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We discuss the temperature dependence of the local d-electron spectral 
density function for the symmetric Anderson model in the local spin 
fluctuation limit. The present calculation provides a description of the 
rapid but continuous transition of the quasi-particle between the high and 
low temperature regimes. 

THE ANDERSON HAMILTONIAN, first proposed in 
1961 to describe magnetic impurities in metals [1 ], 
proved notoriously difficult in regard to extracting pure 
numbers to be compared with experimental data. Only 
quite recently two important advances were made to 
obtain relevant quantitative results from this deceivingly 
simple-appearing model: 

(i) Wilson's numerical renormalization group (RNG) 
technique, which was originally devised for the Kondo 
model [2], was generalized to the Anderson Hamiltonian 
by Krishna-murthy, Wilkins and Wilson [3]. Their work 
provided the static susceptibility of magnetic impurities 
in metals for any parameters of the Anderson model. 
However, no calculations of any dynamic properties of 
the Anderson model have been reported in the frame- 
work of the RNG approach. 

(ii) Yosida and Yamada developed a convergent 
perturbation theory [4] in terms of the Coulomb repul- 
sion energy in the local spin fluctuation (LSF) limit. 
The latter authors employed a complicated machinery 
involving Pfaffian determinants to derive some static 
and dynamic properties of the Anderson Hamiltonian. 
In particular, they were able to calculate the local 
density of d-electron states and to show that at zero 
temperature it has a triple peaked structure. 

The basic Anderson Hamiltonian is presently under- 
stood to model the underlying physics of a large variety 
of different systems of great interest. There thus appears 
to exist ample reason to try and f'md simpler methods 
than the above ones in order to obtain at least 
qualitatively the correct basic properties of this impor- 
tant model. In this communication we want to present 
a short derivation o f  the second-order self-energy for 
the d-electron propagator using an equation of motion 
method pioneered by GOtze and W61fle [5] in 
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connection with the s-d  model. At zero temperature 
our calculation agrees with that of Yosida and Yamada, 
but ours has the advantage of being applicable at any 
temperature, not only at T = 0. This facilitates dis- 
cussion of the rapid but smooth change in the nature 
of the impurity complex as temperature is varied. 

In order to illustrate our approach, let us consider 
the Anderson Hamiltonian [1] 

H = ~_. ekoc~oc~o + Z (Vkc~odo + V"~kdtocko) 
k o  k a  

+ ~, Ead~da + t t Udodod_ ad_ o. (1) 
O 

The ctko and do t are creation operators for the con- 
duction and d-electrons, respectively, and o is the spin 
index. We employ standard notation [ 1 ---4], we shall 
assume here the symmetric situation 2E + U = 0 for 
simplicity and work in zero external field. I t  is con- 
venient to measure the strength of the admixture inter- 
action.whose matrix element is V~ by 
F = zrN(0)(l Vh 12), where N(0) is the density of con- 
duction band states at the Fermi level and the angular 
brackets denote averaging over the Fermi surface. 

We shall use ((A; B)) + to, denote double-time anti- 
commutator and commutator Zubarev functions [6]. 
They represent the linear response of an operator A to 
a perturbation which has been coupled to B; they obey 
the Heisenberg equations of motion: 

z((A;B))~ = ([A,B],) + (([A, H];B)) +, (2a) 

= ([A,B]_+) --(64; [B,/-/p>~. (2b) 

An important quantity to consider is the d-electron anti- 
commutator Green's function 

Go(z) = -- ((da; dof))z +. (3) 

We may introduce a holomorphic self-energy function 
t t  

~0(6o --- iO) = ~ ( ~ )  + t~o(6o), to represent Go as 
follows 
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. ? + 1 
((do,da))z = • (4) 

z + iF + ~o(z) 

To derive the d-electron self-energy in the leading 
second order in U, we employ the equation of motion 
(2a) for the anticommutator function, which yields 

(z -- Eo + iF)((do f + f + ;do)) , = 1 + U((n_odo;do)) z, (5a) 

and equation (2b) for the new anticommutator function 
introduced on the r.h.s, of equation (5a): 

((n-odo; dfo));(z -- Eo + iF) = <n-o) 

f + + U((n_odo;don_o)) z. (5b) 

Comparing the high frequency expansions of 
equations (5a) and (5b) with that of equation (4) and 
noting that (n) = 1/2 identically, in the symmetric case, 
one finds for the second-order self-energy 

Y,o(z) = -- U2Rn_odo; alton_o)) +. (6) 

Since equation (6) is explicitly of the order U s, we may 
to this order in perturbation theory calculate it 
neglecting correlations. Factorizing in the Fourier trans- 
form (time) space yields the absorptive (imaginary) part 
of the self-energy as 

dto' [ -- co' 
Eo(to) = U 2 f ~ [coth to2T 

t Fr t 

x X"-o(to -- to )Go(to ). 

+ ta,  

(7) 

This formula describes the relaxation of d-electron 
excitations with spin o due to localized spin fluctuations 

ct  

with spin -- o. Above Go may be substituted from 
equation (4) neglecting Y-, i.e. G~'(to) = F/(to: + F2), 
and the commutator function X"-o -- -- ((n-a; n-o))fo", 
the absorptive part of the local d-spin susceptibility, 
may be obtained from our previous calculation [7] as 

, ,  1 ( 2/F [ / l  F 2---~T) 

,,(i 
Here #(z) = #,(z) + i~ki(z ) denotes the digamma 
function [8]; 

The integral in equation (7) cannot be calculated 
analytically for an arbitrary temperature. We have 
therefore resorted to the numerical Gauss' integration 
formula [8]. Note that all figures in this paper were cal- 
culated for just one representative value UhrP = 2, for 
brevity. 

The absorptive part of the self-energy Y."(¢o) is 
displayed in Fig. l(a). At high temperatures (T = 10F 
and T = F), Z"(to) has a large value at zero frequency 
and it decreases monotonically for increasing to. At 
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intermediate temperatures (T = 0.316F and 
T = 0.I F), the intercept Y."(w = 0) rapidly decreases 
while the maximum in Z"(co) moves out to a finite fre- 
quency, roughly w -~ U. In the low temperature limit 
(represented by T = 0.01F), low frequency relaxation 
is inhibited, ~"(to = 0) tends towards zero, and in this 
limit our calculation coincides with that of Yamada 
[4] (except for a different sign convention: our self- 
energy function is positive definite, while that of [4] is 
negative definite). 

Since E(z) is holomorphic and decreases asymp- 
totically as I/z, its real (dispersive) part Y-' is connected 
to the imaginary part 2;" through a Kramer-Kronig 
relation. Since E"(to) is even ~'(to) is odd and we may 
express it as an integral over positive frequencies only: 

z ' (~)  = 2 ~ T  d-~' z"(~')  
o rr (w') 2 - c o  2" (9) 

This function was again computed numerically by 
Gauss' integration formula; it is displayed in Fig. 1 (b) 
for the same parameters as were used in Fig. 1 (a) for 
~g"(to). At high temperatures (T = 10F and T = F), 
Ig'(to) decreases linearly for small to, passes through a 
minimum for increasing to and approaches the to-axis 
asymptotically from below as 1/to. At intermediate and 
especially at low temperatures there occurs a positive 
frequency shift: ~;'(to) first increases with to, it reaches 
a maximum value and then starts to decrease until a 
minimum is attained and ~g'(to) gradually tends to the 
asymptotic 1/to behaviour. 

Using equation (4) we obtain the following 
representation for the d-electron spectral density 
function (in zero field there is no spin dependence): 

r + z"(to) (10) 
a"(to) = [to + z,(to)]~ + [r  + ~:,,(to)]2- 

Inserting the self-energy of Fig. I into equation (1 0), 
we have produced the curves displayed in Fig. 2. Note 
that since G "(60) is symmetric it suffices to consider 
positive frequencies only. In the high temperature 
(T = 10F) regime one just finds two lifetime broadened 
resonances at to = .+. U/2. For decreasing temperature 
(T = F) the low frequency spectral weight starts to 
grow at the expense of large frequencies. In the inter- 
mediate temperature regime (T = 0.3 16F and 
T = 0.1 F) there rapidly forms a third peak at zero 
frequency, which narrows further with decreasing tem- 
perature. At the lowest temperatures the central 
peak approaches the unitary limiting value and we 
exactly reproduce the T = 0 triple peaked structure 
obtained by Yamada [4]. 

The XPS lineshape of 3d-metal ions dissolved in 
aluminium [9] is believed to probe the local d-electron 
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Fig. 1. The second-order d-electron self-energy X(co) = Z'(w) + iZ"(co) [equation (6), measured in units of U2/TrP] 
as a function, of frequency, for representative temperatures .(a ) The, ima gz'na ryp  art of the self-ener gy 2;" (co), as 
obtained from equanon (7). (b) The real part of the self-energy Z (co) calculated from ~"(co) using the Kramers- 
Kronig equation (9). 

spectral function. It would be interesting to look for 
a temperature variation in such spectra. 

Owing to its simplicity, the present approach is 
easily extended to encompass the asymmetric and 
finite field situations, too. Details of these calculations 
as well as generalizations to more complicated 
Hamiltonians will be presented elsewhere. 
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Fig. 2. Temperature variation of the local frequency-dependent d-electron spectral density, as obtained from 
equation (10) using the self-energy displayed in Fig. 1. The spectral function is measured in units of I ~ and we used 
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