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Equilibrium states of the one-dimensional classical electron gas are considered in detail. 
It is proved that this system is in a crystalline state, at all temperatures and densities. 

INTRODUCTION 

The electron gas which consists of charged particles moving in an uniform 
neutralizing background has been the subject of many investigations with different 
motivations depending on the suspected domain of applications: equilibrium 
properties of strong electrolyte solutions, physics of high temperature plasma, 
electron correlation in solids [l]. We would like to recall however, that it is not 
yet known whether such a system has a correct thermodynamic behavior [2]. 
In fact approximate treatments of the classical version of the model, as well as 
numerical studies, indicate an instability at moderately low temperatures or high 
densities [3]. 

This paper is concerned with the equilibrium properties of this model in one 
dimension, with neglect of quantum effects. Under such circumstances the system 
has indeed a normal thermodynamic behavior and some of his thermodynamic 
proper&s have been obtained ten years ago by Baxter [4]. He was however 
especially interested in the possible differences with a system of equal number 
of positive and negative charged particles, analyzed by Lenard and Prager [5]. He 
found that although the thermodynamics of the two systems does differ, the discre- 
pancy is small. Both systems are correctly described by Debye-Htickel theory in 
the small coupling limit. The main result of this paper is that, despite the thermo- 
dynamic validity of Debye-Htickel theory, our system is never in a “plasma” 
state, but in a crystalline one. More precisely, we show that if we choose appropriate 
boundaiy conditions, the correlation functions obtained by going to the infinite 
volume limit are periodic, of periodic p-l, and this for all densities p and tempera- 
tures. Thus we see that this model provides us an example of a classical Wigner 
lattice [6]. It is amusing to note that in our case as in the usual quantum Wigner 
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lattice, the particles are well localized at low densities. But this is a mere conse- 
quence of the dimensionality. 

A starting point in Debye-Hiickel theory (and its improvements) is that the 
equilibrium state is translation invariant. Since it is not so in one dimension and 
since dimensionality does not play any special role in this theory, it appears to us 
that some additional argument (unknown to us) is required to justify this theory. 
This point seems to deserve some further study. 

Another interesting feature of our result is that we have an example of a “bona 
tide” crystal, obtained without the usual assumptions of lattice dynamics (which 
still wait a justification from “first principles”). A traditional Iattice dynamical 
treatment of the model, describes it as a set of independent harmonic oscillators, 
each having the plasma frequency. A comparison with the exact result, shows that 
this approximation is valid only in the very strong coupling limit. A closer look 
shows that this discrepancy comes from the neglect in lattice dynamics of what 
could be called kinematical restrictions by analogy with spin-wave theory: in order 
to develop the potential in powers of the relative displacements of the nuclei, one 
should satisfy the conditions 

(Ui - Uj)” + 2(U, - uj)(ri - rj) > -(ri - rJ2, 

ui being the displacement of the ith nucleus from its equilibrium position ri . 
This suggests that such restrictions might give contributions competing with the 

usual anharmonic ones, even in three dimensions, although their effect is certainly 
more pronounced in one dimension. 

We also think that an extension of these results to the quantum case (always in 
one dimension) might be rewarding for the following reasons: whereas a crystalline 
phase will certainly survive in the strong coupling regime, quantum effects become 
important in the weak coupling limit. But in this regime classically the particles 
already tend to be delocalized, so that it is not excluded that the uncertainty and 
the exclusion principle will keep the particles sufficiently far apart that they go into 
a gas phase. But evidently the presence or absence of such a transition remains to 
be proved. 

The content of this paper is the following. We put two kinds of boundary 
conditions on our system: the so-called free or rigid walls boundary conditions 
(f.b.c) in which the particles move in a given box and the periodic ones (p.b.c.) 
in which one repeats indefinitely the box and takes into account the interaction of 
the particles between themselves in the box and with their images in the other 
baxes. (Periodic boundary conditions are usually considered in many-body theory 
because of their computational convenience, whereas f.b.c. appear traditionally in 
studies of fluids and gases. In each separate case, we study successively the thermo- 
dynamics and the correlation functions (in particular their cluster properties). 
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The thermodynamics is the same for both boundary conditions. The correlation 
functions are periodic if we use f.b.c. and have the product property. But if we use 
p.b.c. th’ey are translation invariant and do not satisfy the product property. 
This is so because p.b.c. correlation functions decompose naturally into f.b.c. 
correlation functions. 

An appendix gives the proofs of some mathematical results used all along the 
text. 

A. FREE BOUNDARY CONDITIONS 

1. Thermodynamics 

Our system consists of particles of charge -u, enclosed in a box (1 = [0, L] 
and imbedded in an homogeneous background of charge +a and density p. The 
interaction potential between these particles will be the one-dimensional analog 
of the Coulomb one, namely -27r 1 x 1 .r Therefore, the Hamiltonian of our system 
will be defined by 

H = -277~7~ C 
l<i<i<N 

I xi - xI I + 2m2 fl JoL p I x - xi I dx 

2m.72 L L -- 
ss 2 00 

p2 [ x - y 1 dx dy. 

As usual in one dimension, it is convenient to order the particles 

so that the energy of such an ordered configuration reads: 

E’ = -2m2 f (2i - 1 - N) xi + 2m2p 2 xi2 - 2mGpL i xi 
i=l i=l i=l 

NL2 
+ 27ro2p 2 - 

L3 
2m?p2 - . 

6 (3) 

Since our particles interact via a long range potential, it can be of interest to study 
the influence of boundary contributions to the energy on the equilibrium properties 
of the system. We will therefore impose only asymptotic charge neutrality; that is, 

p = (N + s)lL where ,l& (s/N) = 0. (4) 

1 The Coulomb potential in Y dimension is defined as the solution of the corresponding Poisson’s 
equation: d@(x) = -4716(x), x E RY. 
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Under these conditions, the energy of an ordered configuration is given by 

E = 2dp ig [xi - p-l (i - N + ;- Lp )]’ 

+ 27dp [; NL2 - ; pL3 - p-z s’l (i - N + ; - Lp )‘I 

= 27ro2p %$I [Xi - p-1 (i + +)I2 + T p-1(1 - 3s3 iv + O(1). (5) 

We can now write the partition function in the following form. 

QnN = ~c~,s...c~,cL dxl *** dxN 

x exp [-z-A2 i$I [px$ - (i + +)I2 - 2 (1 - 3~3 N + O(l)/ 
(6) 

where X2 = 2/3cr”/p (7) is a dimensionless coupling constant, which measures the 
ratio of the average potential energy to the average kinetic energy. 

Let us make the change of variables 

yi = pxi - (i + 6 - 1)/a i = I,..., N. 

We get (neglecting terms of order 1) 

QAN = p- N -(nh2/12)(1-3&N e 
s +m dy, 

-co 

. . . dyN e-"~2&'i2K (+ , yl) 

N-l 

where 

X tFl K(Y~ Y Yi+l) g(s+l)/2(YN) 

and 

g&d = $, x < a, 
x > a. 

We see that if we introduce the operator K defined by 

WM-4 = j+m & e-“A2yzKk Y>~(Y), --m 

(8) 

(9) 

(10) 

(11) 
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we can write the partition function in the simple form 

QA” = P- Ne-(rAP’12)(1-3sa)N( KN&+*) ,z)(( 1 - S)/2). (12) 

In the a.ppendix (Lemma l(b), Eqs. (A.6)-(A.7)) we prove the following. If 
f~ Z2(R, a), where T2(R, G) denotes the Hilbert space of square integrable 
functions with respect to the measure 

then 

uniformly in x where 

da(x) = e--nAZZ2 dx, (13) 

2% ziNWNf)(x) = 4.0 Yd-4 (14) 

Here z0 denotes the largest eigenvalue, and Y,,(x) the corresponding eigenvector 
in dP2(R, U) of the integral equation 

zY(x) = Sim da(y) Y(y). (16) 
m-1 

Moreover z,, > 0 and ul,(x) > 0 when x is finite. 
We can now easily compute the free energy densityf, and we get 

-Pf(f, PI = -l%b(f, k9 - (nh2/12)(1 - 3s") + WOW4 (17) 

wheref,(p, /3) is the free energy density of the free gas. 
Before analyzing this result, we want to discuss the following technical point: 

why do we have taken the thermodynamic limit, by keeping the background 
density fixed, instead of the particles one N/L as usual. Mainly for reasons of 
notational simplicity. In any case, one can easily see that the limiting free energy 
is the same. 

The first thing we note is that the charge defect su gives a contribution even in the 
thermodynamic limit to the free energy: n(s2u2/2) L. This is nothing else but the 
electrostatic field energy within the boundaries of the system due to the presence 
of two opposite charges so/2 fixed at the surface of the system (here x = 0 and 
x = L). ‘This phenomenon is characteristic of Coulomb interactions and has been 
proved to occur in general for a three-dimensional quantum system of discrete 
charges (<at least one of them consisting of fermions) [7]. 
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Second, if we compute the pressure p we find 

p = kTp(1 + Az(a/Ztz) In z,(A)) - (no2/6)(1 - 3~~). (18) 

It is then possible to prove that p is an increasing function of p as it should be, 
and that 

-(7m2/6)(1 - 3s2) + ;kTp < p < -(ru2/6)(1 - 3s2) + kTp. 

This means that 

(19) 

l&p(T, p) = liip(T, p) = -(7ra2/6)(1 - 3s2), (20) 

and this shows that the pressure will be negative, if the density or the temperature 
is low enough, when 1 s 1 < 3-li2. 

Finally and more importantly, does this system exhibit a phase transition ? 
The answer is no, because z,(h) and hence the free energy is an analytic function 
of h on (0, + co). This is proven in the appendix (lemma l(a)). 

2. One-Point Correlation Function 

This quantity, which represents the local density is the one which will allow us 
to understand the nature of the phase in which the system exists. 

In the canonical ensemble, it is defined by: 

or 

PA”(X) = 2 @(x - X&NJ 
i=l 

(21) 

s ,,sol<...<xNs~ dx, ... dx,v 

PAY-4 = 
x CL, 6(x - xi) exp{ -7rX CL, [pxi - (i + (s - 1)/2)12} 

S o~zl~...+.,~L dx, ... dxN ew{--.rrh2 CL, [PG - G + (s - 1)/2)121 . 
(22) 

Let us first consider the numerator. It is equal to 

dx, ... dxjq dxj+l ... dxN 

If we make the change of variables 

(23) 

ylc = pxi+r - (j + k) - (s - 1)/2, k = l,..., N-j, 
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then, if j :< N - 1, 

= p-(N-j) da(y,) ‘-* du(y,,-j), 
s 

K (px - j + + 7 Yl) N-fi;’ GYL 2 Yd &,l)/,(YN-J 

= p-(N-j)(KN-ig(s+l),2) (px - j + +) 

309 

(24) 

On the other hand, if j 3 2, 

s dx, *, . dxiel e- nA2~~~~(pri--i-(S-l)/2)l = 
P -(i-1)(~‘-1gpo-j+(3--s),2) (+). (25) 

It is now possible to express the numerator as follows: 

N-l 

P 
-(N-l) z2 e-xA%2-~-(s-1)/2)* 

X W%z-j+(3-s)~2) (+) (KN-k,+l),2) (p-x - j + +) 

+ P- 
(N-l)e--irh"(pr-(s+l)12)2~~N-lg~s+l~,2) (px s ; 1 ) 

+ P- 
(N-l)e-nA2(~z-(N+s-l)/2~2([jdN-lg 

oz 
-N+c3-sj,2) 

(' -7 
___ . 

2 (26) 

At this point, we need to define precisely the limiting density. In order to avoid 
surface efFects, we will require that L -+ co and x + GO in such a way that 

L-x+co. (27) 

A natural way to realize these conditions is to take 

x = y + OtL, O<cr<l, (28) 
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and to keep y fixed, whereas we go to the limit L --f co. Hence, we are led to study 
lim,,, pd Y> where 

fN(Y) 

where 

- p [(KNg(,+l),2) (?+)I-’ 1 z; e-aA2(~~+r+Na-j)2 

x (W-lg ot/*T+N.-j+d (q-) WN-ks+1),2)@Y + r 

+ e-nAZ(pg+T+Na-1)2(K N-1g(s+l)12)(py + r + iVa - 1) 

+ esAa(,y+r+N.-N)~(~N-lg 
ov+r+Na-N+l) 

r=S(” ) -3 +*. 

Na-j) 

(31) 

(32) 

In order to compute this limit we will use the following basic estimates, proved in 
the appendix (Lemma l(b), Eqs. (A.8) (A.9), and (A.10)). If fe P(R, cr) then, 
when N b 1, 

where 

and the Ed satisfy 

1 z;N(wNf)(x) - v(f> yO(x>I (fi llfli EN-l, (33) 

0 < EN+M < ENEM < C EN < 00. 
N=O 

(34) 

(35) 

In our case 

and II ga II2 < h-l (36) 

(37) 

We see that V(ga+3 is uniformly bounded in a, since &,(x) < 1 as proved in the 
appendix (Lemma 2.2, see Eq. (A.12)). We will call 

g = SUP 4&l. 
lER 
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Let us first handle the last two terms in the expression for pN(y). They tend to 
zero because 

GNWNg(s+l),2) (+) - v(g(,+,),,) Y. (+), 

zo -(N-1)([jb’“-1g(,+l,,2)(PY + r + l-fa - 1) - V(&+1),2) - 0, 

(see (44)) 

(see (33)) 

=o --(N--l)wN-lg oy+r+Na-N+l) (+) - 0 ’ ul, (+), (see (33)) 

and 

e --nA2(~~+aN+b)2 ---f 0 
9 

when y, a., b are kept fixed. 
Retaining from now on only the first sum in (31) we get the following inequality, 

using (33) 

1 z;N(KNg(,+l),2) (+) pN(y) - zilp x eP*(py+r+N’-j)Z 

x v( gov+r+Nra-j+l) yO (+) “(l%+1),2) 1u,(PY + r + Na - j)l 

N-l 
< zl;lp c e-nA2(py+r+Na-j)2 

d&+r+Na-j+l) 
i=2 

yO (+) i+i 11 g(s+l)/Z 11 EN-l-$ 

N-l 

+ z;'p 1 e-nA2(py+r+Na-i)2% 11 gpy+r+Na-jfl I/ %-ZV( gb+l) 12) 
j=2 

N-l 
x yocpy + y + ~~ _ j> + zolp 1 e-nAZ(o~+r+Na-dZE2 

j=2 

x 11 got/--i+Nmfr+l 11 11 g(s+l)/, 11 %--BEN-l--I f (38) 

Each of tlhe sums appearing at the right-hand side of this inequality tends to zero. 
Let us shlow it for the first one, since the proof for the two others is similar. We 
will use (33), (39, and (36). 

N-l 

2 e- 

n~~(,m+r+Na-j)~ 
v( &,+r+Na-j+l) EN-l--i 

N-l 
~~ g c e-"~2(~~+~+Na--i)2EN-l--j 

j=2 

[Nc~'~] 
<; g 1 e-n12(p~+r+Nu-j)2~N-l-j + g 

N-l 
c e-d(p~+r+Na-i)a 

EN-l-3 
j=2 j=[Nc#]+l 
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< gEN-[N&-l 

Gg 
i i 

f 'k Ej,-[Nal+l 
k=O 

and we note that the last term of this inequality tends to zero when y belongs to 
a compact subset of R. 

Hence we have 

N-l 

= lim z;lp C e-n~*‘PY+‘+Na-“2~(g~~+~+Nol--j+~) Yo(py + r + Nol - j). (39) 
N-XC j&z 

In general this limit does not exist. We can however always extract a subsequence 
such that a limit exists. (This result is in agreement with a general statement about 
the limiting correlation functions of a superstable system [S]). Indeed, if we make 
the change of variables [NE] - j = k in the sum and take a sequence of N such that 
Nol - [Nol] = m with m given, then 

where 

N $--=m PN(d = ,dpv + da - 1/2) + nz + 1/2) (40) 
a a 

This is so, because the series (41) converges, since 

O<Yl,(x+k)<l. 

(41) 
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The most important conclusion to draw from this result is that, in any case, the 
functions of y defined by (40) are periodic, of period p-l, that is the average distance 
between the particles. However a constant is also a periodic function so that 
strictly speaking we need to show that n(x) as given by (41) does not define a 
constant.2 This will be done later on. 

But if it is so, then (40) tells us that the equilibrium state is not unique. since we 
get different states by choosing different subsequences (different m’s here), or by 
changing the origin of the coordinates (i.e., varying a). These states of the infinite 
system break the translation invariance of the equilibrium states of the finite one. 
Note however that if cy. = 4, then 

gym PN(Y) = P(/?Y + l/2) = P-P + m 
Neven 

(42) 

‘& PN(Y) = f&?Y) = P(-fY>~ 
Nodd 

(43) 

so that the “rotational” invariance ( y + -y) is not broken by these symmetric 
boundary conditions. 

But if o! # 3 

N-ta fd.d lim 
Ncx-[aN]=m 

is not an even function of y, whatever value s takes, and these states break the 
“rotational” symmetry. We will see later that it is possible though to construct 
states whi’ch keep the translational and “rotational” invariance even in the thermo- 
dynamic limit. 

The dependence of the local density p(x) upon the subsequence of N chosen, 
has the following interesting consequence. If instead of the canonical ensemble, 
we would have used the grand-canonical one, then, owing to the equivalence of 
ensembles (which could certainly be rigourously proved) the density p&x) would 
be given by 

when 01 is rational, CL = p/q. Here p = p(z, /3) is obtained by means of the thermo- 
dynamic relation p = z(a/az) /lp(z, /3). Th us we see that in this ensemble the density 

* The reader, who considers this to be fairly obvious should confront his intuition with the 
following simple example: 1 = Cz=-io f(x + n) if f(x) = + cz: dy e--pY*. 
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would have the period q-+-l, instead of p-l, when 01 is rational. And when 01 is 
irrational the density would probably be an almost periodic function of x. 

Let us now look to some analytic properties of n(x), considered as a function of x 
and h, which will appear useful later on. 

We show in the appendix (Lemma 2.4) that YO(x) considered as a function of A 
can be extended to an analytic function in some neighbourhood D of the positive 
real axis. Moreover Y,(X) is uniformly bounded in x and h on all the compact 
subsets of D. Hence C,‘=“--m e-~~a(z+L)ZYO(- x - k) YO(x + k) converges uniformly 
on the compact subsets of D, since &r--m e-n(Re12)(r+k)2 is uniformly bounded on 
such subsets. Noting that Jr,” do(x) Ye(x) Yo(-x) # 0 and is analytic in some 
neighborhood of the positive real axis, we conclude that n(x) can be extended to 
an maZytic function of h in some neighborhood of the positive real axis. 

We also show in the appendix (Lemma 2.3) that considered as a function of x, 
Y,(x) can be extended to an entire function. Moreover this function is uniformly 
bounded on all the strips of the form a < Im x < b of the x-plane. Proceeding as 
before, we conclude that n(x) can be extended to an entire function of x. 

Let us show now that n(x) is not constant when h is large enough.3 In order to 
do this, we need to determine the behavior of z,, and Y,,(x) when h + 03. 

The integral equation 

hl~d4 = J-2 x WY) Y,(Y) 

becomes, if 
Fi% AZ, = p and & ul,w = .I&) 

k&(x) = flu - 4 h(O) 
since 

$+y h WY) = %Y) dY 

and this equation has the solution p = l,fO(x) = 0(1 - x). Hence we expect that 

p% AZ,(A) = 1, py Y,(x) = e(1 - x). (44) 

Suppose that this argument is correct, then since 

~lu,z@> 
n(o) 3 JI” x dU(Y) Ycl(Y) Yd-Y) CCI 

n(0) - n($-) > hYo2(0) - 2X (epnA”‘4 + J+ly2 do(x)), 

3 I owe most of this argument to H. J. Brascamp. 

(45) 
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and consequently n(0) - n(t) > 0 if h is sufficiently large. It remains to prove 
rigourously (44). 

Since 

YdY) G 1, 

AZ, = j+m h WY) Y,(Y) G 19 (46) -32 

and since !P,,(x) is a positive decreasing function of x (see appendix, Lemma 2.2), 

so that 

and we see that 

(47) 

On the other hand, we prove in the appendix (Lemma 2.2, Eqs. (A. 13) and (A. 14)) 
that 

s 

X-l 
1 - zol ~4%) < Yd-4 

--co 

s 

S-l 

< 1 - z;l Wx,) + zo2 (48) 
-* 

j”-1 du(x,) I”‘-’ &(x2) 
--m -cc 

and since 
X-l 

Z,lh-l 
s h &7(x,) + e(x - I), 

-cc 

zi2h-? j-l h du(x,) j”‘-’ du(x,) - 0 
--m -02 

pointwise, we see that 

‘A-9 Y,(x) = f9(1 - x). 

In order to extend the argument to all h, we use the fact that n(x) is an analytic 
function of h on (0, + a). This shows indeed that n(O) - n(t) being positive on a 
segment (& , + co) cannot be zero except possibly on a countable number of points 
of (0, + co). If we wanted to strengthen this result, so that such a possibility would 
be ruled out, we should prove that 
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and that n(0) - n(i) is an increasing function of A, all properties which seem 
reasonable, but that we were unable to prove. 

3. Pair Correlation Function 

The study of correlation functions between two or more particles will give us 
more insight into the nature of the equilibrium states, particularly if we look at 
their clustering properties. 

The pair correlation function in a finite system is given by: 

p/jN(x, ) x2) = c 6(x, - Xi’) 6(x, - Xi’) ( > . (49) 
izi N,A 

In one dimension however it is sufficient to know this function when x1 < xq and 
in this case: 

pnN(xl 3 x2> = PN [wNg(s+1)i2) (+)]-’ 

X s 
fi da (px; - 1 - +) 

osz,‘sz~‘s.~~<(N+s)/P +1 

x 1 6(x, - Xi’) S(x, - Xi’). (50) 
l<i<i<N 

Making the usual change of variables yi = pxi’ - (i + (s - 1)/2), we get 

pnN(xl 3 x2) = P2 [WNsxs+1~:2) (*)1-l 

Calling 

and 

N-l 

X j  fi d4.Q K (+ , YI  
I=1 

) Fl K(YZ > Yzn) g(s+,)/,(YN) 

x l<zcN 6 (FG - Yi - i - +) 

\ . 

( 

s-l 
xS px2-yi-j-2. 1 

f,(u) = KG, Y) 

(51) 

(52) 

(53) K*(x, Y> = K(Y, 4 
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we can write the numerator in the following form: 

P2 Nil N$ j ,i! MYJ jj K*(Yi+lY Ydhl-s)/z(YJ 6 (PXI - k - + - Yk) 
k=l rn=L 

~i+d 6 (p-y2 - k - m  - %$ - .Y~+~) 

N-l 

x n df'(Yi) K(Y~ 3 Yi+d !%+l)lZ(YN). 
i=k+m+l 

And proceeding as for the one point correlation function (see (24)-(25)), this 
quantity can be written as 

N-I N-k 

P"C ce 
-n~2(~~2-k-m-(s-l)/2)2-n~2(PS1-7~-~(S-l)/2)2 

W*"-!L,,J 
k=l m=L 

(px, - k - +) 

x (D6m--lgo~,--R--m-((s-L)/z+l) ( s-l 
~1 - k - 2 ) 

x (KN-k-mg(,+,),2) (pxn - k - m - q). 

Here K* denotes the adjoint of K: 

w*m4 = jlrn NY) K*(x, Y)f(Y). 
--m 

Since we are interested only by the bulk properties, we need to make the same 
change of variables than in the case of the one point correlation function: 

p--f1 = PYl + 49 

px2 = PY2 + OlPL, 

and to keep yr , yz , 01 fixed whereas we go to the thermodynamic limit. 
Hence we have to compute lim,,, pN(yl , yz) (yl < y2> where 

(54) 

PN(.~ , h) = p2 [(KNg(,+l),2) (+)I 

-1 N-l N-k 

1 2 e-n’\‘b”~+~+Nor-k)z([tb*k-~(l-,),2) 
k=l rn=l 

x (pyl + r + Net - k) e~n~2~~wz+~+Na~k~m~z(~~~~1g~~~+~+~~~~~~+~) 

x (pyl + r + Noi - k>(KN-k-n% s+l 12)(p~2 + r + Na - k - m). 

(55) 

595/W= 
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Y has been defined before ((32)). In order to compute this limit, we need the same 
estimates as in Section 1, that is (33) and the corresponding property of the 
adjoint K*. 

I z,-N(~*Nf)(-4 - v*(f) uI,(-4 < = U-II c‘z-1 (56) 

the fN* satisfying the same properties as the l N and 

(57) 

The proof of (56)-(57) is exactly the same as the one of (33) which is given in the 
appendix. 

Proceeding as in Section 1, we get: 

lim N+rn PN(YI > Yz) = f’n(fY, + s(” - $1 + m + 3, py, + s(a - &) + m + 4) (58) 
Nu-[Na]=m 

when y1 < y, where 

4x1 , x2) = zo [ J-r do(x) Ye(x) Yo(-x)]-l zg e-nh2(2~+z)2Yo(-X1 - l) 

x f z;“(wngz,+,-,)(x, + I) e-~A2(~~+z-~-1)2Yo(x2 + 1 - n - 1). 
?Z=O (5% 

Since 

“*u&s) /2> = [s_‘,” du(x) ul,(x) Yo(-xl]-1 zoyo (F). (60) 

It is easy to see from (59) that 

4x1 + 1, x, + 1) = 4x1, x2). (61) 

Hence the two point correlation functions given by (58) are invariant under the 
group of discrete translations of length p-l. This broken symmetry confirms that 
these states describe a crystal with a fixed center of gravity (whose position is 
related to s(a - +) + m + +). This property will hold again for almost all h, 
since n(xl , x2) is a real analytic function of X on (0, + co). We can see this by noting 
first that 

IW~ng,2+z-n)(x1 + 01 < We X2kn12 

and then by applying the same reasoning as in Section l., for the case of n(x). 
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4. Cluster Properties 

We want now to investigate the behavior of n(xl , x2) when the distance between 
the two points x1 and x2 becomes large. 

We note first of all that because of (61), we can choose 0 < x1 < 1. Let us then 
take 

x2 = I?? + X’L’ (62) 

where 0 :< x2’ < 1. If we write 

n(xl , x2) - n(xJ nh) = n(x, , -4 - 4x1 , x2> + 4x1 , -4 - 44 4x2> 

where 

4x1 3 -4 = zo [ J-T da(x) Y,(x) Yo(-x)1-’ ,Ea e--rrA2(e1+z 2Yo(-xl - I) 

X f v(g,2+z-n) Yo(xl + Z) e-“~2(“3+z-n-1)2YO(xZ + 1 - 12 - 1) 
7kl 

- [s_‘,” da(x) Y,(x) Yo(-x)]-l y e-nA2(21+z)2YO(x1 + I> Y,(--xl - 0 - 
z=-‘72 

m+z--2 
X C e-7iA”(22’+‘J2Yo(x2t + r) Yo(-x,’ - r). 

r=--m 
(63) 

Then we see that 

I 4x1 , x2) - 4x1) 4x2)1 

< &(xp) +f e-n~2(wz)2 
I + e- 11AYq+zP 

km-1 1 

m-1 +m 
j- on(x,) c e-~~*w)2 + 2Dn(x,) c e-n~2(%‘+r)2 (64) 

I=[(??-1,/q r=[(?J-1)/Z] 

where 
D = [I-T da(x) Ye(x) Yo(-x)]-l. (65) 

This estimate was obtained by using the following inequality: 
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valid if Cz,f(I) and C:=“_, g(l) converge absolutely. Jt remains to estimate 

I 4x1 2 x2> - 4x1 > %)I 

< z,lD +c e-nn”(X,tz)2-nA”(Xz-z)2 + z,lD E e--rrh,+z)’ 
z=-02 1=--a 

x f / z;“(wng,2+,+J(x, + Z) - “(g,2+l-n) !Po(x, + Z)l e-TA2(r2+z-n-1)“. 
1L=l 

Using (66) and (33) we get 

I 4x1 3 x2> - 4x1 2 -~2>l 
< zolD z e-nA2(21+z)2 + “cr 

L 
e-nA*(r,-z)2 

Z=?W-1 km-1 1 
m-1 

+ z,'D 1 
Z=[(rn-1)/Z] 

e--nA2h,+zP + ,-~A~(z,'+r(m-1~/21~~ ,g e4~(*,+zp] 

+ z;lDh-l/2z ,zm e-&Z~+t)2 gl t._le-l*2i’.‘+7n-l+i-~)2] . 
L (67) 

Using again (66), the last term of this inequality can be bounded by: 

y 
Z=[h-U/2] 

+ zw-*‘2~ 

where 
(68) 

g(Q = 5 E,-le-d%,‘+k-n~2~ 
(69) 

?Z=l 

And if we use (66) once more, we see that: 

~A~(~'-l+s)~ + F e-aA2(r2’-l--s)2 

s=k 

e-nA2(q’-1+s)2 + e-lm2(‘2’+s)2 
s=[k/2] I 

(70) 
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Collecting all these inequalities together (from (64) to (70)), we can conclude that 

lim 
I=-XII- 

n(x1 ) x2) = n(xJ n(xz). (71) 

However, our careful estimates allows us to determine also the rate of approach 
to this limit. It is governed indeed by the rate of approach to zero of 

+=I 
c 

e-nhz(zizP and sup 
Z=[(Wl--1)/Z] ~[bn-1)/21<n<z(m-l) 

%a< +f 
t 1 

fn l frh-l)/zl 
?L=O 

and the first expression decays like a gaussian, the second one like an exponential. 
(This is shown in the appendix, Lemma l(b), Eq. (A.lO)). Hence we see that 

1 n(x1 ) XJ - iz(x1) n(xz)j < Ae-c’Z2-51’, ‘t>o (72) 

when [ x2 - x1 1 is sufficiently large. A and 4 are some constants which could be 
determined from our inequalities. 

Let us first note that this cluster property, as well as the other ones we have 
proved here for the one and two-point correlation functions could have been 
obtained .with more effort, but by using the same techniques, for the higher order 
ones. 

A consequence of general interest of this cluster property is that the equilibirum 
states we have built by taking the thermodynamic limit along appropriate sub- 
sequences of N and /1 (see (40)) are extremaZ[9]. 

A more specific property, like the exponential rate of clustering, appears especially 
interesting in connection with the fact that we deal here with a system of particles 
interacting via a long range potential. We can interpret this effect, by saying that 
some screening of the discrete charges occur, even in this crystalline state. 

B. PERIODIC BOUNDARY CONDITIONS 

Because of their computational convenience, these boundary conditions, are 
those whEch are usually considered in many body theory. In our case they lead to 
the well-known expression for the potential energy [lo] 

L-1 c ; pkp-k 
k#O 

where 
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and pk is the Fourier transform of the density 

(75) 

It is also useful to express this Hamiltonian in terms of an effective two body 
potential, periodic of period L: 

?I&) = q c ; p 
h#O 

or 

when 

so that 

H = ; Ncr2u~(0) + f C, vL(.(l xi - xj I). 
zii;3 

This expression enables us to compute the amount of energy due to the interaction 
of the particles with their image. We find [I I] 

H=H,- y (f xi - F)” when 0 -=c xi < L (79) 
i=l 

where 

Ho = -2rro2 1 ] xi - xi [ + 2,m2 ?i (L)iJ) 

L 

dx I x - xi ] 
i<j 

-~(+)2joLjoLdxdy~x--y_ (80) 

A direct attack of such a Hamiltonian by methods similar to those used in the case 
of free boundary conditions is made difficult by the “long range” character of 
the correction 

- 2g (g Xi - 2%)‘. 
i=l 

It appears possible however to circumvent this difficulty, by using the following 
identity. 

emaz = (+)1’2 j-T & e- a(LBo2/2)52+2n(LBo2/2)l~=sa . (81) 
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Let us choose 

a = (qq”’ @Xi - q. @a 

Then the Boltzmann factor corresponding to periodic boundary conditions reads 

(83) 

This identity simplifies considerably when we order the particles: 

where 
A2 = 2&T2p-l, 

In this way we see that we have reduced this problem to one discussed before: 
the plasma with free boundary conditions, but with a charge defect S. Note however 
that the density of the background is no more p = (N + s)/L, but p = N/L. 
However if s/L + 0, they are asymptotically the same. 

5. Thermodynamics 

We can easily compute the partition function 

QLN = (q)“l e-(sA2i12)Np-N 1-T d,y (KNgtl-,j,2) (LfL), (87) 

the only difference in the integrand with the case of free boundary conditions 
coming from the factor g,(px,) instead of gNfs(pxN), since L = Np-l in our case. 

In order to compute 

we use the inequality 

/ ztN(KNf)(x) - v(f) yo(x)l < m(x) llfll EN-l, 639) 



324 H. KUNZ 

proved in the appendix (Lemma l(b)). m(x) is a uniformly bounded continuous 
function of x such that 

s 
+== 

m(x) dx < co. (90) 
0 

Indeed, using (89) we get 

-N +m 
I s zo ds wNg~,-,),,) (q) - j-T ds "(al-d/d yo (+)I 

T:,, [sug m(x) j:m ds II g(l--s)/2 II + k1'2 1: ds m (- q)]. 
We thus see, that with these boundary conditions the free energy density is 

given by 

-i!.Bf@, P> = -P!(P, P> - W2/W + Wo@Y4 (91) 

and is equal to the free energy in the case of free boundary conditions, with strict 
charge neutrality (S = 0). This shows that the symmetry restoring term that we 
subtracted from the hamiltonian is a “surface” one. 

6. Correlation Functions 

Let us begin again with the one-particle correlation function, 
Using (84), we get 

pLN(x) = p [s’,” ds (KNg(l-,),2) (+)1-l ; j’” ds ,-rA2(p5--j--(S-1)‘2)2 
j=l --m 

x (~j-lg,,-j+(l-,),2+1) (+y wN-~gw/2> (PX - j + 11. 
L / 

(92) 
In order to avoid surface effects as before, we choose 

px = py + Nol. 

Making the change of variables 

(1 - S)/2 = t, 
we get 

[s’,” dt (KNg,)(t)] pN( y) = ,a j-r dt jt e-nA2(pv+t+Nor-‘)z 

(93) 

t + Na - .j). 
(94) 
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As in Section 2, the next step consists in showing that we can replace asymptotically 
at the right-hand side of this equality: 

(Wj--‘g,Y+t+Na--j+l)(t) by z;-14gou+t+Na-~+d Y&l 

and 

(@igt)(pv + t + Na - j) by $‘%gt) Y,,(py + t + Na - j). 

This is done by proving the analog of inequality (38). In order to see how it works, 
let us show that the corresponding second sum at the right-hand side of this 
inequality tends to zero. We have in our case, using (89): 

< z&e s +m dt m(t> ,,tgt) Nfl e-nA2(oy+t+Noi-~)2Ei_2 
-co j=2 

< Z&j-l’2 j+” dt m(t) Qt) (2 cj) -cc j=l 

[N&z 

X c 
e-nA2bu+t+Nor-[Na]+k)2 

+ qNo1qb2 F edaAzk” . 

k=[Na]-[Na2] k--p I 
(95) 

But it can easily be seen that 

lim 
s 

+a &j-(t) “c e-nA2(z+t+k)2 = o, 

n--lm --m k=n 

uniformly with respect to x on all compact subsets of R, if J’z dtIf(t)j < co. 
Since J’zI dt 1 m(t) V( g,)j < co, we see that (95) tends uniformly to zero, when y 
belongs to a compact subset of R. 

We can then conclude that 

$2 fNb) = z& [s’” dt 4gt) %iW]-l j j~ Sfm dt dgt) Y/o(t) 
--3o -m 

N-l 
x c e--nA2bv+t+Na-i)2 

V(&~+t+Na-~+l) yoo(py f t + h - .d. (97) 
j=Z 

In order to get a limit we once more need to choose some subsequences; keeping 
Na - [Nol] = m fixed, we get (making the change of variables k = [Na] - j) 

Nor-[Nar]=m 

fN(Y) = f j-T 44t) n(f'Y + t + m) (98) 



326 H. KUNZ 
where 

4 gt) Ye(t) 
dp(f) = J’m” dt v(gJ Y&) 

you - t> Yoo(t) 
dt = j-lm” dt Y/,(1 - t) Y,,(t) dc (99) 

and n(x) is given by (41). In order to see this, we apply (96) to (97) after we have 
replaced V( g DY+t+m+k+l) by g and Y,(py + t + pn + k) by 1. The analysis, we ran 
through, for the one-particle correlation function remains valid, in the case of the 
many points one. The final answer will be 

where n(xI , x2 ,..., xk) is the basic correlation fuction (see (59), e.g.), obtained from 
sequences of finite systems with free boundary conditions. We have already seen 
from this result that the equilibrium state obtained by taking periodic boundary 
conditions is not extremal, since it can be decomposed into the extremal states 
obtained by taking free boundary conditions. (Note that the measure describing 
this decomposition d&t) is temperature and density dependent). This property 
has the important consequence that in such a state the correlation functions do 
not cluster. Let us investigate the symmetry properties of such a state and decom- 
pose it in a more natural way into extremal states. 

We need the following property of the measure EL. 

s -T dp(x) eeanine = S,,, . (101) 

When it = 0, this is a mere consequence of the definition (99). If n # 0, then 

s +m dp(x) e-2ninX 

-cc 
= & j-,* & e-2ainx $ Vo(l - xl Yldx)l 

+W 
_ -1 1 

‘O 257in --co --.i dx e-2ninz[e-~iA2n2Yo(x) Yo(-x) 

- e-n’2Q-1)*Yo(x - 1) Y,(I - x)] = 0 

as can be seen by changing x - 1 into x in the last integral. 
Now consider the function 

fi(Xl )...) Xk) = s +a +(a) n(xl + a,..., xk + a) 
-03 

(102) 
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where n(xl ,..., x,) (given in the text for k = I, 2,...) is a function invariant under 
h, that is 

n(x1 + I, n, + I,...) Xk + 1) = n(x1 ) X2 ,..., X/J. (103) 

In other words considered as a function of x E Rk, H(X) is periodic of period 1 in the 
direction e = (I, I,..., 1) 

n(x + e) = n(x). (104) 

Let us decompose x as follows 

x = x,, fx, (10~) 
with 

and 
(XI 7 x,,) = 0. (107) 

Since n(x) is Cl on the unit circle in the variable (x, e)/(e, e), we can Fourier decom- 
pose it: 

+m 
n(x) = c n,(xl) eznida.eMe.c) 

(108) 
p=--m 

where 

%Xx3 = (e,le) s 
(e,e) qx, e) n(x) e-znin(a.e)l(e,e) o 

with (108) converging uniformly, we see that 

by using (101). 

J- +m 444 4x + 4 = n,(x,), -w 

This implies that %(x + ae) = 6(x), Vu E R, or in other words that 6(x1 ,..., xk) 
is translation invariant. Moreover, 

qx, )...) Xk) = + Jok dt y1 (x1 - s+ + f ,‘,.) Xk - +3 + g 
and since it is tranlation invariant, we can shift each xi , by l/k & xi and we get 

$x1 ,..., xk) = j-l dc n(& + c,---, xk + C>. 
0 
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In conclusion, we have shown that the limiting correlation functions for periodic 
boundary conditions are independent of the subsequences chosen and can be 
expressed as 

Moreover, they are translation invariant. 
Thus we see that if we use such boundary conditions it is not possible to see that 

the system is in a crystalline state by looking at the one-point correlation function. 
Instead, we need to first investigate the clustering properties of the two-point 
correlation function and then to try to decompose it as in (102). 

We also notice that the decomposition (102) is the most natural one for a crystal 
in one dimension, since it represents an average over the possible positions of 
the center of gravity of our system [ 121. 

APPENDIX 

In this section, we want to prove a number of properties of the operator K 
and its eigenfuctions, which were assumed in the text. 

Let us write again the operator K in the following form. 

W)(x) = j-+r NY - x + 1)./W du(y) --m (A-1) 

where we have introduced the measure u, given by 

u([ y, - co)) = l;m e--rrA2tz dt. (A.21 

It appears useful to define this operator as one acting on the Hilbert space ZP2(R, a), 
defined by the scalar product 

cf d = Ibp d4x) J(x) g(x). (A.31 

On JP(R, u), K has an adjoint K* defined in the following way. 

(K*f)(x) = j-+m Rx - Y + l)f(v) Wd. --m (A.41 

We will first prove the following properties of the operators K and K*. 
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LEMMA 1 (a). K and K* have one common positive eigenvalue zO. To this 
eigenvalue corresponds the eigenvectors Y,,(x) and F,,(X) respectively, which are 
positive almost everywhere. The eigenvalue z, is simple and larger in modulus than 
all the other ones. z0 , Y,,(x), and q,,(x) considered as functions of h are real analytic 
in (0, + co). 

(b) If 13 denotes the projector, defined by: 

where 

a) = 
s:: WY) &y)f(y) 

J’z WY) TO(Y) ul,(y) 

then 

li+i z;nKn = P untformly in LP(R, U) 

More prec,isely the following estimate holds. 

where 

sup m(x) = Ei < c0, 
XER 

I 
+oC 

m(x) dx < 00, 
0 

(A-5) 

64.6) 

(A.7) 

64.8) 

(A.9) 

and the E, satisfy the following properties. 

St,(y) such that Vn > n,(r) E, < e-yn with y > 0. 

Proof (a) Note first the following properties of K and K*. They are compact, 
because they are of the Hilbert-Schmidt type: 

jfm W4 WY) I KG, y)l” = j+- do(x) da(y) / K*(x, y)12 < co. --m --m 

Here K(x, JJ) (respectively) K*(x, JJ)) denotes the kernel of the integral equation 
corresponding to K (respectively K*): 

K(x, Y) = &Y - x + I>, 

K*(x, Y) = K(Y, 4. 
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K and K* map the cone of the nonnegative functions into itself, because the 
kernels K(x, y) > 0. Despite the fact that the kernels are not strictly positive, the 
following important property holds. 

wyx, y) = 0 if y--x+n<O, 

wx, Y> > 0, otherwise. 

This means that the o-measure of the set of points for which W”(x, y) = 0 can be 
made arbitrary small if we taken IZ sufficiently large. 

The property itself is evident for n = 1, and can easily be proved by induction. 

W(x, y) = j’” da(z) K(x, z) w-yz, y) 
-cc 

= j+m da(z) KF1(z, y) O(z - x + 1) 0( y - z + n - 1) 

- B(; - x + 4 jz+lszs~~~+n-l W) Kn-Yz, Y>. - 

These properties allow us to apply theorem (p’) [13, p. 2741. Indeed all the con- 
ditions of the theorem are satisfied, once we have made the change of variables: 

u(y) = j ’ e-nA2tz dt or y = E(o), 
-co 

and in these new variables, the integral equation reads 

where 

This proves the first part of the lemma, except the statement about the analyticity. 
But this one is merely a consequence of the fact that z,, , is a simple root of the 
Fredholm determinant D(z), which is analytic in A, and that ul, and v,, are given 
by the ratio of two determinants again analytic in A. 

In order to prove (b) let us introduce the following operator. 

K, = K - zp. 

It is easily seen that K, has the same eigenvalues as the operator K with the 
exception of z, . In fact if 

iKf=zf (f f 0, = f ZlJ 
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then v(f) = 0 since ;~(f) = v(Kf) = z&f). Conversely, if 

W,f=zf (f#O,z#O) 

then z~(f) = v(W,f) = v(Kf) - z&f) v(?F’,J = 0 and consequently 

IQ- = Q&f + z&f) Y, = W,f = zf 

in which z # z0 since under the contrary assumption from (a) we would deduce 
that f = cY, , which would imply that 

W,f = Kf - Z#(f) lu, = c[z,Yo - z$y(YJ Y,] = 0. 

Hence the eigenvalues of K, all lie inside the circle 1 z 1 = z0 ; that is, 

2-t /I H,n Illln = i;f I/ IldlTL Il1ln = z1 < z0 

according to (a). 
It is easily seen that PK, = D6,P = 0; hence 

so that 

which tends to zero, when n ---f co. 
However, we need a more precise estimate that we can get as follows. 

hence, by Schwartz inequality 

I Gnwnf)(x> - W>(x)/ < zol (s,T dJq z$-l) II v II llfll 

that is, 

where 

e-4 = c,z MY) 

satisfies the properties (A.9). 
Equation (A.10) follows from the definition of E, 

E, = zo -?a II Kn II 



332 H. KUNZ 

and the fact that 

LEMMA 2. (1) 

%W = CYclf-47 c > 0. 

(2) Y,(x) is a decreasing function of x, such that 

0 < Ye(x) < Yo(- co) = 1. 

The functions YiNI defined by 

(A.1 1) 

(A.12) 

Y;“‘(x) = I + 5 (-l)k z;‘” L’ da(x,) /;I-’ do(x,) .a. j-“-‘-l do(x,) (A.13) 
k=l --m 

constitute a converging sequence of upper and lower bounds to Y,,(x). More precisely 

Yp-l)(x) < u’,(x) < YJyx) (A. 14) 

(3) Considered as a function of x, Y,,(x) can be extended to an entire function 
of x. ThisJunction is uniformly bounded in x on any strip: 

of the complex x-plane. 

(4) Keeping x real, Y,,(x) can be extended to an analytic function of h in a 
neighborhood D of the positive real axis. Moreover this function is uniformly bounded 
in h and x, on all the compact subsets of D. 

Proof. (1) 

hence 

WJO(X) = J-1’ 4 e-nh2rzqd y) = /-rel dy e-nA2y2~O(-y); 

Zaps’ = Jzz dy e-pAz2/2~o’(+y) %w = %(--xX 

But this is nothing else than the integral equation zOvO’ = ody,‘, which we know 
to possess only one solution corresponding to the eigenvalue z, , namely, 

%‘W = q&x) = cul,(x). 
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(2) We already know that Y,,(X) > 0. It is decreasing, since 

It is uniformly bounded, because it belongs to Z2(R, u) 

zo I Yo(x)12 = 1 jz; WY) lu,(Y)12 < (j’” WY)) II yo l12. --1c 
For convenience we have chosen the normalization Yo(- co) = 1. The functions 
YiN) converge uniformly to Ye(x) on all the compact subsets of R. Indeed, 

s X-l 

Ye(x) = 1 - z;l dot Y) ul,( I4 -,7z 

so that 

Ye(x) -- YAN’(X) 

= (-l)N+l Z-$N+l) j-z1 dU(X,) j--l d+,) *'* c-l d+,+l) Y&N+l), 

and since 0 < Ye(x) < 1, 

(j+,= du(x)),+' --m 

and 

Yc2q.y) > Y (x) 0 1 0 > yC2--1) 0 (4 

(3) We have just seen that Ye(x) is given by the uniformly convergent series 

Y,(X) = 1 + E (- 1)” Zik jZP1 du(x,) J“‘+ du(x,) .. - /“-‘-’ du(Xk) 
k=l --co --P -cc 

when x belongs to a compact subset of R. 
Now allowing x to be complex, let us rewrite the term of order k of this series 

as follows. 
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After we have made the change of variables 

Xl - x = Yl 9 xi+1 - xi = Yi+1 3 i= 1 ... N - 1, 

we get 

I a, / < J-l dy, ... j-’ dy, e +~h”k(lmz)2-nA2(~,+Re~)z-~~~-=A2(ylf...+y~+Re~)z 

--co --3o 

= [e~A2(Imx)2 k 
] s_Ryz- du(x,) jy du(x,) ..* .i”‘-’ du(x,) 

[e 
dbxd2 k 

< 
1 

k! 

This shows that ak(x) can be extended to an analytic function on any strip of the 
form a < Im x < b, and that 

1 ul,(x)~ < exp 1~;’ exp [ 7rX2(Im x)” 1 +m da(y)] 1. 
--I) 

Hence the series converge uniformly on any strip to an analytic function and Y,,(x) 
is uniformly bounded on such strips. In this way we have extended Y,,(x) to an entire 
function of X. 

(4) We already know that z,(h) is real analytic on (0, +a) and strictly 
positive on this axis. Hence it can be extended to an analytic function in a neighbor- 
hood D of this axis and such that z,(h) # 0 in D. 

Proceeding as before, we get 

I Y,(x)1 < exp !I z, 1-l J-z dx e-n(RPh”)ra/. (A-15) 

Hence the series converges uniformly to an analytic function of h on all the compact 
subsets of D. Equation (A.1 5) also shows that Y,,(X) is uniformly bounded in X 
and x, on such subsets of D. 
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