
2

Reversible Logic Synthesis with
Fredkin and Peres Gates

JAMES DONALD and NIRAJ K. JHA

Princeton University

Reversible logic has applications in low-power computing and quantum computing. Most reversible

logic synthesis methods are tied to particular gate types, and cannot synthesize large functions.

This article extends RMRLS, a reversible logic synthesis tool, to include additional gate types.

While classic RMRLS can synthesize functions using NOT, CNOT, and n-bit Toffoli gates, our work

details the inclusion of n-bit Fredkin and Peres gates. We find that these additional gates reduce

the average gate count for three-variable functions from 6.10 to 4.56, and improve the synthesis

results of many larger functions, both in terms of gate count and quantum cost.

Categories and Subject Descriptors: B.6.3 [Logic Design]: Design Aids—Automatic synthesis

General Terms: Design

Additional Key Words and Phrases: Quantum computing, reversible logic

ACM Reference Format:
Donald, J. and Jha, N. K. 2008. Reversible logic synthesis with Fredkin and Peres gates. ACM J.

Emerg. Technol. Comput. Syst. 4, 1, Article 2 (March 2008), 19 pages. DOI = 10.1145/1330521.

1330523 http://doi.acm.org/10.1145/1330521.1330523

1. INTRODUCTION

Reversible logic is motivated by its applications in low-power computing.
Landauer’s principle says that some finite amount of energy will be lost for
any irreversible computation, but this can be avoided in a fully reversible logic
implementation [Landauer 1961]. The challenges of managing power density
in modern and future electronics is a strong reason for seeking low-power
techniques such as reversible logic [de Vos 1994]. Furthermore, reversible
logic has applications in communication [Smolin and DiVincenzo 1996], optical
computing [Cuykendall and Andersen 1987], biosynthesis of messenger RNA
[Bennett 1973], and particularly quantum computing [Barenco et al. 1995].
In order for such reversible logic technologies to be feasibly implemented, full

This work was supported in part by the NSF under Grant No. CCF-0429745.

Author’s address: J. Donald (corresponding author), N. K. Jha, Department of Electrical Engineer-

ing, Princeton University, Princeton, NJ 08544; email: jdonald@princeton.edu

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1550-4832/2008/03-ART2 $5.00. DOI 10.1145/1330521.1330523 http://doi.acm.org/

10.1145/1330521.1330523

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 1, Article 2, Pub. date: March 2008.

2:2 • J. Donald and N. K. Jha

design-flow methodologies, including logic synthesis, must be developed as in
the case of conventional irreversible circuits [Perkowski et al. 2001].

In Gupta et al. [2006] the authors presented an algorithm for reversible
logic synthesis using networks of n-bit Toffoli gates. Their algorithm works by
searching for candidate factors in the positive polarity Reed-Muller (PPRM)
forms of the representative equations that can be substituted to form the oper-
ation of a NOT, CNOT, or n-bit Toffoli gate. By traversing a search tree along
with practical pruning, their algorithm is capable of synthesizing a wide range
of reversible functions with as many as 16 variables.

An n-bit Toffoli gate can be thought of as a controlled XOR operation, and is
defined as follows [Toffoli 1980].

yi = xi for 1 ≤ i ≤ n − 1

yn = xn ⊕ x1x2 . . . xn−1 (1)

A CNOT gate can be thought of as a two-bit Toffoli gate, and a one-bit Toffoli
gate (y1 = x1 ⊕ 1) is the same as a NOT gate. In quantum computing, the NOT,
CNOT, and three-bit Toffoli gates are known to have quantum costs of 1, 1,
and 5, respectively, while Toffoli gates of four or more bits have even greater
quantum costs [Barenco et al. 1995]. Another popular gate is the n-bit Fredkin
gate, defined as follows [Fredkin and Toffoli 1982].

yi = xi for 1 ≤ i ≤ n − 2

yn−1 = xn−1x1x2 . . . xn−2 + xnx1x2 . . . xn−2

yn = xnx1x2 . . . xn−2 + xn−1x1x2 . . . xn−2 (2)

For n = 2, a two-bit Fredkin gate can be thought of as an unconditional
SWAP gate (i.e., y1 = x2 and y2 = x1). A two-bit SWAP gate has a quan-
tum cost of 3 and a three-bit Fredkin gate has a cost of 5 [Smolin and DiVin-
cenzo 1996], while higher-order Fredkin gates are even more expensive [Maslov
et al. 2007]. A third type of gate considered in this article is the three-bit Peres
gate [Peres 1985]. A Peres gate can simultaneously accomplish the operation
of both a CNOT gate and a three-bit Toffoli gate, with an operation defined as
follows.

y1 = x1 ⊕ x2

y2 = x2

y3 = x3 ⊕ x1x2 (3)

Although the definition of Peres gates given in Eq. (3) can be extended to include
multiple control bits and thus n-bit Peres gates, this work primarily deals with
three-bit Peres gates to remain consistent with the most common definition
used by the reversible logic community. The three-bit Peres gate is known to
have a quantum cost of 4 [Hung et al. 2004].

Because the set of NOT, CNOT, and three-bit Toffoli gates is known to be
capable of synthesizing any reversible function, many existing reversible syn-
thesis algorithms do not yet attempt to include “optional” gates such as Fredkin
and Peres.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 1, Article 2, Pub. date: March 2008.

Reversible Logic Synthesis with Fredkin and Peres Gates • 2:3

In addition to Gupta et al. [2006] there have been many recent works
on reversible logic synthesis, several of which provide synthesis algorithms
that can be practically used, at least for reversible functions of a limited
number of variables. Iwama et al. [2002] presented a framework for syn-
thesis through repeated local transformations. Shende et al. [2003] imple-
mented an algorithm to find optimal circuits and provided their corresponding
proofs of constructability, although their method is limited to functions of at
most a few variables. Maslov and Dueck [2004] proposed heuristic methods to
synthesize reversible functions, with the aim of minimizing garbage output.
They further demonstrated the use of template matching as a heuristic tech-
nique to take suboptimal circuits and simplify them with a template library
[Maslov and Dueck 2005]. This has even been extended to include Fredkin
gates [Maslov et al. 2003]. However, their template-based technique gener-
ates less efficient circuits compared to Gupta et al. [2006] and the addition of
new gate types requires the generation of an entirely new template library.
Miller et al. [2003] demonstrated an algorithm to synthesize reversible func-
tions using various bidirectional transformations, although this algorithm of-
ten generates quite suboptimal solutions even for functions of as few as three
variables.

Our work chooses to build upon RMRLS (Reed-Muller reversible logic syn-
thesizer) [Gupta et al. 2006] because this algorithm has been shown to have
speed, success rate, and circuit minimization abilities often exceeding those of
the aforementioned algorithms. We further believe this to be a more robust
and extensible platform for parameterizable synthesis options, unlike algo-
rithms requiring prederived template libraries, such as those in Maslov et al.
[2003]. This work implements and evaluates extensions to RMRLS for syn-
thesizing circuits with additional gate types. Our specific contributions are as
follows.

—We propose and implement extensions to the RMRLS algorithm to include
n-bit Fredkin gates and Peres gates, and detail our methodology that can be
applied to any fundamental reversible logic gate.

—We show that going from the NOT, CNOT, and n-bit Toffoli gate (NCT) library
to the additional SWAP, Fredkin, and Peres gates (NCTSFP) library reduces
the average gate count for three-variable functions from 6.10 to 4.56.

—We synthesize all of the special-purpose reversible functions from Gupta
et al. [2006] in addition to some functions from Maslov et al. [2007] that
could not be synthesized with classic RMRLS, and show that the additional
gate types can reduce the gate counts and quantum costs of synthesized
circuits.

The rest of the article is organized as follows. Section 2 provides motivational
examples for including SWAP, n-bit Fredkin, or Peres gates in the synthesis
algorithm. Section 3 provides our methodology for extending RMRLS. Section
4 details our synthesis of numerous reversible functions and compares these
results to those of existing NCT RMRLS as well as other synthesis algorithms.
Section 5 offers our conclusions.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 1, Article 2, Pub. date: March 2008.

2:4 • J. Donald and N. K. Jha

Fig. 1. Two-gate implementation of the reversible specification given in Eq. (4) using a Toffoli and

a SWAP gate.

Fig. 2. Four-gate implementation of the reversible specification given in Eq. (4) using Toffoli and

CNOT gates.

2. MOTIVATIONAL EXAMPLES

This section motivates the need for the support of Fredkin and Peres gates
in reversible logic synthesis. We show some simple functions that can benefit
from synthesis with the additional gate types, with the suggestion that larger
functions are also likely to benefit, as evidenced by the experimental results
given later.

The simplest kind of Fredkin gate is a two-bit Fredkin gate, also known as a
SWAP gate. For an example of a function that might use this gate in synthesis,
consider

aout = a ⊕ bc
bout = c
cout = b. (4)

This function quite apparently contains a swap between the variables b and
c. A two-gate realization for this function is shown in Figure 1. Alternatively,
when using only Toffoli and CNOT gates, a minimum realization with four
gates is shown in Figure 2. Being able to accomplish the swap operation with a
single gate has advantages in the synthesis process. In the RMRLS algorithm,
for example, performing a swap using three CNOT gates might be a solution
that is found only after branching in many other failed directions. An algorithm
that can properly identify and move forward on swap opportunities may have
a better chance at quickly obtaining a solution.

Our next example presents a function that may be realized with the use of
a three-bit Fredkin gate. The Boolean equivalents of the operations of n-bit
Fredkin gates may be less obvious when n > 2. For example, suppose we need
to realize the function

aout = a ⊕ bc
bout = b ⊕ ab ⊕ ac
cout = c ⊕ ab ⊕ ac. (5)

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 1, Article 2, Pub. date: March 2008.

Reversible Logic Synthesis with Fredkin and Peres Gates • 2:5

Fig. 3. Two-gate implementation using a three-bit Fredkin gate.

Fig. 4. A practical four-gate implementation of the reversible specification given in Eq. (5) using

only Toffoli and CNOT gates.

Fig. 5. Suboptimal four-gate implementation of the reversible specification given in Eq. (5) using

only Toffoli gates, as can best be found by NCT RMRLS.

To see how this function could be synthesized using a controlled swap (i.e.,
a Fredkin gate), it is easiest to look at one such realization as shown in
Figure 3. A four-gate realization without using Fredkin gates is shown in
Figure 4. Even for n-bit Fredkin gates whose Boolean operations may be less
intuitive, identifying the single-gate substitutions may improve the search al-
gorithm’s synthesis ability and also reduce the average gate count.

An additional problem arises when attempting to synthesize the aforesaid
function using RMRLS. The circuit obtained by classic RMRLS is shown in
Figure 5. Although this circuit also consists of four gates, it uses more control
bits. If the quantum cost [Maslov 2003] for these circuits is evaluated, the
cost of the circuit in Figure 4 is 12 while that of the circuit in Figure 5 is
20. Although RMRLS has been shown effective at reducing the gate count, its
search techniques do not necessarily minimize the number of control bits, and
hence quantum cost, very well.

These examples of circuit simplification provide motivation for using SWAP
or n-bit Fredkin gates. A similar argument can be made for including the Peres
gate in synthesis, as it is expected to often take the place of a CNOT gate and
three-bit Toffoli gate and thus slightly reduce the gate count. Figure 6 shows a
possible implementation of Eq. (5) using a Peres gate, Toffoli gate, and CNOT
gate. Its quantum cost is only 10.

The examples given in this section show that early detection and placement
of Fredkin and Peres gates enables the possibility of improved synthesis results.
The following section details our methodology for the modifications that allow
RMRLS to implement these additional gate types.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 1, Article 2, Pub. date: March 2008.

2:6 • J. Donald and N. K. Jha

Fig. 6. Three-gate implementation of the reversible specification given in Eq. (5) using a Peres

gate.

3. METHODOLOGY

We next present our synthesis methodology.

3.1 Fredkin Candidate Factors

The synthesis technique in this article is an extension of RMRLS [Gupta et al.
2006]. RMRLS uses the PPRM expansion of reversible functions and then tra-
verses a search tree to synthesize a circuit through matching candidate factors.
These factors refer to common subexpressions in the Reed-Muller expansions.
What ties the original algorithm to Toffoli gates is only that the candidate fac-
tors and corresponding substitutions are designed to match the operation of
Toffoli gates. In order to extend the algorithm to Fredkin gates, it is necessary
to devise a similar scheme to detect Fredkin candidate factors.

In the original NCT-enabled RMRLS, the candidate factors for Toffoli gate
transitions must be of the form

vout,i = vi ⊕ factor ⊕ . . . , (6)

where vi refers to a single variable, vout,i refers to the unique output line labeled
by vi, and factor is a term that does not contain vi. There may also be other terms
in the PPRM expression for vout,i.

The corresponding substitution performed if such a candidate factor is found
mimics the operation of a Toffoli gate, and thus looks similar to the expression
given in Eq. (6).

vi → vi ⊕ factor (7)

In fact, a relaxed rule allows the substitution to be performed even in the case
when vi does not appear in the original expression. Any sort of relaxed detection
schemes are legal, but the substitution itself must be carried out in its entirety
as without omitting vi. For example, even if a Toffoli gate substitution is ini-
tiated from just the PPRM expression aout = bc, the substitution performed
would be a → a ⊕ bc.

Just as Toffoli candidate factors are Boolean expressions revealing the oper-
ation of Toffoli gates, the form of a Fredkin candidate factor can be obtained by
looking at the definition of the operation of a Fredkin gate. This requires rewrit-
ing the definition from Eq. (2) in PPRM form. Since the expression must be in
positive polarity, there can be no complement operations, and all intermediate

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 1, Article 2, Pub. date: March 2008.

Reversible Logic Synthesis with Fredkin and Peres Gates • 2:7

operations must be either AND or XOR. Thus the expressions become

yn−1 = xn−1 ⊕ xn−1(x1x2 . . . xn−2) ⊕ xn(x1x2 . . . xn−2)

yn = xn ⊕ xn−1(x1x2 . . . xn−2) ⊕ xn(x1x2 . . . xn−2). (8)

When we represent the common terms as a characteristic factor, this becomes

vout,i = vi ⊕ vi(factor) ⊕ vj (factor)

vout, j = vj ⊕ vi(factor) ⊕ vj (factor). (9)

This is more restrictive than the candidate factors that give rise to Toffoli sub-
stitutions. First, it requires a total of six matching terms. Second, it requires
the terms in a PPRM expression for vout,i to match terms in another PPRM
expression for vout, j . As a result, these expressions are not a subset of those
with Toffoli candidate factors, but rather comprise a disjoint set.

Just as the Toffoli conditions have a relaxed form, we also opt to use relaxed
rules for Fredkin conditions so as not to require all six matching terms. One
advantage of a relaxed approach is simplification of the candidate factor detec-
tion scheme. Another advantage is that there may still be a benefit from using
a Fredkin gate, even when not all six terms are present. If all six terms are
present, use of a Fredkin gate can potentially reduce the six terms to only two.
If one of the six terms is missing, for example, we could likely end up with three
terms remaining, whereas the substitution of a Toffoli gate is typically made
with the expectation of reducing the complexity by one term. If the result of a
substitution turns out to be ineffective, it will automatically be given a low pri-
ority in the search tree. The downside of such relaxed conditions is that many
of these extra nodes, along with their children, can pollute the priority queue
and slow down the algorithm.

In the end, we chose to use a candidate factor requirement needing only two
matching terms. The requirement is that a PPRM expression for vout,i must
contain terms vi(factor) and vj (factor). This simplifies the search procedure,
since such a restriction does not depend on terms in the PPRM expression of
vout, j . Under this condition alone, a potential Fredkin branch in the search tree
can be created with as little as two out of the six of ideal matching terms. Our
search procedure mirrors that of the search for Toffoli candidate factors. In the
Toffoli case, we would search for terms in vout,i that do not contain vi. For the
Fredkin case, we instead examine any terms that do contain vi. Once these are
found, we search for any matching subfactor, in the same PPRM expression,
that is identical to the candidate factor, except for a replacement of vi with
some other variable vj . For example, the PPRM expression cout = abc ⊕ abd
satisfies this condition because abc does contain c and abd is the corresponding
subfactor with c replaced by d .

Among special cases, assuming factor to be 0 in Eq. (9) results in mere pass-
through gates, or gates that do nothing. Detecting and substituting in such
expressions is useless. When factor = 1, however, this is a candidate for a direct
SWAP (two-bit Fredkin). This case must be detected differently from typical n-
bit Fredkin cases where n ≥ 3. This can be seen by substituting factor = 1 into
the expressions and seeing that the vi(factor) term cancels out and thus cannot

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 1, Article 2, Pub. date: March 2008.

2:8 • J. Donald and N. K. Jha

be detected directly. Thus, the two-bit swap is somewhat of an exception in the
candidate factor detection scheme. The requirement for a matching candidate
factor is that of a term containing only a single variable that is different from
vout,i. Again, this is one form of a relaxed rule. A more restrictive requirement
would be that vout,i contains vj while vout, j contains vi (e.g., aout = b and bout = a).
However, we opt for the less restrictive case because it gives us the most room
for exploration.

3.2 Fredkin Substitutions

Appropriate substitutions are performed upon locating suitable candidate fac-
tors and their matching subfactors. These substitutions match the operation of
a Fredkin gate as shown earlier, and are specified as follows.

vi → vi ⊕ vi(factor) ⊕ vj (factor)

vj → vj ⊕ vi(factor) ⊕ vj (factor) (10)

There is one additional complexity in the implementation of complex substi-
tutions such as the one required for a Fredkin substitution. For the Toffoli
substitutions, we have the advantage that factor would never contain its cor-
responding vi. One convenient effect of this is that when a PPRM expression is
represented as a sorted linked list, to perform the substitution, the appropriate
terms can be added without the worry that they may affect later substitutions.
When performing a Fredkin substitution or even a two-way SWAP, we do not
have this luxury since the additional terms will contain instances of vi and vj .
In order to work around this, we do not insert new terms into the linked list
“in place.” Rather, we create an entirely new linked list of PPRM terms, then
destroy the old one. This implementation issue likely adds some overhead, al-
though its runtime is at most linear with respect to the length of the linked list
of PPRM terms.

3.3 Peres Candidate Factors

The Peres gate presented in Section 1 must also have its corresponding candi-
date factors and substitutions in order to be implemented in synthesis. Since
a Peres gate is equivalent to a three-bit Toffoli gate followed by a CNOT gate,
we in fact use the same candidate factor search mechanism as already imple-
mented. Since we restrict our study to three-bit Peres gates, we add the artificial
restriction that the factor which does not contain vi must consist of exactly two
variables.

Unlike Toffoli and Fredkin gates, the Peres gate is not self-reversible. This
means that the reverse of the Peres gate [Peres 1985] is actually a different
gate, and we must account for this in our synthesis. The PPRM functional
specification of the reverse-Peres gate is shown next.

y1 = x1 ⊕ x2

y2 = x2

y3 = x2 ⊕ x3 ⊕ x1x2 (11)

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 1, Article 2, Pub. date: March 2008.

Reversible Logic Synthesis with Fredkin and Peres Gates • 2:9

In all, the only difference between this specification and that of the Peres gate
is the additional x2 term in the PPRM expression for y3. Thus, we can use
this as the distinguishing choice to decide between whether to apply a Peres
or reverse-Peres gate upon encountering the appropriate two-variable candi-
date factor. Suppose a PPRM contains a Toffoli candidate factor as specified in
Eq. (6).

vout,i = vi ⊕ factor ⊕ . . .

To be considered as a Peres candidate, the factor term must contain two vari-
ables, say a and b. If a also appears in the PPRM expression for vout,i, a search
branch is attempted using a reverse-Peres gate with a as the control bit. If b
also appears in the PPRM expression for vout,i, a search branch is attempted
using a reverse-Peres gate with b as the control bit. If either a or b does not ap-
pear in the PPRM expression, then branches would be created using a regular
Peres gate with a or b as the control bit.

As with preceding relaxed candidate factor detection schemes, the Peres de-
tection schemes do not require vi to appear in the PPRM for vout,i. Even if many
of these substitutions turn out to be poor choices, the optimistic approach here
assumes that poor substitutions will be properly tagged as such in the search
algorithm.

3.4 Peres Substitutions

The non-self-reversibility of Peres gates brings up another issue when consid-
ering the appropriate substitutions to apply upon matching candidate factors.
To properly transform the PPRM expressions, we find that the substitutions
on applying a Peres gate turn out to be the exact substitutions that define the
operation of a reverse-Peres gate. The substitutions applied are

vi → b ⊕ vi ⊕ factor
a → a ⊕ b, (12)

where factor refers to the two-variable expression, b refers to one of two vari-
ables chosen to be the control bit, while a is the other variable. Thus factor = ab.
For the aforesaid transformations, it may be tempting to serialize the substitu-
tions as a → a ⊕ b followed by vi → vi ⊕ factor. Although this implementation
leads to a correct result while the other possible serialization does not, it is
best to reason about and implement all multiple substitution rules as simul-
taneous substitutions. This is especially important in Fredkin gate substitu-
tions, as no possible serialization for Eq. (10) can correctly perform a controlled
swap.

Because the substitution required for a reverse-Peres gate reflects the opera-
tion of a Peres gate, its expressions are slightly simpler, matching the equations
defining the operation of a forward-Peres gate given in Eq. (3).

vi → vi ⊕ factor
a → a ⊕ b (13)

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 1, Article 2, Pub. date: March 2008.

2:10 • J. Donald and N. K. Jha

Fig. 7. Flow chart depicting the search procedure in RMRLS with multiple gate types.

In Section 3.6, we provide further intuition for why Peres gate substitutions
are defined by the reverse-Peres gate equations, and explain how this duality
applies to other gates.

As in the implementation of Fredkin substitutions, the modification of the
PPRM linked lists requires creating an entirely new list. The optimization of
an “in-place” linked list modification is probably only applicable for the special
case of Toffoli gates.

3.5 Algorithm

The encompassing algorithm framework is still the same as the one used in the
original NCT-enabled RMRLS [Gupta et al. 2006]. A priority queue is used for
storing partial solutions, and at each iteration a new node is explored. The dif-
ferences between our algorithm and the original one reside in the two new kinds
of candidate factor detection schemes and their corresponding substitutions. A
flow chart depicting a high-level view of the algorithm is given in Figure 7.
This diagram is in the form of the algorithm given in Agrawal and Jha [2004],
although it has been extended to include all three kinds of candidate factor
detections and their corresponding substitutions.

Our method for adding new gates into the RMRLS framework suggests
that synthesis with any other primitive gate types, such as Miller [2002] and
Margolus [1988] gates, could also be developed using the same basic approach.
The two primary requirements for enabling synthesis of any arbitrary gate are
a candidate factor condition and a procedure for performing the gate’s sub-
stitutions. Candidate factor conditions can be obtained by writing the gate’s

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 1, Article 2, Pub. date: March 2008.

Reversible Logic Synthesis with Fredkin and Peres Gates • 2:11

functional specification in PPRM form. The substitution used for such a branch
can be derived by writing the functional specification of the gate’s reverse in
PPRM form. The reasons for this slight technicality with non-self-reversible
gates is explained in Section 3.6.

The flow given in Figure 7 actually only considers the case of an exhaustive
search where the algorithm terminates once a solution is found. There are
actually other customizable options, such as a greedy heuristic search and the
ability to continue searching for better solutions after one solution is found.

RMRLS also contains many heuristic parameters to tune its priority queue
mechanism and pruning limits. Although we also believe that these heuristics
may have potential for dramatically improving the algorithm’s performance and
success rate, we opted not to modify these configurations. This way we were able
to provide fair comparisons against the NCT results provided in Gupta et al.
[2006].

3.6 Reversed Substitutions

Because RMRLS synthesizes reversible circuits in the forward direction, it may
not be obvious as to why the substitutions for a Peres gate reflect the operation of
a reverse-Peres gate. Because NOT, CNOT, and Toffoli gates are self-reversible,
this directionality was not an issue in the original RMRLS.

Although RMRLS adds new gates from the beginning to the end of a synthe-
sized circuit, its starting point is the target function and its ending point the
identity function. Thus, a reversal effect is achieved while still applying gates
in forward order. This comes about because of a duality between substitution
and operation. An operation, for example, aout ← bout ⊕ cout, sets aout based on
the current PPRM expressions for other output variables. A substitution, for
example, a → b⊕ c, modifies any and all PPRM expressions that contain a. An
operation has the effect of placing a new gate at the output, while a substitu-
tion has the effect of placing a new gate at the input of the currently expressed
function.

Because each substitution has the purpose of gradually simplifying the orig-
inal function toward the identity function, the proper transformations must
actually represent the reverse of each applied gate. This technicality does
not matter when defining the substitutions for self-reversible gates such as
Toffoli and Fredkin gates, but must be upheld with Peres gates. If we were to
implement any other non-self-reversible gate such as the Margolus gate, its
substitutions must also take into account this directionality.

3.7 Synthesis Example

To provide examples using the various substitutions, we demonstrate the pro-
cess of synthesizing the specification given in Eq. (5). Because the circuits shown
in Figures 3, 5, and 6 can all be synthesized with the extended RMRLS (we
will see later in Section 4.4 how the circuit in Figure 4 can also be obtained),
an exhaustive search would actually encounter all three solutions, as shown
in Figure 8. The synthesis example shown depicts various search paths that
reach these solutions. A large number of other search nodes, many of which do

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 1, Article 2, Pub. date: March 2008.

2:12 • J. Donald and N. K. Jha

Fig. 8. Various search paths taken in the synthesis of the reversible specification given in Eq. (5).

not lead to solutions, would also be covered in an exhaustive search. For clarity,
these have been omitted in the figure.

4. EXPERIMENTAL RESULTS

We next provide experimental results.

4.1 Functions of Three Variables

A standard practice for comparing heuristic reversible logic synthesis algo-
rithms is to examine the success at gate minimization for all three-variable
reversible functions. We obtain these results by running synthesis on all 40,320
possible three-variable functions. Table I shows our synthesis results in NCTS,
NCTSF, and NCTSFP modes, which are formed by enabling the SWAP (S), n-bit
Fredkin (F), and Peres (P) gates.

We compare our results against various other heuristic algorithms, as well
as the optimal results reported by Shende et al. [2003] and Dueck et al. [2003].
Among heuristic algorithms, RMRLS provides better results than those of the
extensive template libraries by Maslov et al. [2003]. Not shown in the table are
the NCTS results for templates [Maslov et al. 2003], which have been shown
inferior to the NCTS results by Kerntopf [2004]. Also not shown are the NCTSF
results from Kerntopf [2004], which were unable to improve upon the NCTSF
template library results [Maslov et al. 2003]. We have not reported the op-
timal gate counts for NCTSFP, as we were unable to find such data in the

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 1, Article 2, Pub. date: March 2008.

Reversible Logic Synthesis with Fredkin and Peres Gates • 2:13

T
a

b
le

I.
S

y
n

th
e
si

s
R

e
su

lt
s

fo
r

A
ll

T
h

re
e
-V

a
ri

a
b

le
R

e
v
e
rs

ib
le

F
u

n
ct

io
n

s

M
il

le
r

K
e
rn

to
p

f
M

a
sl

o
v

O
p

ti
m

a
l

O
p

ti
m

a
l

O
p

ti
m

a
l

R
M

R
L

S

N
o
.

e
t

a
l.

[2
0

0
3

]
[2

0
0

4
]

e
t

a
l.

[2
0

0
3

]
[S

h
e
n

d
e

e
t

a
l.

2
0

0
3

]
[S

h
e
n

d
e

e
t

a
l.

2
0

0
3

]
[D

u
e
ck

e
t

a
l.

2
0

0
3

]
[G

u
p

ta
e
t

a
l.

2
0

0
6

]
R

M
R

L
S

R
M

R
L

S
R

M
R

L
S

G
a

te
s

N
C

T
S

N
C

T
S

N
C

T
S

F
N

C
T

N
C

T
S

N
C

T
S

F
N

C
T

N
C

T
S

N
C

T
S

F
N

C
T

S
F

P

1
1

5

1
0

1
1

0

9
7

9
2

8
6

9
3

6
2

8
4

,7
2

6
2

,7
4

0
5

1
2

5
7

7
3

2
3

,3
5

1
5

7
4

1
8

7
1

1
,1

9
9

1
1

,7
7

4
5

,5
0

3
1

0
,2

5
3

6
,8

1
7

4
9

6
1

2
,4

7
6

9
,2

4
2

2
,2

0
1

1
8

6
1

2
,0

7
6

1
3

,6
8

3
1

3
,9

1
4

1
7

,0
4

9
1

7
,5

3
1

1
4

,1
3

4
1

3
,5

9
6

1
5

,8
9

3
1

5
,1

0
5

3
,5

6
7

5
7

,5
1

8
8

,0
6

8
1

3
,2

0
9

8
,9

2
1

1
1

,1
9

4
1

7
,6

9
5

7
,4

7
9

9
,9

9
8

1
5

,5
2

1
1

9
,7

8
6

4
2

,9
8

1
3

,0
3

8
5

,6
8

0
2

,7
8

0
3

,7
5

2
6

,4
7

4
2

,6
4

2
3

,6
1

7
5

,9
8

4
1

3
,1

9
8

3
7

6
7

7
8

1
1

,2
9

0
6

2
5

8
4

4
1

,3
1

8
6

2
5

8
4

4
1

,2
8

8
3

,2
9

0

2
1

3
0

1
3

4
1

8
4

1
0

2
1

3
4

1
8

4
1

0
2

1
3

4
1

8
4

4
3

0

1
1

5
1

5
1

8
1

2
1

5
1

8
1

2
1

5
1

8
3

0

0
1

1
1

1
1

1
1

1
1

1

A
v
g
.

6
.1

8
6

.0
1

5
.4

4
5

.8
7

5
.6

3
5

.1
3

6
.1

0
5

.7
5

5
.2

5
4

.5
6

R
M

R
L

S
im

p
ro

v
e
s

u
p

o
n

a
ll

o
th

e
r

h
e
u

ri
st

ic
a

lg
o
ri

th
m

s
in

b
o
th

th
e

N
C

T
S

a
n

d
N

C
T

S
F

ca
te

g
o
ri

e
s.

T
h

e
a
v
e
ra

g
e

g
a

te
co

u
n

t
a

ls
o

re
d

u
ce

s
si

g
n

ifi
ca

n
tl

y
w

it
h

th
e

a
d

d
it

io
n

o
f

P
e
re

s
g
a

te
s.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 1, Article 2, Pub. date: March 2008.

2:14 • J. Donald and N. K. Jha

literature. Overall, the extended RMRLS provides better gate counts than all
existing heuristic NCTS and NCTSF algorithms, and to the best of our knowl-
edge this is the first algorithm to target the NCTSFP gate library.

4.2 Other Benchmarks

One of the significant capabilities of the RMRLS algorithm is its ability to syn-
thesize functions of as many as 16 variables [Gupta et al. 2006], whereas some
other algorithms may become impractical for such a regime. Since our exten-
sions allow types of gates to be optionally specified by the user, at the very least
the modified RMRLS retains all the capabilities of the original algorithm. The
question then remains as to whether enabling new gates retains the algorithm’s
usability and can further reduce the gate counts for large functions.

To answer this question, we use the same benchmark suite as in Gupta et al.
[2006] and synthesize all benchmarks with Fredkin and Peres gates enabled.
All of these benchmarks are included in the public releases of the original RM-
RLS, as well as the new version featured in this work. Each benchmark was
attempted in the greedy, exhaustive, and default modes, and the best result was
chosen from among these. Given infinite time and memory, the exhaustive mode
could theoretically always provide the best results. On our system, however, for
several of the larger functions an exhaustive search cannot be completed even
in 24 hours. Most results shown were obtainable in the default timeout limit
of 180 seconds. The cycle and adder functions, however, have relatively large
specifications and thus took much longer. Benchmarks such as these were given
extra time, ranging up to 1 hour.

We compare our results in terms of gate count and quantum cost. Although
RMRLS was originally designed to optimize only the gate count, improved quan-
tum cost over results from existing algorithms has sometimes been a side-effect
[Gupta et al. 2006]. Building upon this fact, we reasoned that the algorithm can
focus on any metric, so we added an option to optimize for quantum cost. We
report our gate counts and quantum costs in two categories in Table II. Shown
are our best results when optimizing for the minimum number of gates, as well
as when optimizing for reduced quantum cost.

In calculating quantum costs, we use the table and rules from Maslov [2007].
The cost of a Fredkin gate is typically obtained by taking the cost for a Toffoli
gate with the same number of inputs, and then adding 2 to account for the two
CNOT gates which can combine with a Toffoli gate to form a controlled swap.
If all cost calculations were of this form, the best possible quantum cost would
not improve with Fredkin gates. There is, however, a known implementation of
three-bit Fredkin gates with a quantum cost of 5, which is the same as the cost
of a three-bit Toffoli gate. When such gates are usable, the addition of Fredkin
gates can serve to reduce the quantum cost. The Peres gate itself is also a special
case, with a quantum cost of 4, even though an equivalent circuit using Toffoli
gates would consist of a three-bit Toffoli gate alongside a CNOT gate for a total
cost of 6.

As one example of a synthesized circuit, our minimum-cost realization of
the majority5 function is as follows: TOF3(a, b; e) TOF2(a; b) RPER(b; d ; e)

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 1, Article 2, Pub. date: March 2008.

Reversible Logic Synthesis with Fredkin and Peres Gates • 2:15

Table II. Synthesis Results for Reversible Logic Benchmarks in the NCTSFP Mode Compared to

the Basic NCT Mode of the Original RMRLS

Gates Cost

NCT NCT Gates Cost Gates Cost

Real Constant [Gupta et al. [Gupta et al. NCTSFP NCTSFP NCTSFP NCTSFP

Benchmark Inputs Inputs 2006] 2006] min-gates min-gates min-cost min-cost

2of5 5 2 20 100 20 96 20 9

alu 5 0 19† 163† 16 171 21 119

rd32 3 1 4 12† 4 12 5 9

rd53 5 2 13 116 13 91 17 78

3 17 3 0 6 14 5 12 5 11

4 49 4 0 13 61 10 36 12 29

xor5 5 0 4 4 4 4 4 4

4mod5 4 1 5 13 5 13 5 13

5mod5 5 1 11 91 11 93 11 91

ham3 3 0 5 9 4 9 4 7

ham7 7 0 —† —† 20 76 22 67

hwb4 4 0 15 35 9 27 10‡ 19‡

hwb5 5 0 — — 26 196 35 175

decod24 4 0 11 31 10 48 11 30

cycle10 2 12 0 27 1,469 17 1,198 24 1,060

cycle15 2 17 0 41† 4,201† 27 3,242 27 3,242

cycle28 2 30 0 80† 19,105† 78 19,101 78 19,101

5one013 5 0 19 95 16 97 16 93

5one245 5 0 20 104 14 101 18 79

6one135 6 0 5 5 5 5 5 5

6one0246 6 0 6 6 6 6 6 6

majority3 3 0 4 16 3 14 4 13

majority5 5 0 16 104 13 94 14 81

graycode6 6 0 5 5 5 5 5 5

graycode10 10 0 9 9 9 9 9 9

graycode20 20 0 19 19 19 19 19 19

mod5adder 6 0 19 127 16 139 18 103

mod15adder 8 0 10 71 7 65 11 54

mod32adder 10 0 15 154 11 146 19 127

mod64adder 12 0 26 333 20 346 20 289

†Some results by Gupta et al. [2006] are not repeatable with the publicly available RMRLS due to modified

heuristics in the released version. For these, we have compared to our best obtainable NCT results running on

the released version.
‡In only one case, namely hwb4, did the extended branch heuristic improve the best obtainable quantum cost.

TOF3(b, c; e) TOF2(a; c) TOF3(b, d ; c) TOF3(b, c; a) TOF3(a, e; d) PER(a; d ; b)
TOF4(b, d , e; a) PER(c; b; a) FRED4(d , e; a, b) TOF2(c; a) TOF4(a, d , e; c) for
a quantum cost of 81 realized with 14 gates. We denote Toffoli gates as
TOF#(cbit1 . . . cbitn−1; tbit), where # denotes the size of the gate, the cbit terms
designate zero or more control bits, and tbit designates the target bit. Fred-
kin gates have a similar notation of FRED#(cbit1 . . . cbitn−2; tbit1, tbit2) where
there are two target bits. Peres gates are denoted as PER(cbit; tbitTOF; tbitCNOT),
where tbitTOF signifies the target bit for the output characteristic of a three-bit
Toffoli gate and tbitCNOT represents the remaining target bit. Reverse-Peres
gates are denoted by RPER with the same format.

Overall, our results show that the addition of Fredkin and Peres gates can
always match, and often improve, the gate count of various benchmarks. When
optimizing for quantum cost, we often obtain different circuits possibly with
an increased gate count, but always with a quantum cost that matches or

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 1, Article 2, Pub. date: March 2008.

2:16 • J. Donald and N. K. Jha

improves upon the circuits obtained by Gupta et al. [2006] or by the heuris-
tic that optimizes gate count. Furthermore, the addition of Fredkin and Peres
gates allowed the synthesis of ham7 and hwb5, which (within the constraints
of our 4GB RAM and noninfinite runtime) are not synthesizable in NCT-only
mode.

4.3 Runtime

According to Gupta et al. [2006], RMRLS was shown extremely robust in terms
of its ability to find solutions within a practical amount of time. Our extensions
for additional gates can be turned off at runtime. Thus, if the goal is to find a
solution, even if it is suboptimal, then at the very least a user can obtain this
solution using the NCT mode only.

As expected, using additional gates in the search tree does slow down exhaus-
tive searches. This is because the additional branches at each node can further
spawn more branches, effectively increasing the exponential growth rate of the
search tree. In many cases, we found that exhaustive searches, when including
Fredkin and Peres gates, could take up to four times as long as their corre-
sponding NCT runtimes.

On the other hand, we did not see the same increase in runtime for greedy
searches where the purpose was to find any solution. In fact, when asked to find
any (i.e., not necessarily optimal) solution, for the majority of benchmarks in
Table II, we were able to obtain some solution in less than a second. The only
benchmarks that took longer than 10 seconds to obtain a solution in the greedy
mode were ham7 (67 seconds), hwb5 (77 seconds), and 5one245 (39 seconds).

All results in this article were obtained on a platform utilizing an AMD
Athlon X2 2.0 GHz processor along with 4GB of RAM running Fedora Core
Linux.

4.4 Extended Branches Heuristic

The discrepancy between the circuit given in Figure 4 and the equivalent circuit
in Figure 5 raises an issue for the original substitution rules of RMRLS. Even in
exhaustive search mode, RMRLS would never come across the solution shown
in Figure 4, simply because all of the candidate factors encountered contain at
least two variables and thus result in transformations representing only three-
bit Toffoli gates. In order to obtain the circuit in Figure 5, which has a reduced
quantum cost, the algorithm would have to traverse branches signifying CNOT
gates, even when a one-variable candidate factor is not available.

An even simpler case that signifies this problem can be found when attempt-
ing to synthesize a three-bit Fredkin gate using only Toffoli gates. As revealed in
Gupta et al. [2006], RMRLS cannot synthesize the minimum quantum cost solu-
tion for this basic case, even if its solution is minimal in terms of the gate count
of 3. In general, the observed effect is that lacking any protection against these
cases can result in circuits with higher-than-expected quantum cost. However,
we would not necessarily expect much difference in gate count.

To address this problem, we provide the option of additional substitutions.
Like conventional substitutions, these are still based on detected candidate

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 1, Article 2, Pub. date: March 2008.

Reversible Logic Synthesis with Fredkin and Peres Gates • 2:17

factors. Our special rule, however, is that for any given factor as depicted in Eq.
(6), we may substitute a term based on a subset of the variables in factor. For
instance, if a substitution of the form a → a ⊕ bc is suggested by a candidate
factor, this substitution would be performed in addition to a → a⊕b, a → a⊕c,
and a → a ⊕ 1. The same expansion is also applied to Fredkin candidates.
With this extended branching heuristic, there can quickly arise an intractable
number of nodes in the search tree. Thus, at the current time this heuristic is
only usable for functions of relatively few variables.

Among all benchmarks, the only one upon which this heuristic improved was
hwb4, with its quantum cost reduced from 27 to 19.

4.5 n-Bit Peres Gates

The bulk of this article assumes three-bit Peres gates. We chose this defini-
tion because it is the accepted one used by the reversible logic community, and
assuming a system of n-bit Peres gates would exaggerate the gate count re-
duction for our benchmark results. Nonetheless, it is interesting to consider
how our results would change if we assumed n-bit Peres gates, as well as n-bit
reverse-Peres gates.

In general, any n-bit Peres gate serves as the equivalent of an n-bit Toffoli
gate followed by an (n−1)-bit Toffoli gate, as long as the control bits and target
bit of the smaller Toffoli gate form a subset of the control bits of the larger gate.
A reverse-Peres gate performs a similar function, except that the equivalent
circuit would have the smaller Toffoli gate placed first.

Because there are no known quantum costs for Peres gates that are better
than their equivalent Toffoli-gate-based realizations, it cannot be assumed that
the use of n-bit Peres gates will reduce the quantum cost, at least under our
current cost calculation schemes. However, n-bit Peres gates would be expected
to reduce the gate counts of various reversible benchmarks. If it is later found
that n-bit Peres gates also have quantum cost less than their corresponding
n-bit Toffoli gates (as in the three-bit case) it will make sense to expect n-bit
Peres gates to be a fundamental building block in gate libraries.

Table III shows the subset of benchmarks that can be synthesized with
fewer gates using the n-bit Peres gate assumption. Only 10 out of the original
30 benchmarks were able to utilize Peres gates of more than 3 bits. Regard-
ing quantum cost, with only a pessimistic assumption for higher-ordered Peres
gates, these realizations do not reduce the cost under our calculation methods.
Thus, we have only listed the number of gates.

As a Peres gate fulfills the function of two Toffoli gates in sequence, the cycle
benchmarks benefit by far the most from the n-bit Peres gate assumption. Real-
izations of cycle functions typically include long chains of Toffoli gates operating
on a large set of control bits gradually decreasing in size. Replacing each pair
of Toffoli gates with a single Peres gate effectively halves the total number of
gates.

While in an ideal situation, the n-bit Peres gate assumption could reduce
circuit size by half, this does not explain how the circuit size of cycle28 2 reduced
by even more than half. Taking this realization into account and decomposing

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 1, Article 2, Pub. date: March 2008.

2:18 • J. Donald and N. K. Jha

Table III. Gate Counts for the 10 Benchmarks

From Table II That Can Be Synthesized With

Fewer Gates if the NCTSFP Library Assumes

Peres Gates of More Than Three Inputs.

Gates NCTSFP Gates NCTSFP

Benchmark Three-bit Peres n-bit Peres

alu 16 14

ham7 21 18

cycle10 2 17 12

cycle15 2 27 16

cycle28 2 78 32

5one013 16 15

majority5 13 11

mod15adder 7 6

mod32adder 11 9

mod64adder 20 18

the larger Peres gates back into their Toffoli equivalents results in a gate count
of 59, which is better than the other realization of 78 gates. This appears to be
a result of the unpredictable side-effects of heuristic pruning under different
configurations.

5. CONCLUSIONS

This work builds upon the state-of-the-art reversible logic synthesis algorithm
to include Fredkin and Peres gates. We have shown that the process of adding
new gates to the algorithm is a generalizable methodology applicable to any
arbitrary gate.

For three-variable functions we show that, when including SWAP and
Fredkin gates, RMRLS outperforms all other known heuristic methods. In-
cluding Peres gates as well reduces the average gate count for three-variable
functions to 4.56, notably better than even the optimal case of 5.13 when using
Toffoli, SWAP, and n-bit Fredkin gates. For reversible benchmarks, the addi-
tional gate types are often able to reduce circuit size in terms of either gate
count or quantum cost, depending on the option requested by the user.

We have implemented these extensions into RMRLS such that the combi-
nation of gate types, limitations on these gates, and the choice of whether
to optimize for gate count or quantum cost can be chosen by the user at
runtime. This new release of RMRLS is freely available for download at
http://www.princeton.edu/∼cad/.

ACKNOWLEDGMENTS

We would like to thank Pallav Gupta for his assistance with RMRLS, and the
anonymous reviewers for their helpful comments.

REFERENCES

AGRAWAL, A. AND JHA, N. K. 2004. Synthesis of reversible logic. In Proceedings of the Conference
and Exhibition on Design, Automation and Test in Europe (DATE), vol. 2, 1384–1385.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 1, Article 2, Pub. date: March 2008.

Reversible Logic Synthesis with Fredkin and Peres Gates • 2:19

BARENCO, A., BENNETT, C. H., CLEVE, R., DIVINCENZO, D. P., MARGOLUS, N., SHOR, P., SLEATOR, T., SMOLIN,

J., AND WEINFURTER, H. 1995. Elementary gates for quantum computation. Phys. Rev. A. 52,

3457–3467.

BENNETT, C. H. 1973. Logical reversibility of computation. IBM J. Res. Dev. 17, 6, 525–532.

CUYKENDALL, R. AND ANDERSEN, D. R. 1987. Reversible optical computing circuits. Optics Lett. 12,
7, 542–544.

DE VOS, A. 1994. Proposal for an implementation of reversible gates in CMOS. Int. J. Electron.
76, 293–302.

DUECK, G. W., MASLOV, D., AND MILLER, D. M. 2003. Transformation-based synthesis of networks

of Toffoli/Fredkin gates. In Proceedings of the IEEE Canadian Conference on Electrical and
Computer Engineering, 211–214.

FREDKIN, E. AND TOFFOLI, T. 1982. Conservative logic. J. Theor. Phys. 21, 219–253.

GUPTA, P., AGRAWAL, A., AND JHA, N. K. 2006. An algorithm for synthesis of reversible logic circuits.

IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 25, 11(Nov.), 2317–2330 (tool available for

download: http://www.princeton.edu/∼cad/).

HUNG, W. N. N., SONG, X., YANG, G., YANG, J., AND PERKOWSKI, M. 2004. Quantum logic synthesis

by symbolic reachability analysis. In Proceedings of the Conference and Exhibition on Design,
Automation and Test in Europe (DATE), 838–841.

IWAMA, K., KAMBAYASHI, Y., AND KAMASHITA, S. 2002. Transformation rules for designing CNOT-

based quantum circuits. In Proceedings of the Conference and Exhibition on Design, Automation
and Test in Europe (DATE), 419–424.

KERNTOPF, P. 2004. A new heuristic algorithm for reversible logic synthesis. In Proceedings of the
Conference and Exhibition on Design, Automation and Test in Europe (DATE), 834–837.

LANDAUER, R. 1961. Irreversibility and heat generation in the computing process. IBM J. Res.
Dev. 5 (Jul.), 183–191.

MARGOLUS, N. 1988. Physics and computation. Ph.D. dissertation, Massachusetts Institute of

Technology, Cambridge, MA.

MASLOV, D. 2003. Reversible logic synthesis. Ph.D. dissertation, The University of New

Brunswick, Fredericton, New Brunswick, Canada.

MASLOV, D. AND DUECK, G. W. 2004. Reversible cascades with minimal garbage. IEEE Trans.
Comput. Aided. Des. Integr. Circ. Syst. 23, 11 (Nov.), 1497–1509.

MASLOV, D., DUECK, G. W., AND SCOTT, N. 2007. Reversible logic synthesis benchmarks page.

http://www.cs.uvic.ca/∼dmaslov/.

MASLOV, D., DUECK, G. W., AND MILLER, D. M. 2005. Toffoli network synthesis with templates.

IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 24, 6 (Jun.), 807–817.

MASLOV, D., DUECK, G. W., AND MILLER, D. M. 2003. Fredkin/Toffoli templates for reversible logic

synthesis. In Proceedings of the IEEE-ACM International Conference on on Computer-Aided De-
sign, 256–261.

MILLER, D. M. 2002. Spectral and two-place decomposition techniques in reversible logic. In

Proceedings of the IEEE Midwest Symposium on Circuits and Systems, vol. 2,493–496.

MILLER, D. M., MASLOV, D., AND DUECK, G. W. 2003. A transformation-based algorithm for re-

versible logic synthesis. In Proceedings of the ACM-IEEE Design Automation Conference (DAC),
318–323.

PERES, A. 1985. Reversible logic and quantum computers. Phys. Rev. A 32, 3266–3276.

PERKOWSKI, M., KERNTOPF, P., BULLER, A., CHRZANOWSKA-JESKE, M., MISHCHENKO, A., SONG, X.,

AL-RABADI, A., JOZWIAK, L., COPPOLA, A., AND MASSEY, B. 2001. Regular realization of symmet-

ric functions using reversible logic. In Proceedings of the EUROMICRO Symposium on Digital
Systems Design, 245–252.

SHENDE, V. V., PRASAD, A. K., MARKOV, I. L., AND HAYES, J. P. 2003. Synthesis of reversible logic

circuits. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 22, 6 (Jun.), 710–722.

SMOLIN, J. A. AND DIVINCENZO, D. P. 1996. Five two-bit quantum gates are sufficient to implement

the quantum Fredkin gate. Phys. Rev. A 53, 2855–2856.

TOFFOLI, T. 1980. Reversible computing. In Automata, Languages and Programming, J. W. de

Bakker and J. van Leeuwen, eds. Springer, 632–644.

Received March 2007; revised July 2007; accepted October 2007 by Frederic Chong

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 1, Article 2, Pub. date: March 2008.

