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A theoretical study of dissipative scattering in mesoscopic systems is presented. Within the
single electron and localized phonon approximations, exact expressions for the transmission
and reflection probabilities between the various leads and channels are derived in terms of
dressed two-particle Green’s functions. These general results are obtained through two
different procedures: one approach is based on a direct study of the microscopic stationary
scattering amplitudes while in a second method the reduced density matrix of a scattered wave
packet is analyzed. In both approaches the phonon bath degrees of freedom are traced out in
such a way that an effective description of the electron dissipative dynamics emerges. The
scattering probabilities are shown to satisfy symmetry relations which exactly account for the
presence of a dissipative thermal bath. A lattice formulation of the calculational method is
also presented, and an explicit proof of unitarity is obtained by invoking the continuity
equation. By introducing time-ordering in the Keldysh contour, a diagrammatic perturbation
theory in the electron—phonon interaction is developed. Unitarity is shown to be automati-
cally preserved to all orders in perturbation theory. The use of diagrams is illustrated by
applying them to some simple cases involving one- and two-phonon processes. Finally, a
discussion is presented on the computation of the current from the inelastic scattering
probabilities. The existence of an ambiguity in the assignment of quantum statistical factors
to the outgoing scattering channels is pointed out. It is argued that a more consistent picture
is obtained if no statistical restrictions are explicitly introduced in the electron final states. The
novel formulation which is presented here provides a theoretical framework for quantitative
studies of the interplay between quantum interference and dissipation in the transport proper-
ties of very small structures.  © 1992 Academic Press, Inc.

1. INTRODUCTION

The recent development of cryogenic and lithographic techniques has generated
a strong interest in a novel regime of electron transport where the wave nature of
the electron plays a fundamental role. The commonly accepted view is that the elec-
tron phase is randomized by inelastic processes, which at low temperatures can be
very rare. If the inelastic mean free path is larger than the mean free path due to
elastic scattering by impurities, a wealth of new phenomena emerge that cannot be
described within the framework of semiclassical transport theory, where quantum
effects only enter through the band structure and the cross section of (usually)
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uncorrelated scattering events. The physical systems where the electron phase
coherence is preserved at a scale much larger than the atomic dimensions are often
referred to as mesoscopic systems [1]. Among the new phenomena originated by
electron quantum interference are weak localization [2], the Aharonov—Bohm
(A-B) effect [ 3], universal conductance fluctuations [4], resonant tunneling [5, 6],
and electron waveguide behavior [7]. The prospect of applying some of these new
effects to the design of electronic devices based on novel principles has strongly
contributed to the current interest in the physics of mesoscopic systems [8]. This
is particularly true in the case of resonant tunneling [6], A-B effect [9], and elec-
tron waveguide transport [10, 11], where some specific proposals have been made.
Common to all these phenomena is the preservation of phase coherence at a length
scale where quantum interference develops. Dephasing, or randomization of the
phase, is caused by the interaction with an environment with many internal degrees
of freedom whose dynamics becomes correlated with the motion of the electron.
Stern et al. [12] have recently studied in some depth the concept of phase ran-
domization by a dissipative environment, and their analysis has later been refined
by Loss and Mullen [13]. These authors emphasize that, in order for effective
dephasing to occur, the electron motion along different paths (that would interfere
in the absence of dissipation) must become correlated with the evolution of the bath
into corresponding orthogonal states. The loss of phase coherence is generally
accompanied by a transfer of energy between the carriers and the bath, although
this is not strictly necessary. If the dissipative environment supports low energy
excitations (like, e.g., acoustic phonons or electron-hole pairs), the dephasing
length /, may be smaller than the inelastic length /;,, since the former is associated
with the transfer of a quantum of energy that can be arbitrarily small, while the
second is rather the length the carrier travels before it loses an amount of energy
comparable to its kinetic energy [14]. The concept of mean free path is useful for
transport in extended systems such as quantum wires or quantum wells. However,
the situation in a typical quasi-one-dimensional nanostructure with feature size
below the dephasing length is better described by a scattering picture where
probabilities are the relevant quantities that measure the importance of the various
physical processes. In this paper we shall use dephasing and inelastic scattering as
exchangeable terms and they both will refer to processes where the final and initial
bath states are orthogonal. The electron—electron interaction can also cause
dephasing [157, but we shall not consider it here.

Since the early work by Landauer [16], it has been common to assume that
dissipation occurs only in reservoirs which are physically separated from the region
where elastic scattering (and all associated quantum interference phenomena) takes
place. This view is certainly adequate in the limit where inelastic scattering is
extremely rare and has the additional advantage of providing a powerful computa-
tional tool, since the sample transport properties can be obtained from the scattering
of independent electrons. More recently, Biittiker [17-197] has included dissipation
in the sample region by introducing extra reservoirs with no net current flow. The
electrons leaving the reservoir are assumed to have no phase-coherence with the
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electrons entering it. Dissipation is then described in terms of a generalized
Landauer problem, where a variety of voltage leads are attached to the sample [19].
This approach has also been followed by D’Amato and Pastawski [19a], who have
studied the conductance of a disordered linear chain, and by Hershfield [19b], who
has developed a numerical algorithm to include the effect of dephasing leads.
The phenomenological description of dissipation in terms of additional reservoirs
has been shown by Datta [20] to be equivalent to a model of point-like phonon
scatterers. This equivalence has been used by Pastawski [20a] to develop a unified
description of classical and quantum transport. In these works, localized phonons
are effectively treated in the self-consistent Born (or ladder) approximation.
Dissipation is easily described in its extreme form, when a series of physical
processes that would occur coherently in the absence of dissipation can be treated
as completely uncorrelated. An example of this can be found in resonant tunneling,
which, in the regime of strong intra-well dissipation, can be viewed as a two-step
process in which the electron first tunnels into the resonant site and later leaves it
without phase memory of its arrival. This is the regime of sequential tunneling,
which is opposite to the coherent tunneling that takes place in the absence of
dissipation [18]. Tejedor et al. [21] have shown that a magnetic field parallel to
the interface can be used to distinguish between coherent and sequential tunneling
and to move continuously between the two regimes within a given structure by
controlling the degree of localization within the resonant well. It is clearly desirable
to improve our understanding of dissipation by studying models in which some
type of realistic electron—phonon interaction is explicitly considered. Recently,
several works have appeared in which phonon coupling to the quasi-bound state
of a resonant tunneling structure has been included [22-25]. The simplifying
approximation of a wide-band has been introduced in all these works. Hyldgaard
and Jauho [26] have extended these studies to resonant tunneling in superlattices.
The purpose of this paper is to develop a systematic approach to the study of
dissipation in mesoscopic systems. The ultimate goal is to provide a quantitative
description of the electron—phonon interaction in ultrasmall structures. This
ambitious task is, however, quite arduous and one must resort to a variety of
approximations, particularly in the early stages. We have introduced two main
simplifications in our analysis. First, we employ a single-electron picture and,
second, we assume that dissipation takes place in a finite region of space. These two
approximations have been used in most of the recent work on dissipation in quan-
tum transport where some type of electron—phonon interaction has been explicitly
included [22-27]. Although the first approximation prevents us from studying the
role of the Pauli exclusion principle and Coulomb correlation in dissipation, we
expect it to keep many essential features of the interplay between quantum inter-
ference and dissipation. Apart from the obvious simplifications that arise from con-
sidering a single-particle picture, there are other good reasons for introducing such
an approximation. Most importantly, the single-electron picture has been widely
used in the study of transport in semiconductors [287] and there is a great variety
of situations (such as transport by nondegenerate plasmas in semiconductors)
where it can be considered legitimate. A detailed account of the merits of the single-
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particle approach has recently been given by Rammer [29], who has developed a
single electron theory of quantum transport within a density matrix formulation.
While he has presented a real time description of the electron dynamics, we have
focused on the study of stationary scattering, where physics can be formulated in
energy space. We expect our stationary scattering approach to be advantageous
in the description of steady-state transport. Furthermore, as we shall see, an
energy formulation often permits a better understanding of the physical meaning
of expressions or diagrams that would remain obscure in their time-dependent
counterparts.

The second simplification that we have introduced is the assumption that the
electron interacts with phonons only in a finite region of space. This approximation
allows us to adopt a simple scattering picture in which the channels for asymptotic
propagation are known exactly. The scattering channels are the various transverse
modes in the different leads connected to the nanostructure under study. A more
realistic model in terms of extended phonons (which in turn can be scattered by the
structure) would be considerably more complicated and must be studied separately.
In addition, it should be pointed out that a model of localized phonons is quite
adequate in some situations where, due to the specifics of the structure, phonon
modes develop that have most of their amplitude in the scattering region. These are
cases in which the lattice vibrations are sensitive to the geometry, also because of
their wave nature. In this sense, we can assert that the geometry affects the electron
motion both by changing its wave function and by modifying the phonons that
tend to destroy the coherence. Whether this modification of the phonon modes
enhances or inhibits dephasing remains to be seen and certainly constitutes a
question of great interest.

The resulting scattering problem that we shall study is schematically depicted in
Fig. 1 and can be formulated as follows: an electron comes from lead a in transverse
mode m with energy E; and can be transmitted with a certain probability into mode
n of lead b with energy E, after having interacted with the boundaries, impurities,
and phonons in the central region (the “sample”). We are essentially following the
Landauer approach in which the resistance of a sample is viewed as a direct conse-
quence of its scattering properties [16]. However, we include the possibility of
inelastic processes within (or in the vicinity of) the sample. As in the standard
Landauer picture, we assume that the electron reservoirs introduce additional
randomization of the relative phase between the electron waves that enter and leave
the reservoir.

In Section 2, we derive general expressions for the inelastic transmission and
reflection probabilities in terms of two-particle Green’s functions. The reason why
two-particle Green’s functions (with four field operators) appear in a single-particle
problem is that we calculate probabilities instead of probability amplitudes (which
would be given by one-electron Green functions). In connection with this rather
important point, we also discuss the relation between the irreducibility of the
two-particle Green function and the occurrence of inelastic scattering in which the
phonon bath changes state. An interesting feature of our scattering analysis is that
the fundamental property of microscopic reversibility gives rise to a detailed
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balance equation that guarantees the suppression of net currents in the absence of
a driving force. The situation is similar to that encountered in Boltzmann equation
studies. However, we deal here with scattering probabilities (associated to a one-
event process) instead of scattering rates (which give the frequency of uncorrelated
scattering events). An interesting by-product of the found symmetry relation is the
compatibility between microscopic reversibility and irreversible thermalization.

Our starting point is the relation between the Green’s functions and the elements
of the discrete S-matrix (transmission and reflection coefficients) that was derived
by Fisher and Lee [30] for one-dimensional scattering and was later generalized by
Stone, Szafer, and Baranger [31, 32] to arbitrary multilead structures. Formally,
the phonon bath is introduced by simply adding new labels to the equations.
The Hilbert space is thus enlarged to include both the states of the particle and the
states of the phonon system. The total system formed by the electron plus the
phonons is a Hamiltonian system where energy is conserved. From the point of
view of scattering, the phonon indices appear on a formally identical footing to that
of the electron lead and channel quantum numbers. Leggett [33] has recently
pointed out the formal similarity between phonon states and electron transverse
modes. Of course, this similarity disappears when an explicit account of the
quantum statistics is taken in the process of ensemble averaging. Since we are only
interested in the electron dynamics, we trace out the phonon degrees of freedom by
taking a thermal average for the initial states and an equal weight sum over all
possible final states. This is the approach to dissipation in quantum mechanics that
has been emphasized by Leggett and collaborators [34, 35] following the seminal
work of Feynman and Vernon.

The work of Section 2 is complemented by three appendices. In Appendix A, we
present an alternative derivation of the relation between Green’s functions and
scattering amplitudes that is based on a real time analysis of a scattered wave
packet. Appendix B deals with a lattice formulation that may be required in other
contexts. The equations for inelastic resonant tunneling [22] are rederived exactly.
Finally, in Appendix C we show that unitarity can be inferred from the general
expressions for the inelastic scattering probabilities by invoking the continuity
equation satisfied by the electron current and density operators.

In Section 3, we present an alternative derivation of the equations for the
inelastic transmission and reflection probabilities based on an analysis of the
reduced density matrix (that which results from taking the trace over the phonon
coordinates in the total density matrix). The reason for presenting an alternative
derivation is threefold. First, it provides us with an independent check of the equa-
tions derived in Section 2. Second, it gives additional insight into the physics
described by those equations. The scattering probabilities are obtained by analyzing
the real time evolution of a wave packet that is scattered by the sample. The
stationary scattering properties are obtained by considering the limiting case of a
monochromatic wave packet. In particular, an interesting solution is given to the
apparent paradox that the reduced density matrix depends only on one time argu-
ment (see Eqgs. (33) and (36)) while a calculation of the scattering probabilities
seems to require full knowledge of the dependence of the two-particle Green func-
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tion on its three significant time variables (see Eq. (14)). The solution lies in the
correlation which exists between time and space dependence in the asymptotic
regions, where the electron propagates freely. Finally, an analysis of the inelastic
scattering problem in terms of the reduced density matrix creates a bridge with the
literature on dissipation in quantum mechanics [35], where the density matrix
approach has been widely used.

Equations (14) and (16) for the inelastic scattering probabilities derived in
Sections 2 and 3 are formally exact. However, an exact evaluation of the Green’s
functions involved that fully includes the effect of boundaries, impurities, and
phonons is not possible in general. One has to resort to various types of approxi-
mations. One possibility is to treat the phonons exactly and include the elastic
scattering approximately, but this is only possible in tight-binding formulations
where the phonons couple to one electron site [22, 28]. It is more common to
assume that the electron motion in the presence of boundaries and impurities is
known exactly and include the effects of phonons approximately. In this work we
follow the second approach because there is a wide variety of situations where the
elastic one-electron problem can be solved exactly by analytical or numerical
methods. We wish to develop a diagrammatic perturbation theory in the electron—
phonon coupling that allows us to include the effect of phonons in a systematic
fashion and eventually to introduce correlative approximations by summing a given
class of diagrams. This program is carried out in Section4. A diagrammatic
representation is derived by applying Wick’s theorem to a time-ordered version of
the Green’s functions introduced in Sections2 and 3. A nice feature of our
perturbative analysis is that unitarity is automatically preserved to all orders in
perturbation theory. This is possible because we develop a perturbation theory for
scattering probabilities—rather than amplitudes, whose sum must be unity
regardless of the value of the electron—phonon coupling constant.

In Section 5, we illustrate the use of the diagram rules derived in Section 4 by
applying them to some simple cases. We calculate all one-phonon diagrams and
explicitly check unitarity in one particular case. We also study a group of
two-phonon diagrams which include real emission and absorption processes. The
particular case where the same phonon is first emitted and then absorbed (or
vice versa) yields an additional elastic chanel that has been known to be important
in other contexts.

Finally, in Section 6, we present a discussion on the computation of the net
current in a given lead as a function of the chemical potential of the various leads
in terms of previously computed inelastic transmission probabilities. This is an
attempt to generalize the Landauer-Biittiker equations [19, 37] to the case where
inelastic scattering occurs in the sample. We employ counting arguments which are
similar to those used by Biittiker [19, 37] in his initial derivation of the conduc-
tance of multilead structures in the independent electron approximation (which is
correct in the absence of dissipation). This may seem the logical first step towards
a multilead conductance formula which accounts for realistic dissipation. After all,
the counting argument used in Ref. [37] for the elastic regime proved to be essen-
tially correct, as confirmed by the later work of Ref. [32] and by the numerous
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successful applications of the results there obtained. However, the generalization of
the multilead conductance formula to the dissipative case is considerably more
problematic, particularly in what regards the inclusion (or not inclusion) of the
Fermi statistics in the final states. In Section 6, we present two different ansarze for
the computation of the current in the leads, one in which the Pauli exclusion
principle is introduced in the outgoing channels and another one in which it is not.
Both ansitze have been used previously in the literature in one form or another. In
the particular case where there are only two leads, the magnetic field is zero, and
dissipation is absent, both current ansdtze are equivalent but this is not true in the
general case. We argue that, although the option without explicit inclusion of Fermi
statistics in the final states is probably closer to the correct solution, neither of the
two ansitze is entirely free of contradictions. This often neglected ambiguity in the
computation of the current strongly suggests that the generalization of the
Landauer-Biittiker equations to the presence of dissipation (and thus of dynamic
electron—electron interactions) requires more careful theoretical work than one
would expect from the success of simple counting arguments in the independent
electron picture. In this regard we note that the generalization of the linear response
analysis of Refs. [31, 32] is not straightforward, since in those works the assump-
tion of independent electrons (which is not valid in the presence of electron—-phonon
coupling) is introduced at the outset. A more appropriate starting point may be
provided by an exact expression for the conductance coefficients in terms of many-
body scattering states that has been recently derived by the author within the
framework of a gauge-invariant formulation of linear transport [37a]. Recently,
Feng [38] has studied an exactly solvable model in which a generalization of the
Landauer formula for at least the two-terminal case seems to be possible. However,
Feng’s choice of an electron-phonon interaction in which the phonons couple
separately to each of the unperturbed scattering eigenstates completely precludes
the dephasing effect of dissipation, since the phase coherence contained within each
scattering state—which is the essence of quantum interference—is preserved intact.
Thus the validity and generality of his results must be taken with caution until
theoretical work dealing with more realistic electron phonon couplings is available.
A promising approach is that taken by Anda and Flores [39] who have employed
the Keldysh method to compute the transport properties of resonant tunneling
heterostructures, following the early work by Combescot et al. [39a] on inelastic
tunneling. However, at least in its present form, the Keldysh formalism does not
readily lead to a scattering picture of the electron transport problem that can be
applied in the most general situation (without specific assumptions about the
phonon interaction and the couplings between leads and sample). In summary, the
work presented in Section 6 about the computation of the current is of a more
tentative nature than that of the other sections. We point out, however, the existence
of an ambiguity in the choice of current formula that has often remained unnoticed
in the literature. We hope that this discussion will stimulate further theoretical work
on the correct method of computing the current.

In this work we have borrowed some concepts from the literature on dissipation
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in quantum mechanics, which has considerably grown in the last ten years due to
the interest on macroscopic quantum phenomena. Most of the work in this field has
dealt with the effect of an environment with many degrees of freedom (the “bath”)
on the dynamics of a single degree of freedom (the “particle”). Dissipation is a
manifestation of the lack of knowledge or control on the detailed behavior of the
bath. It is well described mathematically by the reduced density matrix, which is
obtained by tracing out the bath coordinates from the total density matrix. The
equivalent procedure in a stationary scattering approach consists in summing over
all possible final bath states while thermally averaging over the initial ones. Most
of the work on dissipation in quantum mechanics has been based on path-integral
formulations. Here we show that similar ideas can be implemented in the
framework of Schrédinger mechanics and that they can in particular be applied to
the study of dissipative scattering. The formal connection between dissipation in
mesoscopic systems and macroscopic quantum phenomena is not accidental but
rather quite deep, since mesoscopic systems provide a natural scenario for the study
of the crossover from the quantum-mechanical world of atoms and molecules to
the semiclassical world of macroscopic bodies. The transition between quantum
and classical behavior is fundamentally driven by dissipation, which is a
phenomenological way of referring to the effect on a few interesting dynamic
variables of a large number of uncontrolled degrees of freedom.

2. INELASTIC SCATTERING PROBABILITIES IN TERMS
OF TwO-PARTICLE GREEN FUNCTIONS

A. General Relations

Our starting point is a relation between the electron Green’s function and the
S-matrix elements of a general multilead structure (like the one in Fig. 1) which was
obtained by Stone and Szafer [31] in the context of a linear response derivation
of the Landauer-Biittiker formula. They found

G (x,, X)) = {(5,,,,, expLik (X, — x,)]

fv,,,
k 1/2
#(22) o an XDl )} (1a)
—i ka2
G2£n+)(xb3 xa) = _h_— tnm,ba (ﬂ> exp(iknb'xb + ikmaxa)’ (lb)
Uma knb

where 1, ,, i1s the probability amplitude that an incident electron in transverse
mode m of lead a is transmitted into mode n of lead b,r,, ., is the reflection
coefficient to go from mode m to mode »n within lead «, and k,,, and v,,, are the
electron wavevector and velocity in mode m of lead n at energy E (note that the
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Ly

(impurities and phonons)

l

Fic. 1. Schematic representation of a generic multilead structure. The arrows indicate the propaga-
tion of a scattered electron. S is the sample region which include impurities phonons, and boundaries.
The asymptotic regions L,, L,, ... are formed by semi-infinite leads where the electron propagates freely.

index convention differs from that of Ref. [31]). The retarded (G{*’) and advanced
(G{’) Green’s functions are defined as

G%ni)(xbrxa; E) = <xb’ Xn| G(()i)(E) Ixas Xm>’

. (2)
G(*(E)=(E—Hoxin)™",

where y,.(y,) is the wave function for the transverse mode m in lead a4, and
X, =(x,, ¥,) is a point in lead a (see Fig. 1). Here, and in the rest of this paper, the
limit # - 07 is implicitly assumed. In Eq. (1a), x}, > x, must be taken, where, by
convention, x, grows in the outward direction;

hz Vz
M

H,= + U(x) 3)
is the one-electron Hamiltonian that includes the effect of boundaries and
impurities.

Equation (1) generalizes a relation previously obtained by Fisher and Lee [30]
for one-dimensional scattering. In Appendix A, we provide an alternative derivation
of the relations (1) that is based on a wave packet approach to the scattering
problem. Apart from its own interest, one important reason for presenting this
alternative derivation is that it allows us to appreciate in a simpler context (namely,
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in the absence of phonon scattering) some technical points that will be essential in
the density matrix analysis of Section 3.

We argue at this point that dissipation can be included by introducing in (1)
extra-indices associated to the states of the phonons bath |a), |[f), etc. The
scattering states of our complete physical systems now require the additional
specification of the bath state. Thus, for instance, 1, ;.4 is the probability
amplitude that an electron coming from lead a in transverse mode m finding the
bath in initial state |o), is transmitted into channel n of lead b leaving the bath in
state |8, at a given total energy E=E,;+¢,=E,;+¢5, where E; and E, are the
initial and final electron energies (energy has to be conserved in the Hamiltonian
system formed by the electron plus the phonon bath).

We focus for the moment on the transmission probability and rewrite (1b) with
new bath indices,

tnm,ba, Bo = ih(vnbﬂ Umazx)l/z
X exp( _ikEnbﬂxb - ikEmazzxa)<-xb9 Xni ﬁl G(+ )(E) ’Xa, Xm’ O(>, (4)
where

Lo .
GE)=(E—H+in) ' =— [ dre™hg(r) e ime (5)

is the retarded Greenian for the total system, 8(¢) is the step function and, in the
total Hamiltonian

H=Hy+Hy+V, (6)

H g describes the isolated phonon bath while V' is the electron-phonon interaction.
We introduce for convenience a f{ield-theoretical description of the electron in which

[Xa X 0D =W 00 (x,) 10, 2, (7)

where |0) is the vacuum of electrons and the field operator ¥} (x,) creates an
electron in the transverse mode m of lead g with longitudinal coordinate x,. As a
result, the transmission probability can be written

Tnm,ba, ﬂa(E) = | tnm‘ba,ﬂa(E)l 2

[e o) o0 .
= 0 g ¥ Eman J ds j dt e’EC =98 ()
—

— o0

X O(t) e Fpo 0t Dk giealio =04 IR0, |, (x,, S0 — )W, (X5,80) 10, B>

X <07 ﬁl l//n(xba t0+t) !//,:;(Xa, tO) IO’(X>’ (8)
where the Heisenberg field operators have been introduced:
Um(x, 1) =M, (x,) e, )

In deriving (8) we have used the fact that H |0, a)> =¢, |0, «>. Due to time trans-
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lational invariance (8) is independent of the variables s, and ¢,, which have been
introduced for convenience.

We are interested in quantities that describe the reduced dynamics of the
electron, ie., the dynamics that results from tracing out the bath coordinates.
In particular, we would like to know the inelastic transmission probability
T,.. s E;, E;) defined in such a way that the probability that an incident electron
in mode m of lead a with energy E, is transmitted into mode # of lead b with energy
between E;and E,+dE;is T, ,(E;, E;) dE,. Such a probability distribution must
be given by the relation

Tnm,ba(Ef’ Ez) = z ch Z Tnm,ba,B:x(Ei + ‘gaz) 5(Ef_' Ei + 8ﬂ - 80:)’ (10)
o B

where
P,=e Pz, (11)

is the thermal equilibrium distribution function for the isolated bath (note that o is
a bath state and not a phonon mode) and the delta function guarantees the conser-
vation of the total energy E=E,+¢,=E +¢5. In (10), it is assumed that the
phonons are initially in thermal equilibrium and a sum is performed over all
possible final bath states |f)>. The phenomenological description that results from
tracing our the phonon coordinates contains the essence of dissipation.

We wish to emphasize that, although we usually refer to a phonon bath, Eq. (10)
(and all those subsequently derived therefrom) is of a more general nature. As long
as Hy and V are not specified, our expressions apply to any type of inelastic
scattering where the dissipative-degrees of freedom are assumed to be initially in
thermal equilibrium.

Now we introduce the expression (8) into Eq. (10) and take advantage of its
independence on the variables ¢, and s, (and in particular on their difference) and
write the delta function as

1 e .
5(Ef— Ei+£ﬁ_£a) =ﬁj d(ty—s,) e (Er— Eitep—ea)to—s0)/h (12)

The terms in the phase which are proportional to (5 —¢,) (note also the presence
of the total energy E) cancel out and (10) becomes

2rh
x B E00=0)+ 51 E101) 0(5)0, ] Y, 50— 9)
X l//:(xba SO) IO’ ﬂ><09 Bl ‘//n(xbﬁ t0+ t) lpr:(xa’ tO) |05 (X>. (13)

By completeness, the sum over final bath states |§) yields the identity and can be
removed. In going from (8) to (13), the velocities vpmux =Vgma 30A U pupp = Vgpmp
have been replaced by v, and v, respectively, since these are quantities that depend

T B E) =S SRS [ dsd dtto—so
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only on the initial and final electron states (v; is a function of a4, m, and E;). We
rename s, — t, =t and make ¢, =0 without loss of generality. The final result is

T ba(E/, E)= l)fv JJ‘J‘ dr ds dr ei[(E,-~E/)r+Eft~E,»s]/h0(t) 6(s)

X<Wm(xaar_s) W:(xb,T) ‘//n(xb’ t) lpr:;—(xa50)>9 (14)

where the expectation value of an operator A4 is taken as the equilibrium thermal
average over the phonon states in the absence of the electron:

4y =Y} P.,{0,a] 4]0, ). (15)

Equation (14) is one of the central results of this work. It closely resembles the
expression obtained by Wingreen er al. [22] in their analysis of the role of phonons
in resonant tunneling. Actually, in Appendix B, where a lattice formulation of this
study is presented, we show that with some suitable modifications our previous
derivation can be used to exactly reproduce the result of Ref. [22]. We have thus
generalized the equation for T(E,, E;) derived by Wingreen efal. [22] to an
arbitrary mesoscopic structure with many leads and many transverse channels on
each lead and in which phonons are distributed in an extended finite region. In the
next section, we give an alternative derivation of (14) based on a density matrix
approach.

Finally, we note that a similar analysis for the reflection probability yields

an.aa(Ef’ El) = Tnm,aa(E/" El) + 5nm é(Ef E; )[1 + 2ﬁU Im G(+)(xa’ Xas E, )]5 (16)

where the first term on the right is to be taken as shorthand notation for an expres-
sion that is formally equivalent to (14) with b =a and x, = x,. The second term on
the r.h.s. of (16) is a correction to the full propagation contained in the first term.
It removes the effect of direct propagation from |y,,, x,> to |x,.,» x,»> without reflec-
tion on the sample, much as in (la). The dressed one-particle Green’s function

Gl (%, %43 E) = j S LB Y DU (0D (1)

(of which here we consider the case b=a and n=m) stems from the interference
between full and direct propagation (corresponding to the Lh.s. and first term of
r.hs. of (1a), respectively) that results from computing a probability.

The unitarity condition that all scattering probabilities must add up to one is not
obviously satisfied by Eqgs. (14) and (16). One may think that, in order to show that
unitarity is preserved in the dissipative scattering, one has to go back to the basic
relation (10) and its reflection counterpart and argue that the S-matrix of the total
system electron plus bath is unitary. However, we show in Appendix C that
unitarity can be explicitly derived from the general Eqgs. (14) and (16) by invoking
the continuity equation satisfied by the electron current and density operators.
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B. Elastic Scattering and Reducibility

There is an essential relation between the irreducibility of the two-particle
Green’s function in Eq. (14) and the occurrence of inelastic scattering, by which we
mean the existence of outgoing scattering channels in which the bath changes state,
B> # |a>. To see this, we note that if one introduces the approximation

Y m(Xa, T=8) Yy (X5, T) Yulx,, 1) Y (X4, 0))
~ <¢m(xas T —S) w:(xba T)><l//n(xb7 t) w;(xa’ 0)>’ (18)

the dependence on 7 is lost because of time translational invariance and the integra-
tion over 1 yields 2n# 6(E,— E;), which corresponds to elastic scattering. However,
the expression resulting from introducing (18) in (14) is different from that which
would be obtained in the total absence of phonons. The reason is that the
approximation (18) amounts to neglecting inelastic scattering while including the
dressing by phonons of the elastic peak. In an extended solid, the same effect is
known as polaron shift or mass renormalization. If we define T° as the transmission
probability that results from introducing the approximation (18), we easily find that

T(r)zm,ba(Ef’ El) = nm ba(E ) 5(F;f E; ) (19)
where
Tgm ba(E)_h VEnb U Ema IG (xb5xa;E)|2 (20)

and GH)(x,, x,; E) is the dressed single particle Green’s function that was already
defined in (17). Analogously,

(E) ‘—h VEnalEma lG(+)('xa7 xa’ E)l +5nm[1 + 2hvEnaG(+)(xa9 xa’ E)] (21)

nm aa

If, in addition, we define 6G(*) as the difference between the dressed and bare
one-particle propagators,

5G(+)_=.G(+)—G(()+).
Equations (20) and (21) can be rewritten as

(E) - Itnm ba(E) + lh(UEnvama)l/2 ke + kemaa) 5G(+ )(xb, xa, E)|2 (223)
(E) =17 um,aa E) + (0 gV ma) '* @ = " CEmat KemaXa) §GI ) (x,, x5 E)%, (22D)

nm ba
nm aa

where 1, ,, and r,, ,, are the S-matrix elements in the total absence of phonons.
While the obtention of (22a) is straightforward, the derivation of (22b) requires
slightly more algebra. It is interesting to compare (22) with Eq. (1). Clearly, the
second term within the absolute value signs corresponds to a modification of the
effective elastic scattering amplitude due to the presence of phonons.

It is clear from the definitions (17), (20), and (21), and by inspection of Eq. (13)
that 7° and R° only contain contributions from processes where the initial and final



SCATTERING AND DISSIPATION 399

bath states are identical, i.e., where |f) = |a). Therefore, it is the fact that some
final bath states may be different from the initial one, i.e., that some real modifica-
tion can be introduced in the phonon bath, that renders the two-particle Green’s
function of Eq. (14) irreducible to the product of two single particle Green’s func-
tions. Thus we see that the dressed single particle Green’s function only contains
information on the elastic scattering processes, in which no trace is left in the
phonon bath, while a complete (and in general irreducible) two-particle Green’s
function is required to fully describe dissipative scattering.

We have just seen the decoupled propagators only contain contributions from
elastic scattering. However, not all the elastic processes are contained in 7° and R°.
To see this, we note that, because of the definition (15), T° can be written

2

T o sl E) = 070 00 g | 3, PG (X5 X3 E)| (23)

nm, ba

oa, nm

where

Gl 33 EY= [ 500, 21 W, 1) 3 50y 0)10,23]. (24)

On the other hand, the total elastic contribution T is obtained from (13) by
restricting the sum over final states |f) to the case |f> =|a)>. Thus one can write

T sl EY= 20 100 g 3, Py |G LE ) (x5, X053 BN (25)
From comparison of (23) and (25) it is clear that, in general, 7% # T°. The type of
elastic processes that are contained in T but not in 7° are those in which the same
phonon is first emitted and then reabsorbed, or vice versa, or combinations thereof.
In principle, it is also possible to obtain the same effect if the two phonons are dif-
ferent but have the same energy. However, these processes would not be included
in the definition (25), since they correspond to the case ¢;=¢,, but |f) #|a). The
possibility of resonant elastic scattering is also encountered in other contexts, like,
e.g., in the theory of Raman scattering [40]. The importance of the various types
of elastic contributions (which may or may not correspond to distinct physical
processes) has to be studied case by case in the different physical applications of
this formalism.
We will return briefly to the above discussion in Section 4, where a diagrammatic
perturbation theory is presented, and in Section 5, where some two-phonon
diagrams are calculated.

C. Symmetry Properties

Due to the fundamental time-reversal invariance of the total Hamiltonian (6),
one can derive from general principles the microscopic symmetry relation

tnm,ba,ﬁa(E) = tmn, ab, aﬂ(E)' (26)
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If this symmetry property is introduced in the basic equation (10), one obtains
Tnm,ba(Ea E’) = eB(E,7 E)Tmn, ab(E/a E)5 (27)

which is a detailed balance equation that guarantees the suppression of current in
the absence of driving forces (see, however, the discussion in Section 6). For the
derivation of (27), crucial use as been made of energy conservation and of the fact
that the bath is initially in an equilibrium (Boltzmann) distribution.

An interesting corollary of the symmetry relation (27) is the compatibility
between irreversible thermalization and microscopic reversibility. In effect, we can
think of a sufficiently large phonon bath such that any electron that enters the bath
will leave it in a thermal energy distribution, regardiess of its initial energy. In the
absence of other electrons the inelastic transmission probability would be of the

type
Tnm,ba(Efa El) = Ce4ﬂEf (28)

(where C is a constant), i.e., a Boltzmann distribution independent of the electron
initial quantum numbers and of the final channel indices (equipartition of energy).
No matter how “irreversible” the scattering probability (28) looks at first sight, it
satisfies the symmetry relation (27) and is therefore entirely compatible with the
reversibility of the microscopic laws.

3. DENSITY MATRIX APPROACH

Here we rederive the results of Section 2 following a density matrix approach that
has been widely used in the literature on dissipation in quantum mechanics
[34-36], usually in the context of time dependent formulations. We show here that
this approach can also be applied to the study of stationary dissipative scattering.
To establish a connection between real time dynamics and scattering properties in
energy space, it is convenient to consider the evolution of an incident wave packet,
as is done in Appendix A for the case of phonon-free scattering. The technical
points on the validity of the conceptual framework apply identically here and will
not be discussed again.

A. The Propagator

If 5(¢,) is the density matrix of the total system (electron plus phonons) at a time
to, then at another time ¢

A1) = e U= W14 =001, (29)

where H is the total Hamiitonian given in (6). It is common to assume decoupled
initial conditions for the particle-bath system,

plte)=pp-ps, (30)
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where pp is the density matrix for the electron (which usually is taken in a pure
state, pp= ¥ ><{Y¥|) and py=ePH3/Z, describes the bath in thermal equilibrium.
In the particular problem which we are considering, the assumption of decoupled
initial conditions is entirely appropriate, since at = ¢, the incident electron wave
packet is complete localized in one of the asymptotic leads and no interaction with
the phonons in the same region has yet occurred. The subsequent evolution of the
density matrix is given by (29). Since we are not explicitly interested in the phonon
dynamics, we focus on the reduced density matrix that results from tracing out the
phonon coordinates,

p(1)=Trgp(1), (31)

which in principle describes completely the electron dynamics. Note that this step
is similar in spirit to that given in Eq. (10), where an equal weight sum is done on
the final phonon states (equivalent to the 7r; of (31)) and initial thermal equi-
librium is assumed for the bath (equivalent of (30)). At ¢ =, of course, p(t,) =pp.
The reduced density matrices at different times are related by a propagator J,

p(1)=J(1, 1) p(to) (32)

or, in a coordinate representation,

p(x, X5 1) = jf dR R J(x, X', 1, K, %, 1) p(&, K3 o), (33)

where p(x, x;t) = (x| p(¢) |x">. Below we derive an expression for the propagator
J in terms of a two-particle Green’s function.
Equations (29) and (31) can be combined into

e PHE

Zp

p(x, x; 1) =3 (x, Bl e~/ ppeUTORIX, B
[

~ ~/ ekﬁEﬂ . . .
=ﬂdxdx >y > (x, B| e HE— % 0
B «a B

x (X, al MR X B p(R, ' 1), (34)

where completeness has been introduced in the second equality. As in Section 2, we
introduce second quantization for the electron:

X, 0> =y ¥ (x) [0, o). (35)
If a Heisenberg picture is adopted (see Eq. (9)) one can write (¢, =0)
J(x, x', 5%, X, 0)=0()Y(X, 0) " (x, 1) Y(x, 1) ¥ 7 (%, 0) ), (36)

where the step function 6(z) has been introduced to emphasize retarded propaga-
tion and, more important, to remind that the evolution of the reduced density
matrix is not time symmetric. In fact, the result (36) does depend on the particular
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choice of initial conditions (30). This should have been expected, since the reduced
electron motion depends implicity on the bath dynamics, and information on it has
been lost in the tracing process (different total density matrices can yield the same
reduced density matrix). Therefore, for a relation like (33) to be meaningful, and
explicit prescription has to be given to obtain the initial total density matrix from
the reduced one. This is what we mean by sensitivity to the choice of initial condi-
tions. However, for reasons commented before (namely, the adequacy of (30)), this
dependence does not affect the generality of our scattering analysis. Rammer [29]
has performed a diagrammatic analysis of the propagator J(x, x/, f; X, X, 0).
However, unlike we do here, he does not use second quantization for the single
electron.

A quick comparison of Eqgs. (14) and (36) seems to suggest a paradox: a com-
putation of the transmission probability requires full knowledge of the dependence
of the two-particle Green’s function on its three meaningul time variables, while the
propagator J(¢) only requires knowledge of the dependence of an equivalent (except
for the trivial transformation (41)) Green’s function on one time variable. One may
naively conclude that, given that less information is contained in the expression for
J(x, x; t; X, X', 0) than is required in the calculation of T, ,.(E,, E;), the general
belief that the reduced density matrix contains all the information on the particle
dynamics is wrong, since, in particular, it cannot be used to compute inelastic scat-
tering probabilities (which require three time variables). However, a more careful
consideration suggests that there must be a flaw in the previous argument, since,
with complete knowledge of J(¢) one should be able to follow the evolution of an
incident wave packet and, by analyzing it at a much later time, one could infer the
scattering probabilities. But, if that is effectively so, how can one recover the
required information on three time variables from an expression like (36) that only
contains one? The solution to this apparent contradiction lies in the realization
that, while T,,, ,.(Es, E;) requires detailed knowledge of the temporal dependence
of the Green’s function, very little information is needed on its spatial dependence
(only its value at two points x, and x, in modes y, and y,,). On the other hand,
full knowledge of J(x, X', t; X, X', 0) (and thus of p(x, x'; £)) requires complete infor-
mation on the spatial dependence of the Green’s function and very little on its
temporal dependence. If the two approaches are complete, there must be a trade of
information between temporal and spatial properties. The conversion between time
and space dependence can be made in the asymptotic leads, where the electron
propagates freely and a well-defined correlation between time evolution and spatial
behavior exists. Below we implement this idea and show that one can effectively use
Egs. (33) and (36) to derive Egs. (14) and (16).

B. Scattering Probabilities

Let us consider an initial wave packet

1 e—FE,; )
Yo (X, ) =J de —\/__— ) ( ') & (x) e/t 37
4 Ag Ae
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that at 7, ~ — T is approaching the sample from lead a in mode m, with an energy
distribution that is strongly peaked around E; with a small width 4¢ and which at
the same time is sufficiently localized in space for the amplitude in the sample
region to be negligible (see Appendix A for an explanation of the notation in
Eq. (37) and for a detailed account of the assumptions involved). With decoupled
initial conditions, the reduced density matrix at t,~ — T is that of a pure state,

P Ema(10) = | ¥ £mal10) 2 < Epma(t0)1- (38)

The evolution of the density matrix at a later time is given by (32). We wish to
extract information on the scattering probabilities by analyzing p . .(¢) at a much
later time ¢ ~ T, when the wave function has evolved into several (or a continuum
of) outgoing wave packets that lie entirely in the asymptotic leads. For that pur-
pose, we first note that, in general, if a density matrix, p=3, p,; [i>{jl, is written
in terms of eigenstates of an operator A, 4 |i> =a; |i >, then the probability that an
observable A takes the eigenvalue a; is simply P(a;)=p,;= <{i| p |i). By extending
this argument to the continuum of energy eigenstates in the asymptotic leads,
£ ,(x), we write

T bl Eps E)= <& ] J(t, 16) P mal10) 1€ 2y s (39)

where 4¢ >0, t~ T, and t,~ — T (see once more Appendix A for details on the
notation). The normalization (&} | &L > =0(E—E’) (see Eq. (AS)) gives Eq. (39)
the right units of energy probability distribution. From (36)-(38), Eq. (39) can be
more explicitly written

Tomsal By E)= |

1 e—F,; g—FEN . .
— p* ! 7)) ! (e — &' )to/ht
XAe < Ae > ( Ae )e

X [E5me(X") € mna(X)1* £ £ (X) € na(X7)

dx dx’ ﬂL ax &X' f de de’

X 0(t = to)XY(X, 1) Y (X, DY(X, DY T (X', 10) . (40)

Here we recall that the incoming (outgoing) wave packet is entirely localized in the
semi-infinite lead L,(L,) and the domain of the space integral in (40) can be
replaced by L,u L' (L, L}), as derived in Appendix A. If now we introduce the
transformation

Vi () = [ @t 7 ¥ (%) (41)

595/214/2-13
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which can be easily derived from the definitions (7) and (35), Eq. (40) becomes

T v Ep, Ej)= ””jo dx, dx, dx;, dx, ” de de’

1 e—FE; g —EN\ .
— p* 4 7] i i(e — &' )to/h
XAe < Ae ) ( Ae >e

eikE/nb(x;, —x3) ei(kgmaxa — ke'nmXa)

(2nh)2vEfnb(Uema Us’ma)) 12

X O(1 — 1)WY (X5 to) ¥y (X5, )Y (xh, D)W 5 (X0, 10) ). (42)
In order to proceed further, we analyze a more general Green’s function

Gmnnm(xzn xb’ x;n x;; ta’ tb’ t;n t;)
=01, — 1) 0013 — 1) Yo Xas 1) W (X4 1) W (X5, 1) W, (X5, 1)) (432)

of which the expression (42) contains a particular case (t,=t,=1t, and ¢, =1, =1).
Let us introduce the Fourier transform of (43a):

’

’ . ’ ’
Gmnnm(xa9 Xps Xps Xg5 tas tba tb’ ta)

_ Jm ds, de,, de}, de!,
(2m)*
X ei(abtb7eatu+£"taieé’i’)/h Gmnnm(xa’ Xps x’b’ x’a; €45 €, 8Ib, 8;)' (43b)

Since both the incoming and the outgoing wave packets are entirely localized in the
asymptotic regions, it is possible to find two reference points X,e L, and X,€ L,
such that x,<x,, x, and X, <x,, x}, for all the values of x,, x/, x,, and x), that
effectively contribute to the integrals in (42). In these conditions, one can write

Gmnnm(xaa Xps XZ, x:z; €45 Eps 8;;, 3;)
= Gmnnm(jéaﬂ le’ xb’ xa’ Eas €ps 82;3 821) exp[ - ikeama(xa - xa) - ikebnb(xb - jb)

+ ik Xy — Xp) + ik pa(X, — X,) ], (44)

which must be compared with the similar relation (A18) for the single particle
Green’s function. To justify Eq. (44) we must consider first the phonon-free case, in
which the two-particle Green’s function is given by the product of the advanced
(G$ ) and the retarded (G{*’) one-particle Green’s functions. More specifically, in
the absence of phonons,

GO (xa’xb, x,b7x:1;‘ga, €p>s 8;798:1)

mnnm

= (21)* 0(e,— &) Oen —&3) G ) (xa, Xp5 84) G (X, X0 60),  (45)
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where

dt
G%H)(x,, x,; €)= f —h—t e MGUE ) (x,, x,; )
(46)
GU ) (xy, x45 1) = FiO( LY (xp, 1) Y (X4, 0) Do,

where {A4>,= (0| 410> and |0) is the electron vacuum. It is easy to show that the
definitions (46) and (2) are equivalent. From (A18) it is clear that Eq. (44) is
obeyed in the absence of phonons. Since the relation (44) is a property of the
asymptotic propagation in the leads, where the electron does not interact with
phonons, it should hold regardless of the presence of phonons in the sample region.
Equation (44) provides the crucial link between spatial and temporal (through the
energy variable) dependence to which we referred before.

If (44) is introduced in (43b) and (42), the space integrals can be trivially
performed. They yield the product of energy delta functions d(s,—&) (s, — Ey)
o(e, — E;) (e, — &) and with proper account of all the factors involved, one obtains

fi\? 1 e—E, ¢ —F,
_ ’ * i i , 1/2
Tnm,ba(E/9 E:) - <27[> UEfnb J:[ dﬁ dS AS ¢ < AS > ¢ ( AE > (Usmaue ma)

X Gmnnm(xa5 jb, fb’ fa; £, Ef’ Ef’ 8,) ei(kma_kg/ma)xa’ (47)

where the time-dependent phase factors have canceled.
Now we can Fourier transform back but, instead of returning to the former time
variables 1, 1,, t;, t,, (see Eq. (43)), we introduce new time variables

t,=ty+1—35, t,=1ty+1, ty=1ty+1t, 1, =t,. (48)
We have (the bars are removed from the x’s)
Gmnnm(xtu Xps Xpy Xg5 &, Ef’ Ef’ el)
1
= H” dt ds dr diqG m(Xas Xps Xpy Xgs to+T—8, Lo+ T, g+ 1, L)
X ei[(e’~i:)to+(efEf)r+E/lfes]/h' (49)

Due to time-translational symmetry the G in (49) is independent of the variable ¢,
whose integration therefore yields 2n#i 6(e — ¢’). If we now take the limit 4¢ — 0, the
weight function becomes d(¢ — E;) (see Eq. (A2)) and the final result is

Uel; ®© .
Tnm,ba(Efa Ez) = _2% ij dT dt dS e’[(E"_ Ept+ Ept — Eis )k
X Gmnnm('xa9 xb’ Xbo xa; T—S5, T, t9 0)9 (50)

which is exactly the result we obtained in the previous section (see Eq. (14) and the
definition (43a)).
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A similar analysis can be performed for the reflection probability. However, like
in the elastic case studied in Appendix A, the propagation of the purely reflected
wave has to be properly isolated in order to apply a relation similar to (44). In the
dissipative case studied here, the separation between direct and reflected com-
ponents is slightly more subtle due to the presence of crossed terms. The most con-
venient procedure is to consider the phonon-free case and perform an appropriate
extrapolation to the dissipative case. Apart from this delicate step, the rest of the
derivation runs analogous to that of the transmission seen above. In this way one
can rederive Eq. (16).

4. DIAGRAMMATIC PERTURBATION THEORY

In this section we derive the rules for a diagrammatic perturbation theory in the
electron—phonon interaction, which we take of the rather general form

V:ﬁzjdx M (x) p(x) 4,, (51)

where p(x)=y "(x) ¥(x) is the electron density operator, 4,=a,+a’, is the
phonon field operator, a,(a; ) being the destruction (creation) operator of phonon
mode ¢, and A is a dimensionless coupling constant which we introduce for con-
venience. The only restriction on the function M (x) is that it must be nonzero only
in a finite region of space. The Hermiticity of V' implies M (x)=M* (x), where
—q is the time-reversed of phonon mode ¢. Typically both modes are identical if
(as we actually assume here) they are localized. Throughout this section, we assume
that the electron motion in the absence of phonons (given by the Hamiltonian (3)
and the Green’s functions (2)) is known exactly. The Hamiltonian for the isolated
phonon system is of course Hy=3", fiw,aa,.

A. Preservation of Unitarity in Perturbation Theory

Before we develop explicitly a perturbation theory in V, we show that unitarity
will be preserved to all orders in the coupling constant A. In our problem, the
condition of conservation of probability can be stated as

P E)= [ | £ TanselEp B+ £ Rl By E) | dEy=1 (52)

for all energies E; and channels ma.
If the scattering probabilities are calculated in perturbation theory, one should be
able to expand F,, (E) in powers of the coupling constant

Fr E)= FO(E) + AFS)(E) + 22 F@(E) + --- (53)

(the coefficients of the odd powers in ﬁ are zero for trivial reasons). The zeroth



SCATTERING AND DISSIPATION 407

order term FQ®)(E) is given by (52) in the particular case were A=0. This
corresponds to the scattering of one electron in the absence of phonons, where
unitarity must also be satisfied. Thus, F'®(E)=1. Since, on the other hand,
F,(E)=1 for all values of 4, then we must have F*)(E)=0 for k> 1. In other
words, unitarity is satisfied to all orders in perturbation theory. The situation is
similar to that which we encounter in standard scattering theory where the unitary
condition $*S =1, must be fulfilled for any value of the coupling constant [41].
However, it is very common to develop perturbation theories for probability
amplitudes. In those cases, unitarity is only satisfied after the amplitudes have been
squared and only the terms that contribute to a given order are selected. In our
approach, we develop a perturbation theory for scattering probabilities and
unitarity is thus automatically satisfied within each order if all the corresponding
diagrams are calculated. An explicit check of unitarity is presented in the next
section for a simple case.

B. Real Time Description

It is clear from (14) and (50) that the reduced scattering probabilities can be
obtained from the dressed two-particle Green’s function defined in (43). In order to
develop a diagrammatic perturbation theory in the electron—phonon interaction, we
would like to write the field operators of (14) in a time-ordered form, so that
Wick’s theorem can be directly applied. To that end, we note that the two-particle
Green’s function in (14) can be written

Gmnnm(xm xb’ xb’ Xa; ta, tb1 Sb’ sa)
= H(tb - ta) e(sb —sa)<'//m(xa, ta) ‘/I:(xb’ tb) ‘pn('xb’ sb) l/’;;(xtv sa)>
= <Ty‘//m(xa’ ta) lp:(xb’ tb) l/’n(xb’ sb) '//r:(xa’ sa)>’ (54)

where T, indicates time ordering in the time contour y shown in Fig. 2, sometimes
called the Keldysh contour. To obtain (54), we have used the fact that, by defini-
tion, the times ¢, and ¢, always are later in y than s, and s, and that, in the absence
of other electrons, (54) vanishes if s, < s, or t, <t, (equivalent to ¢, > .¢t, in the con-
tour y), since in those cases a destruction operator is on the right or a creation
operator is on the left.

Sa
-~ > ~— e

ta tb ST
- - ----"""

Fic. 2. Time ordering in the Keldysh contour.
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To obtain a more symmetric notation we will introduce some changes. First, we
adopt a position representation for both the x and y coordinates:

Vi (50 = [ a0 (%), (55)

where x,= (x,, y,)- Equation (54) becomes

Gmnnm(xai Xps Xpy Xg5 ta: tb’ Sps sa)

= ([[[ dva dys dvh dyixva) 2l 36) 1EH) Al )

X G(X s Xpyy Xy X053 Eas Ly Sy Sa)s (56)
where x}, = (x,, y.)
G(Xy> Xpy Xpy Xg5 Loy 1py Spy Sa)
=01, — 1,) 0(s, — s )W (X0, 1) Y (X5, 1) (X5, 85) ¥ 7 (X0, 8,) )
= (TP (Xas 1) YT (Xp, 1) Y(Xps $5) U ¥ (XG5 54) ). (57)
Now we introduce the interaction picture, in which

za(t) Eei(H0+H19)t/Ii A e~i(Ho+HB)t/h' (58)

The operators in the Heisenberg and interaction picture are related by
A(1)=0(0, 1) 4(1) U(1,0), (59)

where

l

01, to) = T exp {% | ' dt’V(t’)} (60)

4]

is the evolution operator in the interaction picture. Equation (57) can then be
written

(T, 000, 1) §(x,, 1) Ulta, 1,) 6 (x5, 1) Ulty, 55) (X3, 55)
U(sp, $0) ¥ * (X0 82) Ulsa, 0)). (61)

Note that here U(0, t,) and U(s,, 0) can be replaced by the identity, since they are
acting on states without electrons, but for the same reason they can be replaced by
U(—,1,) and U(s,, —oo). On the other hand, U(1,,s,) is equivalent to
U(t,, ©) U(w, s,) and (57) can thus be written formally as

G(Xa, Xp X/ba X;; ta’ tb7 Sty sa)

= (T, (X 1) U(—= 00, 00) Y (%, 1) ¥ (X3, 55) U0, —00) ¥ (x4, 50)>. (62)
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On the other hand, due to time-translational invariance, the Green’s function (57)
remains invariant under a global time shift:

G(Xa’ xb’ x,b, x:n T _S9 T’ ta O) = G(Xa’ Xb; X;,, X;; ZO + T —S, tO + T, tO + t’ tO)' (63)
If, instead of T, ,.(E,, E;), we decide to compute
Promsl B3 Evy E)) = Top ol Ey, E}) 6(E,— E}), (64)

the resulting expression is more symmetric in the four time variables since, due to
(63), the delta function can be replaced by

1 (= . o
5(Ei_Ei,)=ﬁ dt, e Eim EDtohi (65)

Once P, sq(Ef; E;, E[) is known, the interesting quantity T,,, ,.(E,, E;) can be
trivially obtained from the relation

Tomsil Eps E)= [ Popal By Es, EY) dE]. (652)

By introducing some obvious changes of variables, one obtains

Pon B3 B By = [[[[ s sy ity

x gtita™ B B0 IRG Xy Xy Xpy Xu5 Las Loy Sy Sa)- (66)

It is preferable to compute (66) instead of (14) because when (56) and (62) are
introduced in (66) and the U’s in (62) are expanded in powers of the interaction
and Wick’s theorem is applied to each term, the resulting contractions will depend
on the time differences and, after Fourier transforming, the time integrals in (66)
will be evaluated exactly and then we will be able to formulate the Feynman rules
for the calculation of (66) directly in the energy space.

By expanding the evolution operators in (62), we obtain

' ’.
G(xa, xba xb’ Xaa taa tbs Sb, Sa)

© «© '/lhk+1'oo © © ©

R e T Y W
-0 j— ] — o — — —w

dexx"'dxkdX}“'dX'xZ~"ZZ“'Z

”n Pk 4 q1

X My, (X1) - M, (X)) M (X)) - M (x})

X (T, Ay (1) -+ Ay (1) Ay fs) - Agy(s,))

X T Xy 1) X1y 11) -+ p(Xper 1) B (X, 1) W(X), 5,)

X (X, 8) -+ p(X1, 1) ¥ (X, 8,)). (67)
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Now we apply the statistical Wick’s theorem to the expectation value of the time-
ordered product of field operators [42]. One can easily convince oneself that, in the
absence of a many-body background, the only nonvanishing contractions are those
that pair electron operators in the same time branch, since for each contraction of
the type {T,y(t) Y *(s)> = {Y(1) Y " (s)), there must be in the same term another
contraction of the type {T,y *(t)y(s)>=0. This is not the case for the phonon
operators, for which we can have contractions within the same time branch, giving
rise to terms of the type (T4 ,(s) A, (s')) or <7‘Aq(t) A (T stands for anti-
time ordering), or between the two branches, (4 ,(1) 4. (s)).

Thus, the expectation value of the time-ordered product of electron operators can
be effectively replaced by

KUV R G (X X5 t,— 1) -+ GE (X, X5 1 — 1)
X G (Xp, X3 8,—5;) - GEPAXY, X3 81— 8,), (68)
where )
GGH(x, x5 1) = —iKTY(x, 1) § *(x',0))
GE(x, x5 1) =i TP (x, 1) ¥+ (x', 0))
are the time-ordered and anti-time-ordered unperturbed Green’s function. In the
absence of other electrons, we can write

GEEAx, x5 1) = Fib(£1)<P(x, ) §*(x',0))
= (x| [Fif(£1) e e x")

(69)

dE )
[ 2L ~(+y ' —iEt/h
J 27[ GO (x9 X, E) e (70)
G (x,x', E)= (x| (E—Hoxin) ' x') (71)
xa sa Xb Sb Xa,Sa x,t xb,Sb
1
(a) . ®  VYaq '
Xt X'b , Xasla | Xb,lb
-— < ° o << *
x't
Xa Sa 7 N\ Xb Sb xa S xb Sb
‘ -— —. ,O ’&a = o :.
(c) (d
x'a,ta x'b,tb X'a,ta X'l, t'l x‘z, t'2 X'b,tb
o —~ -8 - X ;@ T ®
\\ //

FiG. 3. Lowest order diagrams in the perturbative expansion of the dressed two-particle Green’s
function.
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which should be compared with the definition (2). We shall often use the property
Gi(x, x; E)=[G{(x/, x; E)]*. (72)

It is not entirely surprising that we cast our results in terms of quantum-
mechanical one-particle Green’s functions, since the field-theoretical notation for
the clectron was introduced for pure convenience.

The contraction of the phonon operators yields three types of phonon Green’s
functions, depending on whether the contraction takes place (a) within the positive
time branch, (b) within the negative branch, or (c) between the two branches. The
corresponding expressions are

(TA(s)A](s)>=iD(s—5)=(N,+1)e =1L N e™ls=1  (73a)
(TA A} (1)) =iD(1—1)=[iD,(r' —1)]* (73b)
CALDAF(5)y=iD7(t—5)=(N,+1)e @=L N =9 (73c)

where N, is the Bose-Einstein occupation factor (we have used N,=N_ ).

As a result of Wick’s theorem, the perutbative expansion (67) admits a natural
diagrammatic representation. One has to dress with phonon lines a double electron
propagator. The diagrams for the lowest order terms are shown in Fig. 3. The sign
of the arrows is important because it indicates the convention for the sign of the
time arguments. The most generic diagram will be of the type shown in Fig. (4a),
while the approximation (18) is represented by the diagram (4b), where the dressed
one-electron propagators are decoupled.

P — = —®
(b)
[ — = »

FiG. 4. (a) Most general representation of the two-particle Green’s function. The double line
represents the dressed one-particle propagator. (b) Most general diagram in the approximation of
decoupled dressed one-electron Green’s function (see Eq. (18) of the text).
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C. Energy Space Formulation

When inserting an appropriate combination of (67)—(73) into (66), we are left
with a multi-dimensional time integral of a function that depends only on the
differences between the various times variables. It seems natural to expand these
propagators in terms of their Fourier transforms and evaluate the time integrals
exactly. We will need the Fourier transforms,

, or . N,+1 N,

iD (o) EJ dt i (1) = 2ia, [w2 it in] (74a)

iD () = [iD (w)]* (74b)
iD;(w)=2n[(N,+1)d(w—w,)+N,é(0w+a,)], (74c)

where w,>0 and n - 07,

At each vertex, there is a time integration whose evaluation yields a delta
function that guarantees the conservation of energy. For example, the vertex of
Fig. 5 corresponds to

j dt e =R IR it _Dnh (k) — E 4 E). (75)

We have adopted an arrow convention in which a given vertex accommodates both
the absorption and the emission of phonons, as can be seen by inspection of (74).
By comparing the phonon propagator (74c) that connects the two time branches
with the propagators (74a) and (74b) which remain within the same branch, it
becomes clear that the former corresponds to the real excitation of phonons (and
requires conservation of energy, which is guaranteed by the delta functions) while
the latter correspond to virtual phonons that renormalize the particle motion. This
is a confirmation of the interpretation that was given in Section 2.B.

The Feynman rules for the calculation of P(E; E;, E]) are in many ways similar
to those found in textbooks of many-body theory (see, for instance, Refs. [28, 421]).
There are, however, several rules that are specific of our perturbation theory. The
“common” rules consist in drawing all topologically distinct diagrams that result

E E'
\ \
— ~

t
t
}
|
Y
lhm
|

F1G. 5. A typical electron—phonon vertex where time is integrated out exactly.
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from dressing the double electron propagator with phonon lines assigning positions
and couplings to each vertex, labeling internal electron and phonon lines with
energy and mode indices, and summing over these variables while conserving
energy at all vertices. Gi*’ (G{~’) must be assigned to the electron lines in the
positive (negative) branch. Unlike in more standard cases, the phonon line must be
assigned the propagator iD,, iﬁq, or iD>, depending on whether the line remains
in the positive or negative branch or connects them both. Energies E,, E;, and E/
must be assigned to the external propagators (see, e.g., Fig. 6). The external vertices
must be labeled with points x,, x,, X, and x;, (see also Fig. 6) and projection over
the transverse modes has to be performed (see Eqs. (50) and (56)). The final result
must be multiplied by #iv,v(A/2r)V**"2 where j(k) is the number of phonon
insertions in the upper (lower) particle propagator. Finally, the relevant quantity
T ,m sa(Es, E;) can be obtained from the relation (65a).

The factor #v,v,(4/2n)V**? deserves some explanation. The factor j!k!i/~*
that appears in (68) cancels exactly with the i*~//(j! k!) of (67). There are (j+k)
electron—phonon vertices, which yields a factor (\//—1)/ +k_ At each of these vertices,
a time integral of the type (75) is carried out. There are four additional integrals
corresponding to the four external time variables ¢,, ¢,, 5,, and s, (see Eq. (66)).
Thus, there is a factor (27#4)’*%~* coming from the time integrals. The #/** factor
cancels with its inverse in the expansion (67), yielding #*(2n)’****. The expansion
of the real time propagators in their energy dependent Fourier transforms
introduces some (1/2n) factors (note the conventions in (74) and (46)). There
are (j+k)/2 phonon propagators (iD) and (k+ 1) and (j+ 1) electron Green’s
functions in the upper and lower branch, respectively. This gives a factor of
(2m) 3U+%72=2 Combining all these numbers, we obtain (ﬂ)”"h“(Zn)z"”")/z,
which when multiplied by the v,v,/(2nh)* of Eq. (66), gives rise to the factor
#%v,v,(4/2m)Y**7? that has been presented in the rules above. We note in addition
that, given the way the diagram rules have been formulated, only an energy
conserving delta function (without any accompanying factor) has to be effectively
introduced at each vertex. This means that, according to convenience, one can
explicitly introduce a delta function or directly include conservation of energy in the
assignment of energy variables.

E} X E¢
1 L
X,® - > ® X,
I
q \/ ho
\l(

X, o < - < ® X,

E; X E¢

FiG. 6. Diagram representing the real emission or absorption of one phonon. Since the electron lines
may contain elastic scattering exactly, this diagram represents the distorted wave Born approximation.
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5. APPLICATIONS

In this section, we illustrate the use of the Feynman rules derived above by
applying them to some simple cases. We will compute all the one-phonon diagrams
and some of the two-phonon diagrams in one dimension (only two leads, each of
them supporting only one mode). An explicit check of unitarity is performed in the
former case.

A. One-Phonon Processes

Let us calculate the contribution of the diagram in Fig. 6 to the transmission
probability. This diagram describes the absorption or emission of one phonon. By
applying the rules derived in the previous section, we readily obtain

T“NE,, E)=Hhv,0,47, H dx dx' M (x) MF(x')
q

x (N, + 1) 8(E;— E, + hw,) + N, 8(E; — E;— )]
x G$ ) (x0r X3 E) G5, x5 Ep) G5 (x, X', Ep) GoH(X', x5 Ed)

=hv,0,4 ),
q

x[(N,+1)(E,—E;+hw,)+ N, ME—E,—hw,)], » (76)

2

[ dx G v, x: E) M3(x) G x03 E)

where, in the second equation, x,, = x, and xj, =X, has been taken, since there is no
transverse component. Clearly, the first term in square brackets corresponds to one
phonon emission, while the second is due to phonon absorption.

We remark that although (76) includes the electron-phonon interaction only to
the lowest order, it may well contain the elastic scattering to all orders through the
electron Green’s functions G4*’ and G{~’, which can often be calculated exactly by
a variety of methods. Thus, Eq. (76) represents the so-called distorted wave Born
approximation (DWBA) [41].

In the case where there is no elastic scattering [43],

eik5|x—x’|

(+) "Ey=————
GO (xax’ ) thE

(77)

(where vy = (2E/M)"? = fik //M > 0) and (76) takes the simpler form

2

A

TO(E, E) = 3. || dx M} (x) et
fYi g

x [(N,+1) 8(E;— E, +hw,) + N, 8(E,— E,—ha,)].  (78)

Below we show that this particular result could have also been obtained through
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the Fermi golden rule in the Born approximation: the (thermal) average scattering
rate for the electron to go from plane wave |k, to |k, is given by

2n
T,;ikf=721’uz [Chy, BIV ki a)|? O(E;— E+ e, — £5)
x 8

27l . 2
AT |[ x o) etk
q

x [(N,+1) 8(E,— E,+#w,) + N, 5(E,— E,~ hw,)], (79)

where, {x|k) = L~"?exp(ikx) (L - oo) has been taken. If we divide (79) by the flux
of incoming particles, v;,/L, we obtain the probability that the particle is scattered
from k; to k, or, treating k as a continuous variable, the probability of being
scattered into the interval (k,, k,+ dk,), where dk,=2n/L. Since we are interested
in the probability T(E,, E;) dE, of scattering into (E,, E,+ dE,), we multiply the
former probability by (dk,/dE,)/(2n/L) = L/2nAv, and obtain for the inelastic trans-
mission probability in the Born approximation

2

L
TYNE, Ei)=5r'hv—ufk_,,ikf, (80)
ir

which exactly reproduces (78). Thus, T*XE,, E;)=T'“)E,, E,).

In more general cases, like those in which there is additional scattering by
barriers or impurities, our method is much more advantageous than the simple use
of the Fermi golden rule. First, it provides us with an unambiguous and systematic
way of calculating corrections to the unperturbed scattering probabilities in which
all the flux factors are automatically taken into account and, second, in this
method, elastic and inelastic scattering are treated on the same footing, in such a
way that unitarity is automatically satisfied to all orders in perturbation theory. An
application of Eq.(76) to the problem of a tight-binding chain with phonons
localized in a lateral stub (which already causes elastic scattering) is given in
Refs. [44, 45].

Now we calculate the first-order corrections to the elastic scattering, which are
given by the diagrams in Figs. (3b) and (3c). One obtains

TY(E,, E)=[T'NE,, E;)]*=T"E,) 6(E,— E,), (81)
where
htv?

T(E) ==~ 1G5 (%0 41 E) X [ doo [] ax ax' m(x) ()

X G5 (xy, X'; E) GEOU(X!, x; E—hw) G§H)(x, x,; E) iD (w).  (82)
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In the case of free unperturbed motion, where G{*’ is given by (77), unitarity can
be easily checked. If the spectral decomposition

o0 dk eik(x —~x")

My, x': E) = @m e
Go" % x5 E) J-wZnE—Ek+i11

(83)
(where E, =#%k?/2M) and Eq. (74a) are introduced in (82), the correction to the
elastic transmission becomes

2

TO(E)= — %i:z (7 I [ dx M, (x) ek
q — o0

x [(N,+ 1) 8(E— E,—#o,) + N, 6(E— E; +fin,)]. (84)

In order to perform a unitarity check, the reflection channels must also be
included. The reflection probability in the presence of dissipation is given by
Eq. (16), where only the first term contributes to inelastic scattering, This term is
formally identical to expressions for the transmission probability and the same
Feynman rules can be readily applied. The contribution from diagram (a) (where
x, must be replaced by x,) is

A _ 2
R(a)(Ef, E')z—h—zv_v_z ljdx Mq(x)e—t(ki+kf)x
rUi’y
x [(N,+1) 8(E;— E;+hw,)+ N, 0E;~ E;~hw,)].  (85)

By comparing with Eq. (78), we obtain the rather intuitive result that the expres-
sion for the inelastic reflection probability can be obtained from its transmission
counterpart by substituting —k, for k (k, >0, by definition).

To order 4 in perturbation theory, the elastic reflection probability is entirely
given by the decoupled contribution from the first term of Eq. (16) plus the inter-
ference terms (second and third terms of Eq. (16)). Therefore, we can apply the
result (22b) and conclude that, in the absence of unperturbed elastic reflection
(r=0), there is no phonon correction to the elastic reflection probability to order
A. Thus, using a notation analogous to that of Egs. (81) and (82), we can assert that
RY(E)=0.

By comparing Eqgs. (78), (84), and (85) it is easy to show that unitarity is indeed
satisfied. The expression (84) for T")(E) contains a sum over intermediate states
|k that exactly cancels the contribution from the inelastic transmission (k > 0) and
reflection (k < 0) channels. In conclusion,

[ [T“(E", E)+ R9(E", E)] dE' + T®(E) + R¥(E) =0, (86)

which means that there is no correction to unitarity within order A, as expected.
The generalization of this result leads to the realization that, at any given order in
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perturbation theory, the decoupled diagrams yield a correction to the elastic
scattering probability that exactly cancels the probability contribution from the
(mostly inelastic) channels that are represented by the irreducible diagrams. This
statement can ve viewed as a generalization of the optical theorem to dissipative
scattering in multilead structures.

C. Two-Phonon Processes

In this subsection we calculate a selected group of two-phonon diagrams. In
particular, we study the diagrams shown in Fig. 7, since, as will be seen below, they
contain some similarities that allow us to understand better the interplay between
reducible and irreducible contributions to elastic scattering (in the notation of
Section 2.C, T° and (7% — T°), respectively). For simplicity, we restrict ourselves

Y
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Fic. 7. A group of two-phonon diagrams. Diagrams (a) and (b) correspond to two real processes
of phonon creation or. destruction. Diagram (c) is a particular case of diagram 4(b).
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to the transmission channel in one-dimensional scattering. The contribution form
diagram 7a is

T@(E,, Ei):%—”)f;“z H do, dw, m dx, dx, dx', dx,
4,

P

X M J(x;) M(x1) M (x,) M(x5) iD] ()

XiD; (w,) 0E;— E;,~ o, — hw,)

X G{N(x,, X5 EY GEU(xY, xh3 Ei— ) G§ (', x5 E))

X G %y, X35 E)) G§ Ny, x5 E;— b)) GEF(xy, x45 E)), (87)
which, from (72) and definition (74), becomes

T(E,, E)=#%,v, {(Nq PN, +1) t,0(E,, Es—fioo,, En)P?

9P

X E;— E; +fw, + fiw,)
+(N,+1)N, |t,(E;, E,— hw,, E)* 8(E;— E;+ ho,— ho,)
+ N, (N, +1)|t,(E, E;+hw,, E)? (E,~ E,—ho,+ hw,)

+N,N,|t,(E., E;+ho,, E)|? oE—~E,— hwq—hwl,)}, (88)
where
tpq(Eﬂ E E)= ﬁ dx, dszﬁ”(xb, X33 Ef) Mp*(x2) G})Jr )(xz, xy; E)
X M}(x,) G{H (x4, x,; E)). (89)

A similar analysis for the contribution of diagram 7b yields

TYNE; E)=/"1v,v, Y {(Nq+ YN, + 1) t,(Es, E—bw,, E})

a.p
Xty (Eys, E;— hw,, E;) 6(E,— E + ko + ho,)

+(N,+ )N, t,(Ef, E.—ha,, E) t3(E, E+hw,, E;)
x 0(E;— E; +hw, —~fiw,)

+ NN, + 1)1, (E, E; + hw,, E) t3(E, E;~ i, E))
X (E;— E;—fw,+hw,)

+ N, N, t,(E;, E;+ho,, E) t}(E;, E;+hw,, E))

xé(Ef—E,-—hwq—hwp)}. (90)

(These transmissions are not be confused with those computed in the previous
subsection.)
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Clearly, both in (88) and in (90), the first and fourth terms within brackets
correspond to the emission and absorption of two phonons, respectively, while the
second and third terms stem from processes in which one phonon is emitted and
another one is absorbed. If the same phonon is first emitted and then absorbed (or
vice versa), an effective elastic process takes place that is not included in the
diagrams obtained from the product of decoupled one-electron propagators, like
" that of Fig. 7c. We wish to focus now on this elastic contribution arising from the
case p=gq in the second and third terms of (88) and (90).

To simplify the analysis, we explicitly assume that modes ¢ and — ¢ are identical
and thus M (x)= M *(x). This is consistent with the initial assumption of localized
phonons. If TW(E) and T‘*)(E) are defined as the contributions from diagrams 7a
and b to the elastic transmission probability, one obtains

TUE)=0*22 Y (Ny+ 1) N[ f,_(E)* + | £, (E)I*] 91)

TO(E) =104 Y (N, + 1) N [fF (E) fo, (E)+ £, (E) fF(E)],  (92)

q
where
fye(E)=t,(E, E+ho,, E). (93)

As we saw in Section 2.C, diagram 7c can only contribute to elastic scattering.
One obtains

2

TE)=h"*2* Y [(N,+1) f, (E)+N,f, (E)]|. (94)

The sum of the three contributions is
T@(E)+ TY(E)+ TNE)
=h2?A° { S N, + V)N, + 1) f,_ f* +N,N,f,. f[*
q.p
+ (Nq+ I)prqffp*+ +Nq(Np+ 1)fq+fp*7]

+Y (N, + DN, +1)|f, >+ N, 2N, + 1) |f,.|?

NN, + 1S, SR +fq+f,,*_)1}, 95)

where the prime in the first sum implies exclusion of the case ¢ = p.

It is interesting to compare this result with what one would have obtained by
analyzing directly the expression for the total elastic probability given in (25). By
inspection of Egs. (91)-(94), one can easily convince oneself that the elastic con-
tribution contained in diagrams 7 a—c correspond to those terms in the general

595/214/2-14
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expression (25) in which both G (x,, x,; E) and its complex conjugate contain
terms of order A. The sum of such terms in (25) is

2

TOE) =t 22Y, Py |Y [(Npu+1) fy_ + Ny fr i 1| (96)

where N, is defined as the occupation number of phonon mode ¢ in the bath state
loa>. It is such that

N,=Y P,N,=<N,> (97)

is the usual Bose-Einstein occupation factor. The algebraic steps leading to Eq. (96)
are very similar to those needed to calculate the lowest order phonon contribution
to the one-electron propagator (see, e.g., the single propagators of Fig. 7c). The
only difference is that the thermal average is formally replaced by the expectation
value in the particular bath state |«)> and the final result is eventually thermally
averaged over all the possible bath states. In this way, one obtains Eq. (96), which
can be written as

TYE) =104 Y, [<(N,+ DN, + D)) [l + NN fy o X

9. P

+ N A DN, fon S+ B (H+ D) £ 21
If one notes that
(N,N,>=N,N,+8,N,N,+1) (98)
it becomes clear that
T“YE)=T“NE)+ T"(E)+ T'“(E), (99)

as expected. Thus, we have explicitly seen within a selected group of diagrams how
both reducible and irreducible diagrams give corrections to the elastic transmission,
defined here as the scattering channel in which the bath does not change state.
Irreducible diagrams generally correspond to inelastic processes where real emission
or absorption of phonons take place. However, a marginally effective contribution
to the elastic scattering can arise from those processes in which the same phonon
is “really” created and then destroyed or vice versa. These types of processes are
known to sometimes give important corrections to the conductivity [28].

6. COMPUTATION OF THE CURRENT
Once the inelastic transmission probabilities are known one may attempt to

calculate the net current in a given lead as a function of the voltages in the various
leads. A simple counting argument suggests that the net flux of electrons entering
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the sample through lead a must be given by the number of electrons that are trans-
mitted per unit time from lead a to all other leads b a, minus the electron flux
entering lead a from those other leads. In quantitative terms,

A_e 4 ’
I _Zg ] dE aE
X {To(E, E') fA E) 1 = f(E)] = Tu(E', E) f(E)[1 - f.(E")]}, (100)

where

Tyl E, E'Y=Y, T ol E, E'), (101)

nm

fAE)=f(E—pu;)=[exp((E—u,)/kT)+1]~! is the Fermi-Dirac distribution, and
the prime indicates exclusion of the case b=a. In (100), the well-known cancella-
tion between the electron group velocity, # ! dE/dk, and the density of states in a
one-dimensional channel, dn/dE = (1/2n)(dk/dE) has already been included. The
factors (1 — f(E’)) account for the fact that the electron can only effectively jump
to another lead if the final state is initially empty. However, one might argue that
this factor is not necessary since the Fermi statistics only enter through the energy
distributions of the incoming channels and should not appear explicitly in the
outgoing channels, which in principle should always be available. Thus, a second
possible formula for the current (which we will label with a different superscript) is

12=23" [[ dE dE{T,u(E, E) f.E) = Tu(E\ B S(E)}.  (102)
b

Before we embark on a discussion of the relative merits of anséitze A and B
(Egs. (100) and (102), respectively), let us see in what cases they are different. If we
subtract Eq. (102) from Eq. (100), we obtain

al,=15—18=3Y [ dEdEF(E) (E)TulE" E) = Tou(E, E)]. (103)

The symmetry relation (27) can be rewritten as
T.,.(E,E';B)=e?* 5T (E, E; —B), (104)
where the definition (101) has been used and the possibility of a nonzero magnetic
field B has been introduced. It is clear from (104) that, in the presence of inelastic

scattering, 4I,#0 even if B=0.
In the elastic limit (103) becomes

a1,=3 Y [ dEL(E) fuE) T (E) — Too(E)] (105)
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and then 47,=0, provided that B=0. There is one particular case of the elastic
regime in which A47,=0, even if B 0, and this is the case where only two leads are
coupled to the sample (N, =2). In such a case, one can express unitarity with two
different equations

Tbu(E)+Raa(E)=Tab(E)+Raa(E):Naa NL=29 (106)

where N, is the number of both incoming and outgoing channels in lead a (when
B #0, channels always appear in pairs of edge states moving in oppposite direc-
tions; thus the number of incoming and outgoing channels is always the same
[46]). Equation (106) immediately leads to T, = T,,, which implies 47,=0. The
fact that, in the elastic limit, both current ansiitze are equivalent if B=0 or B#0
but N, =2 probably explains why the ambiguity in the choice of current formula
has been long neglected, or at least underestimated.

It is clear that, in the presence of inelastic scattering, ansdtze A and B yield
different results and a more careful assessment is required. Since we lack at present
a rigorous formulation, we have to base our arguments on as careful physical
considerations as possible. First of all, we point out that there is a small inconsistency
which is common to both options if, in Eq. (100) or (102), one uses an inelastic
transmission probability that has been calculated with the methods presented in the
previous sections, since there the presence of other electrons has been neglected. In
Egs. (100) and (102) we are remedying this previous neglect of the Fermi statistics
by introducing statistical factors in the initial and (only in case A) final states.
However, quantum statistics is still being neglected in the intermediate (virtual)
states which appear if one goes beyond order A in perturbation theory. We think
nevertheless that this is not going to be a major source of error, since quantum
statistics has its most important effect through the restrictions it imposes on the
initial and final phase space. Furthermore, the neglect of statistical factors in the
intermediate states is a long standing practice in the literature on the Boltzmann
equation, where analogous expressions for the current are considered (the main
difference lies in the use of scattering rates instead of the scattering probabilities of
Eqgs. (100) and (102)). We note incidentally that a more careful study of the inclusion
of quantum statistics in Boltzmann equation approaches (particular in the “in” and
“out” states) which contemplate phonon scattering may also be necessary and that
the conclusion does not have to be necessarily directly analogous to the one we
(eventually) obtain for the conductance (see below).

Let us now discuss the elastic limit of Egs. (100) and (102). We obtain

12 =2 Y [ dE{T, () U E)1 = [y E)] — Tu EV S EL1 = u(E)D}  (107)

b

13 =23 [ dE{T,(E) 1(E) — Tul E) /(D). (108)
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The condition of unitarity can be expressed as

Na:Z’ Tba+Raa=Z, Tab+Raa9 (109)
b b

where N, is the number of incoming (or outgoing) channels in lead a. This implies
Y Ts=Y T (110)
b b

but note that this type of identity holds only in the elastic case. To calculate
conductances, we linearize around a reference chemical potential u,:

Ji(E) = fo(E) — fo(E) 1 — po)- (111)
Introducing (111) in (107) and (108) and using (110), we obtain

€1
Iﬁzzz E(Tab+Tba)(:ua_.ub) (112)
b

€
IaB=ZZ Tab(lua_”b)' (113)
b

Thus we see that ansatz B correctly reproduces the Landauer-Biittiker equations
[19, 37], while option A gives rise to a different result for nonzero magnetic fields.
Recently, Eq.(113) has been successfully applied to a number of problems,
particularly to the study of symmetry properties of the conductance [19, 37] and
to the quantum Hall effect in microstructures [46]. The predictions of ansatz A can
be easily obtained from those of ansatz B by everywhere replacing T, by its
symmetrized form (7, + T,,)/2. Equation (112) gives rise to a four-lead resistance
formula R, .,=(V.—V,)/I, which markedly differs from the prediction of
Eq. (113) [19, 37]. Among the many discrepancies that follow from the difference
between /4 and I® we remark that ansatz A predicts the symmetries

sz\b,cd(B) =RaAb,cd(_B)= R?d,ab(B)’ (114)

which have not been observed [47] (in particular, it would predict that
(R12,43 - R43,12)/2 =0).

There is another reason why Eq. (102) should be preferable to Eq. (100) and it
is that current conservation is not clearly satisfied if, as is the case in both equa-
tions, T,,(E, E’) represents the probability for a particular outcome in a one-
attempt scattering process. These probabilities have been calculated in such a way
that the unitarity condition is expressed by (52). The factor (1 — f) describes an
inhibition of the transmission process due to the Pauli exclusion principle. But if an
electron is not transmitted from lead a to lead b because the state to which it would
jump is occupied, then it is not clear how the scattering should evolve. Obviously,
the electron should go to another lead or be reflected, but these alternative events
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appear in (52) weighted by the same factors and the “rebounce” possibility is not
considered in the calculation of their probabilities. Clearly, the unitarity condition
(52), which was formulated for a single electron, excludes any possible restrictions
on the availability of final states. In summary, current conservation may well be
violated if one uncritically introduces (1 — /') factors in the final states, particularly
if the probabilities have been calculated within a single particle approximation. We
wish to remark here that this objection would not readily apply to a Boltzmann
type equation in which (the equivalent of) T,,(E, E’) would correspond to
transition rates between plane wave states [28,487]. In such a case, the factor
(1 —f) simply gives rise to a longer waiting period in the initial state but does not
lead to any obvious violation of current conservation. A very similar situation
presents itself in tunneling studies based on the Bardeen Hamiltonian (see, for
example, Ref. [41]), where one is essentially dealing with transition rates between
stationary waves in each lead. The results obtained from such studies seem to favor
the presence of (1—f) factors. However, we use the formal analogy to the
Boltzmann equation, where these factors are less problematic. The generalization of
the Bardeen approach to the study of dissipative magnetotransport in multilead
structures would probably shed light on the question discussed here.

After all these considerations, it is clear that Eq. (100) for the current cannot be
correct, since it leads to results that grossly contradict experimental observations
and seems to violate current conservation. One may readily conclude that Eq. (102)
is the correct formula for the current. However, as we argue below, Eq. (102) is not
completely free of contradictions, although is probably the best expression that we
can use in the present circumstances. So far we have based the comparison of
Eq. (100) and (102) solely on their performance in the elastic limit and on some
considerations about current conservation, and we have seen that ansatz B clearly
fares better. The situation becomes slightly more disturbing when one pays atten-
tion to another set of considerations related to the state of equilibrium in which all
chemical potentials are equal. If the energy distributions in the leads are taken to
be equal, we obtain

18 =23 ([ dE 4B (Tou(E, ') f(E)1 = £(E)] — Tu(E' B) S(B)1 - /(E)T}
b
(115)

B =2Y' ([ dEdE'(T,(E, E') f(E) - TulE', B) f(E)}: (116)

In the absence of a magnetic field, the symmetry relation (104) leads immediately
to I* =0. However, it does not lead to I® =0, unless the energy distribution f(E)
is taken of the Boltzmann type (~e~#£), something which would correspond to a
strictly consistent use of the single particle picture. In the case of nonzero magnetic
field, detailed balance arguments cannot be applied. However, as we know from the
elastic case with B#0, detailed balance is not strictly ncessary to achieve zero
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current at equilibrium and, as we see below, the model also fails for reasons that
have to do with unitarity. To see this, we first note that the unitarity condition

NAE)= [ dE | R’ E)+ 5 Tol £ ) |

- f dE' [R,w(E, EV+Y TuE, E’)] (117)
b

allows us to rewrite I® as (we focus directly on the equilibrium case f, = f;)
P= % [dE1(B) {Na(E) - f dE' R, (E', E)—Y" j dE' T ,(E, E)}. (118)
b

However, neither of the two equations in (117) leads to the vanishing of I® as
expressed in (118), and this is due to the presence of the Fermi distribution f(E).
We note in passing that if ansatz A for the current is rewritten in a form analogous
to (118) but with f,+# f, and with the (1— f) factors, the resulting expression
would not be, in general, equivalent to (100). This is related to the problem of
current conservation commented upon above and further suggests the inadequacy
of Eq. (100). Thus we see that regarding charge balance, neither of the two ansétze
gives entirely satisfactory answers.

The upshot of this discussion is that, in the presence of dissipation, it may not
be completely consistent to use formulae for the current like Egs. (100) and (102),
when the transmission probabilities have been obtained within a single particle pic-
ture, no matter how intuitively appealing these equations may be. This conclusion
underlies the need for global transport equations in which the effects of quantum
statistics and of dynamic electron interactions (either Coulomb or phonon
mediated) are rigorously or at least consistently taken into account. However, as
long as we lack a complete and satisfactory treatment, choice B for the current
equation is probably much more adequate than the option A, since it correctly
reproduces the elastic limit and is more consistent with current conservation
considerations. We finally remark that these arguments should not be uncritically
applied to the (in many regards analogous) context of the Boltzmann equation
[28, 48], where the introduction of the factor (1 — f) in the final state is probably
much more adequate and does not lead to obvious contradictions.

7. CONCLUSIONS

In this work we have developed a Green’s function method to study dissipative
transport in very small structures within the framework of single particle and
localized phonon approximations. We have developed exact general expressions for
the inelastic transmission and reflection probabilities in terms of dressed two-
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particle Green’s functions. We have obtained these results both by analyzing
directly the scattering amplitudes and through a reduced density matrix approach.
In both cases we have borrowed from the literature on dissipation in quantum
machanics [35], particularly in regard to the tracing out of bath coordinates as a
means of generating a description of dissipative dynamics. We have also developed
a diagrammatic perturbation theory in the electron—phonon interaction that
automatically preserves unitarity to all orders. The use of the corresponding Feyn-
man rules has been illustrated with applications to some simple cases involving one-
and two-phonon processes. Finally, we have discussed what is the correct method
for calculating the current, once the inelastic scattering probabilities are known.
There is an ambiguity in the way quantum statistics is introduced in the electron
final states. We have shown that, although the absence of explicit statistical factors
in the availability of final states provides a more correct picture, there is no obvious
formula for the current that is entirely free of contradictions. These difficulties point
out the need for a description of electron transport that incorporates both many-
body and dissipation effects in a consistent fashion. It is our hope nevertheless that
the formalism here presented will prove useful in quantitative studies of dissipative
transport in mesoscopic systems, particularly in case where many-body effects do
not play an essential role. For those systems where Fermi statistics is of primary
importance, this work must be viewed as a useful preliminary step towards a com-
plete treatment of dissipation in quantum transport within the scattering picture
first advocated by Landauer [16].

APPENDIX A: WAVE PACKET ANALYSIS OF THE RELATION
BETWEEN GREEN’S FUNCTIONS AND THE SCATTERING MATRIX

The essence of the analysis which we present in this appendix is the following: we
consider the evolution of an incident (normalized) wave packet which is in a single
transverse mode and is eventually assumed to be arbitrarily monochromatic. This
packet evolves with the full Hamiltonian H, and, at a much later time, it becomes
a linear superposition of outgoing wave packets in the various leads and transverse
modes with a relative weight given by the transmission and reflection coefficients.
These can be calculated by projecting the total wave function at very long times on
the different outgoing wave packets that can be defined in the various channels and
which are formally similar to the incident one. In particular, they are also nor-
malized to unity and are eventually assumed to be highly monochromatic. The
resulting expression for the scattering coefficients is conveniently transformed and
written in terms of the electron Green’s function. In the derivation, some assump-
tions have to be made regarding time scales and wave packet properties. For the
sake of clarity, we will only discuss their legitimacy and mutual compatibility after
all of them have been introduced.

Let us consider a wave packet that approaches the sample (region S of Fig. 2)
from the semi-infinite lead a (region L,) in transverse mode m with an average total
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energy E. The wave function for such a wave packet in the remote past (¢~ — T,
T— ) is

1 e—E )
v = b - et/ Al
Emu(x’ t) jdg \/A_S < AE > isma(x) € ( )
where @(u) is an amplitude weight function that is normalized to unity,
[ 1061 du=1, (A2)
and
&a(X) = (2hi0,,,) ™2y p) €F o (A3)
is a plane wave in the transverse mode m of lead a with total energy
e=E,,+#k2 2M (A4)
and v,,,=#%k,,./M is the velocity of longitudinal propagation. The plane wave

(A3) would be an eigenstate in the fictitious infinite perfect lead formed by L, and
L, (L,uL,), L,being an imaginary prolongation of the semiinfinite perfect lead L,
(see Fig. Al). In L,u L, the normalization is, of course,

Cama | Ead = O (e —¢). (A5)

The center of the wave packet (Al) is assumed to be far enough from the sample
region so that it is appreciably different from zero only within the lead L,. We will

FiG. Al. Imaginary extensions L, and L, of semi-infinite leads L, and L,. The combined regions
L,u L, and L,y L; constitute infinite perfect leads.



428 FERNANDO SOLS

comment later on the required numerical conditions for this assumption to be
meaningful. From (A2) and (AS) it follows that (Y g,..(1) | ¥ g.l(?)> =1. At this
point we can borrow from the analysis of three-dimensional wave packet scattering
given in standard text books and show that, in Eq. (A1), the plane waves £ (x)
can be replaced by the retarded scattering states ¢!} )(x, which satisfy Hyg'}) =
e¢'") and whose asymptotic behavior is
Eoma(X) + 2 T aal€) EoraX),  XEL,
Poma(X) = " (A6)
Z tnm,ba(s) é:,;a(X), Xe Lb.

We will argue later that what has been added to (Al) (the outgoing waves) gives
a negligible contribution. Since all the plane waves defined by (A3) carry the same
normalized flux 1/2zn#, the set of transmission and reflection coefficients displayed
in (A6) form a unitary discrete S-matrix. It can be shown that (A5) and (A6) imply
[49]:

<¢£r:a) I ¢£’Tn)a’> = 5(8 - 8,) 5mm’ 5aa" (A7)

(In regard to the content of Refs. [31,49] we wish to emphasize that the energy
delta function normalization (A7) is perfectly compatible with unitarity if, as is the
case in (A6), the scattering states are defined in terms of constant flux plane waves
that are related through a unitarity S-matrix. What is wrong is to take the nor-
malization (A7) for the states ¢{') = (2n#v,,,,)"?4.}) which, when written in terms

of the plane waves &% = (2nhv,,,)*¢L,,, are related by coefficients 7,, ., and
I.m.». that do not form a unitary S-matrix. For these states, the correct normaliza-
tion is {(@L*) | ) > =8(k —k’) 8, O.r»> as has been explicitly shown by Kriman
et al. [49], and which immediately leads to (A7). Thus, the work of Ref. [49],
which deals with the normalization of the states ¢‘*’, can be used as a constructive
proof of (A7).) Once the wave function (A1) is written in terms of the eigenstates

of H,, we are in a position to study its time evolution:

1

/s

At a much later time ¢~ T, it can be shown (see below) that the incident part of
¢'+), as well as its portion within the sample S, gives a negligible contribution and

all the amplitude is in the outgoing waves. Thus, at ¢t ~ T (the appropriate value of
T is to be specified later), one can write

Y’Ema(x, t)=fd8 (i3] (%_;) ¢(E;a)(x)e‘i6t/h. (A8)

1 —F )
Zrnm,aa(E)jdg_\/—TQ <8A8 ) é;a(x)eﬁwm’ XELa,
Yo, )= " ¢ (A9)

1 —F .
Ztnm,ba(E)st-\/T¢(87;> Eru(x) e ® xel,, b+#a,
n £
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where the S-matrix elements have been assumed to vary slowly in the scale of Ae
and have been taken out of the integral sign. For reasons similar to those which
lead from (A1) to (A8), we can replace the plane waves in (A9) by the advanced
scattering states, ¢!~ '(x) = [¢!*’(x)]*, which also obey the orthogonality relations
(A7). Now we project (A9) onto the outgoing wave packet

1 e—F .
+ — + — igt/h
plo(x, 1= fa’s \/A_s (D( P > Er(X)e , (A10)
where £+ can also be replaced by ¢(~’. By using (A9) and (A10) in combination

with the orthonormality of the asymptotic wave packets (which can be obtained
from (A2) and (A5) or (A7)) we arrive at

tnm,ba(E) = < g’;nb(t) I Wl_;"ma(t)>5 (Al 1)
which can be more conveniently written as
tum ba(E) = O (1) [HIGE 1 =) | ¥ (1)), (A12)

where we remember that r~ T~ —¢’ and that the limit 4¢ — 0 has to be taken. In
(A12), iG§*) is the retarded evolution operator,

iG{H(t) = @(t)e*"”w/"e,;~'1'=f‘217—fic;g+ E) e~ "B/ (A13)

where G{*)(E) is given by (2). Analogously,
Fomaal E) = {38 GGt~ ') | (1)) (A14)

Before we proceed further, let us discuss the legitimacy of the assumptions that
have been made about the scattering process. Some of the arguments we give below
can be found in standard textbooks [50]. However, the novel nature of multilead
scattering and, in particular, the presence of asymptotic channels with different
energy thresholds for propagation poses new difficulties that deserve a separate
discussion. The assumptions are essentially three: (i) The packet has negligible
spreading during the time interval in which the wave packet evolution is considered
(from — T to T); (ii) the wave packet is sufficiently localized, both at T'and — T,
for the wave amplitude in the sample region to be negligible; and (iii) the wave
packet is sufficiently monochromatic, so that the energy dependence of the S-matrix
elements can be neglected. Below we show that the first two requirements impose
conditions on the choice of T that can always be met. In a given transverse mode,
these two assumptions can be quantitatively formulated as (i) #(4k)*T/M < 1, and
(ii) 4x < vT, where Ak is the wavevector width, 4x ~ 1/4k is the spatial width, and
v=~hk/M is the average longitudinal vocity in the particular mode considered.
Clearly, (i) is most stringent for the mode with the highest Ak, which will be that
with the highest energy threshold E,, since E=E,+ #°k*/2M is conserved and
AE=Hhk Ak/M is the same for all modes involved (remember that A4FE is assumed
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small enough for the energy distribution not to be distorted by the energy
dependence of the scattering amplitudes).

On the other hand, (ii) is equivalent to #/4E < T, which is independent of the
mode. Thus, it is sufficient to meet requirements (i) and (ii) for the available mode
with the highest E, at a given energy E. Both conditions can be combined into

h E,

AE< T<2#h (4E)”
where E,=#/%k?/2M is the longitudinal kinetic energy in the highest threshold
mode. Given AE, it is always possible to choose a time scale T that satisfies the
double requirement (A15), provided 4E < E,. In particular, this implies that AE
can be made arbitrarily small and thus condition (iii) can always be satisfied, even
close to the threshold and at resonances, where the strongest energy dependence of
the scattering amplitudes is expected.

When (i) is satisfied, it is possible to approximate

(A15)

tikonax p— ik t/2m oKt/ 2M pikona £ X — VEnal) (A16)

e e

at all times (—7T <t < T) within the various energy integrals defining the wave
packets. When (A16) is introduced in (Al), it becomes clearer that (A1) describes
a wave packet centered around x= —vy,,t>0 in L, and the subsequent analysis
becomes more transparent: (Al) can be replaced by (A8) because the added out-
going waves correspond to wave packets centered around the various x =vp,,t <0,
which only have appreciable amplitude in the imaginary Lj. As to the sample
region contribution, ¢{)(x) can be assumed to be smoothly dependent on ¢ for
x € S (see above) and the sample contribution in (A8) would be roughly equivalent
to a wave packet centered in, e.g, —vp,f but evaluated at x ~0, where the
amplitude is negligible.

At this point, we can resume our analysis and note that by introducing (A1),
(A10), and (A3) into (A12) we can write

1 e—E g —E\ .
_ ' % et —'t')/h
t,,m,ba(E)_ﬂ de de' — @ ( = ><1>(——A8 )e

dE/ e~ ikenpx eikcl,,,ax’
—1 d dx’
Xf 2 Lb XLE X (2nv,,)" 2o, )P
X iGgﬁnf,}a(x, x'; E') e EU—1E (A17)

where the definition (2) has been used.

From the previous discussion on the properties of the wave packets, we know
that the space integrals in (A17) only receive appreciable contributions from
segments that lie well in the asymptotic regions. Thus, it is possible to find two
reference points x,€ L, and x,€ L, such that x> x, and x' > x, for all x and x’
that contribute significantly to (A17). One can then use the property [51]

Go+) (x, x"; E)= G° (xp, x,; E) ok Enb(x = Xb) 51K Emal X’ — Xa) (A18)

nm,ba nm, ba
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and formally extend the spatial integrals to L, L, and L, L, (ie., integrate x
and x’ from —oo0 to +00), so that they can be trivially performed. They yield
o0(e — E") (¢’ — E’) with some factors. As a result,

bl B = [ do - . & <8ZSE>

X Vet Uomia) "> Gt 0 X s X5 €) €m0 Kama), (A19)

nm, ba

2

If we now take the limit of a very monochromatic wave packet,

& ( e— E>
Ae
Eq. (A17) becomes Eq. (1b) of the text, as we wanted to show.
A similar analysis can be performed for the reflection coefficient. However, in this

case the replacement (A18) can only be made for the purely reflected part of the
propagator,

2

! =d(e—E), (A20)

lim —
4s -0 Ae

ik Enalx — x'|
an aa(x7 X’; E)EG%:—a)a(x, X’; E)_énm e___—, (AZI)
' ’ huEna
for which
Frmaa(Xs X'3 E) = F oy aq(X g, X5 E) @™Erex = %0) gilbmalx’ =), (A22)

where we have used the fact that x> x, and x’ > x,,, and that they all lie in the
asymptotic region L,. It is important to note that in (A14) the full propagation
G§*) can be replaced by the reflected component F, because the free propagator
which has been subtracted makes ¥, evolve into a wave packet that at t~ T is
located far in L, where no overlap with ¥/  exists, and thus gives a vanishing
contribution to the matrix element. Once G{*’ has been replaced by F, one uses
(A22) and, following steps similar to those we studied for the transmission, one
obtains (we take x> x,)
rnm,aa(E) = ih(uEnavEma)l/z
eikEna(X,; — Xq)

x [G?n‘nfa’,,(xa, X3 E) = 8, ] e~ keaxatKenax)  (A23)

Y £,

which immediately leads to Eq. (1a), as required.

APPENDIX B: LATTICE FORMULATION

In a tight-binding structure the one-electron Hamiltonian is of the type

HO:ZSR";CR+ Z Apg CR Cr> (B1)
R R, R’
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where sites are labeled by its vector position R, the operator ¢ creates an electron
in site R, and the hopping matrix element A4y is assumed to connect only nearest
neighbors. The sites R can represent real atoms in a lattice or they can be fictitious
entities filling a multilead structure with a sufficiently high density. The latter case
corresponds to the replacement of a continuum problem by a lattice structure for
numerical purposes, which is equivalent to the use of a finite difference method to
solve the Schrodinger equation [11]. Hard-wall boundaries are simulated by the
absence of sites and possible variations in the potential U(x) are obtained by
modulating the site energies ex. The hopping term corresponds to the kinetic
energy. In order to define the scattering problem, we assume that the tight-binding
structure is formed by semi-infinite perfect stripes (L,) that are connected through
a central region (S) where scattering occurs, like in Fig. B1. This means that

£r =&, Agr=40<0 for R,R eL, (B2)

and nearest neighbors (in order to have a common energy reference for the lattice
and continuum descriptions, it is convenient to take g,=2d 4,, where d is the
dimension, cf. Ref. [11]).

The electron—phonon interaction will be of the form (see Eq. (51))

V=YY M,R)cg cpla, +at,). (B3)

Below we give some of the most important transformations that are required to
shift from a continuum to a lattice formulation (some of them are given for d=1,
then R=1)

1 1
x> —mIR), Yo —me,  [dx—a'Y,

R

1
G, x) > —GR,R),  kx—0L v —(24ea/h)sin, (B4)

o 1pem
E, = 2k2/2M_,E0=2A0(COSO—1)5 J dk—}ZJ 0.

As an illustration, we show that the analysis of Section 2 can be conveniently
adapted to reproduce the result of Wingreen et al. [22] for T(E,, E,) in a one-site
model of a resonant tunneling structure which is essentially equivalent to the struc-
ture shown in Fig. B1. As in Ref. [22] the space between the barriers is described
by a single relevant orbital, the weak tunneling through the barriers is given by the

Ao Ao Ao AL A A, Ay A,

o o 0 OO0 —09<—>P9<—>0—0—0—0 ¢ o o
-3 -2 -1 0 1 2 3

FiG. Bl. Schematic representation of a resonant site (/=0) coupled elastically to semi-infinite right
(I>0) and left (/< 0) leads which, for convenience, are described by tight-binding chains.
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hopping energies 4, and 4., and phonons are assumed to couple only to the
resonant site (/=0). Here we choose for convenience a tight-binding representation
of the semi-infinite leads where the uniform hopping energy is 4, and ¢,=0. The
results do not depend, of course, on this particular choice of lead description.

Most of the derivation runs completely analogous to the continuum analysis of
Section 2. The starting point is the equivalent of Eq. (4) in a tight-binding language
(see (B4)):

tg(E)=2i | 4| (sin O gy sin 0 ,) "2 e = O~ 050G I, E), (B5)

where />0 and /' <0 (note the change in sign convention for the left lead), where
Vg, = —(2 4pa/h) sin 0, is the group velocity and 05, =cos ~![(E—¢g,)/2 4o+ 1] is
the dimensionless crystal momentum for motion in the chains when the bath is in
state a and the total energy is E. In this particular problem, everything can be
referred to the Green’s function at the resonant site. This is due to the relation

Gpll,I'; E)= Gy, 1; E) .G, (0,0, E) 4, G2 (—1,I'; E), (B6)

which holds exactly if, as assumed, phonon coupling only takes place at /=0. The
Green’s function in the semi-infinite chains are known exactly:

iOrgl —i0E,l’
G L LE)=—— G (=1I3E)=— (B7)
0 0
As a consequence,
G(+) ‘. 4rd. i(BEgl — Opal ) (3 (+)
(L1 ,E)=—A—2—e Gy (0, 0; E), (B8)
0
and we can write
e . 1/2ARAL (+)
tg,(E) = 2i(sin 0 g sin 0, ) ——= Gy '(0, 0; E). (B9)

|4l

From this point, the derivation is identical to that which leads from (4) to (14). The
only difference lies in the replacement of #(v,v;)'? by 2(4 g4 /|4|)(sin 6, sin 6,)"
and of x, and x, by /= 0. Before writing the final result (the equivalent of Eq. (14)),
we note that the self-energies of the resonant site due to the presence of the leads
(in the absence of phonons) are [11]

4%
T(E)=43G57(1, 13 E) =B e, (B10)

[

and similarly for 2, (E). The linewidths are thus

42 242
I(E)=— ZA Lsinf,  Ta(Ey)=—=—"sin 6. (B11)
0

0
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Collecting all the pieces together, the final expression for the transmission
probability is

dr dt ds
2nh3

x colt =) € (T) colt) €5 (0) (B12)

which is the result first obtained by Wingreen et al. [22].

We note that the linewidths I'; and I', are intrinsic properties of the system and
do not depend on the particular choice of a tight-binding description for the leads.
Our derivation of (B12) is therefore completely general. A similar analysis can be
performed for the reflection probability R(E,, E;), with results that agree also with
those of Ref. [22].

T(E;, E)=T'(E) To(E) (|| HUE Ed B ESVAG 1) f(s)

APPENDIX C: ExpriciT PROOF OF UNITARITY

Unitarity is satisfied if

% T B ED+ 5 Rty B | =1 ()
nb n

for all E, m, and a. To show that (Cl) can be obtained from Egs. (14) and (16) in
the text, let us rewrite these in a slightly different way:

Tnm,ba(Efs Ei)=6ba 6nm 5(Ef— E1)+ TA (Ef’ El)+ TB (Ef’ Ez) (Cza)

nm, ba nm, ba

T,‘:‘m bq(Ef’ E)= Ezf_vf;’ etkr (s~ x}) jjj dr dt ds e\ Ei— En+ Ept— Eis\ih 0(t) 6(s)
’ n

XWXy T=8) T (x5, T) W (x5, ) (x,,0)) (C2b)
TR, v ErE) =044 8 0(E;— E;) 20, Im G} (x,, x,; E;). (C2c)

We have made use of the freedom to choose the reference points in Eq. (4) for
tom, ba, g E). When squaring this expression in (8) we can choose different reference
coordinates for ¢, 5, s, and its complex conjugate. If b= a, we assume x,, x}, > x,.
Incoming and outgoing channels are formally treated now on the same footing,
except for the presence of the term T® which is nonzero only when the bath
channels are identical (nb=ma). Equation (Cl) can now be rewritten as the
condition

Fh(E)=—F}(E), (C3)
where
FAM(E) =Y. [ TARL(E,, E) dE, (C4)
nb
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From the definition (70), it is easy to see that

FEAE)= —vipa | i ™" e MY (x5 (5,00 (CS)

The transformation of F2_ onto the negative of Eq. (C5) requires substantially more
algebra. First we note that the freedom of choice of reference points can be phrased
as

aTA

0
5 T B E) =57 Tl By E)=0, (C6)

nm ba
which implies that, in (C2b), we may replace v, by (ih/M) 8/0x,, or (—ih/M) d/0x),
acting on 1 (x;, T) or ¥,(x}, t), respectively. In particular, we choose the substitu-
tion

WD)y (1) ) o)

ox, X},

oy oo ) Uy 1) gy | ) | @

in Eq. (C2b). The explicit dependence on v, has now disappeared and, in (C4), the
integral over E, yields 2n# §(t —¢). If x, = x,, is taken again, we can write

FAAE) = e [t [ ds e 6000 (g (3 15)

Al W (xy, 1) O (x4, 1) X
X{nbz_jmliwn (x5, 2) 0%, - ox, lﬂ,,(x,,,t)]} |//m(xa,())>.
(C8)

Obviously, the expression within curled brackets is the current flux leaking out
of the sample region into the asymptotic leads. By applying the divergence theorem
and invoking the continuity equation

0 t
Vi(x, 1)+ ”(axt’ ) _o, (C9)
the current flux can be written as
dp(x, t)
— 1
L dx F, (C10)

where p(x, t) = T (x, £} Y(x, ) is the electron density operator and the integration
is performed over the sample region S. If (C10) is introduced in the curled brackets
of (C8) and the times ¢ and s are replaced by the variables ¢ and 1=t —s, Eq. (C8)
becomes
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FA(E)= —vpp, | dve™h [ drenao | dx (C11)
— 0 70 S
(0 20 (5,0 ). (c12)

where 17,=max(0, 7). The integral over ¢ is performed by parts and then the limit
n— 07" is taken where needed. The result is

P E)=vgna | dx [[ dy,dyiii(ra) 1) |

x (P (X, ) p(X, To) ¥ 7 (X, 0), (C13)

0
dT eiE‘t/h e*'l|f|
©

where x, = (x,, y,), X, =(x,, v,), and the decomposition (55) has been employed.
Now we make use of the equal time commutation relations

Lo(x, 0, ¥ 7 (x, )] =y 7 (x, 1) d(x —x') (C14)

and its hermitian conjugate, which are satisfied by both Fermi and Bose field
operators. We can apply them to our particular single electron problem, where the
result must not depend on the choice of statistics. For 7 <0, 7=0, and we have

{Y(x4, T) p(X, 0) ¥ 7 (x5, 0))
= Y (Xg, )Y T (X5, 0)> 8(x —x) + {Y(x,, DY 7 (x,, 0) p(x, 0)) (C15)

but the second term is identically zero, since the expectation value is taken over the
electron vacuum. Analogously, for t>0, 7,=1, and

P(xq, 7) (X, ) Y (x5, 0)) = (Y(x,, D) Y P (x, 0) ) d(x —x,). (C16)

Since the sample region S can always be taken large enough to include the reference
points x, and x, (in fact, we assumed x, > x, for b =a), the integral over x can be
trivially performed. The result is

FA(E) =g [[ dya dv(2.) 1 72)

x[7 dret e Cp(x,, 1) (X0, 0, (C17)

— 0

which is obvious identical to — F2 (E), as given in (C5).

Therefore, we have shown that the unitarity condition (C1) can be explicitly
derived from the general expression (C2) (equivalent to (14) and (16)) by invoking
the continuity equation (C9).
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