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In the present tutorial, solar energy conversion is described in the framework of endore-
versible thermodynamics, i.e. a recently developed subset of irreversible thermodynamics. From
a general thermo-chemical endoreversible engine, we deduce the photovoltaic, the photothermal
and the photochemical solar energy converter, besides of a few other, non-solar devices.

1. Introduction

The name endoreversible thermodynamics was introduced by Rubin [1]. It refers
to a subset of irreversible thermodynamics. Modelling and calculations are easy,
because all irreversibilities are restricted to transports. No irreversibilities are
assumed to be related to conversions, mixings, etc. In the present paper, we will
make matters even more transparent, as we will restrict our selves to stationary
transports.

From a general framework, we will deduce various special cases, in particular
those that can be applied to solar energy conversion. Thus we will follow the
deductive approach: from the general model, the special cases will be derived. This
is in contrast to previous publications [2,3], where an inductive line of reasoning
was followed: from simple to more complicated examples, the general theory of
endoreversible energy conversion was constructed.

2. Endoreversible engines

In the present section, we introduce endoreversible thermodynamics, a special
class of irreversible thermodynamics. In an endoreversible system all irreversibili-
ties are located in the transports from the source to the converter and from the
converter to the sink. The inner part of the converter, however, is reversible.
Hence the name endoreversible engine (ev§o meaning inner).

Fig. 1a shows a general endoreversible engine. It consists of four reservoirs.
Their temperature T is constant, and so are their intensive quantities x, y, ...
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Fig. 1. Endoreversible engines. (a) Most general endoreversible engine, (b) endoreversible engine with
only losses in the supply.

Each reservoir can supply an energy current U as well as extensive quantity
currents X, Y, ..., where the current X is associated to the parameter x, in such
a way that the product xX is a work current. Some examples of intensive variables
x and their associated extensive variables X are given in table 1.

The reservoirs #1 and #2 are the external reservoirs (source and sink, respec-
tively) whereas the reservoirs #3 and #4 are the internal or intermediate reser-
voirs. Between reservoir #1 and reservoir #3 is an irreversible conductor, between
reservoir #3 and reservoir #4 is a reversible engine and between reservoir #4 and

Table 1

Analogy between different thermodynamic quantities

Engine x X

chemical reactor chemical potential u particle flow N
pneumatic engine pressure p volume flow ¢

electrical circuit voltage V' current [
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reservoir #2 is a second irreversible conductor. In each of these three parts the
following axiom holds:
Axiom 1: conservation of energy:

u=U, U=uU,+w, U,=U,

where the U’s denote the energy currents and W denotes the produced power, i.e.
work per unit time.

The fact that the inner engine is reversible means that it satisfies the following
second axiom:
Axiom 2: conservation of entropy:

S$,=35;,

where the §’s are the entropy currents associated with the energy currents U and
the currents X, Y,...:

S U—-(xX+yY+...)
= T .

The condition S, =S, thus expresses that no entropy is generated in the engine
itself, in accordance with the name endoreversible: reversible in its internal parts.
Thus all entropy generation takes place in the two conductors, i.e. in the communi-
cation between the engine and the external world, the latter consisting of reser-
voirs #1 and #?2.

Note that we can also write

where Q is U — (xX +yY + ...), the equality
U=0+(xX+yY+...)

having to be interpreted as follows: the energy current U consists of two parts, i.e.
a “high quality” part xX +yY + ... of power and a “low quality” part Q of heat.

The communication rate is assumed to be governed by transport equations of
the form

Ui =Ty, xy5 915 ) = fi(T5, X3, Y352 )5
X, =g(Ty, xp, yi5---) = 8(Ts, X3, ¥35--.),
Y, =h(Ty, x1, y1,--.) = (T35, X5, ¥3,-..),

.y

for the communication between #1 and #3, and similarly by
Uy, =fo(Ty, x4, Y45---) = fo(Tys X3, ¥3,--2)s
X, =8:(T4, x4, Va»---) — 82Ty, X3, ¥2,--2 ),
Y, =h,(T,, x4, 4,...) —ho(T5, x5, ¥5,...),

“ey
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for the communication between #4 and #2. Here f, g, #,,.... f5, &5, 1»,... are
assumed to be known mathematical functions.

The total entropy creation rate is given by the entropy flow leaving the system
minus the entropy flow entering it:

2 @
ZS:SZ_Slsz_?I’
of which the contribution
0 0
T3 Tl
is generated in the conductor f|, g,, A;, ... and the contribution
o o
7, T,

is generated in the conductor f,, g,, A,,....

For sake of simplicity, we will restrict ourselves almost exclusively to cases
where rates are limited by the exchanges between reservoirs #1 and #3. Thus we
assume no limitation in the communication between #4 and #2. We say that
reservoirs #4 and #2 are short-circuited. Thus

I,=T,, x4=Xx;, Y4=Y,,
See fig. 1b. Therefore we can simplify notations, by dropping subscripts for f, g,
h,...:

U =f(T, xq, yis--) = f(T5, X3, y35.-.),

X, =8(T, xi, ¥i5---) —8(T5, X5, ¥3,...),

Y, =h(T,, x, ¥1,...) = h(T5, x5, ¥5,...),

The only exception, where we will have to consider a finite conductance between
reservoirs #4 and #2, will appear in section 5.3.

3. Endoreversible thermo-chemical engines

In thermo-chemical reservoirs we have only one intensive variable in addition to
the temperature 7, i.e. the chemical potential x. The extensive variable, associated
with it, is the particle current N. Thus x = x and X = N. See fig. 2a.

To the two general axioms of section 2, i.e. to

U, = uyN, Us —u3N;

Uu,=U,, U,=U;+W, T = T ,

we add a new, specific, axiom:
Axiom 3: conservation of particles:

N;=N,, N,=N;,.
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Fig. 2. Endoreversible engines. (a) Thermo-chemical engine, (b) thermal engine, (c) chemical engine.

The reader will easily verify that the three axioms together lead to

T

2
T M3 T “2)N1’

U, +

(7
w=|1--2
T3

a generalised Carnot law.
The conduction laws become simply

U =f(Ty, ny) —f(T5, m3), Ni=8(Ty, uy) —8(T5, 1),

where the functions f and g are assumed to be two known mathematical
expressions.

The extracted work W is thus given by

T,
W= (1 - i)[f(Tl’ my) — f(T5, IJ~3)]

T,

+ —
T3/J«3 M2

[g(Tl’ ny) —8(Ts, I*3)]-

For fixed parameters of the “external” reservoirs, i.e. for fixed T}, u,, 7, and p,,
the extracted power W is thus a function of the two independent variables T'; and
t3. This function W(T;, p,) usually displays a maximum W, for a particular set
of coordinates (T, u,), called the maximum-power point MPP.
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The entropy creation rate is given by

B Q; 0O U — 3N, Uy —u; N,

S=_"_=1_ —
L T, T, T, T,

_—— 4+ —
Tl T3

[f(Th K1) _f(T3’ll-3)]

+(‘;_]1 _ %)[g(Tl,/.Ll) —g(Tsm3) |-

This LS(T;, ;) displays a zero minimum for the coordinates (75, ;) equal to
(T, u,), a point called the reversible point RP.

3.1. Linear engines

The simplest functions f and g are
f(T,u)=AT +Bu, g(T,p)=CT+Dy,
where A, B, C and D are constants. We can call 4 and D conductivities and B
and C transconductivities. This linear model is often used to describe non-equi-

librium thermodynamics not-far-from equilibrium.
The resulting function W(T;5,u,) is very simple:

TZ
W= (1 T [A(Tl —T5) + B(u, —#3)]
3
T,
+ THs T B2 [C(T, — T3) + D(, — 13)],
3
such that the maximum-power point can easily be calculated from
oW W
— =0, —=0.
8T, O3

Calculations are straightforward, but involve some cumbersome square roots.

3.2. Radiative engines

In a radiative engine, the particles exchanged between reservoirs #1 and #3,
are photons. After Planck’s black-body spectrum, the functions f and g for
radiative energy-and-particle exchange are given by

m E3dE o E? dE
exp( kT )_ exp( kT

where k is the Boltzmann constant, E is the photon energy and E, is the bandgap
of the radiative exchange (i.e. the larger of the bandgaps of the two materials #1
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and #3). The constants A4 and B, we can call radiative conductivities. Besides
physical constants, they contain emissivities, surface areas, etc.
The above expressions contain the Bose factor from Bose—Einstein statistics:

1

E__ K
exp( M)—l

kT

where u plays the role of a “quasi Bose level” [3,4], analogous to the quasi Fermi
levels in Fermi-Dirac statistics. In real devices, an alternative approach is justified,
using instead a combination

7 1
e""(ﬁ) E )_1
kT

exp( —

of a Boltzmann factor exp(u /kT) and a Bose factor 1/[exp(E /kT) — 1]:
3 2
py o« E*dE w e EXdE
f=A4 exp(ﬁ)fE —TEN g=8B exp(ﬁ)fE —TEy
s ex -1 ¢ exp -1

kT kT
3.3. Solar engines

A solar engine can be modelled as an endoreversible radiative engine, where
i, = 0 (property of the Sun) and p, = 0 (property of the Earth), but u is non-zero
[2,3]. The solar engine has two degrees of freedom: the temperature 75 and the
chemical potential w5 of the solar collector. Such engine is known as the hybrid
solar converter or photothermal / photovoltaic converter or pt/pv converter [3,5].

3.4. Solar cells

When T, equals T, the solar engine is called a solar cell [2,3]. We have only one
independent parameter left, i.e. u;. This chemical potential is related to electrical
quantities, simply by u, =gV, where V is the cell’s bias voltage. From

N, =g(T,,0) —g(T;, py)

we deduce either

« E?dE o E?dE
M= [gexp(i)—l_ngexp(E_'u3 -1 ,
kT, kT,
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Fig. 3. Characteristics of a solar cell. (a) Current characteristic, (b) work characteristic.

or

oc E2 dE “,3 0 E2 dE
N, =B ng——————E l_eXp(k_T)ng_——E 1 )
X\ e, P\ kT

depending on which g-formula we choose. The former expression was introduced
by De Vos and Pauwels [4], whereas the latter was proposed by Shockley and
Queisser [6]. In both cases, the power produced is given by

W=u,;N,.

The functions N,(u,) and W(u,) are shown in fig. 3 . In particular, fig. 3a is to
be interpreted as the I-V characteristic of the solar cell. Indeed, in ideal solar
cells only radiative generation / recombination of carriers occurs, such that we have
I=gN, for the cell’s electric current. Together with V= pu,/q this leads to
W=pu,N, =gV XI/q)=VI The detailed form of the curves [(VV') and W(})
depends on the function g. In particular the De Vos—Pauwels characteristics differ
from the Shockley-Queisser characteristics in the V-range around and above
open-circuit voltage. However, for both g’s, we have the following three modes of
operation of an illuminated diode:

o for V<0, we have 7> 0 and W < 0: the diode works as a photodiode;
o for 0 <V <V, we have >0 and W > 0: the diode works as a true solar cell;
e for V>V, ., we have I <0 and W < 0: the diode works as a light-emitting diode.
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Fig. 4. Operational modes of a solar cell. (a) Photodiode, (b) true solar cell, (¢) light-emitting diode.

Here V. is the open-circuit voltage, solution of the equation
N(V)=0.
Fig. 4 shows the three operation modes (the arrows representing positive currents).
In real materials, also non-radiative processes contribute to the current /. Such
generation / recombination processes (e.g. electron—phonon or Auger interactions)
can be modelled into the endoreversible scheme, by adding the appropriate

reservoirs and conductors. The result is a lower open-circuit voltage and a lower
W

max*

4. Endoreversible thermal engines

In purely thermal engines, there are only temperature differences, thus no

chemical potential differences:
My = Ky = Hj.

Fig. 2b shows an endoreversible thermal engine [2,3]: a heat source at constant
temperature 7, provides heat to a heat collector at temperature T,; a Carnot
engine converts the heat U, into work W and deposits waste heat U, to the
surroundings at temperature 7,. On the one hand, the rate of heat transport is
governed by the temperatures 7, and T:

Uy =f(T)) —f(T5),
where f is some function. On the other hand, the efficiency of the conversion of
heat into work is determined by the temperatures T; and T),: it is given by the
Carnot factor 1 — T, /T;. Thus the rate of work production is given by
T2
W= (1 - i)[f(Tl) _f(T3)]'
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Fig. 5. Characteristics of thermal engine. (a) Current characteristic, (b) work characteristic.

For given values of T, and T, the resulting rates U, and W are thus functions of

the parameter T;, or equivalently of the dimensionless parameter n =1-T7,/T;.

Fig. 5 shows the functions U,() and W(n). The detailed form of these curves

depends on the particular function f. However, for any monotonously increasing

function f(T), we have the following properties:

e for n <0, we have U, > 0 and W < (: the engine works as a refrigerator;

o for 0O<n<1~T,/T,, we have U, >0 and W > 0: the engine works as a true
heat engine;

e for n>1-T,/T,, we have U, < 0 and W < 0: the engine works as a heat pump.

Fig. 6 shows the three operation modes (the arrows representing positive flows).

4.1. Linear thermal engines
For ordinary heat conduction, we have f(T)=AT. Thus
T,
U=A(T,-T;), W=A|1- T (1, -T3).
3

The condition
dw
d—T3 =0
leads immediately to T; = \/ﬁ; and to

max

Woae = AT = [T5)
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Fig. 6. Operational modes of endoreversible heat engine. (a) Refrigerator, (b) true heat engine, (c) heat
pump.

Besides, we have the following simple property in the maximum-power point:

T2
=1—-4/ =.
n T,
These results were discovered independently by Novikov [7] and by Curzon and
Ahlborn [8].

4.2. Solar thermal engines

As mentioned above (section 3.3), solar engines work in the boundary condi-
tions u, = u, = 0. If, besides, also w; equals zero, then we talk of a thermal solar
engine. Both the Shockley—Queisser and the De Vos-Pauwels transport laws
become

« E*dE
AT =Af —py—
Egexp(ﬁ) -1

The transport law can successfully be applied to solar engines with a selectively
black (or grey) absorber [2,3]. A special case is obtained for E, equal zero, i.c. for a
black-body (or grey-body) solar absorber. We can easily verify that this limit case
gives rise to the Stefan-Boltzmann law: f(T) = aT*, where a is proportional to A4
(i.e. equal to w*k“4 /15). The heat flow and the output power are thus

T
U, =a(T} - T$), W=a(1 - Fz)(T{‘— T3),
3
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such that dW/dT, = 0 leads to a Sth-degree equation in 75:
475 = 31,T{ - T}T, = 0.

The equation was discovered independently by Miiser [9], by Castans [10] and by
De Vos and Pauwels [4].
For the important case where 7, << T| an approximate analytical solution exists:

Ti7,\"°
ng( i 2) ,

4

leading to

5. Endoreversible chemical engines

In purely chemical engines, there are only potential differences, thus no
temperature differences:

T,=T,=Ts.

Fig. 2¢ shows an endoreversible chemical reactor [3,11]: a particle source at
constant chemical potential w, provides particles to a collector at chemical
potential w,; a reversible fuel cell converts the particle current N, (reactant or
fuel) into the work flow W and deposits a waste particle current N, (reaction
product or exhaust) to the surroundings at chemical potential u,. On the one
hand, the rate of particle transport is governed by the potentials u, and w;:

Ny =g(uy) —8(r3),

where g is some function. On the other hand, the work generated per particle is
w3 — i,. Thus the rate of work production is given by

W=(u;—w)e(m) —g(us)l

For given values of u, and w,, the resulting rates N, and W are thus functions of

the parameter u,, or equivalently of the parameter { =y — p,. Fig. 7 shows the

functions N,({) and W({). The detailed form of these curves depends on the

particular function g. However, for any monotonously increasing function g(u),

we have the following properties:

e for { <0, we have N, >0 and W < 0: the engine works as an exhaust pump;

o for 0 <{ <p;—pu,, we have N, >0 and W > 0: the engine works as a true fuel
cell;

e for { > u, ~p,, we have N, <0 and W < 0: the engine works as a fuel pump (or
fuel synthesizer).
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Fig. 7. Characteristics of a chemical engine. (a) Current characteristic, (b) work characteristic.

In fig. 7b, between short-circuit ({ = 0) and open-circuit (N, = 0), the delivered
work W displays a maximum. In fig. 8, the three operational modes are shown.
Note that in both figs. 8a and 8b, the reaction proceeds in the forward or
spontaneous direction:

fuel — exhaust,

Hi H1 H1
H3 H3 H3
H2 H2 H2

@ 6 O

Fig. 8. Operational modes of endoreversible chemical engine. (a) Exhaust pump, (b) true chemical
engine, (c) fuel pump.

87
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whereas in fig. 8c, the reaction proceeds in the reverse direction:

exhaust — fuel.

5.1. Linear chemical engines

The simplest g-function is the linear one [12]:

g(p) =Dup.

The proportionality constant D can be interpreted as a “‘chemical ohmic conduc-
tance” [13,14]. The model is particularly useful if the fuel of the reversible reaction
is to be produced by an irreversible reaction, such that the overall chemistry
happens in two steps:

fuel, = compound, (irreversible),
compound; = exhaust, (reversible).

Note that compound #3 is an exhaust of the former reaction and a fuel of the
latter reaction.
The mathematics look as follows:

Ny=D(uy = p3), W=D(ps—p)(1y —13)
and the condition dW/du; = 0 leads to

3= (m +tuy)/2
and to

D 2
Wmax = T(/“'l - /"’2) .

The maximum-power condition can also be written as
R o]
{=—,
2

which will remind electrical engineers of the electrical load-matching problem. See
figs. 9 and 10.

5.2. Diffusive chemical engines

An other function g is derived from Fick’s diffusion law and Nernst’s law:
n

=D — 1,

g(u) exp( kT)

where D contains, besides geometrical factors, a diffusion coefficient. This model
is applicable to cases where the chemical transformation happens in one (reversi-
ble) step

fuel = exhaust,
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Fig. 9. Characteristics of a linear chemical engine. (a) Current characteristic, (b) work characteristic.

but where the supply of the fuel is limited by its transport towards the reversible
reaction chamber (i.e. transport from reservoir #1 to reservoir #3). We have

w-ofon(23)-on{ 2] w-otm- ool ) -on( 5]

The maximum-power condition dW/du, = 0 leads to a transcendental equation
[3,11].

5.3. Photosynthetic engines

A photosynthetic engine can successfully be modelled as a diffusive chemical
engine (section 5.2), powered by a photovoltaic engine (section 3.4) [3]. The
(simplified) chemical reaction formula is

CH,0 + 0, = CO, + H,0,

17Kz H3= Hr="8

= H,

Fig. 10. Equivalent electrical circuit.
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Fig. 12. Normal operational mode of photosynthetic engine.
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i.e. the oxidation of a carbohydrate molecule (e.g. glucose). The chemical conduc-
tors associated with the chemical engine are [15,16]:
e g,, braking the supply of the fuels, consists of the plant’s phloem, transporting
the sugar, and
e g,, braking the drainage of the exhausts, consists of the plant’s xylem tubules,
transporting the water and the stomatal pores of the leaves, which control the
transport of carbon dioxide.
The smallest g limits the kinetics of the reaction [3,11]. In the case of a plant, this
role is performed by the g, of the stomata. This leads us to the scheme of fig. 11.
The three modes of operation of the diode (see fig. 4) and the three modes of
operation of the chemical engine (see fig. 8) give rise to four combinations. Only
four combinations are possible (instead of 3 X3 =9), as the signs of W (i.e. the
sense of the W arrows) have to match. In normal conditions (i.e. in day-time), the
diode functions in the mode of a true solar cell, whereas the chemical engine
functions as a fuel pump, resulting in fig. 12, where once more arrows show
positive flows. Note that in this circumstances, the reverse reaction takes place, i.c.
the synthesis of sugar:

CO, + H,0 - CH,0 + 0,,

instead of the spontaneous reaction, i.e. the burning of sugar.

6. Conclusions

We demonstrated how various models of solar energy conversion can all be
constructed by the use of
e thermodynamic reservoirs, labeled by a temperature T and/or a chemical
potential w, and
e thermodynamic resistors, limiting an energy flow U and/or a particle flow N.
Therefore solar energy is just one more interesting field of application of endore-
versible thermodynamics, besides the many more fields, such as nuclear power
[3,7], climatology [3,17], micro-electronics [18], economics, etc.
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Appendix: Onsager’s restriction

In the present paper, we introduced f and g as two mathematical functions,
which had merely to fulfil one, little restrictive, condition, i.e. had to be
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monotonously increasing. For all above examples it leads to A > 0 and D > 0. The
physical consequence is that we are guaranteed that heat flows spontaneously from
a high temperature to a low temperature and that spontaneous particle flows
happen from a high chemical potential towards a low one.

In reality, f and g have to obey some more physical restrictions, of which the
most important is Onsager’s reciprocity theorem. In the present appendix, we will
look for its consequences.

In non-equilibrium thermodynamics often the two reservoir parameters 7 and
w are replaced by two equivalent ones: a and B, called affinities [19]:

1 7
a= — T B= T
This allows us to write Onsager’s reciprocity theorem in a compact way:
of og
B o

As the transport equations of the linear thermo-chemical engine can be rewrit-
ten in terms of a and B as follows:

1 1

[42 a 24 ¢4

this yields

C
B=-—,
a
or
B=CT.

This condition cannot be fulfilled for a constant B, a constant C and a range of
T’s (unless B=0 and C =0). That is the reason why the linear model is only
justified for cases not too far from equilibrium, i.e. when abs(7, — 7T3,) is small
compared to T, and T; themselves.

For the radiative engine, applying 3f /98 = dg/9a to

© E*dE ® E? dE
=A s =B N
! fsgexp(:_&v_—ﬁ)_l ‘ ngexp(—_Ea_—ﬁ)_l
k k

simply yields

A=B,
a condition that can be fulfilled without problems. This means this radiative model
is applicable to any combination of 7T’s and u’s. This is very fortunate, as the solar
surface temperature (related to T,) is about 6000 K and the earthly surface
temperature (related to T,) is about 300 K, such that T, and 7 can be of different
orders of magnitude.
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The reader will easily verify that

B\ E*dE B\ E*dE
f=A4 exp(z)fE “Fa , g=B exp(;)fE “Ta
8 exp -1 ¢ exp -1
k

can fulfil Onsager’s relation only if both

A=B
and

E > kT.

The latter condition leads to the serious restriction E, > kT;. This reminds us of
the fact that the Shockley—Queisser model is somewhat “less fundamental” than
the De Vos—Pauwels model [4].
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