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In the present  tutorial, solar energy conversion is described in the framework of endore- 
versible thermodynamics,  i.e. a recently developed subset of  irreversible thermodynamics.  From 
a general thermo-chemical endoreversible engine, we deduce the photovoltaic, the photothermal  
and the photochemical solar energy converter, besides of a few other, non-solar devices. 

1. Introduction 

The name endoreversible thermodynamics was introduced by Rubin [1]. It refers 
to a subset of irreversible thermodynamics. Modelling and calculations are easy, 
because all irreversibilities are restricted to transports. No irreversibilities are 
assumed to be related to conversions, mixings, etc. In the present paper, we will 
make matters even more transparent, as we will restrict our selves to stationary 
transports. 

From a general framework, we will deduce various special cases, in particular 
those that can be applied to solar energy conversion. Thus we will follow the 
deductive approach: from the general model, the special cases will be derived. This 
is in contrast to previous publications [2,3], where an inductive line of reasoning 
was followed: from simple to more complicated examples, the general theory of 
endoreversible energy conversion was constructed. 

2. Endoreversible engines 

In the present section, we introduce endoreversible thermodynamics, a special 
class of irreversible thermodynamics. In an endoreversible system all irreversibili- 
ties are located in the transports from the source to the converter and from the 
converter to the sink. The inner part of the converter, however, is reversible. 
Hence the name endoreversible engine (ev6o meaning inner). 

Fig. la shows a general endoreversible engine. It consists of four reservoirs. 
Their temperature T is constant, and so are their intensive quantities x, y, . . .  
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Fig. 1. Endoreversible engines. (a) Most general endoreversible engine, (b) endoreversible engine with 
only losses in the supply. 

Each reservoir can supply an energy cur ren t  U as well as extensive quant i ty  
currents  X, Y . . . .  , where  the cur ren t  X is associated to the pa ramete r  x, in such 
a way that  the product  x X  is a work current .  Some examples of intensive variables 
x and their  associated extensive variables X are given in table 1. 

The  reservoirs #1  and # 2  are the external  reservoirs (source and  sink, respec- 
tively) whereas  the reservoirs # 3  and # 4  are the in terna l  or in te rmedia te  reser- 
voirs. Between reservoir #1  and reservoir # 3  is an irreversible conductor ,  be tween  
reservoir # 3  and  reservoir # 4  is a reversible engine  and be tween  reservoir # 4  and 

Table 1 
Analogy between different thermodynamic quantities 

Engine x X 

chemical reactor chemical potential/z particle flow N 
pneumatic engine pressure p volume flow c 
electrical circuit voltage V current I 
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reservoir #2  is a second irreversible conductor. In each of these three parts the 
following axiom holds: 
Axiom 1: conservation of energy: 

U3= UI, V4= V 3 +  W,  U2= U4, 

where the U's  denote the energy currents and W denotes the produced power, i.e. 
work per unit time. 

The fact that the inner engine is reversible means that it satisfies the following 
second axiom: 
Axiom 2: conservation of entropy: 

S 4 = 83, 

where the S's are the entropy currents associated with the energy currents U and 
the currents X, Y, . . .  : 

U -  ( x X + y Y +  . . . )  
S=  

T 

The condition S 4 = S 3 thus expresses that no entropy is generated in the engine 
itself, in accordance with the name endoreversible: reversible in its internal parts. 
Thus all entropy generation takes place in the two conductors, i.e. in the communi- 
cation between the engine and the external world, the latter consisting of reser- 
voirs #1 and #2. 

Note that we can also write 

Q 
S T '  

where Q is U - ( x X + y Y +  ...), the equality 

U = Q +  ( x X + y Y +  . . . )  

having to be interpreted as follows: the energy current U consists of two parts, i.e. 
a "high quality" part  xX + y Y +  . . .  of power and a "low quality" part  Q of heat. 

The communication rate is assumed to be governed by transport  equations of 
the form 

U, =f , (T , ,  x,,  y, . . . .  ) - f l ( T 3 ,  X3, Y3 . . . .  ), 

Xl = g l ( T , ,  Xl'  Yl . . . .  ) - -g l (T3 ,  x3, Y3 . . . .  ) ,  

El = hi(T1, Xl' YA . . . .  ) - h i ( T 3 ,  X3' Y3 . . . .  ) '  

for the communication between #1 and #3, and similarly by 

U2=f2(T4, X4' Y4 . . . .  ) - f 2 ( T 2 ,  x2, Y2 . . . .  ) ,  

S 2 = g 2 ( T 4 ,  x4,  Y4 . . . .  ) - g 2 ( Z 2 ,  x2, Y2 . . . .  ), 

Y2=h2(T4, x4, Y4 . . . .  ) -h2(T2,  x2, Y 2 , " - ) ,  
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for the communication between #4  and #2. Here j"~, g~, h~ . . . . .  f2, g2, h2 . . . .  are 
assumed to be known mathematical functions. 

The total entropy creation rate is given by the entropy flow leaving the system 
minus the entropy flow entering it: 

Q2 QI 
E S = S 2 - S 1 - 

T 2 T 1 ' 

of which the contribution 

Q3 QI 

T3 Tl 

is generated in the conductor f~, gl, h~ . . . .  and the contribution 

Q2 Q4 

T2 T~ 

is generated in the conductor f2, g2, h2 . . . . .  

For sake of simplicity, we will restrict ourselves almost exclusively to cases 
where rates are limited by the exchanges between reservoirs #1 and #3. Thus we 
assume no limitation in the communication between #4  and #2. We say that 
reservoirs #4  and #2  are short-circuited. Thus 

= T2, x4 = x2, Y4 = Y2 . . . .  

lb. Therefore  we can simplify notations, by dropping subscripts for f ,  g, 

T4 
See fig. 
h , . . . :  

UI 

X1 

v, 

= f ( T 1 ,  XI' Yl . . . .  ) - f ( T 3 ,  x3 ,  Y3 . . . .  ) ,  

= g ( T t ,  x l ,  Yl . . . .  ) - g ( T 3 ,  x3 ,  Y3 . . . .  ) ,  

= h ( T 1 ,  Xl, Yl . . . .  ) - h ( T 3 ,  x3, Y3 . . . .  ), 

The only exception, where we will have to consider a finite conductance between 
reservoirs #4  and #2, will appear  in section 5.3. 

3 .  E n d o r e v e r s i b l e  t h e r m o - c h e m i c a l  e n g i n e s  

In thermo-chemical reservoirs we have only one intensive variable in addition to 
the temperature  T, i.e. the chemical potential /x.  The extensive variable, associated 
with it, is the particle current N. Thus x =/z  and X = N. See fig. 2a. 

To the two general axioms of section 2, i.e. to 

U2-  u2N2 U3 - u3N3 
U3 = U1, U2= U3 + W, 

T2 T3 ' 

we add a new, specific, axiom: 
Axiom 3: conservation of particles: 

N3=N1,  N 2 = N  3. 
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Fig. 2. Endoreversible engines. (a) Thermo-chemical engine, (b) thermal engine, (c) chemical engine. 

The reader will easily verify that the three axioms together lead to 

W= ( 1 - ~ 3  3 

a generalised Carnot law. 
The conduction laws become simply 

UI =f(T1, Izl) - f (T3 , / z3 ) ,  Ul =g(T1,/xl)  -g (T3 ,  ~3), 

where the functions f and g are assumed to be two known mathematical 
expressions. 

The extracted work W is thus given by 

T2 
W= (1- ~3 )[ f(rl, l~l) - f(r3,1z3)] 

+ ~-~3.3- .a [g(Tl, . l )  -g (T3 ,  "3)]" 

For fixed parameters of the "external" reservoirs, i.e. for fixed T 1, Ixl, T 2 and /x2, 
the extracted power W is thus a function of the two independent variables T 3 and 
tx 3. This function W(T3, ix 3) usually displays a maximum Wm~ for a particular set 
of coordinates (T3, ix3), called the maximum-power point MPP. 
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The entropy creation rate is given by 

Q3 Q~ U1 - #3N1 U1 - #iN1 

T 3 T 1 T.~ T I 

= - -  - -  "1- - -  [ f ( T l ,  #1)  - f ( r 3 , # 3 ) ]  
TI T3 

+ T, [g ( r l , # l ) -g ( r3 ,#3 ) ] .  

This ~,S(T 3, #3) displays a zero minimum for the coordinates (T 3, #3) equal to 
(T1, #1), a point called the reversible point RP. 

3.1. Linear engines 

The simplest functions f and g are 

f (T,#)  =AT+B#, g(T,#)=CT+D#, 
where A, B, C and D are constants. We can call A and D conductivities and B 
and C transconductivities. This linear model is often used to describe non-equi- 
librium thermodynamics not-far-from equilibrium. 

The resulting function W(T3,# 3) is very simple: 

T2 
W= (1--~3 )[A(TI- T3) + B(#,-#3)] 

( T2_ ) [C(T1T3)+D(#I #3)] 

such that the maximum-power point can easily be calculated from 

0W aW 
- 0 ,  - -  = 0 .  

0T 3 0#3 

Calculations are straightforward, but involve some cumbersome square roots. 

3.2. Radiative engines 

In a radiative engine, the particles exchanged between reservoirs #1 and #3, 
are photons. After Planck's black-body spectrum, the functions f and g for 
radiative energy-and-particle exchange are given by 

E 3 d E  ~ E 2 d E  
f(T,#)=Af; ( E - #  ' g(T'#)=Bf e E - #  '  ex0( ) 1 

where k is the Boltzmann constant, E is the photon energy and Eg is the bandgap 
of the radiative exchange (i.e. the larger of the bandgaps of the two materials #1 



A. De Vos / The endoreversible theory of  solar energy conversion 81 

and #3). The constants A and B, we can call radiative conductivities. Besides 
physical constants, they contain emissivities, surface areas, etc. 

The above expressions contain the Bose factor from Bose-Einstein statistics: 

1 

( ~ ) E - / z  - 1 '  
exp 

where/z  plays the role of a "quasi Bose level" [3,4], analogous to the quasi Fermi 
levels in Fermi-Dirac statistics. In real devices, an alternative approach is justified, 
using instead a combination 

( ~ )  1 

exp ~-~ exp ~ - 1  

of a Boltzmann factor exp(tx/kT) and a Bose factor 1/[exp(E/kT) - 1]: 

( ~  ) f~  E3dE (tx ) f  E E2dE 
f = A  exp ~ ~exp ~ - 1  ~exp ~-~ - 1  

3.3. Solar engines 

A solar engine can be modelled as an endoreversible radiative engine, where 
/z 1 = 0 (property of the Sun) and tx z = 0 (property of the Earth), but/.1, 3 is non-zero 
[2,3]. The solar engine has two degrees of freedom: the temperature T 3 and the 
chemical potential 1~3 of the solar collector. Such engine is known as the hybrid 
solar converter or photothermal/photovoltaic converter or p t / pv  converter [3,5]. 

3.4. Solar cells 

When T 3 equals T 2 the solar engine is called a solar cell [2,3]. We have only one 
independent parameter left, i.e./~3- This chemical potential is related to electrical 
quantities, simply by tz 3 = qV, where V is the cell's bias voltage. From 

N, = g( T], O) - g( T 2, Iz3) 

we deduce either 

E'exp - 1  e x p , - - = - -  - 1  
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Fig. 3. Characteristics of a solar cell. (a) Current characteristic, (b) work characteristic. 

o r  

(f~ E2dE [tx3~c~ E2dE I 
exp ~ - 1  exp ~ - 1  

depending on which g-formula we choose. The former expression was introduced 
by De Vos and Pauwels [4], whereas the latter was proposed by Shockley and 
Queisser [6]. In both cases, the power produced is given by 

W = / / , 3 N 1  . 

The functions Nl(~2, 3) and W(iz 3) are shown in fig. 3 . In particular, fig. 3a is to 
be interpreted as the I-V characteristic of the solar cell. Indeed, in ideal solar 
cells only radiative genera t ion / recombina t ion  of carriers occurs, such that we have 
I =qN 1 for the cell's electric current. Together  with V=l.~3/q this leads to 
W = /z3N 1 = (qV)(I/q)= V/. The detailed form of the curves I(V) and W(V) 
depends on the function g. In particular the De Vos-Pauwels  characteristics differ 
from the Shockley-Queisser  characteristics in the V-range around and above 
open-circuit voltage. However, for both g's,  we have the following three modes of 
operation of an illuminated diode: 
• for V < 0, we have I > 0 and W < 0: the diode works as a photodiode; 
• for 0 < V < Vow, we have I > 0 and W > 0: the diode works as a true solar cell; 
• for V >  Voc, we have I < 0 and W <  0: the diode works as a light-emitting diode. 
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® ® © 
Fig .  4. O p e r a t i o n a l  m o d e s  o f  a s o l a r  cel l .  (a )  P h o t o d i o d e ,  (b)  t r u e  s o l a r  cel l ,  (c)  l i g h t - e m i t t i n g  d i o d e .  

Here  Voc is the open-circuit voltage, solution of the equation 

N I ( V )  = 0. 

Fig. 4 shows the three operation modes (the arrows representing positive currents). 
In real materials, also non-radiative processes contribute to the current I. Such 

genera t ion / recombina t ion  processes (e.g. e lec t ron-phonon  or Auger interactions) 
can be modelled into the endoreversible scheme, by adding the appropriate  
reservoirs and conductors. The result is a lower open-circuit voltage and a lower 

Wmax. 

4. Endoreversible thermal engines 

In purely thermal engines, there are only temperature  differences, thus no 
chemical potential  differences: 

/.L 1 = /,d,2 ~-~- /,Z 3 . 

Fig. 2b shows an endoreversible thermal engine [2,3]: a heat source at constant 
tempera ture  T 1 provides heat to a heat collector at temperature  T3; a Carnot 
engine converts the heat U 1 into work W and deposits waste heat U 2 to the 
surroundings at tempera ture  T 2. On the one hand, the rate of heat transport  is 
governed by the temperatures  T 1 and T3: 

U 1 = f ( T , )  - f ( T 3 ) ,  

where f is some function. On the other hand, the efficiency of the conversion of 
heat into work is determined by the temperatures  T 3 and /'2: it is given by the 
Carnot factor 1 - T2/T 3. Thus the rate of work production is given by 

T2 
W= (1-  ~7 )[ f( rl) - f(  T3)] . 
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Fig. 5. Characteristics of thermal engine. (a) Current characteristic, (b) work characteristic. 

For  given values  of  T t and  T 2, the  resul t ing  ra tes  U 1 and  W are  thus  funct ions  of  
the  p a r a m e t e r  T 3, or  equivalent ly  of  the  d imens ion less  p a r a m e t e r  rl = 1 - T2/T 3. 
Fig. 5 shows the funct ions  Ul(r/) and  W(r/).  The  de t a i l ed  form of  these  curves 
d e p e n d s  on the  pa r t i cu la r  funct ion f .  However ,  for  any mono tonous ly  increas ing  
funct ion f(T), we have the  fol lowing p roper t i e s :  
• for  rl < 0, we have U 1 > 0 and  W < 0: the  engine  works  as a re f r igera tor ;  
• for  0 < rt < 1 - T2/T ], we have U~ > 0 and W >  0: the  engine  works  as a t rue  

hea t  engine;  
• for ~7 > 1 - Tz/T1, we have U1 < 0 and  W < 0: the  engine  works  as a hea t  pump.  
Fig. 6 shows the t h ree  ope ra t i on  modes  ( the arrows r ep re sen t ing  posi t ive flows). 

4.1. Linear thermal engines 

For  o rd ina ry  hea t  conduct ion ,  we have f (T)=AT.  Thus  

U 1=A(T 1-T3), W=A 1 - ~  (TI-T3).  

The  condi t ion  

d W  
- 0  d~ 

l eads  immed ia t e ly  to T 3 = ~ r l / ~  and  to 

W m a x = A ( ~ Z l l  - ~TZ) 2. 
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Fig. 6. Operational modes of endoreversible heat engine. (a) Refrigerator, (b) true heat engine, (c) heat 

pump. 

Besides, we have the following simple property in the maximum-power point: 

These results were discovered independently by Novikov [7] and by Curzon and 
Ahlborn [8]. 

4.2. Solar thermal engines 

As mentioned above (section 3.3), solar engines work in the boundary condi- 
t ions/z  1 =/x 2 = 0. If, besides, also ~3 equals zero, then we talk of a thermal solar 
engine. Both the Shockley-Queisser and the De Vos-Pauwels transport laws 
become 

.o0 E 3 d E  

The transport law can successfully be applied to solar engines with a selectively 
black (or grey) absorber [2,3]. A special case is obtained for Eg equal zero, i.e. for a 
black-body (or grey-body) solar absorber. We can easily verify that this limit case 
gives rise to the Stefan-Boltzmann law: f ( T )  = aT  4, where a is proportional to A 
(i.e. equal to w4k4A/15).  The heat flow and the output power are thus 
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such that d W / d T  3 = 0 leads to a 5 th-degree  equation in ['~: 

4 r f  - 3 T J ¢  - = o .  

The equat ion was discovered independent ly  by Miiser [9], by Castafls [10] and by 
De Vos and Pauwels [4]. 

For the impor tant  case where T e << T~ an approximate analytical solution exists: 

( T4T2 ) 1/5 
T 3 -.~ ~ ' 

leading to 

5 ( T ~4/5] 

5. Endoreversible chemical engines 

In purely chemical  engines, there are only potential  differences, thus no 
tempera ture  differences: 

T, = T2 = T3. 

Fig. 2c shows an endoreversible chemical  reactor  [3,11]: a particle source at 
constant  chemical potential  pq provides particles to a collector at chemical 
potential  tx3; a reversible fuel cell converts the particle current  N 3 (reactant  or  
fuel) into the work flow W and deposits a waste particle current  N 2 (reaction 
product  or exhaust) to the surroundings at chemical potential  ix 2. On  the one 
hand, the rate of  particle t ransport  is governed by the potentials tx 1 and tx3: 

N ,  = 

where  g is some function. On  the o ther  hand, the work genera ted  per  particle is 
tx 3 - t x  z. Thus  the rate of  work product ion is given by 

W =  ( ~ 3 - / ~ 2 ) [ g ( ~ 1 )  - g ( ~ 3 ) ] -  

For  given values o f / x  I and ix2, the resulting rates N 1 and W are thus functions of  
the parameter  tx3, or equivalently of  the pa ramete r  ( = / x  3 - tx2 .  Fig. 7 shows the 
functions Nl(~') and W(~'). The detailed form of  these curves depends  on the 
part icular  function g. However,  for any monotonous ly  increasing function g(/x), 
we have the following properties:  
• for ~" < 0, we have N 1 > 0 and W < 0: the engine works as an exhaust pump;  
• for 0 < ~" < tXl - / x 2 ,  we have N 1 > 0 and W >  0: the engine works as a true fuel 

cell; 
• for ~" > ~1 - / x 2 ,  we have N I < 0 and W <  0: the engine works as a fuel pump (or 

fuel synthesizer). 
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Fig. 7. Characteristics of a chemical engine. (a) Current characteristic, (b) work characteristic. 

In fig. 7b, between short-circuit (ff = 0) and open-circuit ( N  1 = 0), the delivered 
work W displays a maximum. In fig. 8, the three operational modes are shown. 
Note that in both figs. 8a and 8b, the reaction proceeds in the forward or 
spontaneous direction: 

fuel ~ exhaust, 

® 
Ch 

® © 
Fig. 8. Operational modes of endoreversible chemical engine. (a) Exhaust pump, (b) true chemical 

engine, (c) fuel pump. 
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whereas in fig. 8c, the reaction proceeds in the reverse direction: 

exhaust ~ fuel. 

5.1. Linear chemical engines 

The simplest g-function is the linear one [12]: 

g(/1)  =D/1 .  

The proportionality constant D can be interpreted as a "chemical ohmic conduc- 
tance" [13,14]. The model is particularly useful if the fuel of the reversible reaction 
is to be produced by an irreversible reaction, such that the overall chemistry 
happens in two steps: 

fuell ~ compound3 (irreversible),  

compound 3 ~ exhaust 2 (reversible).  

Note that compound #3  is an exhaust of the former reaction and a fuel of the 
latter reaction. 

The mathematics  look as follows: 

N, = D ( U , - / 1 3 ) ,  W = D(/13 - /12 ) ( /1 ,  - / 13 )  

and the condition dW/d/13 = 0 leads to 

/13 = (/1~ + / 1 2 ) / 2  

and to 

D 
Wm"x - 4 (/11 - / 1 2 )  2. 

The maximum-power condition can also be written as 

/-L 1 - - 1 1 2  

2 

which will remind electrical engineers of the electrical load-matching problem. See 
figs. 9 and 10. 

5.2. Diffusive chemical engines 

An other function g is derived from Fick's diffusion law and Nernst 's  law: 

/1), 
g(/1)  = D e x p ( ~  

where D contains, besides geometrical factors, a diffusion coefficient. This model 
is applicable to cases where the chemical transformation happens in one (reversi- 
ble) step 

fuel ~ exhaust, 
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Fig. 9. Characteristics of a linear chemical engine. (a) Current characteristic, (b) work characteristic. 

but where the supply of the fuel is limited by its transport towards the reversible 
reaction chamber (i.e. transport from reservoir #1 to reservoir #3). We have 

D[exp( /A1 _ . N I =  

The maximum-power condition dW/dlx 3 = 0 leads to a transcendental equation 
[3,11]. 

5.3. Photosynthetic engines 

A photosynthetic engine can successfully be modelled as a diffusive chemical 
engine (section 5.2), powered by a photovoltaic engine (section 3.4) [3]. The 
(simplified) chemical reaction formula is 

CHzO + O: ~ C O  2 -'l- H 2 0  , 

P1 ,u3 

T ez 
Fig. 10. Equivalent electrical circuit. 
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Fig. 12. Normal operational mode of photosynthetic engine. 
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i.e. the oxidation of a carbohydrate molecule (e.g. glucose). The chemical conduc- 
tors associated with the chemical engine are [15,16]: 
• g~, braking the supply of the fuels, consists of the plant 's phloem, transporting 

the sugar, and 
• g2, braking the drainage of the exhausts, consists of the plant 's xylem tubules, 

transporting the water  and the stomatal pores of the leaves, which control the 
transport  of carbon dioxide. 

The smallest g limits the kinetics of the reaction [3,11]. In the case of a plant, this 
role is performed by the g2 of the stomata. This leads us to the scheme of fig. 11. 

The three modes of operation of the diode (see fig. 4) and the three modes of 
operation of the chemical engine (see fig. 8) give rise to four combinations. Only 
four combinations are possible (instead of 3 x 3 = 9), as the signs of W (i.e. the 
sense of the W arrows) have to match. In normal conditions (i.e. in day-time), the 
diode functions in the mode of a true solar cell, whereas the chemical engine 
functions as a fuel pump, resulting in fig. 12, where once more arrows show 
positive flows. Note that in this circumstances, the reverse reaction takes place, i.e. 
the synthesis of sugar: 

CO 2 + H 2 0  ~ C H 2 0  + 02 , 

instead of the spontaneous reaction, i.e. the burning of sugar. 

6. Conclusions 

We demonstrated how various models of solar energy conversion can all be 
constructed by the use of 
• thermodynamic reservoirs, labeled by a tempera ture  T a n d / o r  a chemical 

potential tt, and 
• thermodynamic resistors, limiting an energy flow U a n d / o r  a particle flow N. 
Therefore  solar energy is just one more interesting field of application of endore- 
versible thermodynamics, besides the many more fields, such as nuclear power 
[3,7], climatology [3,17], micro-electronics [18], economics, etc. 

Acknowledgements 

• Alexis De Vos is research engineer of the Interuniversitair MikroElektronika 
Centrum v.z.w. (Leuven). 

• The present research is supported by the Commission of the European Commu- 
nities, through a Joule grant. 

Appendix: Onsager's restriction 

In the present  paper,  we introduced f and g as two mathematical  functions, 
which had merely to fulfil one, little restrictive, condition, i.e. had to be 
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monotonously increasing. For all above examples it leads to A > 0 and D > 0. The 
physical consequence is that we are guaranteed that heat flows spontaneously from 
a high tempera ture  to a low temperature  and that spontaneous particle flows 
happen from a high chemical potential towards a low one. 

In reality, f and g have to obey some more physical restrictions, of which the 
most important is Onsager 's  reciprocity theorem. In the present appendix, we will 
look for its consequences. 

In non-equilibrium thermodynamics often the two reservoir parameters  T and 
/z are replaced by two equivalent ones: a and /3, called affinities [19]: 

1 iz 
O/-- / 3 -  

T '  T" 

This allows us to write Onsager 's  reciprocity theorem in a compact way: 

~f ~g 

0/3 ~ 

As the transport  equations of the linear thermo-chemical engine can be rewrit- 
ten in terms of a and /3 as follows: 

1 1 /3 
f = - A - - - B / 3 ,  g = - C - - - D - - ,  

Ol Ol O[ Ol 

this yields 

C 
O ~  - - - - 7  

a 

o r  

B = CT. 

This condition cannot be fulfilled for a constant B, a constant C and a range of 
T 's  (unless B = 0 and C = 0). That  is the reason why the linear model is only 
justified for cases not too far from equilibrium, i.e. when abs(T 1 - T  3) is small 
compared to T 1 and T 3 themselves. 

For the radiative engine, applying ~f/~/3 = Og/Oa to 

E 3 d E  ~o E 2 d E  

s; ( ) , . : .s; ( _ , . o_ , )  . f = A  - E o t - / 3  - 1  "exp - 1  
g exp k k 

simply yields 

A = B ,  

a condition that can be fulfilled without problems. This means this radiative model 
is applicable to any combination of T 's  and/~ 's .  This is very fortunate, as the solar 
surface temperature  (related to  T 1) is about 6000 K and the earthly surface 
tempera ture  (related to T 2) is about 300 K, such that T 1 and T 3 can be of different 
orders of magnitude. 
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The reader will easily verify that 

(")s; ( -Ea )  ' g:Bexp k JEgexp(__~) - f = A e x p  ~- "exp T - 1  1 

can fulfil Onsager's relation only if both 

A = B  

and 

Eg >> kT .  

The latter condition leads to the serious restriction Eg >> k T  1. This reminds us of 
the fact that the Shockley-Queisser model is somewhat "less fundamental" than 
the De Vos-Pauwels model [4]. 
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