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expansion coefficient.

INTRODUCTION

Two theories of the thermal expansion
coefficient of a graphite crystal have been
proposed. The first theory due to D. P.
Riley[1], based on the work of Gruneisen
and Goens[2], assumed Debye[3]—type
dispersion relations with two distinct charac-
teristic temperatures 6, and 6,, for vibra-
tions polarised perpendicular (‘out-of-plane’)
and parallel (in-plane) to the layers respec-
tively. The negative expansion coefficient
observed below 400°C in this theory is due to
the Poisson contraction of the layer planes
associated with the large expansion perpen-
dicular to the layer planes. At temperatures
above 400°C this effect was assumed to be
counteracted by a true thermal expansion of
the layer planes to produce a small positive
thermal expansion coefficient.

The second theory due to Kelly and
Walker[4] was based on the lattice dynamics
of graphite due to Komatsu[5] and provides
a good fit to the thermal expansion co-
efficient data perpendicular to the basal
planes. It was not found possible to fit the
data parallel to the basal planes because no
independent estimate was available of the
anharmonic coefficients.

In both theories the negative component
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Abstract— The theory of thermal expansion of a graphite crystal is applied parallel to
the basal planes. It is shown that the observed expansion at high temperatures is less than
expected. A calculation is made of the effect on thermal expansion of an unusual an-
harmonicity for the out-of-plane bond bending vibrations. The consequences of this
model are discussed with regard to the very low temperature behaviour of the basal

of the basal expansion coefficient can only

be explained by Poisson’s ratio effect if the

elastic compliance ratios is S15/845 =—0-07

whereas recent data gives a value of —0-012

[6]. Itis necessary to find another component

of negative expansion to explain the results.

Two possible explanations are available:

(I) One of the anharmonic coefficients
associated with the out-of-plane acoustic
mode has the opposite sign to that
expected.

(2) There is a significant negative component
due to some other mechanism—some pos-
sibilities have been described by Barron[7].
In this work the theory of expansion co-

efficients due to Kelly and Walker[4] is
extended to high temperatures using the
first of these assumptions and it is shown
that this is a possible mechanism. If the
mechanism is correct it is possible to come
to some conclusions about the thermal
expansion coeflicient at very low tempera-
tures. A preliminary discussion of the second
possibility is given.

THEORY

The basal expansion coefficient of a
graphite crystal «, is the sum of contribu-
tions from the ‘in-plane’ and ‘out-of-plane’
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acoustic modes and optical modes. In pre- where
vious studies of the properties of graphite Cra
crystals it has been shown that a two dimen-
sional model is very satisfactory at high k
temperatures, that is the interaction between h
layers is set equal to zero. In terms of the Om
usual elastic constants:
S;yand Cyy
Ciy=Cp=0C4u4=0 (1)
8

In these conditions the equations given by 6., 0r and 6,

Kelly and Walker[4] for the acoustic mode V,and Vy
contribution to the thermal expansion co-
efficient parallel to the basal planes can be
integrated directly: d

(a) In-plane longitudinal’ modes

" is the interlayer spacing
The numerical values are given in Table 1.

Table 1. Values of parameters used in
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(c) ‘Out-of-plane’ modes

optical mode
above 300-400°
In fact each

The J,(x) are Debye integrals of order =, and

a(T) =—%f5(sn+sm)[%]{% : 5%8—} are tabulated [8]. value for the
E We are interested in the expansion coefl- and it is our [

X Jo(6o/T) cient over a wide range of temperatures and appropriate cl

L T1(1 85 thus we cannot neglept ppssible optical mode reproduce the

=—7 (Syy 4 Spp) TOR? [0_0] {(_3 =y } contributions. Examination of the results of % a,. It was spe

*E Yoshimori and Kitano[9] indicates that the that 57'(98/de,.

X Jo(6o/T) (4) ‘out-of-plane’ optical mode contribution is while  C7}(aC
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essentially two dimensional in character and
it can be included by simply extending the
Brillouin zone to include the additional
vibrational modes. Including the optical
mode contribution in equation (4) leaves it
identical in form, J,(6,/T) is replaced by
J2(05/T), where

Oy =20, 5)

The situation for the in-plane optical
modes is not so simple. However, as an
approximation, we will make the same kind
of assumption, replacing 8, and 6; by

Oy ="\ 26&}
0@ = \/297' (6)

(The square root occurs because of the par-
ticular wave-number-frequency relationship
for the in-plane modes).

Figure 1 shows the magnitudes of the con-
tributions to the thermal expansion co-
efficient a, of the three acoustic modes given
by equations (1), (2) and (3) and also the
contributions of the acoustic plus optical
modes [that is equations (1), (2) and (3)]
evaluated with 6,, 6, and 6, replaced by
Oy, 0y and B4) assuming that

_1_((:)C11> —— l a(Cll — CIZ)
Cii\0¢€sy Cii—Cyyp 0y

=3lae) =1 g

Figure 1 shows that the inclusion of the
optical mode contributions is important
above 300-400°K.

In fact each mode will have a different
value for the parameters equated in (7),
and it is our problem to decide whether an
appropriate choice of the parameters can
reproduce the temperature dependence of
aq. It was speculated in a previous paper
that 67'(38/de,,) might have a positive sign
while  C7'(0C,1/de,,) and (Cy —Cyy)7?
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Fig. 1. ‘Contributions to basal thermal expansion
coefficient (with anharmonic coefficients equal to
unity) as a function of temperature’.

+ ‘In-plane’ longitudinal
X ‘In-plane’ transverse
O Out-of plane
‘In-plane’ longitudinal}lncluding

Acoustic
modes only

‘In-plane’ transverse optical
@ Out-of plane modes

X 9(Cyy—Cys)/de,, are conventionally nega-
tive leading to a negative contribution to «,
from the out-of-plane mode and positive
contributions from the in-plane modes.
There is however, no direct evidence for
the magnitude of these parameters. If we
choose a Morse potential to represent the
covalent nearest neighbour bonds in a layer
plane then a simple calculation gives

Cii(0C1/deyy) = — 82

The usual literature definition of the an-
harmonic coefficient is d(log »)/d (log v) with
a magnitude of 1-2, which leads to d(log v)/
derr ~ 3-6, in reasonable agreement with
our considerations. The value given above
does not differ from that given in Ref [4],
where the anharmonic coefficient for the in-
plane longitudinal mode is defined as
Y]z = V_lav/ae.r.l' =3Cy (acn/aex.r) =—4-1.
In the ensuing calculation we assume that
(C11— Ci2)7'9(Cyy —~ Cyy)/dey, has a value of
—8:2 also. The value of «, is well known to
be zero at about 400°C and since.

(X(,(T) :Otl(T)‘f’Olg(T)‘f‘Oé;g(T) (8)
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Equations (2), (3) and (4) combine to yield at
that temperature (assuming acoustic and
optical mode contributions):

0-96571(88/de,,) = 8-2(0-35+0-60)
or

571(88/dey,) =+ 82 9

The variation of «, with temperature can
now be calculated using these values for the
anharmonic coeflicients. Table 2 gives a
number of theoretical values of ¢, at differ-
ent temperatures and compares them with
experimental data obtained from Bailey and
Yates[9] and the analysis of a large amount of
data by Morgan[10].

Table 2. Comparison of experimental and
theoretical values of , at selected temperatures

Temperature Theoretical o, Experimental

A more detailed comparison of theory and
experiment[9, 10] is shown in Fig. 2. It is
clear that this theory, modelled on the first
assumption described in the introduction,
does give a reasonable explanation of the
basal expansion coefhicient numerically.

The theory presented is the simplest modi-
fication to the previous theories that will
explain a negative component of the basal
thermal expansion which is not due to the
Poisson’s ratio contraction associated with the
large interlayer expansion. It has been
assumed that the change in 8, the bond-
bending force constant, with strain along
the basal planes ¢,, has the opposite sign to
the other anharmonic coeflicients. The out-
of-plane vibrational mode involves the elastic
moduli Cy and Cy3 and 8 the bond-bending
constant. As the temperature is reduced the
bond bending component of the vibrations
is frozen out, and the variations of C,, and
Cs; with ¢,, become more important. If this
surmise is correct, the anharmonic co-
efficient and therefore the basal expansion
coefhcient will become positive at low tem-
peratures. The data of Bailey and Yates[9]
suggest that this may occur below 30°K,
although it does not show in their calculations
of the moments of the anharmonicities.

e————+————+ Theory
//,4}_ ——————— -<} Experiment

| L
1500 2000

Temperature, °K

o Bailey and Yates[9]
o W. Morgan [I0]

(°K) (°K™) o, [9,10]
(K)
200 —1-56x107% —1:33x107®
300 —1-88 —1-80
1000 0-90 0-7
2000 1-64 1-3
?9
<
&
Z" I +
i
£ °K %OO/ — o0
2N
é <
§ -2r i + Theory
g
2

Fig. 2. Predicted basal expansion coeficient due to positive
value of §7'(98/de,,) comparison of theory and experi-
ment (no correction for Poisson’s ratio effect of ).
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The major difficulty with this theory is the

Jack of any reason why 8§71(88/de,,) should

have a positive sign. The bond bending co-

efficient 8 is not well understood theoretically

(and this is perhaps the best reason for sus-

pecting unusual behaviour) so that its be-

haviour is uncertain. An alternative pos-
sibility is described by Barron[7] who
considers the increase in tension of bonds
perpendicular to directions in a lattice with
high vibration amplitudes as a source of
negative thermal expansion in highly aniso-
tropic lattices. This needs investigation
before a final decision may be made regard-
ing the basal expansion coeflicient of
graphite.

We are thus at present left with three alter-

native possibilities: ,

(2) The original explanation of the negative
coefficient is correct and the direct
measurements of S;3/S5; are incorrect.

(b) The bond-bending coefficient 8 in the out-
of-plane vibrational mode has a positive
anharmonicity with respect to strains in the
basal plane such that

195
3 deyy

~8
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(c) The large vibrational amplitude in the
out-of-plane direction produces a contrac-
tion by Barrons[7] mechanism.

"The latter possibility will be the subject of

a future paper.

Acknowledgement — The Managing Director of the
Reactor Group of the UKAEA gave permission
for this work to be published.

REFERENCES

. Riley D. P., Phys. Soc. 57, 487 (1945).

2. Gruneisen E. and Goens E., Z. Phys. 29, 141
(1924).

3. Debye P., Ann. Physik 39, 789 (1912).

4. Kelly B. T. and Walker P. L. jr., Carbon 8, 211
(1970).

5. Komatsu K., J. Phys. Soc. Japan 10, 346 (1964);
J- Phys. Chem. Solids 6, 380 (1958); J. Phys.
Chem. Solids 25, 404 (1963).

6. Blakslee O. L., Proctor D. G., Seldin E. J-
Spence G. B. and Weng T., J. Appl. Phys. 41,
3373 (1970).

7. Barron T. H. K., Ann. Phys. 1, 77 (1957);

J-Appl. Phys. 41, 5044 (1970).

[

8. Rogers W. M. and Powell R. L., NBS Circular
595 (1958).
9. Bailey A. and Yates B., J. Appl. Phys. 41,

5088 (1970).
10. Morgan W., BNWL-SA-3838.



