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We discuss the temperature dependence of the local d-electron spectral
density function for the symmetric Anderson model in the local spin
fluctuation limit. The present calculation provides a description of the
rapid but continuous transition of the quasi-particle between the high and

low temperature regimes.

THE ANDERSON HAMILTONIAN, first proposed in
1961 to describe magnetic impurities in metals [1},
proved notoriously difficult in regard to extracting pure
numbers to be compared with experimental data. Only
quite recently two important advances were made to
obtain relevant quantitative results from this deceivingly
simple-appearing model:

(i) Wilson's numerical renormalization group (RNG)
technique, which was originally devised for the Kondo
model [2], was generalized to the Anderson Hamiltonian
by Krishna-murthy, Wilkins and Wilson [3]. Their work
provided the static susceptibility of magnetic impurities
in metals for any parameters of the Anderson model.
However, no calculations of any dynamic properties of
the Anderson model have been reported in the frame-
work of the RNG approach.

(ii) Yosida and Yamada developed a convergent
perturbation theory [4] in terms of the Coulomb repul-
sion energy in the local spin fluctuation (LSF) limit.
The latter authors employed a complicated machinery
involving Pfaffian determinants to derive some static
and dynamic properties of the Anderson Hamiltonian.
In particular, they were able to calculate the local
density of d-electron states and to show that at zero
temperature it has a triple peaked structure.

The basic Anderson Hamiltonian is presently under-
stood to model the underlying physics of a large variety
of different systems of great interest. There thus appears
to exist ample reason to try and find simpler methods
than the above ones in order to obtain at least
qualitatively the correct basic properties of this impor-
tant model. In this communication we want to present
a short derivation of the second-order self-energy for
the d-electron propagator using an equation of motion
method pioneered by Gotze and Wolfle [5] in

*Permanent address: Department of Theoretical Physics,
University of Helsinki, SF-00170 Helsinki 17, Finland.

815

connection with the s—d model. At zero temperature
our calculation agrees with that of Yosida and-Yamada,
but ours has the advantage of being applicablé at any
temperature, not only at 7 = 0. This facilitates dis-
cussion of the rapid but smooth change in the nature
of the impurity complex as temperature is varied.

In order to illustrate our approach, let us consider
the Anderson Hamiltonian [1]

H= Z ekoczacka + kzc (chzado + Vk*dzcka)
ko

+ Y E,dld, + Udldyd! od_,. (1)
g

The c}:,, and dl are creation operators for the con-
duction and d-electrons, respectively, and o is the spin
index. We employ standard notation [1—4], we shall
assume here the symmetric situation 2E + U= 0 for
simplicity and work in zero external field. It is con-
venient to measure the strength of the admixture inter-
action whose matrix element is ¥, by
I = aNV(0){IV41%), where N(0) is the density of con-
duction band states at the Fermi level and the angular
brackets denote averaging over the Fermi surface.

We shall use {A4; BY; to denote double-time anti-
commutator and commutator Zubarev functions [6].
They represent the linear response of an operator 4 to
a perturbation which has been coupled to B; they obey
the Heisenberg equations of motion:

z4A4; BY; = ((A,Bl.) + (4, H]; B»;, (2a)
= ([4,B].)—(4;[B, HD);. (2b)

An important quantity to consider is the d-electron anti-
commutator Green’s function

G,(2) = —Udy;dIn;. (3)

We may introduce a holomorphic self-energy function
Zo(w i0) = Ty (w) £ iZ,(w), to represent G, as
follows
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((d.,;d;»; = m—g—(z—)
z ¢

)

To derive the d-electron self-energy in the leading
second order in U, we employ the equation of motion

(2a) for the anticommutator function, which yields
@ —Ey +iD)do:diN; = 1+ Uln_odg;diny, (5a)

and equation (2b) for the new anticommutator function
introduced on the r.h.s. of equation (5a):

€n-ody;diN; @ —E, +iT) =
+ Ulkn_ody;din_ o).

{n_g)

(5b)

Comparing the high frequency expansions of
equations (5a) and (5b) with that of equation (4) and
noting that (n) = 1/2 identically, in the symmetric case,
one finds for the second-order self-energy

To(z) = — UMn_ody;din_ oM. (6)

Since equation (6) is explicitly of the order U2, we may
to this order in perturbation theory calculate it
neglecting correlations. Factorizing in the Fourier trans-
form (time) space yields the absorptive (imaginary) part
of the self-energy as
—w' o’
+ tanh —
T . 2T

" dew'
Zo(w) = UZJ ?(::— [cothw

X-o(w — w)Gg(w").
This formula describes the relaxation of d-electron
excitations with spin o due to localized spin fluctuations
with spin — 0. Above G, may be substituted from
equation (4) neglecting Z, i.e. G"(w) =T/(w?+T?),
and the commutator function x_, = — (n_g; n_ Ve,
the absorptive part of the local d-spin susceptibility,
may be obtained from our previous calculation [7] as

" 1 2il 1 r w
" o) = — T P
X-ow) = 7 Re { w + 2T [w (2 20T ZnT)

1 r
s ”

Here ¥(z) = ¥.(z) + iy (z) denotes the digamma
function [8];

The integral in equation (7) cannot be calculated
analytically for an arbitrary temperature. We have
therefore resorted to the numerical Gauss’ integration
formula [8]. Note that all figures in this paper were cal-
culated for just one representative value U/aT" = 2, for
brevity.

The absorptive part of the self-energy £"(w) is
displayed in Fig. 1(a). At high temperatures (= 10T
and T =T), Z"(w) has a large value at zero frequency
and it decreases monotonically for increasing w. At
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intermediate temperatures (T = 0.3161" and

T = 0.1T7), the intercept £"(w = 0) rapidly decreases
while the maximum in £"(w) moves out to a finite fre-
quency, roughly w = U. In the low temperature limit
(represented by T = 0.01TI"), low frequency relaxation
is inhibited, ="(w = 0) tends towards zero, and in this
limit our calculation coincides with that of Yamada
[4] (except for a different sign convention: our self-
energy function is positive definite, while that of [4] is
negative definite).

Since Z(z) is holomorphic and decreases asymp-
totically as 1/z, its real (dispersive) part £’ is connected
to the imaginary part £" through a Kramer—Kronig
relation. Since Z"(w) is even Z'(w) is odd and we may
express it as an integral over positive frequencies only:

do’ Z'W)
T (W) —w

(W) = f ©)

This function was again computed numerically by
Gauss’ integration formula; it is displayed in Fig. 1(b)
for the same parameters as were used in Fig. 1(a) for
2" (w). At high temperatures (T = 10l"and T =T),
Z'(w) decreases linearly for small w, passes through a
minimum for increasing w and approaches the w-axis
asymptotically from below as 1/w. At intermediate and
especially at low temperatures there occurs a positive
frequency shift: £'(w) first increases with w, it reaches
a maximum value and then starts to decrease until a
minimum is attained and Z'(w) gradually tends to the
asymptotic 1/w behaviour.

Using equation {4) we obtain the following
representation for the d-electron spectral density
function (in zero field there is no spin dependence):

T+ 2"(w)
[w+ Z'(@P+ [+ Z(w)]

G'(w) = (10)
Inserting the self-energy of Fig. 1 into equation (10),
we have produced the curves displayed in Fig. 2. Note
that since G "(w) is symmetric it suffices to consider
positive frequencies only. In the high temperature
(T = 10T") regime one just finds two lifetime broadened
resonances at & = * U/2. For decreasing temperature
(T =T) the low frequency spectral weight starts to
grow at the expense of large frequencies. In the inter-
mediate temperature regime (T = 0.316T" and
T = 0.1T) there rapidly forms a third peak at zero
frequency, which narrows further with decreasing tem-
perature. At the lowest temperatures the central
peak approaches the unitary limiting value and we
exactly reproduce the T = 0 triple peaked structure
obtained by Yamada [4].

The XPS lineshape of 3d-metal ions dissolved in
atuminium {9] is believed to probe the local d-electron
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Fig. 1. The second-order d-electron self-energy Z(w) = Z'(w) + iZ"(w) [equation (6), measured in units of U?/xT]
as a function of frequency for representative temperatures. (a) The imaginary part of the self-energy 2"(w), as
obtained from equation (7). (b) The real part of the self-energy Z'(w) calculated from £"(w) using the Kramers—

Kronig equation (9).

spectral function. It would be interesting to look for

a temperature variation in such spectra.

Owing to its simplicity, the present approach is
easily extended to encompass the asymmetric and

finite field situations, too. Details of these calculations

as well as generalizations to more complicated
Hamiltonians will be presented elsewhere.
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Fig. 2. Temperature variation of the local frequency-dependent d-electron spectral density, as obtained from

equation (10) using the self-energy displayed in Fig. 1. The spectral function is measured in units of I" and we used
the value UfnT" = 2.
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