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The Coulomb energy of N equal charges placed in a circle is calculated. C;Jnlrary 1o the common belief, the configuration
with the minimum energy does not always correspond to the symmetrical placement of all N charges on the circumference.
This is true only for N < 11; for M > 11 the configuration with N — 1 charges on the circumference and one {Nth) charge in the
center of the circle is energetically more preferable. Therefore. for N > 11 there will be a spontaneous “electrostatic ejection” of

‘the Nth electron from the circumference into the center of the circle. The related problem of the equilibrium configuration of

- N point charges on a sphere is also briefly discussed.

What is the configuration with the minimum en-_
ergy for the system of V equal point charges confined
within a circle?

A natural answer seems to be that, due to the
Coulomb repulsion, the charges will arrange them-
selves in equally spaced positions on the circumference,
Le. N charges will be in the vertices of the regular N-
side polygon inscribed into the circle; This statement
* appears to be so obvious that, to my best knowledge,
nobody ever bothered to verify it by a direct calcula-
tion of the total electrostatic energy (W). Such 2 cal-
culation, performed in the present paper, shows that
the answer to this question is not so obvious as it
might seem at first glance [1].

Consider a system of N equal charges ¢ which are
free to move inside the circle of radius R. Let W
be the total Coulomb energy of the configuration
when all N charges are symmetrically spaced on the
circumference of the circle:

= 2
W KE‘NQ [ty =1l | (1
Similarly, one can consider the electrostatic energy
(£) of another configuration, when only N — 1 charges
are at the vertices of the inscribed regular polygon
(“N — 1-gon™) and one “extra” charge is “ejected” to
the center of the circle. A common belief is that al-
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ways (L.e. for all N) W < E, i.e. that the configuration
which has all N charges on the circumference is ener-
getically the most preferable one, regardless of the
value of N. . )
Table 1 gives the values of W and £ for various V. . '
One can see that W < E only for N < 11 (fig. 1). Start-
ing from ¥ = 12 the opposite statement is true, i.e, E -
< W (fig. 2). Using a simple BASIC program on the
TRS-80 pocket calculator, I checked the non-equalily

. E<WtoN=400 1], but as was later proved by

Webb [2] it holds for any integer N > 11.

This result can be interpreted in the following way,
For N > 11 it will be energetically beneficial for the
system of ¥ charges placed originally on the circum-
ference of the circle to “expell” one charge to the
center of the circle. By analogy one might conclude
that a similar “effect” should also take place for the
system of NV charges placed on the inner surface of a
sphere. This is, however, not so, As was pointed out
in several follow up letters [3—-5], the above result
for the circle follows from the application of three-

- dimensional Coulomb potential to the pseudo-two-

dimensional system, Our circle should properly be

. regarded as a thin disk embedded in three-dimensional ;

space and then the charge at the center of the circle |
is actually at the center of one of the flat surfaces of 5
the disk.




voleme 123, number 1,2 CHEMICAL PHYSICS LETTERS 3 January 1986

: Tahle 1
i Energy of the configuration with all N charges on the circumference (W), with one charge “ejected” to the center of the circle

i (&), and their difference W ~ £ (in units Q%/R)

N=3". 1.732050808(W) N=4 3.828427125 N=5§ 6.881 909605
: o LSE) 4,732050808 7.828427125
—0.767949192W - E) -0.903623683 - —0.946517520
N=6 10.96410162 N=17 16.13335410 N=8 2243892677
1188190961 : © 16.96410162 23.13335410
~0.91780799 -0.83074752 , -0.69442733
N=9 29.92344920 . N=10 38.62449898 N=11 4857567512
30.43892677 38.92344520 4862449898
. —0.51547157 . —0.29895022 —0.64882386
Nwi2 59.80736155 N=13 72.34728955 N=14 86.220964175
59.57567512 . 71.80736155 - 85.34728955
+0,23168643 _ +0.53992800 : +0,87367520
N=15 101.4519980 N=20 198.6904722 N=100  7529.28523
100.2209648 1953689723 .- 7 _ T46L77474
+1,2310332 _ +3.3214999 T +66.51049

some kind of “periodical law” should be expected: at
some values of & the addition of a next charge will re-
sult in the appearance of the next circle of point
charges. .

Recently I discussed a rather peculiar situation
which may originate from the Coulomb repulsion be-
tween two electrons in a system with four trapping
sites {8,9). For some specific geometries of a four-site
impurity complex the only allowed spontaneous ra-

Fig. 1. The equilibrium configuration for 11 equal point diative transition will be a simuitaneous jump of both
charges in a circle (all 11 charges are on the circumference). electrons. The system considered in the present paper
provides another, purely classical, illustration of unex-
A further elaboration of the problem of N discrete pected peculiarities of the Coulomb interaction.

point charges confined to a disk will be an interesting In conclusion I would like to mention another in-
exercise. It will likely establish the gradual appearence teresting and related problem, namely: *“What will be

- of concentric circles of charges and in the limit of ¥ the stable (least energy) configuration of N equal

.= oo gne should expect a continuum charge distribu- point charges on a sphere?” This problem dates back
_tion of the type « (R2 — r2)~1/2 [6,7]. By all means to the classical atomic model of J.J. Thomson (e.g.

ref. [10}). Thomson’s model has, of course, been aban-

\ '.lN=12 . doned, but the mathematical problem still remains
o : unsolved, except for some special values of N [11—-14].
o - Despite its purely classical nature and unambiguous
. formulation, this problem is very intricate and its gen-
- . eral solution (i.e. a common algorithm valid for any
s " integer N) is yet to be found. This problem is of im-

. . . rtance in stereochemistry, botany, virology, infor-
. :Fig. 2. For 12 equal charges the same configuration (laft) is po " 1 ’ s
. unstable (:,ongumbrmm). The stable configuration (right) mation theory, nuclear theory, and elsewhere [14—16].
;" hag ome charge at the center of the circle. Even for the “simple” cases: N=4, 6, 8, 12, and
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20 (numbers of vertices of five regular Platonic poly-
hedrons) there is a very interesting curiosity which
seems to contradict common sense. While the tetrahe-
dron (N = 4), octahedron (¥ = 6} and icosahedron

(N = 12) do indeed provide the required minimum en-
ergy configurations, the cube (V = 8) and dodecahe-

‘dron (V = 20) do not! Some degree of the “self-twist-

ing” is needed for the inscribed cube and dodecahe-
dron to reach the global minimuri of the potential
energy [10,11,14]. With some imagination this may
be seen as a classical analog of the Jahn—Teller effect,
It, perhaps, may be attributed to the fact that tetrahe-
dron, octahedron and icosahedron all have triangle
faces (triangle is a rigid figure), while the cube and
dodecahedron have “soft™ deformable faces (square

and pentagon faces, respectively).
It is also worth noting that the quantum treatment _

of both problems (charges on a thin disk and on the
spherical surface) may appear viable for the variety of

chemical physics and other problems mentioned above.
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