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A transfer matrix method is formulated for calculating electron transport in a one-
dimensional quantum channel having complicated structure and connected to two-
dimensional electron reservoirs. The method has been used to calculate conductance
in two types of quantum-dot atrays, namely serpentine (double-bend) quantum-dot
arrays and quantum-dot arrays with repulsive and square potentials. It is shown
that in both a quantum channel with a double-bend dot and a quantum channel
with two square and potential-repulsive dots, singlet conductance peaks can appear
at energies below the threshold of the lowest subband. These peaks are associated
with resonant tunneling via electron quasi-bound states of the systems. It is also
shown that in a quantum channel containing an array of the dots, each peak is split
into multiple peaks. This is due to the coupling between the corresponding quasi-
bound states in the dot array. It is suggested that some recent measurements on a
double-bend structure may be interpreted in such terms.
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1. Introduction

Recent advances in nanostructure technology have
made it possible to define narrow constrictions in a two-
dimensional electron gas (2DEG) formed at a semicon-
ductor heterostructure. In tiny structures, such as quan-
tum wires and quantum dots, electron transport is bal-
listic and the motion of electrons is governed by quan-
tum mechanics rather than classical mechanics. The
quantization of the conductance of narrow constrictions
first observed by van Wees et al. [1] and Wharam et al.
[2] and the resonant conductance via quasi-bound states
in classically unbound systems [3] are just two examples
of recent developments in this area.

Here we report on exact quantum-mechanical calcu-
lations of electron transport in two types of one-dimen-
sional quantum-dot arrays, namely serpentine quantum-
dot arrays and square-like potential-repulsive quantum-
dot arrays, embedded in narrow straight channels delim-
ited by hard-wall boundaries. In order to model trans-
port in the ballistic regime, we have assumed that the
arrays are finite and the channels are connected with
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two semi-infinite 2DEGs, which act as source and drain
when a potential difference is applied. Further details
of the lateral structure of our quantum systems can be
found in the insets of the figures presented in this pa-
per. In the calculation we use a transfer matrix method
within the effective mass approximation. The method
has been formulated by basing all our matrices through-
out the quantum channels on one common basis. Thus
the method has significant flexability, i.e., it can be eas-
ily used to treat electron transport in quantum channels
having very complicated structures in both the longitu-
dinal and the transverse directions.

In a serpentine quantum-dot array, the electrons in-
jected from a 2D-reservoir with energies lower than the
height of the embedded rectangular potential barriers
are forced through a series of double-bend quantum dots.
The effect of the electron interferences due to a double-
bend dot on the quantized conductance plateaus was
observed by Wu et al [4]. In addition, these authors
observed also two conductance peaks below the thresh-
old of the first conductance plateau but associated them
with resonant tunneling through impurity states in the

© 1992 Academic Press Limited



238

system [4]. In this paper, we will show that in a channel
containing a double-bend quantum dot the conductance
peaks corresponding to resonant tunneling via quasi-
bound states in the dot can appear at energies below
the threshold of the first conductance plateau. We will
also show that in a serpentine quantum-dot array, the
coupling between quasi-bound states in the double-bend
dots will result in the formation of N-fold splitting states
where N corresponds to the number of the double-bend
dots in the system. In the square-like potential-repulsive
quantum-dot arrays two alternative paths have been
provided for the electrons between the two sides of each
square barrier. Since the potential of the barriers is
repulsive we refer to them as anti-dots. The electron
quantum dots in these systems are actually located in
between the anti-dots.
cuss the so called electrostatic Aharonov-Bohm effect
[5]. Thus we will place all the anti-dots along the central
line of the straight channel with the hard-wall bound-
aries. We will show that conductance peaks can appear
at energies below the threshold of the first conductance

In this paper we will not dis-

plateau in the quantum channel containing an array of
two anti-dots and that each of them will be split into
multiple peaks in the quantum channel containing an
array of more than two anti-dots.

2. Theoretical Method

In the calculations we use a transfer matrix method
formulated by representing the wave functions of the
electron states throughout the straight channel in one
The standard transfer matrix method
is suitable to treat a quantum system with the elec-

common basis.
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[he
use of one common basis throughout the system makes

tron potential varied along the transfer direction.

the method suitable also to treat the system having the
electron potential varied not only along the transfer di-
rection but also along the transverse direction.

A fundamental step in the transfer matrix method 1s
to divide the quantum system along the transfer direc-
tion into a number of strips which are small enough so
that the potential in each strip region was a variation
only in the transverse direction. This is illustrated in
Fig. 1 where the quantum channe] has been partitioned
along the transfer direction, i.e. the z-direction, into N
strips. Let us assume that {®,(y)} are a complete set of
orthonormal functions along the transverse y-direction
in the interval |y| < w/2, where w is the width of the
straight channel as indicated in Fig. 1. Using this set
of functions as our basis we may write the wave func-
tions of electron states in effective mass approximation
in strip region ¢ as

Yi(z,y) = v
3 a(y) D, [BheHEm) 4 ekl (1)

where the expansion coefficients d%_ can be obtained by
searching for eigenvalues E! from the system

> {(en = BL) Sum + (@n(@)IV'(3)|8m(9)) } dhna

=0, n=123,.., (2)

where V(y) is the electron potential in the strip region
i. Once equation (2) is solved, the coefficients &, and ¢!,
in Eq. (1) are the remaining unknowns in the expansion
for the wave function ¥*(z,y). Obviously, we have such
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Figure 1: Schematic diagram of a finite quantum channel
in which the electron potential varies along both the trans-
portation z- and the transversal y-directions. The channel is
connected with two semi-infinite 2DEGs and has been par-
titioned into N strip regions in such way that in each strip
region the electron potential only varies along the transver-
sal y-direction.
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a set of coefficients for each strip region. However, the
connection between the coefficients of any two strip re-
gions in the channel can be achieved by a transfer matrix

in the form
Bi o Bi+1
(Ci)zM(”11+1)<Ci+l ) ) (3)

where Bf and C* are coefficient vectors, whose elements
are {b%} and {c!}, respectively, and M(3,i + 1) is the
transfer matrix. It can be shown that the transfer ma-
trix M(3,2+ 1) is

M(i,i +1) =

4 0 “lypi pi \Tly pitt pidt

( o (v) ) ( Q @ ) ( Qg ) ’

(4)

where ~* is the diagonal matrix with elements given by

(¥ )aa = exp(iki ), the submatrices P* and Q' are de-

fined by (P¥)pa = ', and (Q')na = d' kiw. Here £ is

the width of the ith strip region along the z direction

and w is the width of the channel (see Fig. 1). If the

channel is divided into N strips, it is straightforward to

show that the connection between coefficient vectors at
the two end strip regions is

(&)-mum(ev). @

where the transfer matrix M(1, N) is given by
M(1,N) = M(1,2) M(2,3) --- M(N - 1,N). (6)

In order to uniquely determine the coefficient vectors
B* and C* we have to consider the boundary conditions
imposed on the two end of the quantum channel. In this
work we have connected the channel with two 2DEG-
reservoirs and assumed that the electrons are injected
from left reservoir and emitted to the right reservoir.
By matching the wave functions of the electron states
in the channel to the wave functions in the left reservoir,
we can derive the boundary conditions imposed on the
coefficient vectors B! and C! in a matrix form as

sw(&) = (8) ™

where the vector A is defined by
(A)n = 2ke w A, (8)
with o
Ak, = /_m dy ®;(y) 40 (v) - (9
The matrix S(1) in Eq. (7) is defined by

s(1) = (“:, 1’) (10)
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where T, and T (here i=1) are submatrices with ele-
ments given by

(T:l:)m = Z (t""l d.;nn i 6'"" d‘mc k:x) w (11)

m
with
had ! !
b = / dk, K, Dy Mg (12)
—00
Similarly, by matching wave functions in the channel to
the wave functions in the right reservoir, we can derive

the boundary condition imposed on the coefficient vec-
tors BY and CV as

S (% i ) (Bn) =00 @
where S(N) is

S(N)

il

( o ’2‘5 ) : (14)

We note that for a given channel structure, the matrices
S(1) and S(N) are energy dependent only, while the
vector A depends on both the energy € and the direction
of the wave vector k of the electron in the 2DEG incident
on the channel.

Using Eqs. (7) and (13), the coefficient vectors B!
and C! or the coefficient vectors BY and C¥ may be
eliminated from Eq. (5) and thus the system equation
for the expanding coefficients of the wave function in
either one of the two end strip regions may be obtained.
For example, by eliminating BY¥ and CV, we obtain

(s + srwmmam ] (& )= ()

(15)
where T'(N) is

= (% ) 09

Thus the coefficient vectors B! and C! can simply be
obtained by inverting the matrix on the left side of Eq.
(15) and all the subsequent coefficient vectors B and C,
in this example ¢ = 2,3, -+, N, can then be computed
from them using Eq. (3).

We note that the coefficient vectors and thus the elec-
tron wave function in the quantum channel depend on
the wave vector k of the electron incident on the chan-
nel from the left 2DEG reservoir. We may therefore
add on the wave function ¥(z,y) of the electron state a
subscript k to indicate this dependence explicitly. The
electric current carried by the wave function ¥(z,y)
through the quantum channel can simply be expressed in
terms of the expansion coefficients of the wave function
in any one of the strip regions in the channel. The total
current [ is then the sum of the contributions form the
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electron states Wi(z,y) of all the incoming wave k inci-
dent on the channel from the left reservoir in the energy
window (Ep — eV ,EFr), where EF is the Fermi energy of
the reservoir and V is a potential difference between the
two 2DEG reservoirs. The conductance G of the quan-
tum channel is finally calculated from G = |I/V|. In the
linear response regime, V is assumed to be very small
and G is independent of V. For further computational
details we refer to Ref. [6].

3. Results and Discussion

The calculations presented in this paper have all
been performed with the assumption of an effective mass
m* = 0.067m, which is appropriate to the Al,Ga; _.As/
GaAs interface. In most cases (Figures 2-5) we have
chosen to plot the calculated conductance GG in units
of 2¢?/h as a function of a dimensionless variable { =
(w/xh)(2m=EFr)'/?, where w is chosed to be the width
of the straight quantum channel and Ef is the Fermi
energy in the 2DEGs. We have fixed w to a value of 100
nm and varied only the Fermi energy Er.

We first present our results for the serpentine (i.e.
double-bend) quantum-dot structures. We have ideal-
ized our quantum systems by implanting rectangular
barriers of a finite height 1} in a straight channel of
width w delimited by hard walls. The effect of the

Figure 2: Calculated conductance G as a function of the
dimensionless variable { = (w/Ax)(2m*EF)'/? for the quan-
tum channel with the single double-bend modulation estab-
lished by implanting two rectangular barriers of different
heights V; in an otherwise straight quantum channel of width
w delimited by hard-wall boundaries. The geometrical detail
of the double-bend structure is shown in the inset of this fig-
ure with w = 100 nm, l; = 50 nm, {, =60 nm, {; =, = 30
nm, and . = w — I, = 40 nm. The curves have been offset
for clarity.
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barrier height Vi on the conductance G of the quan-
tum channels with such serpentine quantum dots can
be found in Fig. 2. In this figure we have shown, as
an example, the conductance G of the channel with a
single double-bend dot (see the inset of the figure for
the geometrical detail). The curve with V, = 0 corre-
sponds to the conductance of a pure straight channel
of width w = 100 nm acuued by hard-wall bound-
aries. The novel plateau structure of a straight chan-
nel is clearly seen. Here the oscillations at the edges
of the plateaus are due to the presence of longitudi-
nal standing waves in the straight channel because of

s}
(a)

4[ Al e P
&
O
o
o]

2

0

0 2 4
€
6
(b)

4 Al e b b
&
)
@)

2

0

0 2 4

Figure 3: Calculated conductance G as a function of the
dimensionless variable ¢ = (w/hx)(2m* Ep)!/? for the quan-
tum channels with (a) the double and (b) the triple double-
bend modulation established by implanting the rectangular
barriers of a fixed height V;, = 5E; in an otherwise straight
quantum channel of width w delimited by hard-wall bound-
aries. The geometrical details of the two multiple double-
bend structures are shown in the insets of the two figures.
All other parameters are the same as in Fig. 2.
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using sharp corner boundaries at the ends of the chan-
nel. As the barrier height Vj is increased, the plateau
structure of the straight channel is seen to be disturbed,
whereas a sharp conductance peak appears at a energy
below the lowest subband threshold E, [at Vi, — oo,
E; = (B*/2m*)n?/(w — 1,)?]. This peak is associated
with resonant tunneling via a quasi-bound state local-
ized in the double-bend dot. At V4, = 15E,, where
E; = (B*/2m*)(x/w)? is the first tansversal-mode en-
ergy corresponding to the straight channel of width w
with hard-wall boundaries, a very broadened peak ap-
pears at an energy close to the lowest subband threshold.
We have found (6] that at a very high barrier height V}
this peak becomes sharp. The appearance of the peak
indicates that there can exist another quasi-bound state
at energy below the lowest subband threshold in such a
double-bend system at infinite barrier height (¥, — oo).
Thus we propose that the two conductance peaks ob-
served by Wu et al. [4] in a double-bend channel at
gate voltage below the threshold of the first conductance
plateau may be interpreted in terms of resonant tunnel-
ing via quasi-bound states. In a quantum-dot array the
quasi-bound states discussed above will couple to each
other, resulting in multiple-splitting quasi-bound states.
As a consequence, multiple-splitting peaks in the con-
ductance may appear at energies below the threshold of
the lowest conductance plateau. Fig. 3 shows the cal-
culated conductance for a double and a triple double-

10
2DEG E, w 2DEG
Al b i
E | W=15E L L
S
o Vo= 10 Ej

Figure 4: Calculated conductance G as a function of the
dimensionless variable ¢ = (w/Ax)(2m*EFp)'/? for the ar-
ray of two square-like potential-repulsive barriers of different
heights V), implanted in the center of an otherwise straight
quantum channel of width w delimited by hard-wall bound-
aries. The geometrical detail of the array structure is shown
in the inset of this figure with w = 100 nm, I, = I, = 50
nm, [} = |, = 30 nm, and /. = 40 nm. The curves have been
offset for clarity.
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bend structures with the same quantum-dot geometry
as in the single double-bend structure described in Fig.
2. Here we have set V;, = 5E,, since we are mainly
interested in quasi-bound states at energies below the
threshold of the first conductance plateau. In a sin-
gle double-bend quantum-dot system, only one resonant
conductance peak appears at energy below the thresh-
old of the first conductance plateau at V, = 5E; (see
Fig. 2). This peak is seen to be split into two peaks in
the double double-bend quantum-dot system and three
peaks in the triple double-bend quantum-dot system.
Such a multiple-splitting-peak structure in conductance
is a typical feature of a finite quantum-dot superlattice

(7).
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Figure 5: Calculated conductance G as a function of the di-
mensionless variable § = (w/hx)(2m*Er)'/? for the arrays
of (a) three and (b) four square-like potential-repulsive har-
riers of a fixed height V; = 5E; implanted in the center of
an otherwise straight quantum channel of width w delimited
by hard-wall boundaries. The geometrical details of the two
array structures are shown in the insets of the two figures.
All other parameters are the same as in Fig. 4.
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Our calculated results for the conductance of square-
like potential-repulsive quantum-dot arrays implanted
in a straight channel of width w = 100 nm is shown in
Figs. 4-6. Since the potential of the square-like barri-
ers (denoted also by V;) is repulsive, these barriers are
naturally considered as quantum anti-dots. The actual
electron quantum dots are located in between the anti-
dots. In Fig. 4 we present the calculated conductance
G as a function of the dimensionless variable ¢ for an
array of two square-like barriers of different height V;.
Again, at V, = 0, the calculated curve in this figure
corresponds to the conductance of a pure straight chan-
nel of width w = 100 nm delimited by hard walls. At
Ve # 0, the novel quantized plateau structure is seen to
be disturbed and the threshold of the lowest subband
is seen to be shifted to a higher value of {. Below the
up-shifted threshold there are sharp resonant conduc-
tance peaks. Here we only see the singlet peaks. This is
in correspondence with that there can only appear one
electron quantum dot in an array of two square-like anti-
dots. Fig. 5 shows the calculated conductance G for an
array of three square-like anti-dots and an array of four
square-like anti-dots with V, = 5E;. In a rather similar
way to what we see in the calculated conductance for
the arrays of the double-bend quantum-dot arrays (Fig.
3), the singlet conductance peak at an energy below the
threshold of the lowest conductance plateau in the ar-
ray of two square-like anti-dots is seen to be split into
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Figure 6: Calculated conductance G as a function of the
Fermi energy EF for the array of six square-like potential-
repulsive barriers of a fixed height V;, = 5E; implanted in the
center of an otherwise straight quantum channel of width w
delimited by hard-wall boundaries. The geometrical detail
of the array structure is shown in the inset of this figure. All
other parameters are the same as in Fig. 4.
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two (three) peaks in the array of three (four) square-
like anti-dots. Such splitting peaks can also be seen at
the edge of the lowest conductance plateau. Finally, we
wish to present in Fig. 6 the calculated conductance
as a function of the Fermi energy Ep for an array of
six square-like anti-dots at V, = E) and to note that
the miniband structure resulting from coupling of quasi-
bound states in a quantum-dot array may also appear
at conductance plateaus [8-10].

All results presented so far refer to structures with
very sharp features. In a real structure, however, corners
tend to be rounded. We have therefore also investigated
the case of circular bends. Also in this case there are
quasi-bound states below the first subband threshold.
As above there are also N-fold splittings for N consec-
utive double circular bends. The binding energies are,
however, much smaller for circular bends. In a real de-
vice the situation is in between these two extrme cases.
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