described by Debye—Hiickel theory in
the small coupling limit. The main result of this paper is that, despite the thermo-
dynamic validity of Debye-Hiickel theory, our system is never in a “plasma”
state, but in a crystalline one. More precisely, we show that if we choose appropriate
boundary conditions, the correlation functions obtained by going to the infinite
volume limit are periodic, of periodic p~2, and this for all densities p and tempera-
tures. Thus we see that this model provides us an example of a classical Wigner
lattice [6]. It is amusing to note that in our case as in the usual quantum Wigner
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304 H. KUNZ

lattice, the particles are well localized at low densities. But this is a mere conse-
quence of the dimensionality.

A starting point in Debye-Hiickel theory (and its improvements) is that the
equilibrium state is translation invariant. Since it is not so in one dimension and
since dimensionality does not play any special role in this theory, it appears to us
that some additional argument (unknown to us) is required to justify this theory.
This point seems to deserve some further study.

Another interesting feature of our result is that we have an example of a “bona
fide” crystal, obtained without the usual assumptions of lattice dynamics (which
still wait a justification from ““first principles™). A traditional lattice dynamical
treatment of the model, describes it as a set of independent harmonic oscillators,
each having the plasma frequency. A comparison with the exact result, shows that
this approximation is valid only in the very strong coupling limit. A closer look
shows that this discrepancy comes from the neglect in lattice dynamics of what
could be called kinematical restrictions by analogy with spin-wave theory: in order
to develop the potential in powers of the relative displacements of the nuclei, one
should satisfy the conditions

(W — W) + 2(; — w)(r; — 1) = —(r; — 1,)?

u; being the displacement of the ith nucleus from its equilibrium position r; .

This suggests that such restrictions might give contributions competing with the
usual anharmonic ones, even in three dimensions, although their effect is certainly
more pronounced in one dimension.

We also think that an extension of these results to the quantum case (always in
one dimension) might be rewarding for the following reasons: whereas a crystalline
phase will certainly survive in the strong coupling regime, quantum effects become
important in the weak coupling limit. But in this regime classically the particles
already tend to be delocalized, so that it is not excluded that the uncertainty and
the exclusion principle will keep the particles sufficiently far apart that they go into
a gas phase. But evidently the presence or absence of such a transition remains to
be proved.

The content of this paper is the following. We put two kinds of boundary
conditions on our system: the so-called free or rigid walls boundary conditions
(f.b.c) in which the particles move in a given box and the periodic ones (p.b.c.)
in which one repeats indefinitely the box and takes into account the interaction of
the particles between themselves in the box and with their images in the other
baxes. (Periodic boundary conditions are usually considered in many-body theory
because of their computational convenience, whereas f.b.c. appear traditionally in
studies of fluids and gases. In each separate case, we study successively the thermo-
dynamics and the correlation functions (in particular their cluster properties).
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The thermodynamics is the same for both boundary conditions. The correlation
functions are periodic if we use f.b.c. and have the product property. But if we use
p.b.c. they are translation invariant and do not satisfy the product property.
This is so because p.b.c. correlation functions decompose naturally into f.b.c.
correlation functions.

An appendix gives the proofs of some mathematical results used all along the
text.

A. Free BoUNDARY CONDITIONS

1. Thermodynamics

Our system consists of particles of charge —o, enclosed in a box A = [0, L]
and imbedded in an homogeneous background of charge +o¢ and density p. The
interaction potential between these particles will be the one-dimensional analog
of the Coulomb one, namely —27 | x |.! Therefore, the Hamiltonian of our system
will be defined by

N L
H= 270 Y ]xi—xj}+27razzf plx — x| dx
i=1"0

1i<igN

2mo?

L L
- jofo P x — y| dx dy. (1)

As usual in one dimension, it is convenient to order the particles
0y <x <~ <xy <L, ()

so that the energy of such an ordered configuration reads:

N N N
E= —-2mo? ) (2i — 1 — N) x; + 2mo% Y x2 — 2mo®Ll ) x;

i=1 i=1 i=1

2 3
+ 2mo?p N2L — 2mo?p? % . 3)

Since our particles interact via a long range potential, it can be of interest to study
the influence of boundary contributions to the energy on the equilibrium properties
of the system. We will therefore impose only asymptotic charge neutrality; that is,

p=(N+s)/L where }\}1130 (s/N) = 0. 4)

1 The Coulomb potential in » dimension is defined as the solution of the corresponding Poisson’s
equation: 4P(x) = —47d(x), x € R
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Under these conditions, the energy of an ordered configuration is given by

E = 2no?p IZV: [x,- —p! (i — M—1——_;—L£——)]2

=l 2
1 1 LY N+ 1—Lpy?
+ 2metp [ENLZ—EP”—NEI(’“——E—P)]

N — 2 2
= 2mo%p ¥ [x — pt (i + 25 0)] + Fem o — 3 N+ 0. )
=1

We can now write the partition function in the following form.

Q4 = dxy  dxy
0<zl<---<wN<L
N _ 2 2
X exp |—mA* ¥ [pxi ~ (i + s——l—)] — TR 4 — 359 N + 0(1)
P 3 2 ©

where A2 = 2B0%p (7) is a dimensionless coupling constant, which measures the
ratio of the average potential energy to the average kinetic energy.
Let us make the change of variables

Yi = pX; — (l + (S - 1)/2)’ = 19-"’ N.

We get (neglecting terms of order 1)

N — " Foo —ma?sN 1 —s
04" = p~Ne (za2/12) (1 332)Nf dy, - dyy € Sl g ( , y1)
—®

2
N—1
X H K(y; 5 i1 v 2(Yn) ®
i=1
where
_ ‘17 ¥y > X — 19
K(x, y) = to, y<x-—1, ®)
and
1 x <a,
ol 158 o

We see that if we introduce the operator KK defined by

KA = [ dy e K 9 10), an
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we can write the partition function in the simple form
Q" = eI oy )(L — 5)/2). (12)

In the appendix (Lemma 1(b), Egs. (A.6)—(A.7)) we prove the following. If
fe Z%R, o), where F*R, o) denotes the Hilbert space of square integrable
functions with respect to the measure

do(x) = ™™ dx, (13)
then
lim zy MKYA(x) = w(f) Po(x) (14)

uniformly in x where

I27 do(x) o —x) f(x)
") = T ) o) B (19

Here z, denotes the largest eigenvalue, and ¥ (x) the corresponding eigenvector
in #%(R, o) of the integral equation

) = [ doty) ¥ 16)

Moreover z, > 0 and ¥ (x) > 0 when x is finite.
We can now casily compute the free energy density f, and we get

—Bf (0, B) = —Bfolp, B) — (@X¥/12)(1 — 35%) + In(z,(A)/e) a7

where fy(p, B) is the free energy density of the free gas.

Before analyzing this result, we want to discuss the following technical point:
why do we have taken the thermodynamic limit, by keeping the background
density fixed, instead of the particles one N/L as usual. Mainly for reasons of
notational simplicity. In any case, one can easily see that the limiting free energy
is the same.

The first thing we note is that the charge defect so gives a contribution even in the
thermodynamic limit to the free energy: 7(s?0%/2) L. This is nothing else but the
electrostatic field energy within the boundaries of the system due to the presence
of two opposite charges so/2 fixed at the surface of the system (here x = 0 and
x = L). This phenomenon is characteristic of Coulomb interactions and has been
proved to occur in general for a three-dimensional quantum system of discrete
charges (at least one of them consisting of fermions) [7].
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Second, if we compute the pressure p we find
p = kTp(l + A%(2/82%) In zy(A)) — (wa?/6)(1 — 3s52). (18)

It is then possible to prove that p is an increasing function of p as it should be,
and that

—(ma?/6)(1 — 35%) + $kTp < p < —(mo?6)(1 — 3s%) + kTp. (19)
This means that
lim p(T, p) = lim p(T, p) = —(mo?/6)(1 — 3s%), (20)

and this shows that the pressure will be negative, if the density or the temperature
is low enough, when | s | << 37172,

Finally and more importantly, does this system exhibit a phase transition?
The answer is no, because z,(A) and hence the free energy is an analytic function
of A on (0, + o). This is proven in the appendix (lemma 1(a)).

2. One-Point Correlation Function

This quantity, which represents the local density is the one which will allow us
to understand the nature of the phase in which the system exists.
In the canonical ensemble, it is defined by:

N
pa¥(x) = 3, <8(x — x4 @n
i=1
or
fo<ml<--~<zN<L dx, - dxy
N N )
paN(x) = X Limg 8(x — X expf{—mA Limy [pxs — ( + (s — DI} .2
Jokay <o <ay<r @%y e dxy exp{—mX® 3N [px; — (i + (s — D/2)]}
Let us first consider the numerator. It is equal to
N
f dx1 oo de_l dx,-+1 N de
jm1 YOSy < oS g <2< 54 SENSL
X e—1m2(paa,—d—(s—1)/2)2 e—rr/\ZZi;ej[?xi—(i-i-(s—l)/2)]2. (23)

If we make the change of variables

Y = PXisr — (] + k) - (S - 1)/23 k= 15"'9 N_.]:
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then, if j < N — 1,

dxjpq o dxy TN e o —i— (s} 12
Ai+1 8

fx<xj+1<---<:cN<(N+s)o'—l

= p~ ™7 [do(yy) - do(yx-),

1 —s N

K (Px — Jj+ 5o J’1) H K(yy s Y141 &ssv72(Yn-)
=1

—(N—j i . 1 —
= p " ) (px — J + —5) (24)

On the other hand, if j > 2,

A2 (- (5—1) /2) 2 —(j— j I —=s
j‘dxl dxj_1 e AT ow i (s-1) /202 p G 1)(K:l gpw—j+(3és)/2) (__2___) (25)

It is now possible to express the numerator as follows:

) 't 2(pp—j—(s—1) /2)?
P—(N—1 z e p2—j—(s—=1)/2
j=3
1l —=s '

X (K80 s3-91/2) ( 2 ) (KNg (5421 /2) (Px —Jj+ L ; S)

—(N=1) —7A2(pz—(s 2 _ s+ 1
+p (N=1) =2 (oa—(s+2) /2) (K¥g(s11)/0) (Px " )

—{N=1) —mA%(pz— = : - L3
+ p (N=1) ,~ma%(oz—(N+5-1) /2) (KN 1gpx_N+(3_s)/2) ( 5 ) (26)

At this point, we need to define precisely the limiting density. In order to avoid
surface effects, we will require that L — o0 and x — <o in such a way that

L — x — oo, 1))
A natural way to realize these conditions is to take

x=y+al, O<a<l, (28)
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and to keep y fixed, whereas we go to the limit L — oo. Hence, we are led to study
limy ., px( ¥) where
N-1

e—-m\2 (oy+r+Na—j)?

pn(y) =p [(KNg(sH)/z) (1 ; S)]_l

i=2

. 1 —s ) ,
X (g pyrrs Namsr1) ( ) ) (KN g ey + r + Noa — )

—. 2 o a—1)% —.
4 g vt Na D (NG ey + 7 - N — 1)

- r+Na—N)? - 5
+ e A*(oy+r+Na~N) (KN lgpv+T+N°“N+l) ( 2 )€ °

where
r=s—H+i (32)

In order to compute this limit we will use the following basic estimates, proved in
the appendix (Lemma 1(b), Eqs. (A.8), (A.9), and (A.10)). If fe ¥R, o) then,
when N > 1,

| zg M) — v(f) Pox)| <l f1f enzs (33)
where
+0o
1= [ do) | f9, (34)
and the e, satisfy
0 < enium S eney < i exy < o0, (35)
N=0
In our case
g(x)e LR, 0) and (g | <A™ (36)

Zo¥o(—a)

l’(ga+1) = J-i_: dCT(.X) 'Po(x) 'Po(_x) . (37)

We see that v(g,,,) is uniformly bounded in a, since i(x) << 1 as proved in the
appendix (Lemma 2.2, see Eq. (A.12)). We will call

g = sup ¥(ga)-

aeR
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Let us first handle the last two terms in the expression for py(y). They tend to

zero because

1 —

Z(]—N(KNg(s+1)/2) ( ) S) — (g 2) o (1 ; S),

2 VK g gy )y + 1+ Na — 1) = v(gesin) * 0,

Zo—(N“I)(KN“1 sur+ Na—N41) ( 1 ; S) —0-%, ( 1 ; > ),

and

2 2
e—m\ (oy+aN+b) — 0’

when y, a, b are kept fixed.

(see (44))
(see (33))
(see (33))

Retaining from now on only the first sum in (31) we get the following inequality,

using (33)

- 1 —s o= e i)
Zp N(KNg(sﬂ)/z) (—2_"—) pn(y) — ZolP Z g h btrNod)

j=2

11—

X W oyt Na—it1) ¥, ( 3 ) W g(s+1)72) llUo(l"y +r + No — j)

N-1
- — X oyt Na—i)? 1 — 5y _
< ZOIP Z e putriess W&oy Nait) 'luo( 3 ) m || g(ssvre || €15
=2

N-1
— —#A2(oy+r+Na—3)2—
+ Z()lP Z e TN Goerr e Namir | €5-V(8(s1)2)
=2

N-1 . .
X Wopy +r + Na — j) 4 zg'p 3 e ™ owsriNeilipe
j=2

X N &oy—itNarrsa | || €ssny s | €5—g€N_1—; -

(38)

Each of the sums appearing at the right-hand side of this inequality tends to zero.
Let us show it for the first one, since the proof for the two others is similar. We

will use (33), (35), and (36).

N-1
—ma%(oy+r+ No—j)?
z e W( oy triNa—ir1) EN1-7
i=2
N-1 2 2
—7A*{py+r+Na—j
g Z € €EN-1—§

2

<

IS

.

[Nal/2] N—-1

- —~aA2(py+7+Na—i)? —aA*(py+7+Na—1) ®
%= & Z e €n-1-5 1+ & e €N-1-j

=2 j=[Nel/?]41
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[Nm1/2] 2 )2
—mA*(oy+r+Na—j,
< 8€n_Nall21 Y € €[Nall2—;
j=2

o« N—-1
+g (Z €k) 2 e—nA*(pu+r+Na—a‘)2

k=0 J=[Nal’2j+1

400

[eo)
A%
<g (Z ek) EN_[Nel/2]-1 e

j=—cx

—[N(1-a)]—1
) - A ovtr+ Na—[Nal4)?

I=—[N(al/2—a)]-1

+0o0

< —mA%t
<8 (Z ek) EN_[Nal/2]-1 Z €

j=—c

—2ma?(oy+r+1)1 e—f).zﬁ

© —IN(@—-a)]-1
Gk) e

+g(Z
k=0 I=—[N(al/2-0)}-1

and we note that the last term of this inequality tends to zero when y belongs to
a compact subset of R.
Hence we have

11\}_{1010 pa(y)

: -~ =t —mA% a—j)? -
= lim z5% ¥ e Oy g vacien Polpy + 1+ Na— ). (39)

N-w® i—2

In general this limit does not exist. We can however always extract a subsequence
such that a limit exists. (This result is in agreement with a general statement about
the limiting correlation functions of a superstable system [8]). Indeed, if we make
the change of variables [Na] — j = k in the sum and take a sequence of N such that

No — [Na] = m with m given, then
lim  pn(y) = prlpy + s(x — 1/2) + m + 1/2) (40)

Na—[Na]=m

where

z+ao e_m\z(x+k)2)ffo(__ x — k)Y Polx + k)

) = = o W) ) “0)

This is so, because the series (41) converges, since

O0< Px+h <1
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The most important conclusion to draw from this result is that, in any case, the
functions of y defined by (40) are periodic, of period p~t, that is the average distance
between the particles. However a constant is also a periodic function so that
strictly speaking we need to show that n(x) as given by (41) does not define a
constant.> This will be done later on.

But if it is so, then (40) tells us that the equilibrium state is not unique. since we
get different states by choosing different subsequences (different m’s here), or by
changing the origin of the coordinates (i.e., varying «). These states of the infinite
system break the translation invariance of the equilibrium states of the finite one.
Note however that if « = £, then

lim pn(y) = palpy + 1/2) = pn(—py + 1/2), 42)

Neven

lim pn(y) = prpy) = pn(—py), (43)

Nodd

so that the “rotational” invariance ( y — —y) is not broken by these symmetric
boundary conditions.

But if oo £ }

lim  pn(y)
Na—[aN]=m
is not an even function of y, whatever value s takes, and these states break the
“‘rotational” symmetry. We will see later that it is possible though to construct
states which keep the translational and “rotational” invariance even in the thermo-
dynamic limit.

The dependence of the local density p(x) upon the subsequence of N chosen,
has the following interesting consequence. If instead of the canonical ensemble,
we would have used the grand-canonical one, then, owing to the equivalence of
ensembles (which could certainly be rigourously proved) the density p, s(x) would
be given by

ok =0y Erlpr = o (=3 3+ )
q—1
:pég)n(px+s(a—%)+§)

when « is rational, « = p/q. Here p = p(z, B) is obtained by means of the thermo-
dynamic relation p = z(8/0z) Bp(z, B). Thus we see that in this ensemble the density

2 The reader, who considers this to be fairly obvious should confront his intuition with the
following simple example: 1 =¥'° __ f(x +n) if f(x) = § [T dy e’
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would have the period g=p~, instead of p~', when « is rational. And when « is
irrational the density would probably be an almost periodic function of x.

Let us now look to some analytic properties of n(x), considered as a function of x
and A, which will appear useful later on.

We show in the appendix (Lemma 2.4) that ¥ (x) considered as a function of A
can be extended to an analytic function in some neighbourhood D of the positive
real axis. Moreover ¥ (x) is uniformly bounded in x and A on all the compact
subsets of D. Hence ¥, e @+k’™P (—x — k) Wy(x + k) converges uniformly
on the compact subsets of D, since Z,:;w_m e~"(Re)@+0)* is upiformly bounded on
such subsets. Noting that ff;’ do(x) Py(x) Po(—x) # 0 and is analytic in some
neighborhood of the positive real axis, we conclude that n(x) can be extended to
an analytic function of A in some neighborhood of the positive real axis.

We also show in the appendix (Lemma 2.3) that considered as a function of x,
W(x) can be extended to an entire function. Moreover this function is uniformly
bounded on all the strips of the form a < Im x < b of the x-plane. Proceeding as
before, we conclude that n(x) can be extended to an entire function of x.

Let us show now that n(x) is not constant when A is large enough.? In order to
do this, we need to determine the behavior of z, and ¥,(x) when A — co.

The integral equation

M) = [ N da() ()

becomes, if ) )
}‘iryﬂl Azg = p and lim Po(x) = fo(x)

who(x) = 0(1 — x) fo(0)

lim A do(y) = 8(y) dy

since

and this equation has the solution p = 1, fy(x) = 6(1 — x). Hence we expect that
]ALII}O Azy(A) = 1, laiinw Yolx) = 01 — x). 44)

Suppose that this argument is correct, then since
A¥(0)

"0 = [r= X do(y) Po(») Po(—)

and
sz )\e-m\z((ll2)+k)2
=—a0

_[:f Ado(y) o) Po(—y) °
n(0) — n(d) = XFH0) — 24 (e [

n(3) <

da(x)), (45)

+1/2
3 1 owe most of this argument to H. J. Brascamp.
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and consequently n(0) — n(3) > 0 if A is sufficiently large. It remains to prove
rigourously (44).
Since

l1‘70(.}") < 19
+oo
Moo= [ Ndo() ¥iy) < 1, (46)
and since ¥y(x) is a positive decreasing function of x (see appendix, Lemma 2.2),

+1/2 +1/2
Vo) = [ Ndo(y) i) = ) [ A doly)

so that
+1

Az, ZJ

/2

Ada(y) 47)
—-1/2
and we see that

1/\152 Azy = 1.

On the other hand, we prove in the appendix (Lemma 2.2, Eqs. (A.13) and (A.14))
that

x~—~1
1=zt [ do(x) < W)

- x—1 x—1 wl—l
S1—7" [ dotx)+ 2 [ do(x) [ dolx)  (48)
and since
x—1
P f A do(xy) — 00 — 1),

—00

2—1 z—1
N[ da(xl)f do(xs) —> 0

—x
pointwise, we see that

%Ln} Y(x) = 01 — x).

In order to extend the argument to all A, we use the fact that n(x) is an analytic
function of X on (0, + o0). This shows indeed that #(0) — n(3) being positive on a
segment (A, , + o0} cannot be zero except possibly on a countable number of points
of (0, + o0). If we wanted to strengthen this result, so that such a possibility would
be ruled out, we should prove that

n0) = n(x) = n(3) when 0<x<

fe
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and that n(0) — n(3) is an increasing function of A, all properties which seem
reasonable, but that we were unable to prove.

3. Pair Correlation Function

The study of correlation functions between two or more particles will give us
more insight into the nature of the equilibrium states, particularly if we look at
their clustering properties.

The pair correlation function in a finite system is given by:

pary, ) = (I 80 — x) 8(xy = %)) . 49)

i

In one dimension however it is sufficient to know this function when x; < x, and
in this case:

paxy, Xo) = PN [(KNg(sH)/z) (1 ; 5)]_1

ﬁda(pxl'—l-“—szl)

>< f
o<z <ay' <o <(N+5) /p 11

XY ¥(x — x)) 8(x, — xy). (50)

1E<iKN

Making the usual change of variables y; = px;” — (i + (s — 1)/2), we get

pa(vis %) = ¢* [(KNg(s+1)/2) (1 ; S)]_l

N 1 — 5 N—1
X J H do(y) K (— > )ﬁ) H K(y1 5 Y141) 8o ¥N)
=1 2 =1

x oy 8(px1—«yi—i—sTl)

1N

XS(pxz—yj—j—s;])- (51)
Calling
fi(y) = K(a, y) (52)

and
K*(xa y) = K(J’, x) (53)
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we can write the numerator in the following form:

N-1 N—k k 1
p? Z Z f H do(y;) H K*¥( Y15 Y2 fa—9a(yy) 0 (le 2 )
k=l m=1
k+m k+m § — 1
]—[ do(y,) n K(y;, yi11) © (sz —k—m— 5 ylc+m)
i= k1, i=k+1
N-1
X I do(y) K(yis yis1) &y Yn)-
i=k+m+1

And proceeding as for the one point correlation function (see (24)-(25)), this
quantity can be written as

N-—-1 N—-k

— 222 (pag—k—m—(5—1) /2)2—~mA2 (o, —k—(5=1) /2)2 1 ¢ K K— s —1
prY, Y e et D ) (o — k — S5
k=1 m=1

s — 1
X (Km_lgumz—k—m—(s—l)/2+1) (le —k — ) )

s—1
X (Vg 0) (pre — k —m — S22,

Here KK* denotes the adjoint of [K:

N = [ do(3) Kx, 9 10

Since we are interested only by the bulk properties, we need to make the same
change of variables than in the case of the one point correlation function:

px1 = py: + apL,

(54
pxy = pys + apL,
and to keep y, , »» , « fixed whereas we go to the thermodynamic limit.
Hence we have to compute limy_., px( 31, o) (31 < ¥,) where
1 — sy17? NSt Nk . r+Na—k)?
ey, yo) = pt [(KNg(s+1)/2) (—2—‘)] Z Z e HouytrNa—) (K*k 1f(1 /)
k=1 m=1

o alet) e
Xy +r+ Ne—Kk)e Wlovgtr-+No—k-m) (K™ gw2+r+Na—zc—m+1)

X (pyy + r + Na — k)Y(KN g oy p)pye +r + N — k — m).
(55)

595/85/2~2
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¥ has been defined before ((32)). In order to compute this limit, we need the same
estimates as in Section 1, that is (33) and the corresponding property of the
adjoint K*.

| 2 M) — v (f) Po(—x)| <l fll €5y (56)

the ey* satisfying the same properties as the €, and

' ['2 dotx) ¥o(x) f)
V) = o) i) B ) 7

The proof of (56)—(57) is exactly the same as the one of (33) which is given in the
appendix. '
Proceeding as in Section 1, we get:

lim  pn(y1,y2) = pPr(pyy +s(x — 3) +-m + &, pys -+ 52 — 3) +m + 3) (58)

Na—[Na]=m
when y; < y, where

x5 = [z [ dot) Vo) ()] T e —x, — )

l=—c0

X Z Z;n(Kngxg-H—n)(xl + D e—n,\ﬁ(m2+z—n—1)2g10(x2 +1l—=n—1).
n=0 (59)

Since

Hfocon) = [ dot) B (0] 2% (+52). (@)

It is easy to see from (59) that
n(x; + 1, %, + 1) = n(x;, xy). (61)

Hence the two point correlation functions given by (58) are invariant under the
group of discrete translations of length p~L. This broken symmetry confirms that
these states describe a crystal with a fixed center of gravity (whose position is
related to s(x — %) 4+ m + 1). This property will hold again for almost all A,
since n(x; , x,) is a real analytic function of A on (0, -+ c0). We can see this by noting
first that

(K8 ap11-a)00 + DI < (Re A%~/

and then by applying the same reasoning as in Section 1., for the case of n(x).
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4. Cluster Properties

We want now to investigate the behavior of n(x, , x,) when the distance between
the two points x; and x, becomes large.

We note first of all that because of (61), we can choose 0 < x; <C 1. Let us then
take

Xo == M + X, (62)
where 0 < x,” << 1. If we write
n(x; , X2) — n(xy) n(xy) = n(xy , X)) — (¥, Xg) + e(xy, X3) — n(xy) nxs)

where

s ) = [ | dot) W) ()] D i A

1=

X Z W 8ayri-n) Yo + D) e—"mwﬁl_n_l)ijo(xz +1l—-n-—1)
n=1

77 do o0 0] T ey D) Py — ]

m+1-2

« Z e—”"z(mﬂ'“'zglo(le +r) Y(—x, —r). ©3)

r=—w

Then we see that

| (X1, Xy) — n(xy) n(x5)|

+o N o
< Dn(xg) [ Z e—ﬂaz(zl—Z)Z + e—wA (ac1+l)“]
l=m—1
= — A% (e, —1)° = —ma%{(ay’ +1)2
+ Dn(xy) Y e =4 2Dn(x) )Y e 2 (64)
1=[m—1) /2] r=[m=1) /2]
where . )

D= [ f do(x) Py(x) 'Po(—x)] . (65)

This estimate was obtained by using the following inequality:

5 i gon — | <sup g [T 1701+ F 101+ 3 1A0]

l=—w 1=[m /2]

+ sup Ig(n)I+Zi|f(—l)l+[ sup |5 % 170

m<n<2m 1= m/2]<n<m
(66)
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valid if Y7, f() and £, g()) converge absolutely. It remains to estimate

} n(xl > x2) - c(xl > x?)’

+x0 +oc
_ a2 2 ara—1)2 — — A2 2
< z ID E e 7A@y + 1) 2~ A% (wy—1) ZolD 2: e 7232 +-1)

l==m l=—c
X XN 2" O Gy + 1) — W gayr1on) Polty + )] e Carin-1?,
n=1

Using (66) and (33) we get

fn(x;, x5) — c(xy, x5

i 2 2 g 2 2
< 231 D [ Z Pl (2 +1) + Z e (xl—l)]
I=m~1 l=m—1

m—1 o a0
+ 20—1 D[ Z e—ﬂz\z(xl+l)2 + e—m\2(x2’+[(m—1)/2])~ Z e—v)ke(x1+l)2]
I=[(m—1)/2] l=—w

g a2 2 & 2! _
+ zalDA-l/Zml: Z e 722y +1) Z €416 7A@y +m—1+41 n)z] . (67)

{=— n=1

Using again (66), the last term of this inequality can be bounded by:

e-—m\2(.’£1—l)2]

m—1

-11y)—1/2= - pas —mat(w,—1)2 pasy —mA% (2, +1)2
o DXTPFA Y, )| Y e 4y i end®

n=0 l=m—1 1=m—1 1={(m-1)/2]

g 2 2
+ z;lm—“zm(z e ‘W’)[ sup  g(k)+  sup g,

Fa— m-1<k<2(m—1) [m—1) /2] e<m—1
(68)
where
s —mA¥(zy +k—n)?
glk) = 3 enqe . (69)
n=1

And if we use (66) once more, we see that:

g > 200 ' 2 = 2.’ 2 i
g(k) < (Z Gn)[z P (' —1+5) + Z Pl (€ —1—s)] € (Z €n)

n=0 3=k s=k n=0
k 4
20, 7. 2 a2’ 2
% Z e N @ ~1+s) -+ [ Z e~V (o +s):, [ sup e, + sup €]
s=[k/2] §=—c0 [e/21<n<k e<n<2k

(70)
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Collecting all these inequalities together (from (64) to (70)), we can conclude that

lim  n(x, x5) = n(xy) n(xy). (71)
[xp—x; |29
However, our careful estimates allows us to determine also the rate of approach
to this limit. It is governed indeed by the rate of approach to zero of

“+ =
. — A (z1)?
Yo and sup €n < (Z en) €4l(m-1)/2]
I=[(moD) /2] $[(m—-1) /21<n<2(m—1) n=0

and the first expression decays like a gaussian, the second one like an exponential.
(This is shown in the appendix, Lemma 1(b), Eq. (A.10)). Hence we see that

| n(xy 5 Xg) — (%)) n(xp)] < Ae™1%nl €50 (72)

when | x, — x; | is sufficiently large. 4 and ¢ are some constants which could be
determined from our inequalities.

Let us first note that this cluster property, as well as the other ones we have
proved here for the one and two-point correlation functions could have been
obtained with more effort, but by using the same techniques, for the higher order
ones.

A consequence of general interest of this cluster property is that the equilibirum
states we have built by taking the thermodynamic limit along appropriate sub-
sequences of N and /A (see (40)) are extremal [9].

A more specific property, like the exponential rate of clustering, appears especially
interesting in connection with the fact that we deal here with a system of particles
interacting via a long range potential. We can interpret this effect, by saying that
some screening of the discrete charges occur, even in this crystalline state.

B. PEriODIC BOUNDARY CONDITIONS

Because of their computational convenience, these boundary conditions, are
those which are usually considered in many body theory. In our case they lead to
the well-known expression for the potential energy [10]

4ro? 1
H=—"7L"Y & pwpos 73)

k0

where

neZ, (74)
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and p, is the Fourier transform of the density

etF®i, (75)

™M=

Pr =

=1

It is also useful to express this Hamiltonian in terms of an effective two body
potential, periodic of period L:

v(x) T k;o k2 e (76)
or
oid = 202 [~ 3] + ] g
when
X € [_La +L]s
so that
2
H =3 Nowi0) + 5 T vl xi — ;). 78)

)

This expression enables us to compute the amount of energy due to the interaction
of the particles with their image. We find [11]

2 /N 2
H:Ho—zwo (Zx,-——&) when 0 <x;, <L (79)
L \& 2
where
Ny & ot
[ 2 s — X 2 {—— — X,
Hy = —2mo Ej]xz x,f+21m(L)z§1f0 dx | x — x; ]
2me? [ N\2 (L L
=) [ [ ey (80)

A direct attack of such a Hamiltonian by methods similar to those used in the case
of free boundary conditions is made difficult by the “long range” character of
the correction

2mo? (Y NL\?
- (-

It appears possible however to circumvent this difficulty, by using the following
identity.

. LBo? \1/2 p+wo N ;
e o? = ( go ) J. dz e #(LBo?/2}s%+27 (LB /2)? 2sa. (81)
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Let us choose

2028\ (X NL
a— (=) (Elxi——z ) (82)
Then the Boltzmann factor corresponding to periodic boundary conditions reads
e—BH — ( Lgo'z )1/2 toe ds e—BHoe—~1r(L802/2)52+2713023(21~=1mi—NL/2). (83)

This identity simplifies considerably when we order the particles:

0 << <xy<L

e—BH — ( L/goz )1/2 e—m\z(N/12) f+w ds e——n).z}:{'il(oaci—i—(s—l)ﬂ)z (84)
where
A% = 280%L, (85)
N
p=". (86)

In this way we see that we have reduced this problem to one discussed before:
the plasma with free boundary conditions, but with a charge defect s. Note however
that the density of the background is no more p = (N + s)/L, but p = N/L.
However if s/L — 0, they are asymptotically the same.

5. Thermodynamics

We can easily compute the partition function

0" = (FBZ) " erttmmgr [ s e (L5, D)

the only difference in the integrand with the case of free boundary conditions
coming from the factor gy(pxy) instead of gy, (pxy), since L = Np~ in our case.
In order to compute

lim 2™ f: ds (K 200 0) ( 1 - a ) = fj: ds v(gu-972) ¥o (1 5 S) (88)

we use the inequality

| zg MKN(x) — w(f) Po)| < m(x) || f1] €nr s (89
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proved in the appendix (Lemma 1(b)). m(x) is a uniformly bounded continuous
function of x such that

+w
f m(x) dx < oo. (90)
0
Indeed, using (89) we get

Z(TN J-j: ds (KNg(l—s)/z) (1 ; S) - J._Jr: ds v(ga-a2) ¥o (1 ; S)]

<enr [supm) [ dsligaanll + 2 [ dsm (= 23],

We thus see, that with these boundary conditions the free energy density is
given by

—Bf(p, B) = —Bfolps B) — (@X¥/12) + In(z(N)/e), oD
and is equal to the free energy in the case of free boundary conditions, with strict
charge neutrality (s == 0). This shows that the symmetry restoring term that we
subtracted from the hamiltonian is a “surface” one.

6. Correlation Functions

Let us begin again with the one-particle correlation function.
Using (84), we get

PLN(X) =p [J._:o ds (KNg(l—s)/z) ( 1 ; S)]._l g: e ds e-—m\z(oar:—i—(s—l)/2)2

o1 Y-

) 1—3s ) , I —=
X (K Yo sramiinn) () (KNga_om) (px — 7 + —5—)-
(92)
In order to avoid surface effects as before, we choose
px = py + Nov 93)

Making the change of variables

(1 —9)2=1,
we get

0 © Ar )
[ ar (0] px) = p [ ar 3, ot
- —e j=1

X (gt Namis NN Npy + 2 4 Na — ).
(94)
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As in Section 2, the next step consists in showing that we can replace asymptotically
at the right-hand side of this equality:

(gt Nair () by 25 Zoyrtenaisr) Polt)
and

(KMg)py + t + No — j) by z7(g) Pilpy + ¢ + No — )).

This 1s done by proving the analog of inequality (38). In order to see how it works,
let us show that the corresponding second sum at the right-hand side of this
inequality tends to zero. We have in our case, using (89):

N—1

21 f A d ~ma2(oy-+t+Na—i)? e Noo — i
0P ) t Z e m(t) || Goystsnai |l €-2v(82) Yolpy + t + N — j)

J=2

400 N—1
< ZEIPA-—1/2 f dr m(t) V(gt) Z e—m\2(oy+t+Na¢—1)2€j_2
—

j=2

<zt [ ety e (3 o)

j=1

[Nel-2 A2(oy+t+ Na[NaT+1)? L)
X l: Z e——ﬂ pY+i+Na—~LNaj+. + €[Nal-2 Z e-—w ] R (95)
k=[Na]—-[Na2] k=—

But it can easily be seen that
+o +%0 2
tim [ defo) 5 et <o, ©6)
—® k=n

uniformly with respect to x on all compact subsets of R, if fi'f, dt] f(t)] < 0.
Since ffz dt | m(t) v( g,)] << oo, we see that (95) tends uniformly to zero, when y
belongs to a compact subset of R.

We can then conclude that

. 4 + l}'] ~1 . +© III
lim pn(y) = 2% || di(e) P0)]  Iim [ dru(g) Fo1)

N-1 . a2 )
x Y emHbviteNa g enaeirn) Polpy + 1+ Na — ). (97)
J=2

In order to get a limit we once more need to choose some subsequences; keeping
Na — [Na] = m fixed, we get (making the change of variables k = [Na] — j)

+o
lim  pn(3) =p [ dut) nlpy + 1+ m) (98)

Na—~[Na]=m
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where

RTL 20N 7Y 20
W= T=a et 4 T e —n o )

and n(x) is given by (41). In order to see this, we apply (96) to (97) after we have
replaced v( g,y4t1mix+1) DY & and Py(py + ¢ -+ m -+ k) by 1. The analysis, we ran
through, for the one-particle correlation function remains valid, in the case of the
many points one. The final answer will be

+©
Lm  pn(y1, Ve sy Y) = p’“f du(t) n(py, + t + m,..., pyy + t + m)
Noa—[Na]=m (100)

where n(x, , x5 ,..., X) is the basic correlation fuction (see (59), e.g.), obtained from
sequences of finite systems with free boundary conditions. We have already seen
from this result that the equilibrium state obtained by taking periodic boundary
conditions is not extremal, since it can be decomposed into the extremal states
obtained by taking free boundary conditions. (Note that the measure describing
this decomposition du(f) is temperature and density dependent). This property
has the important consequence that in such a state the correlation functions do
not cluster. Let us investigate the symmetry properties of such a state and decom-
pose it in a more natural way into extremal states,
We need the following property of the measure p.

+o0 .
j du(x) €2 = §, . (101)
When n = 0, this is a mere consequence of the definition (99). If n s 0, then

+eo —2ming { teo —27ing d
[ du et = s [ et T (1 — 5) o]

=zt 1 f+w dx e 2 [ IY () Wy
" 2minl_, 9 0

— e P — )] =0

as can be seen by changing x — 1 into x in the last integral.
Now consider the function

(X1 yeery X)) = fjw du(a) n(x, + a,..., x;, + a) (102)
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where n(x, ,..., ;) (given in the text for k = 1, 2,...) is a function invariant under
Z, that is

mx, + 1, x, + L., x, + 1) = nlxy, x5 ..., Xp). (103)

In other words considered as a function of x € R, n(x) is periodic of period 1 in the
direction e = (1, 1,..., 1)

n(x 4 e) = n(x). (104)

Let us decompose x as follows

x=2x, 4 x, (105)

with
X, = E’e‘ :)) e (106)

and
(x1,x,)=0. (107)

Since n(x) is C* on the unit circle in the variable (x, e)/(e, €), we can Fourier decom-
pose it:
+w

n(x) — z np(xl) eznip(x,e)/(e,z) (108)

p=—co

where
l (e —2niplx,e)/(e,e
ny(x,) = o) fo d(x, e) n(x) e 2min(@.e)/le.e) (109)

with (108) converging uniformly, we see that

|77 duta) nx + ae) = myx),

by using (101).
This implies that #{x + ge} = #(x), Va € R, or in other words that n(x, ,..., x;)
Is translation invariant. Moreover,

k Yo koo
sy s 50 = [ e (5, — DR A L )

and since it is tranlation invariant, we can shift each x; , by 1/k 21;1 x; and we get

1
a(xy ..., Xp) = fo de n(x, + ¢,..., x; + ©).
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In conclusion, we have shown that the limiting correlation functions for periodic
boundary conditions are independent of the subsequences chosen and can be
expressed as

1
PPy roenr Yi) = p f de n(py, + Coovry Vi + ©). (102)

Moreover, they are translation invariant.

Thus we see that if we use such boundary conditions it is not possible to see that
the system is in a crystalline state by looking at the one-point correlation function.
Instead, we need to first investigate the clustering properties of the two-point
correlation function and then to try to decompose it as in (102).

We also notice that the decomposition (102) is the most natural one for a crystal
in one dimension, since it represents an average over the possible positions of
the center of gravity of our system [12].

APPENDIX
In this section, we want to prove a number of properties of the operator K

and its eigenfuctions, which were assumed in the text.
Let us write again the operator K in the following form.

®HE) = [ 80— x + D) dot) (A1)

where we have introduced the measure o, given by

olly, —o)) = | : ™ gy, (A.2)

It appears useful to define this operator as one acting on the Hilbert space #2(R, o),
defined by the scalar product

o) = [ dot) fx) 8o %)
On #%R, o), K has an adjoint IK* defined in the following way.
NG = [ 86— 3+ 1) f0) do(). (Ad)

We will first prove the following properties of the operators I and K*,
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LemMA 1 (a). K and K* have one common positive eigenvalue z,. To this
eigenvalue corresponds the eigenvectors ¥y(x) and @\(x) respectively, which are
positive almost everywhere. The eigenvalue z, is simple and larger in modulus than
all the other ones. z, , ¥o(x), and @ (x) considered as functions of A are real analytic

in (0, + o0).
(b) If P denotes the projector, defined by:

(PF)x) = v(f) ()

where

of) = == 45D 940) 119)
J‘fz do(y) po(¥) Po(»)

then
li_l;g z 'K = P uniformly in %R, o)
More precisely the following estimate holds.

L2 "(K"F)x) — A < m(x) [ S]] €na

where
sup m(x) = m < oo,
xeR
+oc
f m(x) dx < oo,
0

and the €, satisfy the following properties.

0< €ntm < €n€m

N
g

Ing(y) such that Vn = ny(y) €, < e with y > 0.

(A.5)

(A.6)

(A7)

(A.8)

(A.9)

(A.10)

Proof. (a) Note first the following properties of K and K*, They are compact,

because they are of the Hilbert-Schmidt type:

[ dot) dot) | Kx, 9)F = [ do) do(y) | K¥Cx, ) < o,

Here K(x, y) (respectively) K*(x, y)) denotes the kernel of the integral equation

corresponding to K (respectively K*):

Kx,y) =0y —x+ 1),
K*(x, y) = K(y, x).
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KK and K* map the cone of the nonnegative functions into itself, because the
kernels K(x, y) = 0. Despite the fact that the kernels are not strictly positive, the
following important property holds.

K*x,y) =0 if y—x-+4+n<0,

K*(x,y) >0, otherwise.
This means that the o-measure of the set of points for which KK*(x, y) = 0 can be

made arbitrary small if we taken » sufficiently large.
The property itself is evident for n = 1, and can easily be proved by induction.

Ki(x, ) = [ dot2) K(x, 2) K"z, 3)

— f_+°° do(@) K" Yz, )0z —x + DOy —z+n—1)

=0Ny—x-+n do(z) K"z, y).

2+12<y—2+n—1

These properties allow us to apply theorem (8') [13, p. 274]. Indeed all the con-
ditions of the theorem are satisfied, once we have made the change of variables:

v 2
o(y) = f ™ dt or y = E(o0),

and in these new variables, the integral equation reads

mm:L do 0(E(c) — E(w) + 1) f(0)

where

f() = P(EW).

This proves the first part of the lemma, except the statement about the analyticity.
But this one is merely a consequence of the fact that z,, is a simple root of the
Fredholm determinant D(z), which is analytic in A, and that ¥ and ¢, are given
by the ratio of two determinants again analytic in A.

In order to prove (b) let us introduce the following operator.

K, = K — z,P.

It is easily seen that K; has the same eigenvalues as the operator I with the
exception of z, . In fact if

Kf =z (f#0,z % z)
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then »(f) = O since zv(f) = w(Kf) = zyw(f). Conversely, if
Kif=1zf (f#0,z#0)
then 2u(f) = W(Kof) = w(IKf) — zg(f) ¥(¥,) = 0 and consequently
Kf = Kof + 2(f) ¥o = Kof = of

in which z # z, since under the contrary assumption from (a) we would deduce
that f = ¢¥,, which would imply that

Kof = Kf — zo/(f) ¥y = cl20¥ — z(Po) ¥ol = 0.
Hence the eigenvalues of I, all lie inside the circle | z | = z, ; that is,
lim [} &, V" = inf || Ky [P = 2, < 2

according to (a).
It is easily seen that PIK; = K,P = 0; hence

Kn — Zonﬂ:\m + Kln,
so that
2o K" — Pl = z" | K, || = e

which tends to zero, when n — co.
However, we need a more precise estimate that we can get as follows.

2" (KNG — PH) = 2" j°° do()lz, "N — CHO
hence, by Schwartz inequality

G0N — CH@ <2t ([ do) % 1K1
that is,
5K — BA < m(x) e 1]
where
+o
mix) = [ do()

satisfies the properties (A.9).
Equation (A.10) follows from the definition of e,

€ = Zp" || K"
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and the fact that
lim el = inf el < 1.
LemMmaA 2. (1)
Pox) = ¥(—x), ¢>0. (A.11)

(2) W(x) is a decreasing function of x, such that
0 < Py(x) < Py(—0) = 1. (A.12)
The functions ¥V (x) defined by

z1—1 Tpy—1

YN =1 + k; (—1)* z* f_: do(x;) f do(xy) f_m do(x;) (A.13)

-
constitute a converging sequence of upper and lower bounds to W(x). More precisely

P x) < Py(x) < P(x) (A.14)

(3) Considered as a function of x, ¥y(x) can be extended to an entire function
of x. This function is uniformly bounded in x on any strip:

a<Imx<b

of the complex x-plane.

(4) Keeping x real, Yy(x) can be extended to an analytic function of X in a
neighborhood D of the positive real axis. Moreover this function is uniformly bounded
in A and x, on all the compact subsets of D.

Proof. (1)

®+1 a2 +eo —maZy?
Zopolx) = f dy e Po(¥) = f ) dy e Po(—1);
e

hence

+o 2,2
Zopo (+%) = dy e Vo (+) @y (%) = po(—2).
-1

But this is nothing else than the integral equation z,p,” = K¢,’, which we know
to possess only one solution corresponding to the eigenvalue z, , namely,

@0’ (x) = @o(—x) = cFy(x).
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(2) We already know that Wy(x) == 0. It is decreasing, since

zlPyx + ) — Py = | do(y) Po(y).
x+h—1
It is uniformly bounded, because it belongs to £%R, o)

Zy | Po(x)|? =

[ dotn | < (| dot) i e

For convenience we have chosen the normalization ¥y(—c0) = 1. The functions
(N converge uniformly to ¥(x) on all the compact subsets of R. Indeed,

T =1 -5 [ do() P,

so that
Py(x) — PoVx)

x—1 xl—l Xay—1
= (=DM M [ dotx) [ do(xy) e [T dotees) Polewa,

and since 0 < P(x) < 1

—(N+1)

™) +o N+1
| #o) — 00 < g ([ o)
and
PI(x) = o) = P ().
(3) We have just seen that ¥ (x) is given by the uniformly convergent series

z—1 L2y—1 A |

%ﬂ9:1+1§(—n%ﬂfw dot) [ dote [ dotn

when x belongs to a compact subset of R,
Now allowing x to be complex, let us rewrite the term of order & of this series
as follows.

a — J'_l dy, f_l dy, -+ le dy, e—ﬂ)tz(yl-Ht)z—'"—717\2(211+"'+ﬂk+z‘)2
—w —w —
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After we have made the change of variables
Xp— X =M, Xitr — X5 = Vi1 i=1-N-—1,
we get

-1 -1 2 2__,2 2_ i ma? 2
lay | < f dy; -+ j dys oAk ama) 7%y +Rex) 722y ++ - +y+Rex)
—0 —©

Rex— Zp_1—1

- [em\z(lmm)z]k J. ' do(x;) J‘j:l do(xy) -+ f_m do(xy)

—a0

2 2
[em\ (maz)2k +o oty k
SR ](_mdye”)‘
This shows that a,(x) can be extended to an analytic function on any strip of the
form a < Im x < b, and that

| o(x)] < exp gzgl exp [wAz(Im x)? f:o do( y)] z

Hence the series converge uniformly on any strip to an analytic function and ¥y(x)
is uniformly bounded on such strips. In this way we have extended ¥,(x) to an entire
function of x.

(4) We already know that zi(A) is real analytic on (0, --o0) and strictly
positive on this axis. Hence it can be extended to an analytic function in a neighbor-
hood D of this axis and such that z,(A) # 0 in D.

Proceeding as before, we get

| ¥,(x)] < exp g| z |t fjw dx "R (A.15)

Hence the series converges uniformly to an analytic function of A on all the compact
subsets of D. Equation (A.15) also shows that ¥y(x) is uniformly bounded in A
and x, on such subsets of D.
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