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A transfer matrix method is formulated for calculating electron transport in a one- 
dimensional quantum channel having complicated structure and connected to two- 
dimensional electron reservoirs. The method has been used to calculate conductance 
in two types of quantum-dot arrays, namely serpentine (double-bend) quantum-dot 
arrays and quantum-dot arrays with repulsive and square potentials. It is shown 
that in both a quantum channel with a double-bend dot and a quantum channel 
with two square and potential-repulsive dots, singlet conductance peaks can appear 
at energies below the threshold of the lowest subband. These peaks are associated 
with resonant tunneling via electron quasi-bound states of the systems. It is also 
shown that in a quantum channel containing an array of the dots, each peak is split 
into multiple peaks. This is due to the coupling between the corresponding quasi- 
bound states in the dot array. It is suggested that some recent measurements on a 
double-bend structure may be interpreted in such terms. 

1. Introduction 

Recent advances in nanostructure technology have 
made it possible to define narrow constrictions in a two- 
dimensional electron gas (ZDEG) formed at a semicon- 
ductor heterostructure. In tiny structures, such as quan- 
tum wires and quantum dots, electron transport is bal- 
listic and the motion of electrons is governed by quan- 
tum mechanics rather than classical mechanics. The 
quantization of the conductance of narrow constrictions 
first observed by van Wees et al. [l] and Wharam et al. 
[2] and the resonant conductance via quasi-bound states 
in classically unbound systems [3] are just two examples 
of recent developments in this area. 

Here we report on exact quantum-mechanical calcu- 
lations of electron transport in two types of one-dimen- 
sional quantum-dot arrays, namely serpentine quantum- 
dot arrays and square-like potential-repulsive quantum- 
dot arrays, embedded in narrow straight channels delim- 
ited by hard-wall boundaries. In order to model trans- 
port in the ballistic regime, we have assumed that the 
arrays are finite and the channels are connected with 

two semi-infinite 2DEGs, which act as source and drain 
when a potential difference is applied. Further details 
of the lateral structure of our quantum systems can be 
found in the insets of the figures presented in this pa- 
per. In the calculation we use a transfer matrix method 
within the effective mass approximation. The method 
has been formulated by basing all our matrices through- 
out the quantum channels on one common basis. Thus 
the method has significant flexibility, i.e., it can be eas- 
ily used to treat electron transport in quantum channels 
having very complicated structures in both the longitu- 
dinal and the transverse directions. 

In a serpentine quantum-dot array, the electrons in- 
jected from a ZD-reservoir with energies lower than the 
height of the embedded rectangular potential barriers 
are forced through a series of double-bend quantum dots. 
The effect of the electron interferences due to a double- 
bend dot on the quantized conductance plateaus was 
observed by Wu et al [4]. In addition, these authors 
observed also two conductance peaks below the thresh- 
old of the first conductance plateau but associated them 
with resonant tunneling through impurity states in the 
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system [4]. In this paper, we will show that m a channel 
containing a double-bend quantum dot the conductance 
peaks corresponding to resonant tunneling via quasi- 
bound states in the dot can appear at energies below 
the threshold of the first conductance plateau. We will 
also show that in a serpentine quantum-dot array, the 
coupling between quasi-bound states in the double-bend 
dots will result in the formation of N-fold splitting states 
where N corresponds to the number of the double-bend 
dots in the system. In the square-like potential-repulsive 
quantum-dot arrays two alternative paths have been 
provided for the electrons between the two sides of each 
square barrier. Since the potential of the barriers is 
repulsive we refer to them as anti-dots. The electron 
quantum dots in these systems are actually located in 
between the anti-dots. In this paper we will not dis- 
cuss the so called electrostatic Aharonov-Bohm effect 
[5]. Thus we will place all the anti-dots along the central 
line of the straight channel with the hard-wall bound- 
aries. We will show that conductance peaks can appear 
at energies below the threshold of the first conductance 
plateau in the quantum channel containing an array of 
two anti-dots and that each of them will be split into 
multiple peaks in the quantum channel containing an 
array of more than two anti-dots. 

2. Theoretical Method 

In the calculations we use a transfer matrix method 
formulated by representing the wave functions of the 
electron states throughout the straight channel in one 
common basis. The standard transfer matrix method 
is suitable to treat a quantum system with the elec- 
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tron potential varied along thy transfer direction. l’h<. 
use of one common basis throughout the system makes 
the method suitable also to treat the system having the 
electron potential varied not only along the transfer di- 
rection but also along the transverse direction. 

A fundamental step in the transfer matrix method is 
to divide the quantum system along the transfer direc 
tion into a number of strips which are small enough so 
that the potential in each strip region was a variation 
only in the transverse direction. This is illustrated in 
Fig. 1 where the quantum channel has been partitioned 
along the transfer direction, i.e. the z-direction, into N 
strips. Let us assume that {G,,(y)} are a complete set of 
orthonormal functions along the transverse y-direction 
in the interval Iyl 5 w/2, where 20 is the width of the 
straight channel as indicated in Fig. 1. Using this set 
of functions as our basis we may write the wave func- 
tions of electron states in effective mass approximation 
in strip region i as 

@(z,y) = 

where the expansion coefficients 8; can be obtained by 
searching for eigenvalues EL from the system 

1 {(s” - E:) L, + (%(Y)P’YY)I@P,(Y))} 40, 

=; , n= 1,2,3;.. , (2) 

where V’(y) is the electron potential in the strip region 
i. Once equation (2) is solved, the coefficients bi and ch 
in Eq. (1) are the remaining unknowns in the expansion 
for the wave function @(I, y). Obviously, we have such 
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Figure 1: Schematic diagram of a finite quantum channel 
in which the electron potential varies along both the trans- 
portation z- and the transversal y-directions. The channel is 
connected with two semi-infinite 2DEGs and has been par 
titioned into N strip regions in such way that in each strip 
region the electron potential only varies along the transver- 
sal y-direction. 
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a set of coefficients for each strip region. However, the 
connection between the coefficients of any two strip re- 
gions in the channel can be achieved by a transfer matrix 
in the form 

, (3) 

where B’ and C’ are coefficient vectors, whose elements 
are (5:) and {CL}, respectively, and M(i,i + 1) is the 
transfer matrix. It can be shown that the transfer ma- 
trix M(i,i + 1) is 

M(i, i + 1) = 
+ 0 -l 

0 (y-1 ( :I _‘d; 

-1 

1 ( pi+1 pi+1 

Q i+l 
1 

_qi+l 7 

(4) 

where yi is the diagonal matrix with elements given by 
(7i)llp = exp(iki@), the submatrices P’ and Q’ are de- 
fined by (Pi), = &, and (q)_ = dlikiw. Here @ is 
the width of the ith strip region along the z direction 
and w is the width of the channel (see Fig. 1). If the 
channel is divided into N strips, it is straightforward to 
show that the connection between coefficient vectors at 
the two end strip regions is 

where the transfer matrix M(l, N) is given by 

M(l, N) = M(1,2) M(2,3) ... M(N - 1, N) . (6) 

In order to uniquely determine the coefficient vectors 
B’ and C’ we have to consider the boundary conditions 
imposed on the two end of the quantum channel. In this 
work we have connected the channel with two 2DEG- 
reservoirs and assumed that the electrons are injected 
from left reservoir and emitted to the right reservoir. 
By matching the wave functions of the electron states 
in the channel to the wave functions in the left reservoir, 
we can derive the boundary conditions imposed on the 
coefficient vectors B’ and C’ in a matrix form as 

w( “c:) = (;) > 
where the vector A is defined by 

(A), = 2k= w A,+ (8) 

with 
A+ = 

J _; dmr K(Y) b?(y) 

The matrix S( 1) in Eq. (7) is defined by 

(9) 

where !I!+ and T’_ (here i=l) are submatrices with ele- 
ments given by 

with 
t nm = J 

= dk; k: Xrrk;X+ (12) -00 
Similarly, by matching wave functions in the channel to 
the wave functions in the right reservoir, we can derive 
the boundary condition imposed on the coefficient vec- 
tors BN and- CN as 

S(N) ‘0” (y”“)-i 
i 

where S(N) is 

S(N) = 

(13) 

:y ) (14) 

We note that for a given channel structure, the matrices 
S(1) and S(N) are energy dependent only, while the 
vector A depends on both the energy s and the direction -# 
of the wave vector k of the electron in the 2DEG incident 
on the channel. 

Using Eqs. (7) and (13), the coefficient vectors B’ 
and C’ or the coefficient vectors BN and CN may be 
eliminated from Eq. (5) and thus the system equation 
for the expanding coefficients of the wave function in 
either one of the two end strip regions may be obtained. 
For example, by eliminating BN and CN, we obtain 

[ S(1) + S(N) W’J) M-‘WV ] ( z: ) = ( ; ) , 
(15) 

where J?(N) is 

(16) 

Thus the coefficient vectors B’ and C? can simply be 
obtained by inverting the matrix on the left side of Eq. 
(15) and all the subsequent coefficient vectors B’ and C’, 
in this example i = 2,3,. .. , N, can then be computed 
from them using Eq. (3). 

We note that the coefficient vectors and thus the elec- 
tron wave function in the quantum channel depend on 
the wave vector k’ of the electron incident on the chan- 
nel from the left 2DEG reservoir. We may therefore 
add on the wave function e(z, y) of the electron state a 
subscript 5 to indicate this dependence explicitly. The 
electric current carried by the wave function @g(c, y) 

through the quantum channel can simply be expressed in 
terms of the expansion coefficients of the wave function 
in any one of the strip regions in the channel. The total 
current I is then the sum of the contributions form the 
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electron states ‘#c(z, y) of all the incoming wave i inci- 
dent on the channel from the left reservoir in the energy 
window (EF ~ ev,E~), where EF is the Fermi energy of 
the reservoir and V is a potential difference between the 
two 2DEG reservoirs. The conductance G of the quan- 
tum channel is finally calculated from G = II/VI. In the 
linear response regime, V is assumed to be very small 
and G is independent of V. For further computational 
details we refer to Ref. [6]. 

3. Results and Discussion 

The calculations presented in this paper have all 
been performed with the assumption of an effective mass 
m* = 0.067~1. which is appropriate to the Al,Gai_,As/ 
GaAs interface. In most cases (Figures 2-5) we have 
chosen to plot the calculated conductance G in units 
of 2ez/h as a function of a dimensionless variable [ = 
(7U/rh)(2m*EF)“*, where UJ is chased to be the width 
of the straight quantum channel and EF is the Fermi 
energy in the 2DEGs. We have fixed w to a value of 100 
nm and varied only the Fermi energy EF. 

We first present our results for the serpentine (i.e. 
double-bend) quantum-dot structures. We have ideal- 
ized our quantum systems by implanting rectangular 
barriers of a finite height Vb in a straight channel of 
width w delimited by hard walls. The effect of the 
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Figure 2: Calculated conductance G as a function of the 
dimensionless variable t = (w/hz)(2rr~*E~)‘~~ for the quan- 
tum channel with the single double-bend modulation estab- 
lished by implanting two rectangular barriers of different 
heights vs in an otherwise straight quantum channel of width 
u) delimited by hard-wall boundaries. The geometricaldetail 
of the double-bend structure is shown in the inset of this fig- 
ure with w = 100 nm, l. = 50 run, iv = 60 nm, Ir = I, = 30 
nm, and 1, = w - Iv = 40 mn. The curves have been offset 
for clarity. 

barrier height I/s on the conductance G of the quail- 
turn channels with such serpentine quantum dots can 
be found in Fig. 2. In this figure we have shown, as 
an example, the conductance G of the channel with a 
single double-bend dot (see the mset of the figure for 
the geometrical detail). The curve with vb = 0 corre- 
sponds to the conductance of a pure straight channel 
of width ‘uf = 100 nm o L.Llled by hard-wall bound- 
aries. The novel plateau structure of a straight chan- 
nel is clearly seen. Here the oscillations at the edges 
of the plateaus are due to the presence of longitudi- 
nal standing waves in the straight channel because of 
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Figure 3: Calculated conductance G as a function of the 
dimensionless variable C = (w/~z)(2m’E~)‘~’ for the quan- 
tum channels with (a) the double and (b) the triple double- 
bend modulation established by implanting the rectangular 
barriers of a fixed height vs = 5& in an otherwise straight 
quantum channel of width w delimited by hard-wall bound- 
aries. The geometrical details of the two multiple double- 
bend structures are shown in the insets of the two figures. 
All other parameters are the same as in Fig. 2. 
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using sharp corner boundaries at the ends of the chan- 
nel. As the barrier height Vb is increased, the plateau 
structure of the straight channel is seen to be disturbed, 
whereas a sharp conductance peak appears at a energy 
below the lowest subband threshold Et [at Vb + co, 
Et = (~2/2m*)7r2/(w - Zy)‘]. This peak is associated 
with resonant tunneling via a quasi-bound state local- 
ized in the double-bend dot. At Vb = 15&, where 
El = (ha/2m*)(7r/w)* is the first tansversal-mode en- 
ergy corresponding to the straight channel of width UJ 
with hard-wall boundaries, a very broadened peak ap- 
pears at an energy close to the lowest subband threshold. 
We have found [6] that at a very high barrier height vb 
this peak becomes sharp. The appearance of the peak 
indicates that there can exist another quasi-bound state 
at energy below the lowest subband threshold in such a 
double-bend system at infinite barrier height (I/b -+ oo). 
Thus we propose that the two conductance peaks ob- 
served by Wu el al. [4] in a double-bend channel at 
gate voltage below the threshold of the first conductance 
plateau may be interpreted in terms of resonant tunnel- 
ing via quasi-bound states. In a quantum-dot array the 
quasi-bound states discussed above will couple to each 
other, resulting in multiple-splitting quasi-bound states. 
As a consequence, multiple-splitting peaks in the con- 
ductance may appear at energies below the threshold of 
the lowest conductance plateau. Fig. 3 shows the cal- 
culated conductance for a double and a triple double- 

bend structures with the same quantum-dot geometry 
a8 in the single double-bend structure described in Fig. 
2. Here we have set vb = 5E1, since we are mainly 
interested in quasi-bound states at energies below the 
threshold of the first conductance plateau. In a sin- 
gle double-bend quantum-dot system, only one resonant 
conductance peak appears at energy below the thresh- 
old of the first conductance plateau at vb = 5& (see 
Fig. 2). This peak is seen to be split into two peaks in 
the double double-bend quantum-dot system and three 
peaks in the triple double-bend quantum-dot system. 
Such a multiple-splitting-peak structure in conductance 
is a typical feature of a finite quantum-dot superlattice 
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Figure 4: Calculated conductance G as a function of the 
dimensionless variable t = (w/hr)(2m*E~7)‘~~ for the ar- 
ray of two square-like potential-repulsive barriers of different 
heights vb implanted in the center of an otherwise straight, 
quantum channel of width w delimited by hard-wall bound- 
aries. The geometrical detail of the array structure is shown 
in the inset of this figure with us = 100 nm, I= = I, = 50 
nm, II = I, = 30 nm, and I, = 40 nm. The curves have been 
offset for clarity. 
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Figure 5: Calculated conductance G as a function of the di- 
mensionless variable t = (w/h~)(Zm*E~)‘/* for the arrays 
of (a) three and (b) four square-like potential-repulsive har- 
riers of a fixed height vb = 5& implanted in the center of 
an otherwise straight quantum channel of width UI delimited 
by hard-wall boundaries. The geometrical details of the two 
array structures are shown in the insets of the two figures. 
All other parameters are the same as in Fig. 4. 
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Our calculated results for the conductance of square- 
like potential-repulsive quantum-dot arrays implanted 
in a straight channel of width w = 100 nm is shown in 

Figs. 4-6. Since the potential of the square-like barri- 
ers (denoted also by I/b) is repulsive, these barriers are 

naturally considered as quantum anti-dots. The actual 

electron quantum dots are located in between the anti- 

dots. In Fig. 4 we present the calculated conductance 

G as a function of the dimensionless variable t for an 

array of two square-like barriers of different height Vb. 
Again, at V, = 0, the calculated curve in this figure 
corresponds to the conductance of a pure straight chan- 
nel of width w = 100 nm delimited by hard walls. At 

Vb # 0, the novel quantized plateau structure is seen to 

be disturbed and the threshold of the lowest subband 
is seen to be shifted to a higher value of [. Below the 

up-shifted threshold there are sharp resonant conduc- 
tance peaks. Here we only see the singlet peaks. This is 

in correspondence with that there can only appear one 

electron quantum dot in an array of two square-like anti- 
dots. Fig. 5 shows the calculated conductance G for an 
array of three square-like anti-dots and an array of four 

square-like anti-dots with Vb = 5Ei. In a rather similar 

way to what we see in the calculated conductance for 
the arrays of the double-bend quantum-dot arrays (Fig. 

3), the singlet conductance peak at an energy below the 
threshold of the lowest conductance plateau in the ar- 

ray of two square-like anti-dots is seen to be split into 

J 
5 IO 
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Figure 6: Calculated conductance G as a function of the 
Fermi energy EF for the array of six square-like potential- 
repulsive barriers of a fixed height vb = 5Ei implanted in the 
center of an otherwise straight quantum channel of width zu 
delimited by hard-wall boundaries. The geometrical detail 
of the array structure is shown in the inset of this figure. All 
other parameters are the same as in Fig. 4. 

two (three) peaks m the array IIf three (four) squarr- 
like anti-dots. Such splitting peaks can also be seen at 
the edge of the lowest conductance plateau. Finally, we 
wish to present in Fig. 6 the calculated conductance 

as a function of the Fermi energy EF for an array of 

six square-like anti-dots at r/, =y El and to note that 

the miniband structure resulting from coupling of quasi- 

bound states in a quantum-dot array may also appear 

at conductance plateaus [&lo]. 
All results presented so far refer to structures with 

very sharp features. In a real structure, however, corners 

tend to be rounded. We have therefore also investigated 
the case of circular bends. Also in this case there are 
quasi-bound states below the first subband threshold. 
As above there are also N-fold splittings for N consec- 

utive double circular bends. The binding energies are, 

however, much smaller for circular bends. In a real de- 

vice the situation is in between these two extrme cases. 
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