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Influence of flexoelectricity on electrohydrodynamic instabilities
in nematics

by N. V. MADHUSUDANA and V. A. RAGHUNATHAN
Raman Research Institule, Bangalore 560080, India

We have incorporated the flexoelectric terms in developing onc-dimensional
models of E.H.D. instabilities in nematics both under D.C. and A.C. cxcilations.
1t is shown that, using this model, we can account for the following experimental
observations, which could not be adequately explained by curlier modcls: (i) The
observalion of obligue rolls whosc wave vector g makes an angle x with the
undistorted director n,, up to seme frequency vg in the conduetion regime; {ii) the
oblique rolls found in the diclectric regime; and {ili) the “longitudinal” E.H.D.
instahilities in somc sysicms with negative conductivily anisotropy. We also
present some experimental observalions under D.C. excitation.

1. Introduction :

The electrohydrodynamic instabilities exhibited by nematics with ncgative or
weakly positive dielectric anisotropy and positive conductivily anisotropy are well
understood in terms of the Helfrich [1] und Orsay [2, 3] models. However, there are
some aspects of these instabilities that cannot be understood using these models:

(i) the observation of oblique rolls whose wave vector g makes an angle with the
undistorted director n,. up to a [requency v, in the conduction segime [4];

(i} the chevron pattern obscrved slightly above the threshold in the dieleetric
regime, in which the wave vector of the rolls makes an angle with ny [5];

(Gii) the EH.D. instabilities observed in nematics with negative conductivity
amsotropy [6. 7].

We have recently shown [8-10] that the above observations can be accounted for
by incorporating flexoelectricity [11] in the theory of E.H.D. instabilities. Flexo-
electricity influences the problem in two ways. First, the action of the totl electric
field in the medium on the flexoelectric polatization [11]

P = ¢nV-n+ ¢(Vxnxn _ )

leads 1o an additional torque on the director. Sccondly. P contributes to the space-
charge density @ in the medium. given by

V-D = 4nQ, (2)
where
D = :,E + Ae(n-E)n + 47P (‘3}

is the displacement vector. In this paper we present the detailed results ol a one-
dimensional linear analysis [8, 10] that takes into account the llexoclectric terms. The
{heoretical resuits are compared with experimental obscrvations.
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2. The electrohydrodynamic equations

Consider a homogeneously aligned nematic layer lying in the (X, Y) plane with
the dircctor ny along the X axis. Under the action of an electric ficld E, applied along
Z. we assume that the E.-H.D. instability gives rise to oblique rolls whose wave vector
q lies along £, making an angle « with n, (figure 1). In the deformed state n makes
polar angles # and ¢ in the (X, Y, Z) system, so that the components of n in the
(C.n, Z) system are [cos @ cos (x — @), —cos O sin (2 — @), sin ). Since the
boundary conditions are neglected, only the Z component of the velogity v appears
in the equalions. The 1mnwersé field created in the medium due to the space charges
has. by symmetry. only a ¢ component E:. Further, »_, §, ¢ and E; are ussumed to
be functions of ¢ alone.

The system is described by the following equations.

(1) The Poisson equation: V- D = 4nQ. Substituting for D from (3), we get

OE, a0 &
dnQ = s, 7 + AsEye — FE + 4n(e, + e)sc ag= (4)

where z, = ¢ + Acc?, s = sina and ¢ = cos .

1

Figure 1. Coordinate system and definitiens of angles used in the text.



Instabilities in nematics 1791

(i) The charge conservation equation: 0Qidt + V+J = 0, where J = a, E +
Ao (n - E)n. From these, we get
EQ éf

." Aag E = { 3
at (+Jncﬁh £5)

where o, = a, + Aac’.

(iii) The equation of motion, following the notation of {2]. is given by
&y . . , .
g;+dw(gvv) — divie + g’} = QEF,

where ¢ is the density, @ the elastic stress tensor and ¢ the viscous stress
tensor. The inertial term in the above equation is negligible as long as the
frequency of the applied field is not too large [2]. Further, o does not lead to
any lincar terms in f and ¢. Neglecting the inertial and non-lincar terms in
the above equation and substituting for &', the following equation is obiained:

&0 &,
(‘Eg + nl ﬁéﬁ + QEU = 0" (6)
where
fils)
6 = a0 o= glog + (s — )¢,

where «, are the Leslie viscosity coefficients.
(iv) The torgue-halance equation: '
l—-ju]mnc + l—'!_diclcu + ]—‘fﬂcxo — rrh}'drodyn, [ = Y., Z.

Substituling for thesc terms, the [‘ollowiﬁg cquations arc obtained for the
torque balance along ¥ and Z respectively:

du, & Ac LY, dop
70 +°‘2‘3(ng"‘ Mﬁ_fz_ﬁan_Z_EOCEL_ (e, — e)Eys = 0,
(7}
file) & aE.
}"|‘~’3B + (e — e)sky = e L ‘;{2 + (&) + "3)5?—6? = 0, (8)

where ¢ = 8pjor. M = K88 + Ky, L = K& + Ky’ and K| K;and K,
ar¢ the splay, twist and bend clastic constants respectively.

3. D.C. excitation
In the case of D.C. excitation the time dependence in the above cquations can be
neglected since we confine our attention (o stationary solutions. Eliminating v., E:
and @ from the above relations, we get the following two equations in & and ¢:

Jd? 40
L d—df(f — (e; — e3)Es é + (e + e3)0g Eysc? PH = 0, (9}
a8 ax , d
M—= (f? + |:("1 — &) + r"_j(el + e_\)f-'_:| Eys %

Ac o, o &, 2| pa _
+ |:4;¢ .. + 0 an {ep — oglc’ | Ej8 = 0. ‘ {10)
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Material paramelers of MBBA.

K =61 x 10 "dyn % = 6-5¢cP g = 10 x 107" ohm™' cm ™'
K. = 40 »x 10 ?dyn a; = —77-5cP
A
K.= 73 » 1077 dyn oy = —12¢P G_“ - 05
|
g =47 %, = 83-2¢P e, — ey = 1:2 x 107" ¢ 5. units
g = 52 x5 = 46-3¢cP e, + e, = —70 x 10 *c.gs. units

where s, = Agfe. and o, = Ac/o,. The above equations clearly udmit solutions of the
form# = 8, sin"gé and p = ¢, cos ¢&. Substituting these solutions into (9) and (10),
the following relation between £, und ¢ is obtained:

ML§
Aea, o, | L )
- — R O
|: . +ns((aR O’R)C:|4R+}\

t 1

Ej : (1)

where

2 ; PR, % .
F = (e, — e — (e + e, 22 ¢ + (e} — &) (—2 — a“) -
H H
If we now assume, as in the Helfrich model [1], that ¢ = =#/d, where 4 is the sample
thickness, then (11) gives a voltage threshold

2

Min

As S| L '
[ b E&Ea:‘.(a}{ — a“)c‘}— + Fs
G " 4r

-

Vi (12)

For a given sct of values of the material parameters the threshold voltage ¥, can
be calculated for different values of the angle «. The lowest value of V,, gives the
critical voltage ¥, for the onsct of the instability, and the cerresponding value of «
gives the tilt of the rolls at the threshold. The variation of ¥, with «, calculated for
the standard values of the material parameters of MBBA (listed in the table), is shown
in figure 2. For this case the instability sets in at a critical voltage of [-715V with
o = 0-83rad.

From {9) we find that in the absence of the ¢ distortion « = 0. In other words,
the ¢ distortion is essential for the production of oblique rolls. In the absence of the
¢ distortion the system cannot differentiate beiween domains with + 2 and those with
—u, and for physical reasons chooses @ = 0. However, when there is a non-zero ¢,
the relative signs of @, and ¢, depend on the sign of o for any given sign of £,

If the flexoelectric terms are neglected, it follows from (9) and (10) that there
cannol be a ¢ distortion of the director field, and hence @ = 0. Thus in the context
of a one-dimensional model the flexoelectric terms are entirely responsible for the
oblique rolls. In order to clearly understand the influence of these terms, let us simplify
the problem by taking Ae = Oand K, = K, = K, = K. Then (9) and (10) reduce 10

d d0 (e, + e)Aa . . df
K d;‘? - ((?] — & )EI’JS E + %‘ E{,.\'{," g = (. (13)
d*0 ot 5 d¢ e A _, ,
£9 ) + 2 2| s S8 2209 pog o0 (14
K dé' + [((’] (J]] + }"ll {el + 83)(, :| 0¥ dé nl 4?.: O’r E0( {) 0 ( )
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Figure 2. Variation of D.C. threshold voltage ¥, with o calculated for the standard values of

the MBBA parameters listed in the table.

Note thal only the combinations ¢, — ¢; and ¢, + ¢; of the flexoelectric coefficients
appear in these equations. The ¢, — e, terms in the two cquations give the lorque
arising from the action of the external electric field gn the curvature of the dircctor
field. The ¢, + e, term in (13} is the torgue due to the gradient of the transverse
eloctric ficld, and the e, + ¢, term in (14} is the hydrodynamic torque due to the action
of the ¢xternal field on the space-charge density arising from the flexoelectric polar-
ization. If e, — ¢ and ¢, + ¢, have opposite signs then the two flexoclectric terms in
{13) assist each other and favour a ¢ distortion. Let us choose ¢, — ¢y and ¢, + ¢,
1o be positive and ncgative respectively. as is found experimentalty in MBBA. Taking
8,, E, and o to be positive, we find from (13) that ¢, is negative. Since a, is generally
negative, both of the flexoelectric terms in (14) have the same sign. Further, the
flexoelectric torques will be destabilizing if ¢, is negative: at the threshold of the
instability a ¢ distortion of the dirccior and hence a non-zero value of « are favoured.
Similar arguments apply when the signs of both f}, and ¢, are reversed.

The dependence of x on e, — ¢, is shown in figure 3. As e, — ¢,is decreased from
its initial positive value. the flexoelectric torques decreasc and x decreases. As z
becomes smaller, the hydrodynamic torque becomes more dominant and the decrease
in % becomes very rapid. When ¢ — e, is negative and approximately equal to
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Figure 3. Varation ol 2 with ¢, — ¢, calculated for Ae = 0 and K, = K. = K. Note that
x = 0 for a very small range of negative values of ¢, - &;, and below this range the
longitudingl flexoelectric domainsg are oblained.

(Agioj){e, + ;) the neteffect of the flexoelectric terms in (13) becomes negligiblc and
2 gocs Lo zer0. Ase; — ¢, 18 decreased further, the threshold for the static flexoelectric
domains [12] beecomes smaller than that for the EHD instability when

| . ( —2%,6K Aa)m
e — & _

Oy + %y - Oy Oy
and 2 = !z Thus for a small range of valucs of e, — e, (see figure 3) the flexoelectric
terms do not influence the problem, and « = 0. The variation of % with ¢, + &, i
shown in ligure 4. As e, + e, 15 increased from its initial negative value, the flexo-
cleelric torques decrease, and hence o decreases. When e, + e, is positive and in the
range ’
_(a‘; + xs — %) {T”
- — ey — &) < ¢ + &< — ¢ — e )
20(:2 ( | ]) I 3 AO'( | .1.)

{13) and ¢14) cannot be satisfied by non-zerc values of ¢. As can be seen from
figure 4, actually & = 0 over a wider range because of the dominance of the hydro-
dynamic torque at small values of z.
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Figure 4. Variation of z with e, + & calculated for Az = 0and K, = K. = K,. Noic that
x = 0 for a small range of positive values of ¢, + e, :

If we now introduce the elastic anisotropy, (9) and (10) show that, since K, and
K, are Icss than K; in MBBA, the elastic anisotropy favours a non-zero value of . This
is reflected in figures 5 and 6, which show the variations of @ with ¢, — e;ande; + &
respectively, for K, # K, # K, and Ae = 0.

The variations of ¥, and » with Ae are shown in figures 7'and 8 respectively. As
Ae is increased. the stabilizing torque on the director decreases and ¥, decreases. 1t
should be noted that. beyond a certain positive value of A, the Freedericksz tran-
sition has a lower threshold than the EH.D. instability. When Ae is negative the
space-charge density due to the diclectric polarization has the same sign as that due
to the conductivity anisotropy. Therefore, on increasing « from its initial negative
value. the total space-charge density and hence the hydrodynamic torque decrease
(see (10)). The latter equation can, however, be satisfied by an increase in the value
of & due to the flexoelectric terms (figure 8}

It is interesling to note that if both the flexoelectric coefficients ar¢ decrcased by
a factor S, fixing the ratio of (¢, — e3)ile; + &) at the MBBA value, then 4 non-zero
value of 2 is obtained only if § > 0-13 (figure 9).

Figures 10 and 11 show V and x as functions of Ag/o . . When the latter has a small
value. the Carr-Helfrich mechanism is not very efficient and the flexoelectric terms
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Figure 5. Variation of x with ¢, — ¢, caleulated for Az = 0 and including the elastic
anisotropy. Note that o does not go to #ero in this case.

dominate, and hence o and ¥, are large. As Agja, is increased, the Carr-Helfrich
mechanism becomes more cfficient and both ¥, and x decrease inilially, With further
increase in Acjo_, ¥, continucs to decrease while « gradually increases, The increase
in Agjo, increases the transverse electric field gradient (scc (5)) and hence the
flexoelectric torque on the director as well as the value of z.

3.1, Experimental results

Most of the D.C. studies on E.H.ID. instabilities in nematics have been made on
MBBA. This material is chemically unstable, and the D.C. instability exhibited by it
is known to be influenced by charge injection at the clectrodes [5]. Consequently
the optical pattern observed at the onset of the instability is not the set of linear
rolls expected from the Carr-Helfrich mechanism, but rather a complicated two-
dimensional pattern [5, 13], We have studied a room-temperature nematic mixture
containing two chemically stable compounds, namely CE-1700 and PCH-302 from
Roche Chemicals. The low-{requency principal dielectric constants and the principal
conductivities were measured ut 1592 Hz using & Wayne Kerr (B642) bridge. The
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Figure 6. Variation of o with e, + e, calculated for Ae = 0 anrd including the elastic
anisotropy. In this and some of the other figures the coarseness in the plot is due to a
relatively low resolution on the monitor from which a hard copy was obtained.

values obtained at room temperature are: ¢y = 3-3,¢; = 43andojo, = 1'1. Asour
main objective was 10 study the influence of flexoelectricity on the D.C. E.H.D,
instability, we also measured the flexoelectric coctlicienty of this mixture. The
experimenlal details are described elsewhere [E4]. (e, — ¢;}/K and (e, + &;)/K were
found to be 100 and — 180c.g.s. units respectively. Note that these values are
comparable to the MBBA values (sece the table) and have the same signs,

The sample thickness was typically about 20 um in most of the studies. Under
D.C. excitation the E.H.DD. instability sets in as a set of convective rolls (figure 12).
Further, the instability was not observed when the thickness of the sample was less
than about 5 um. As is well known [2], the existence of a critical thickness below which
the E.H.D. instability cannot be observed is characteristic of the Carr-Helfrich
mechanism, where the space charges are formed owing to the anisotropy ol the
electrical conductivity in the presence of a bend distortion of the director ficld. As the
thickness of the sumple is decreased, the director relaxation time decreases, becoming
smaller than the charge relaxation time when the thickness is less than a critical value.
Hence the fluctuations in the director field do not last long enough for the formation
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Figure 7. Varation of the critical volluge ¥, with the dieleciric anisolropy Ae.

of space charges. Further, as can be seen from (2) and (3), the flexoelectric polar-
ization makes an additional contribution to the space-charge density. The above
argument concerning a critical thickness remains valid for charges arising from both
mechanisms. We: conclude that these mechanisms are responsible for the D.C.
instability in our nematic mixture, which is observed only above a critical thickness,
and that the influence of charge injection is negligible. The instability was found 1o
‘setin at a threshold voltage of about 8:3V, with the wave vecter ol the convective rolls
making an angle of about 20° with the direction of initial alignment of the director.
Although the occurrence of these oblique rolls is clearly predicted by the theory
presented above, a detailed comparison of the theoretical predictions with the experi-
~mental results is not possible since many of the material parameters of the mixture
under study arc unknown.

We also found that the widih of the optical domains is approximately twice
the sample thickness. Dust-particle motion within these domains clearly shows that
each optical domain consists of two convective rolls of opposite vorticity. This is
also indicated by the observation that an edge dislocation in the optical pattern
corresponds to the termination of just one optical domain (figure [2).
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Figure 8. Variation of o with the dielectric anisotropy A,

Figure 13 shows the dark fringes obtained when the sample, placed between
crossed polarizers, is viewed through a tilting compensator.-These dark bands corre-
spond to regions where the phase difference introduced by the sample in the incident
lincarly polarized beam is offset by the compensator. These fringes show very clearly
that the effective birefringence of the sample varics more sharply at the bright lines
of figure 12 than in the region midway between two bright limes. When the ficld is
increased beyond the threshold, this asymmetry in the variation of the effcctive
birefringence in these two regions becomes more pronounced (figure 13(h}). These
observations indicate that the director profile within the rolls is non-sinusoidal, with
the curvature in the region of the bright lines being much stronger than that in the
region midway between two bright lines, The increase in the asymmetry with field
strength above the threshold shows that non-linear terms are responsible for the
observed optical pattern. Further, when the field direction is reversed, the bright lines
making up the optical pattern are found to shift by about half the optical-domain
width. The polarity dependence of the opiical patiern suggests that flexoelectricity
may be responsible for the non-sinusoidal director profile. since it is the only bulk
property of a nematic that couples linearly to an external electric field. Tncluding the
second-order terms and taking & = 0 for simplicity, the torque balance equation
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along Y is given by

d*8 A7, w, & [ Az Ag . o3 dl
Kl_'\ — 2o = =F > — 5 > L A — .
S dXxe |:4'TI 7) N n 4n ( & a ):| bl — et o) Hy £o0 ax 0
(15)

where 4 = Hx, + 25 — &), The lone quadratic term in the above equation arises
from the action of E, on the flexoclectric contribution to the space-charge density.
This equation was solved graphically by the phase-plane technique, using the MBBA
values of the material parameters. The resulting non-sinusoidal @ profile and the.
effective birefringence An arg shown in figure 14. The variation of Ax is sharper in
regions like B than in regions like A. The incident light is therefore brought to locus
at two different planes by the two types of regions. When the microscope is focused
on the set of bright lines due to regions like B, which is closer to the sample, the lings
corresponding to regions like A become very diffuse and faint. The disposition of the
convecuve rolls with respect to the bright lines shown in figure 14 agrees with the
observed dust-purticle motion. When the ficld is reversed, the direclor ficld in regions
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Figure 10.  Variation of the critical vollage ¥ with Agjo, .

like A becomes mote distorted than in regions like ‘B, and the bright lines shifi to A
in agreement with the observations. '

We should note here that, as discussed by Hirata and Take [15], an asymmetry in
the optical pattern will also arise from a sinusoidal dircctor profile in the convective
rolls. This is caused by tilting of the rays due to the periodic variation of the cffective
extraordinary refractive index in the sample. However, this weaker asymmetry docs
not depend on the polarity of the applied field. since the director profile in the con-
duction regime does not change with the sign of the field. and is also present with an
applicd A.C. ficld. . .

Qur experiments also indicate that the fluid particles move along helical
trajectories within the rolls. A three-dimensional model developed by us [9] that takes
into accounl the boundary conditions shows that the flexoelectric eftect is entirely
responsible for the helical flow. When the flexoclectric terms are neglected, this model
is in agreement with that developed by Zimmermann and Kramer [16] using
stress-free boundary conditions. More recently the latter authors have also reported
calculations taking flexoclectric terms into account [17].
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4. A.C. excitation
Eliminating ». and E, from (4)-{8) and assuming the solutions

¥ = (o) exp (igd),
¢ P(t) exp (igl),
0 = Q) exp (igd),

where ¢ = a8/d¢, the following equations are obtained describing the response of the
system to an external etectric field:

b+ ¥ 9f’¢+%Q =, (16)
2 2
rj) e, E, o '
ﬁb'i‘ﬁ . nhb'i‘ = 0, (17 1

Q+%+J¢En¢+%¢ =0, (18)
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Figure 12. Photograph of the E.H.D. pattern observed slightly above the threshold of the
D.C. instability in a room-lemperature nematic. The orientation of the undistorted
director ny is indicated in the figure. Note that the edge dislocation in the pattern
corresponds to Lhe addition of one optical domain, which has two convective rolls of
opposite vorlicity as explained in the text. The samplc thickness was about 15 pm.
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Figure 14. Top: non-sinusoidal director profile obtained from (15). Centre: resulting variation
of the effective birefringence An with X {for n, = 1-776% m = 1-549). Bottom: the
disposition of the convective rolls agrees with the observed dust-particle motion. the
regions B corresponding to the bright lines of figure 12.

v being the frequency of the applied A.C. field. Taking solutions of the form
W (1)
@) = C,exp{A4),
Q) = Cpexp {ALt)

for one hall-period of the applied field, the following characteristic equation is

C, exp (#{1).

obtained:
1 1 1 1
K - )2 3 Rl k]
= (T1+T“T¢,+’CTQ)
v r €0 | 1 N L e,0 155 Ac, E}
T T, K T T, T'T.,if 7, Haht HaT .
+ I —_ &.Ql _ %(’*‘;Eﬁ + ngﬁff)uig —_ 14_'0—\"’502 + A{"JJ’QlE‘? 0. (19)
T, T, nit, T 2 0. T, it



1806 N. V. Madhusudana and V. A. Raghunathan

The general solutions are of the form

.
£

O = 3 e (—)

6 = ibjcxp(ﬂ),
i=1 T
1 2,
Q0 = 3 gexp ({)

where g, are arbitrary constants, Z; are the eigenvalues of (19), and
b = Ty[tT,Ae, B} — we (AT, + 1) a

! T,tTe,0 Ey — v AE AT, + 7)) 7

.= my (AT, + DT, + 1) — 7T, T,0e,E; N

! TT¢[TT¢€9915:} - ?tAEr}(i_,«'T¢ + 1)] !

It is clear from (16)-(18) that when K, changes sign after every half period, cither
¢ and Q change sign or ¢ changes sign. Thus there are two sets of solutions possible,
corresponding to different physical situations, as in the Orsay model [2, 3]:

(¢) the conduction regime: here @ and ¢ oscillate with the ficld but ¥ does not, i.e.
QU + 1/y) = -0,
B+ 1) = — o), (20)
gt + 172v) (),

() the dielectric regime: here i oscillates with the field but O and ¢ do not, i,
g+ 12v) = —¢(),
Qi + 1/2v) o, (21}
Pt + 1/2v) = o).

In order to find the threshold of instability, a sel of cigenvalues 4;, 4, and A, of
{19) must be found that satisfy cither {20} or (21). The problem was solved numericaily.
Fora given set of values of the material parameters and a given frequency, we choose
some values of » and the voltage V" and obtain the eigenvalues of (19). The voltage
V'is then varied till the s satisfy onc of the two conditions corresponding (o the two
regimes of instability. This value of ¥ is the threshold voltage V), for the particular
value of x chosen. The calculations arc repeated for different values of x, The
minimum valuc of ¥, gives the critical voltage V. for the onset of instability, and the
corresponding value of & is the angle between g and ny at the onset of instability. The
calculations are then repeated for different values of the frequency of the applied field.

The variation of the critical voltage ¥, and the corresponding value of o with
frequency are shown in figure 15 for the MBBA paramcters (sce the table) with
g, =3 x 10 "ohm™ em™'. Curves (&) and (¢) correspond respectively 1o the
conduction and dielectric regimes. Curve (h) is the re-stabilization branch, above
which the conduction regime cannot exist. The dashed lines in the stability diagram
indicate regions with a non-zero value of «, We see from the figure that oblique
rolls are obtlained up to a critical frequency v, in the conduction regime, as found
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Figure 15. Upper section: Threshold voltage (curve {a)) and restabilization veltage (curve
(&) as functions of the frequency in the conduction regime for MBBA with a =
1'% 10 ®ohm~'cm~'. The low-frequency portions indicated by dashed lincs are
characterized by non-zero values of a. The frequency dependence of the voltage at
threshold for a 20 pm thick sample in the dielectric regime is shown by curve {¢). Lower
section: Variations of tilt angle « of the oblique rolls with frequency. (@), (b) and {c)
correspond to the respective branches in the upper section.

experimentally by Ribotia er af. {4]. Further, the ratio vy iv., where v, is the cut-off
frequency of the conduction regime, is comparable to the experimental value [4].

Oblique rolls are also obtained along the restabilization branch up to a frequency
v,, with vy < v, < v,. Therefore, for frequencies in the range vy < ¥ < ¥, although
normal rolls are obtained at the threshold; we can expect oblique rolls as the field
strength is raised. This is again in agreement with the observations of Ribotta e al.
[4]. A non-linear analysis is needed to calculate the voltage at which this transition
takes place.

In the dielectric regime a non-zero value of « is obtained at the threshold for all
frequencies (see figure 15, curve {(c)). Experimental observations in this regime are
available only on MBBA [5]. In this case a set of normal rolls is seen at the threshold.
We nole here that if the flexoelectric coefficients are decreased by a factor S, keeping
the ratio (¢, — e;)/{e, + ;) fixed, then a non-zero value of « is obtained only if
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Figure 16. Variation of « with the factor S by which the flexoelectric coefficients are decreased,
at 100 Hz in the dielectric regime,

S > 0-74 (figure 16). It is possible that the experimental values of the flexoclectric
coetficients of MBBA listed in the table may have been overestimated. We should
note, however, that, with a very slight increase in the field above the threshold, the
chevron pattern consisting of ebligue rolls is observed in MBBA [5]. In view of our
earlier discussion concerning the occurrence of obligue rolls above the threshold in the
frequency range v, < v < v, in the conduction regime, we believe that flexoelectricity
is again responsible for the oblique rolls found in the chevron pattern.

The relaxation time of the ¢ distortion, T, is independent of the applied field (see
(17)) and 1ypically of the order of a few hertz. However, because of the coupling to
the other two variables, ¢ is forced to oscillate with the applied field even at higher
frequencies in the conduction regime. Figure 17 (@) shows i¢, @ and ¢ as functions of
time for one period of the applied field at a voltage just above the threshold and at
a frequency slightly less than v; in the conduction regime. The temporal behaviour of
these three variables can be understood from (16)-(18). The ¢ terms in (16} and (18)
are found to be negligible, and hence the evolutions of both ¥ and @ are similar to
those discussed by Smith e g/, [3]. We shall therefore confine our attention to the
evolution of ¢. Let the field be reversed at 1 = 0 when , ¢ and Q are positive and
increasing. Of the two forcing terms in (17), only the one containing ¥ changes sign
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(b}

l

0 1/2v : 1

1
Figure 17. Variations of ¢, ¢ and O with time for one period of the applied squarc-wave
electric field: (a) just above the threshold in the conduction regime at 40 Hz; (b) slightly

below the restabilization curve at 100 Hz; {(c) inthe diclectric regime at 170 Hz. The values
of the material parameters used in thesc calculations are the same as in figure 15.

immediately, and ¢ continues to increase since the O term is stronger than the iy term.
However, as soon as Q becomes negative, both forcing terms have the same sign
and ¢ decreases and changes sign. Thus @ and ¢ oscillate with the applied field.
Figure 17 (b) corresponds to a voltage slightly below the restabilization curve and at
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Figure 18. Variation of the ratios of [requencies v, /v, (curve {@)) and v, jv, (curve (5)) with 4, .

a frequency slightly less than v, Since T, is now comparable to r, the initial decrease
m i is very sharp. The evolution of ¢ is as in the previous case. The larger value of
E along Lhe restabilization branch makes the ¢ icrm in (17) stronger, allowing ¢ to
oscillate at higher frequencics than at the threshold of the conduction regime. As a
result, oblique rolls are obtained along the restubilization branch up to a frequency
e > v,. In the dielectric regime # oscillates with the applied field, while @ and ¢ do
not {figure 17(c)). In this regime a ¢ distortion of the dircctor field can oceur if the
values of the material parameters are suitably chosen, irrespective of the frequency.

It is clear from the above discussion that ¢ is driven and made to oscillate in the
conduction regime mainly by the ¢ term in (17). By increasing the conductivity of the
sample, the charge relaxation time decreases and ¢ is forced to oscillate at higher
frequencics. Figure 18 shows the variations of v,/v. (curve (¢)) and v, /v, (curve (#))
with o) for fixed Ao/gy. As seen from the figure, both of these ratios decrease as ¢y is
increased, with v, /v, decreasing more rapidly at smaller valucs of g

In some maicrials that exhibit a smectic A {or C)-nematic transition the con-
ductivity anisotropy Ag becomes negalive as the temperature is lowered towards the
iransition point. Two regimes of E.H.D, instability are observed in these nematics
with negative Ae, above and below some frequency v, [6, 7]. Both of these regimes are
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characterized by a field threshold. At the threshold of the low-frequency branch a sct
of convective rolls aligned approximately paralicl to the undistorted director ny
(‘longitudinal’ domains) arc found. The width of these rolls is comparable io the
sample thickness. In the high-frequency regime a set of linear rolls dirccted arbitrarily
in the medium develops at the threshold. The width of these rolls is much less than
the sample thickness.

The Helfrich [1] and Orsay [2, 3] medels require that the parameter

ad & o S
¥ ]__-_l hat |
o= (1-52) 00 T)

where n = Loy + % — %h should be greater than | for EH.D. instabilities to
develop. This criterion is not satisfied by the materials mentioned above. However, we
find that when the ficxoelectric terms are included, E.H.D. instabilities can be
obtained even in such materials. In our calculations we have doubled the values of K.
K,. K, ¢, and ¢, listed in the table, since the values of these parameters are known
to be enhanced close 1o the smectic-nematic transition point. Further, ncar this
temperature, it is also known that the viscosity coefficient «; changes sign [6, L8]. We
assume that o, = 0-5P and Ag = —3 X 10~ ohm~' ¢m™'. We note herc that K|
and K, of 40-8 are found to double within 2-3° of the N -8 transition point {19, 20).
and Ag changes sign at around the same (cmperature. The “‘longitudinal’ E.H.D. rolis
are alse oblained, without increasing the values of the elastic constanis or the
flexoelectric coefficients, by changing Ae 1o —0-2. We do not find solutions corre-
sponding to the conduction regime, but those corresponding to the dielectric regime
do exist. The threshold field is found to be minimized for ¢ = 0. Therefore we use the
Helfrich criterion, ¢ = 7/d, at the threshold, d being the sample thickness. Thus the
width of the rolls is comparable to the sample thickness, as found experimentally for
the low-frequency regime in these malterials. Since the solutions correspond to the
dielectric regime, the instability is characterized by a field threshold. Further. at the
threshold, & ~ 1-34rad and is practically independent of the frequency, i.e. the rolls
are nearly ‘longitudinal’. The frequency dependence of the threshold feld is similar
to that in the diclectric regime of materials with positive Aa (sec figure 15). It is clear
{hat in this casc the spacc-charge formation is due entirely to the flexoclectric effect.
which also accounts for the large value of . The light-scattering experiments of
Goscianski [6] indicate that the curvature of the director field oscillates in such rolls,
confirming that the medium is in the dielcctric regime.

We do not find solutions corresponding to the bigh-frequency regime where
g » wid. Here it should be noted that al high frequencies the experimental value of
Aa will have a posilive contribution from the dielectric loss associated with the
relaxation of g. As shown by Goossens [21], this contribution can cause E.H.D.
instabilitics at relatively high frequencies. Experimentally, even dynamic scattering
has been seen at frequencies of about 30kHz, a1 sufficiently high voltages, apparently
owing to this contribution [22. 23]. This also means that the instability at threshold
is hydrodynamic in origin.

In nematics with a negative Ag at low frequencies it is possible that the clfective
conductivity anisotropy at high frequencies is positive owing to the contribution from
the dielectric loss of &,. These materials can then be expected to show a high-frequency
instabilily similar 1o the dielectric regime in nematics with positive Aag. This can account
for the experimental observation that the high-frequency instability in these materials
goes over smoothly to the ‘standard’ diclectric regime as the temperature is increased.
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Thus the inclusion of flexoelectric terms in the one-dimensional model of E.H.D,
instabilitics in nematics leads to a reasonable explanation of several observations that
were not adequalely accounted for by earlier models.

We are very grateful to Professor 8. Chandrasekhar and Dr G, S, Ranganath for
many helpful comments.
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