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A theoretical study of dissipative scattering in mesoscopic systems is presented. Within the 
single electron and localized phonon approximations, exact expressions for the transmission 
and reflection probabilities between the various leads and channels are derived in terms of 
dressed two-particle Green's functions. These general results are obtained through two 
different procedures: one approach is based on a direct study of the microscopic stationary 
scattering amplitudes while in a second method the reduced density matrix of a scattered wave 
packet is analyzed. In both approaches the phonon bath degrees of freedom are traced out in 
such a way that an effective description of the electron dissipative dynamics emerges. The 
scattering probabilities are shown to satisfy symmetry relations which exactly account for the 
presence of a dissipative thermal bath. A lattice formulation of the calculational method is 
also presented, and an explicit proof of unitarity is obtained by invoking the continuity 
equation. By introducing time-ordering in the Keldysh contour, a diagrammatic perturbation 
theory in the electron-phonon interaction is developed. Unitarity is shown to be automati- 
cally preserved to all orders in perturbation theory. The use of diagrams is illustrated by 
applying them to some simple cases involving one- and two-phonon processes. Finally, a 
discussion is presented on the computation of the current from the inelastic scattering 
probabilities. The existence of an ambiguity in the assignment of quantum statistical factors 
to the outgoing scattering channels is pointed out. It is argued that a more consistent picture 
is obtained if no statistical restrictions are explicitly introduced in the electron final states. The 
novel formulation which is presented here provides a theoretical framework for quantitative 
studies of the interplay between quantum interference and dissipation in the transport proper- 
ties of very small structures. © 1992 Academic Press, Inc. 

1. INTRODUCTION 

The  recent  d e v e l o p m e n t  of  c r y o g e n i c  a n d  l i t h o g r a p h i c  t echn iques  has  gene ra t ed  

a s t rong  in te res t  in a nove l  r eg ime  of  e l ec t ron  t r a n s p o r t  where  the  w a v e  n a t u r e  of  

the  e l ec t ron  p lays  a f u n d a m e n t a l  role.  T h e  c o m m o n l y  accep t ed  v iew is t ha t  the elec- 

t ron  phase  is r a n d o m i z e d  by ine las t ic  processes ,  wh ich  at  low t e m p e r a t u r e s  can  be 

very  rare.  I f  the  ine las t ic  m e a n  free p a t h  is l a rger  t h a n  the  m e a n  free p a t h  due  to 

e las t ic  sca t t e r ing  by impur i t i es ,  a w e a l t h  o f  new p h e n o m e n a  e m e r g e  tha t  c a n n o t  be 

desc r ibed  wi th in  the  f r a m e w o r k  of  semiclass ica l  t r a n s p o r t  theory ,  where  q u a n t u m  

effects on ly  en te r  t h r o u g h  the  b a n d  s t ruc tu re  a n d  the  cross  sec t ion  of  (usual ly)  
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uncorrelated scattering events. The physical systems where the electron phase 
coherence is preserved at a scale much larger than the atomic dimensions are often 
referred to as mesoscopic systems [1 ]. Among the new phenomena originated by 
electron quantum interference are weak localization [2], the Aharonov-Bohm 
(A-B) effect [3], universal conductance fluctuations [4], resonant tunneling [5, 6], 
and electron waveguide behavior [7]. The prospect of applying some of these new 
effects to the design of electronic devices based on novel principles has strongly 
contributed to the current interest in the physics of mesoscopic systems [8]. This 
is particularly true in the case of resonant tunneling [6], A-B effect I-9], and elec- 
tron waveguide transport [10, 11 ], where some specific proposals have been made. 
Common to all these phenomena is the preservation of phase coherence at a length 
scale where quantum interference develops. Dephasing, or randomization of the 
phase, is caused by the interaction with an environment with many internal degrees 
of freedom whose dynamics becomes correlated with the motion of the electron. 
Stern et al. [12] have recently studied in some depth the concept of phase ran- 
domization by a dissipative environment, and their analysis has later been refined 
by Loss and Mullen [13]. These authors emphasize that, in order for effective 
dephasing to occur, the electron motion along different paths (that would interfere 
in the absence of dissipation) must become correlated with the evolution of the bath 
into corresponding orthogonal states. The loss of phase coherence is generally 
accompanied by a transfer of energy between the carriers and the bath, although 
this is not strictly necessary. If the dissipative environment supports low energy 
excitations (like, e.g., acoustic phonons or electron-hole pairs), the dephasing 
length l~ may be smaller than the inelastic length lin, since the former is associated 
with the transfer of a quantum of energy that can be arbitrarily small, while the 
second is rather the length the carrier travels before it loses an amount of energy 
comparable to its kinetic energy [14]. The concept of mean free path is useful for 
transport in extended systems such as quantum wires or quantum wells. However, 
the situation in a typical quasi-one-dimensional nanostructure with feature size 
below the dephasing length is better described by a scattering picture where 
probabilities are the relevant quantities that measure the importance of the various 
physical processes. In this paper we shall use dephasing and inelastic scattering as 
exchangeable terms and they both will refer to processes where the final and initial 
bath states are orthogonal. The electron--electron interaction can also cause 
dephasing [15], but we shall not consider it here. 

Since the early work by Landauer [16], it has been common to assume that 
dissipation occurs only in reservoirs which are physically separated from the region 
where elastic scattering (and all associated quantum interference phenomena) takes 
place. This view is certainly adequate in the limit where inelastic scattering is 
extremely rare and has the additional advantage of providing a powerful computa- 
tional tool, since the sample transport properties can be obtained from the scattering 
of independent electrons. More recently, Biittiker [17-19] has included dissipation 
in the sample region by introducing extra reservoirs with no net current flow. The 
electrons leaving the reservoir are assumed to have no phase-coherence with the 
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electrons entering it. Dissipation is then described in terms of a generalized 
Landauer problem, where a variety of voltage leads are attached to the sample [ 19]. 
This approach has also been followed by D'Amato and Pastawski [19a], who have 
studied the conductance of a disordered linear chain, and by Hershfield [19b], who 
has developed a numerical algorithm to include the effect of dephasing leads. 
The phenomenological description of dissipation in terms of additional reservoirs 
has been shown by Datta [20] to be equivalent to a model of point-like phonon 
scatterers. This equivalence has been used by Pastawski [20a] to develop a unified 
description of classical and quantum transport. In these works, localized phonons 
are effectively treated in the self-consistent Born (or ladder) approximation. 

Dissipation is easily described in its extreme form, when a series of physical 
processes that would occur coherently in the absence of dissipation can be treated 
as completely uncorrelated. An example of this can be found in resonant tunneling, 
which, in the regime of strong intra-well dissipation, can be viewed as a two-step 
process in which the electron first tunnels into the resonant site and later leaves it 
without phase memory of its arrival. This is the regime of sequential tunneling, 
which is opposite to the coherent tunneling that takes place in the absence of 
dissipation [18]. Tejedor et aL [21] have shown that a magnetic field parallel to 
the interface can be used to distinguish between coherent and sequential tunneling 
and to move continuously between the two regimes within a given structure by 
controlling the degree of localization within the resonant well. It is clearly desirable 
to improve our understanding of dissipation by studying models in which some 
type of realistic electron-phonon interaction is explicitly considered. Recently, 
several works have appeared in which phonon coupling to the quasi-bound state 
of a resonant tunneling structure has been included [22-25]. The simplifying 
approximation of a wide-band has been introduced in all these works. Hyldgaard 
and Jauho [26] have extended these studies to resonant tunneling in superlattices. 

The purpose of this paper is to develop a systematic approach to the study of 
dissipation in mesoscopic systems. The ultimate goal is to provide a quantitative 
description of the electron-phonon interaction in ultrasmall structures. This 
ambitious task is, however, quite arduous and one must resort to a variety of 
approximations, particularly in the early stages. We have introduced two main 
simplifications in our analysis. First, we employ a single-electron picture and, 
second, we assume that dissipation takes place in a finite region of space. These two 
approximations have been used in most of the recent work on dissipation in quan- 
tum transport where some type of electron-phonon interaction has been explicitly 
included [22-27]. Although the first approximation prevents us from studying the 
role of the Pauli exclusion principle and Coulomb correlation in dissipation, we 
expect it to keep many essential features of the interplay between quantum inter- 
ference and dissipation. Apart from the obvious simplifications that arise from con- 
sidering a single-particle picture, there are other good reasons for introducing such 
an approximation. Most importantly, the single--electron picture has been widely 
used in the study of transport in semiconductors [28] and there is a great variety 
of situations (such as transport by nondegenerate plasmas in semiconductors) 
where it can be considered legitimate. A detailed account of the merits of the single- 
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particle approach has recently been given by Rammer [29], who has developed a 
single electron theory of quantum transport within a density matrix formulation. 
While he has presented a real time description of the electron dynamics, we have 
focused on the study of stationary scattering, where physics can be formulated in 
energy space. We expect our stationary scattering approach to be advantageous 
in the description of steady-state transport. Furthermore, as we shall see, an 
energy formulation often permits a better understanding of the physical meaning 
of expressions or diagrams that would remain obscure in their time-dependent 
counterparts. 

The second simplification that we have introduced is the assumption that the 
electron interacts with phonons only in a finite region of space. This approximation 
allows us to adopt a simple scattering picture in which the channels for asymptotic 
propagation are known exactly. The scattering channels are the various transverse 
modes in the different leads connected to the nanostructure under study. A more 
realistic model in terms of extended phonons (which in turn can be scattered by the 
structure) would be considerably more complicated and must be studied separately. 
In addition, it should be pointed out that a model of localized phonons is quite 
adequate in some situations where, due to the specifics of the structure, phonon 
modes develop that have most of their amplitude in the scattering region. These are 
cases in which the lattice vibrations are sensitive to the geometry, also because of 
their wave nature. In this sense, we can assert that the geometry affects the electron 
motion both by changing its wave function and by modifying the phonons that 
tend to destroy the coherence. Whether this modification of the phonon modes 
enhances or inhibits dephasing remains to be seen and certainly constitutes a 
question of great interest. 

The resulting scattering problem that we shall study is schematically depicted in 
Fig. 1 and can be formulated as follows: an electron comes from lead a in transverse 
mode m with energy Ei and can be transmitted with a certain probability into mode 
n of lead b with energy Ef after having interacted with the boundaries, impurities, 
and phonons in the central region (the "sample"). We are essentially following the 
Landauer approach in which the resistance of a sample is viewed as a direct conse- 
quence of its scattering properties [16]. However, we include the possibility of 
inelastic processes within (or in the vicinity of) the sample. As in the standard 
Landauer picture, we assume that the electron reservoirs introduce additional 
randomization of the relative phase between the electron waves that enter and leave 
the reservoir. 

In Section 2, we derive general expressions for the inelastic transmission and 
reflection probabilities in terms of two-particle Green's functions. The reason why 
two-particle Green's functions (with four field operators) appear in a single-particle 
problem is that we calculate probabilities instead of probability amplitudes (which 
would be given by one-electron Green functions). In connection with this rather 
important point, we also discuss the relation between the irreducibility of the 
two-particle Green function and the occurrence of inelastic scattering in which the 
phonon bath changes state. An interesting feature of our scattering analysis is that 
the fundamental property of microscopic reversibility gives rise to a detailed 



390 FERNANDO SOLS 

balance equation that guarantees the suppression of net currents in the absence of 
a driving force. The situation is similar to that encountered in Boltzmann equation 
studies. However, we deal here with scattering probabilities (associated to a one- 
event process) instead of scattering rates (which give the frequency of uncorrelated 
scattering events). An interesting by-product of the found symmetry relation is the 
compatibility between microscopic reversibility and irreversible thermalization. 

Our starting point is the relation between the Green's functions and the elements 
of the discrete S-matrix (transmission and reflection coefficients) that was derived 
by Fisher and Lee [30] for one-dimensional scattering and was later generalized by 
Stone, Szafer, and Baranger [31, 32] to arbitrary multilead structures. Formally, 
the phonon bath is introduced by simply adding new labels to the equations. 
The Hilbert space is thus enlarged to include both the states of the particle and the 
states of the phonon system. The total system formed by the electron plus the 
phonons is a Hamiltonian system where energy is conserved. From the point of 
view of scattering, the phonon indices appear on a formally identical footing to that 
of the electron lead and channel quantum numbers. Leggett [33] has recently 
pointed out the formal similarity between phonon states and electron transverse 
modes. Of course, this similarity disappears when an explicit account of the 
quantum statistics is taken in the process of ensemble averaging. Since we are only 
interested in the electron dynamics, we trace out the phonon degrees of freedom by 
taking a thermal average for the initial states and an equal weight sum over all 
possible final states. This is the approach to dissipation in quantum mechanics that 
has been emphasized by Leggett and collaborators [34, 35] following the seminal 
work of Feynman and Vernon. 

The work of Section 2 is complemented by three appendices. In Appendix A, we 
present an alternative derivation of the relation between Green's functions and 
scattering amplitudes that is based on a real time analysis of a scattered wave 
packet. Appendix B deals with a lattice formulation that may be required in other 
contexts. The equations for inelastic resonant tunneling [22] are rederived exactly. 
Finally, in Appendix C we show that unitarity can be inferred from the general 
expressions for the inelastic scattering probabilities by invoking the continuity 
equation satisfied by the electron current and density operators. 

In Section 3, we present an alternative derivation of the equations for the 
inelastic transmission and reflection probabilities based on an analysis of the 
reduced density matrix (that which results from taking the trace over the phonon 
coordinates in the total density matrix). The reason for presenting an alternative 
derivation is threefold. First, it provides us with an independent check of the equa- 
tions derived in Section 2. Second, it gives additional insight into the physics 
described by those equations. The scattering probabilities are obtained by analyzing 
the real time evolution of a wave packet that is scattered by the sample. The 
stationary scattering properties are obtained by considering the limiting case of a 
monochromatic wave packet. In particular, an interesting solution is given to the 
apparent paradox that the reduced density matrix depends only on one time argu- 
ment (see Eqs. (33) and (36)) while a calculation of the scattering probabilities 
seems to require full knowledge of the dependence of the two-particle Green func- 
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tion on its three significant time variables (see Eq. (14)). The solution lies in the 
correlation which exists between time and space dependence in the asymptotic 
regions, where the electron propagates freely. Finally, an analysis of the inelastic 
scattering problem in terms of the reduced density matrix creates a bridge with the 
literature on dissipation in quantum mechanics [35], where the density matrix 
approach has been widely used. 

Equations (14) and (16) for the inelastic scattering probabilities derived in 
Sections 2 and 3 are formally exact. However, an exact evaluation of the Green's 
functions involved that fully includes the effect of boundaries, impurities, and 
phonons is not possible in general. One has to resort to various types of approxi- 
mations. One possibility is to treat the phonons exactly and include the elastic 
scattering approximately, but this is only possible in tight-binding formulations 
where the phonons couple to one electron site [22, 28]. It is more common to 
assume that the electron motion in the presence of boundaries and impurities is 
known exactly and include the effects of phonons approximately. In this work we 
follow the second approach because there is a wide variety of situations where the 
elastic one-electron problem can be solved exactly by analytical or numerical 
methods. We wish to develop a diagrammatic perturbation theory in the electron- 
phonon coupling that allows us to include the effect of phonons in a systematic 
fashion and eventually to introduce correlative approximations by summing a given 
class of diagrams. This program is carried out in Section 4. A diagrammatic 
representation is derived by applying Wick's theorem to a time-ordered version of 
the Green's functions introduced in Sections 2 and 3. A nice feature of our 
perturbative analysis is that unitarity is automatically preserved to all orders in 
perturbation theory. This is possible because we develop a perturbation theory for 
scattering probabilities--rather than amplitudes, whose sum must be unity 
regardless of the value of the electron-phonon coupling constant. 

In Section 5, we illustrate the use of the diagram rules derived in Section 4 by 
applying them to some simple cases. We calculate all one-phonon diagrams and 
explicitly check unitarity in one particular case. We also study a group of 
two-phonon diagrams which include real emission and absorption processes. The 
particular case where the same phonon is first emitted and then absorbed (or 
vice versa) yields an additional elastic chanel that has been known to be important 
in other contexts. 

Finally, in Section 6, we present a discussion on the computation of the net 
current in a given lead as a function of the chemical potential of the various leads 
in terms of previously computed inelastic transmission probabilities. This is an 
attempt to generalize the Landauer-Bfittiker equations [19, 37] to the case where 
inelastic scattering occurs in the sample. We employ counting arguments which are 
similar to those used by Biittiker [19, 37] in his initial derivation of the conduc- 
tance of multilead structures in the independent electron approximation (which is 
correct in the absence of dissipation). This may seem the logical first step towards 
a multilead conductance formula which accounts for realistic dissipation. After all, 
the counting argument used in Ref. [37] for the elastic regime proved to be essen- 
tially correct, as confirmed by the later work of Ref. [32] and by the numerous 
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successful applications of the results there obtained. However, the generalization of 
the multilead conductance formula to the dissipative case is considerably more 
problematic, particularly in what regards the inclusion (or not inclusion) of the 
Fermi statistics in the final states. In Section 6, we present two different ansi~tze for 
the computation of the current in the leads, one in which the Pauli exclusion 
principle is introduced in the outgoing channels and another one in which it is not. 
Both ans/itze have been used previously in the literature in one form or another. In 
the particular case where there are only two leads, the magnetic field is zero, and 
dissipation is absent, both current ans/itze are equivalent but this is not true in the 
general case. We argue that, although the option without explicit inclusion of Fermi 
statistics in the final states is probably closer to the correct solution, neither of the 
two ans~itze is entirely free of contradictions. This often neglected ambiguity in the 
computation of the current strongly suggests that the generalization of the 
Landauer-Biittiker equations to the presence of dissipation (and thus of dynamic 
electron-electron interactions) requires more careful theoretical work than one 
would expect from the success of simple counting arguments in the independent 
electron picture. In this regard we note that the generalization of the linear response 
analysis of Refs. [31, 32] is not straightforward, since in those works the assump- 
tion of independent electrons (which is not valid in the presence of electron-phonon 
coupling) is introduced at the outset. A more appropriate starting point may be 
provided by an exact expression for the conductance coefficients in terms of many- 
body scattering states that has been recently derived by the author within the 
framework of a gauge-invariant formulation of linear transport [37a]. Recently, 
Feng [38] has studied an exactly solvable model in which a generalization of the 
Landauer formula for at least the two-terminal case seems to be possible. However, 
Feng's choice of an electron-phonon interaction in which the phonons couple 
separately to each of the unperturbed scattering eigenstates completely precludes 
the dephasing effect of dissipation, since the phase coherence contained within each 
scattering state--which is the essence of quantum interference--is preserved intact. 
Thus the validity and generality of his results must be taken with caution until 
theoretical work dealing with more realistic electron phonon couplings is available. 
A promising approach is that taken by Anda and Flores [39] who have employed 
the Keldysh method to compute the transport properties of resonant tunneling 
heterostructures, following the early work by Combescot et al, [39a] on inelastic 
tunneling. However, at least in its present form, the Keldysh formalism does not 
readily lead to a scattering picture of the electron transport problem that can be 
applied in the most general situation (without specific assumptions about the 
phonon interaction and the couplings between leads and sample). In summary, the 
work presented in Section 6 about the computation of the current is of a more 
tentative nature than that of the other sections. We point out, however, the existence 
of an ambiguity in the choice of current formula that has often remained unnoticed 
in the literature. We hope that this discussion will stimulate further theoretical work 
on the correct method of computing the current. 

In this work we have borrowed some concepts from the literature on dissipation 
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in quantum mechanics, which has considerably grown in the last ten years due to 
the interest on macroscopic quantum phenomena. Most of the work in this field has 
dealt with the effect of an environment with many degrees of freedom (the "bath") 
on the dynamics of a single degree of freedom (the "particle"). Dissipation is a 
manifestation of the lack of knowledge or control on the detailed behavior of the 
bath. It is well described mathematically by the reduced density matrix, which is 
obtained by tracing out the bath coordinates from the total density matrix. The 
equivalent procedure in a stationary scattering approach consists in summing over 
all possible final bath states while thermally averaging over the initial ones. Most 
of the work on dissipation in quantum mechanics has been based on path-integral 
formulations. Here we show that similar ideas can be implemented in the 
framework of Schr6dinger mechanics and that they can in particular be applied to 
the study of dissipative scattering. The formal connection between dissipation in 
mesoscopic systems and macroscopic quantum phenomena is not accidental but 
rather quite deep, since mesoscopic systems provide a natural scenario for the study 
of the crossover from the quantum-mechanical world of atoms and molecules to 
the semiclassical world of macroscopic bodies. The transition between quantum 
and classical behavior is fundamentally driven by dissipation, which is a 
phenomenological way of referring to the effect on a few interesting dynamic 
variables of a large number of uncontrolled degrees of freedom. 

2. INELASTIC SCATTERING PROBABILITIES IN TERMS 

OF Two-PARTICLE GREEN FUNCTIONS 

A. General Relations 
Our starting point is a relation between the electron Green's function and the 

S-matrix elements of a general multilead structure (like the one in Fig. 1) which was 
obtained by Stone and Szafer [31] in the context of a linear response derivation 
of the Landauer-Biittiker formula. They found 

G °~+)t~ x'~) - i  { 
nm ,¢*a, = h ~ a m  a 6,mexp[ikma(x'~-xa)] 

/k \1/2 ikm~x'a) } _]_ ma 
~ n a )  l" . . . . .  exp(ikn~xa + 

G°'+'tx. xa) --i (kma~ 1/2 
nrn , O, =h~amatnm, ba\knb/] exp(ik~bXb+ik~x~), 

( la)  

(lb) 

where tnm, b a is the probability amplitude that an incident electron in transverse 
mode m of lead a is transmitted into mode n of lead b, r . . . . .  is the reflection 
coefficient to go from mode m to mode n within lead a, and kma and 1)ma are the 
electron wavevector and velocity in mode m of lead n at energy E (note that the 
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Lb 

Xb 

(impurities and phonons) 

FIG. 1. Schematic representation of a generic multilead structure. The arrows indicate the propaga- 
tion of a scattered electron. S is the sample region which include impurities phonons, and boundaries. 
The asymptotic regions La, Lb, ... are formed by semi-infinite leads where the electron propagates freely. 

index convention differs from that of Ref. [31 ]). The retarded (G(o + )) and advanced 
(G(o)) Green's functions are defined as 

o(+1 G.~ n- (Xb,Xa; E) = (xb,  Z.I G(o+-)(E) Ix~, gin>, 

G(o -+ )(E) - ( E -  Ho _ iq)-', (2) 

where Zm(Ya) is the wave function for the transverse mode m in lead a, and 
xa = (Xa, y~) is a point in lead a (see Fig. I). Here, and in the rest of this paper, the 
limit r /~0  + is implicitly assumed. In Eq. (la), x'a>~x= must be taken, where, by 
convention, x= grows in the outward direction; 

h 2 V 2 
Ho = 2M t- U(x) (3) 

is the one-electron Hamiltonian that includes the effect of boundaries and 
impurities. 

Equation (1) generalizes a relation previously obtained by Fisher and Lee 1-30] 
for one-dimensional scattering. In Appendix A, we provide an alternative derivation 
of the relations (1) that is based on a wave packet approach to the scattering 
problem. Apart from its own interest, one important reason for presenting this 
alternative derivation is that it allows us to appreciate in a simpler context (namely, 
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in the absence of phonon scattering) some technical points that will be essential in 
the density matrix analysis of Section 3. 

We argue at this point that dissipation can be included by introducing in (1) 
extra-indices associated to the states of the phonons bath I~), 18), etc. The 
scattering states of our complete physical systems now require the additional 
specification of the bath state. Thus, for instance, tnm, ba,~ is the probability 
amplitude that an electron coming from lead a in transverse mode m finding the 
bath in initial state Ic~), is transmitted into channel n of lead b leaving the bath in 
state PS), at a given total energy E = E i + e ~ = E f + e a ,  where E~ and Ef are the 
initial and final electron energies (energy has to be conserved in the Hamiltonian 
system formed by the electron plus the phonon bath). 

We focus for the moment on the transmission probability and rewrite (lb) with 
new bath indices, 

tnm, ba,13~t = ih(Unbflt)ma~) 1/2 

×exp(--ike.bpXb--ikEm~Xa)(Xb, g.;8] G~+)(E)[x~, g,.; ~),  (4) 

where 

G ~ + )(E) = ( E -  H + iq)- 1 = ~  _ dt eiE'/hO(t) e-il~,/h e -  ~f'J (5) 
o o  

is the retarded Greenian for the total system, O(t) is the step function and, in the 
total Hamiltonian 

H =  Ho + Hn + V, (6) 

HB describes the isolated phonon bath while V is the electron-phonon interaction. 
We introduce for convenience a field-theoretical description of the electron in which 

Ix., Z.,; ~)  --- ~k+ (xa) r0, ~),  (7) 

where [0) is the vacuum of electrons and the field operator ff+(xa) creates an 
electron in the transverse mode m of lead a with longitudinal coordinate xa. As a 
result, the transmission probability can be written 

Tnm, ba,#a(E) =- It,m,b~.a~(E)l 2 

S = l)Enb~UEma~ ds dt  e iE(t -s) /hO(s)  
CI9  - -  ~ 3  

× O(t)e-i'P~t°-s°+t)/% i`'~'° s°+s)/h(0,~l ~bm(X~, So--S)~+(Xb,So) tO, 8 )  

× (0, 81 ~k.(Xb, to+ t) ~k+ (Xa, to) 10, ~),  (8) 

where the Heisenberg field operators have been introduced: 

~[I m( X a, t) = eint/n~k m( X ,) e -int/n. (9) 

In deriving (8) we have used the fact that H [0, c t ) = e ,  10, ~). Due to time trans- 
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lational invariance (8) is independent of the variables So and to, which have been 
introduced for convenience. 

We are interested in quantities that describe the reduced dynamics of the 
electron, i.e., the dynamics that results from tracing out the bath coordinates. 
In particular, we would like to know the inelastic transmission probability 
T.m, ba(Ef, Es) defined in such a way that the probability that an incident electron 
in mode m of lead a with energy E i is transmitted into mode n of lead b with energy 
between E: and E:+ dEf is T.m.b~(E:, Eg) dE,. Such a probability distribution must 
be given by the relation 

Tnm, ba(Ef, Ei)=2 P~2 rnm, ba,~(Ei-t-~)~(Ef-Ei-t-~;B-~), (10) 

where 
P~ =- e - ~ / Z s  (11) 

is the thermal equilibrium distribution function for the isolated bath (note that e is 
a bath state and not a phonon mode) and the delta function guarantees the conser- 
vation of the total energy E=E~+~=EF+e ~. In (10), it is assumed that the 
phonons are initially in thermal equilibrium and a sum is performed over all 
possible final bath states []~). The phenomenological description that results from 
tracing our the phonon coordinates contains the essence of dissipation. 

We wish to emphasize that, although we usually refer to a phonon bath, Eq. (10) 
(and all those subsequently derived therefrom) is of a more general nature. As long 
as H B and V are not specified, our expressions apply to any type of inelastic 
scattering where the dissipative'degrees of freedom are assumed to be initially in 
thermal equilibrium. 

Now we introduce the expression (8) into Eq. (10) and take advantage of its 
independence on the variables to and So (and in particular on their difference) and 
write the delta function as 

6(Ef_Ei+sp_e~)=. ~ d(to_So) ei(E:-ei+~, ,,)~,o-,o)/h. (12) 
o o  

The terms in the phase which are proportional to (ca-e~) (note also the presence 
of the total energy E) cancel out and (10) becomes 

v f V ~  P~ ~ I I f 2  ds dt d(to-So) 

x eiE(e:-e~)~'°-s°)+e:'-e~'3/"O(t) O(s)(O, el I[]m(Xa, SO--S ) 

×q/.+(Xb, so) lO,~)(O,~lq/.(xb, to+t)~b+,.(x~,to)lO, e). (13) 

By completeness, the sum over final bath states I/~) yields the identity and can be 
removed. In going from (8) to (13), the velocities ve,..~=ve:., and Ve.bp=Ve:.b 
have been replaced by vi and v:, respectively, since these are quantities that depend 
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only on the initial and final electron states (v~ is a function of a, m, and E~). We 
rename S o -  to---z and make to = 0 without loss of generality. The final result is 

V f l )  i f f f ~  dr ds dt eit'e'-E')~ ~eY'-e'~]/~O(t) O(s) Tnm, ba(Ef, E,) = 

×(~km(Xa, Z--S)~+(Xb, Z)~b,(Xb, t)~+m(X~,O)), (14) 

where the expectation value of an operator A is taken as the equilibrium thermal 
average over the phonon states in the absence of the electron: 

( A ) = Y P ~ ( O , ~ I A  10, ~).  (15) 
ct 

Equation (14) is one of the central results of this work. It closely resembles the 
expression obtained by Wingreen et al. [22] in their analysis of the role of phonons 
in resonant tunneling. Actually, in Appendix B, where a lattice formulation of this 
study is presented, we show that with some suitable modifications our previous 
derivation can be used to exactly reproduce the result of Ref. [22]. We have thus 
generalized the equation for T(Ef, Ei) derived by Wingreen etal. [22] to an 
arbitrary mesoscopic structure with many leads and many transverse channels on 
each lead and in which phonons are distributed in an extended finite region. In the 
next section, we give an alternative derivation of (14) based on a density matrix 
approach. 

Finally, we note that a similar analysis for the reflection probability yields 

R . . . . .  (Ef, E~) = T, . . . .  (E/., Ei) + (~nm 6(El-- E~)[1 + 2hv i Im Gt,+, ) ( X a ,  X a ; E~)], (16) 

where the first term on the right is to be taken as shorthand notation for an expres- 
sion that is formally equivalent to (14) with b = a and Xb = Xa. The second term on 
the r.h.s, of (16) is a correction to the full propagation contained in the first term. 
It removes the effect of direct propagation from ]Z,~, x~) to I Z,,, x~) without reflec- 
tion on the sample, much as in (la). The dressed one-particle Green's function 

~ + ) . f oo dt eiEt/h [ G,,m (Xb, Xa ,E)= -~ --iO(t)(¢,(Xb, t) ~b+(x~, 0 ) ) ]  (17) 

(of which here we consider the case b = a and n = m) stems from the interference 
between full and direct propagation (corresponding to the 1.h.s. and first term of 
r.h.s, of (la),  respectively) that results from computing a probability. 

The unitarity condition that all scattering probabilities must add up to one is not 
obviously satisfied by Eqs. (14) and (16). One may think that, in order to show that 
unitarity is preserved in the dissipative scattering, one has to go back to the basic 
relation (10) and its reflection counterpart and argue that the S-matrix of the total 
system electron plus bath is unitary. However, we show in Appendix C that 
unitarity can be explicitly derived from the general Eqs. (14) and (16) by invoking 
the continuity equation satisfied by the electron current and density operators. 
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B. Elastic Scattering and Reducibility 

There is an essential relation between the irreducibility of the two-particle 
Green's function in Eq. (14) and the occurrence of inelastic scattering, by which we 
mean the existence of outgoing scattering channels in which the bath changes state, 
I fl) ~ I~ >. To see this, we note that if one introduces the approximation 

<~gm(X~, Z--S)  O + (Xb, Z) ~9.(X b, t) qJ+ (Xa, 0)> 

( ~l m(X a, T -- S) • + (Xb, ~ ) ) ( ~ n ( X b ,  t )  0 + (Xa, 0)) ,  (18) 

the dependence on r is lost because of time translational invariance and the integra- 
tion over r yields 2nh 8(E I -  E~), which corresponds to elastic scattering. However, 
the expression resulting from introducing (18) in (14) is different from that which 
would be obtained in the total absence of phonons. The reason is that the 
approximation (18) amounts to neglecting inelastic scattering while including the 
dressing by phonons of the elastic peak. In an extended solid, the same effect is 
known as polaron shift or mass renormalization. If we define T O as the transmission 
probability that results from introducing the approximation (18), we easily find that 

T°m,b~(Ey, E , ) =  o T nm, b~( E~) 6( Ef - E~), (19) 

where 

T°m, aa(E)=hZve,  bvD, a (+) [G,m (Xa, xa; E)I 2 (20) 

and Gnm(+)(Xb, Xa; E) is the dressed single particle Green's function that was already 
defined in (17). Analogously, 

0 -- 2 f ' ( + ) [ X  E ) [ Z + f , m [ l + 2 h V E ,  aG, ,  (xa, xa;E)] .  (21) R . . . . .  ( E ) - h  VEna~)Ema tJnm I, a, Xa; (+) 

If, in addition, we define fig (+) as the difference between the dressed and bare 
one-particle propagators, 

f iG(+)_ G( + ) _ G(o+ ). 

Equations (20) and (21) can be rewritten as 

TOm, b~(E) = ]thin, ha(E) q_ ih(vE, bVEm~)l/2 e--i(kE,bxb + ke . . . .  ) 6 G ( + ) ( X b ,  Xa ,  E)I 2 (22a) 

R ° . . . .  (E) = Jr . . . . .  (E) "}- ih(I)Enal)Ema) 1/2 e -i(kE .... +ke . . . .  ) O~.Jnm~["(+ )IX, a," X~; E)I 2, (22b) 

where tnm,b a and r . . . . .  are the S-matrix elements in the total absence of phonons. 
While the obtention of (22a) is straightforward, the derivation of (22b) requires 
slightly more algebra. It is interesting to compare (22) with Eq. (1). Clearly, the 
second term within the absolute value signs corresponds to a modification of the 
effective elastic scattering amplitude due to the presence of phonons. 

It is clear from the definitions (17), (20), and (21), and by inspection of Eq. (13) 
that T o and R ° only contain contributions from processes where the initial and final 
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bath states are identical, i.e., where [ f l )=  [~). Therefore, it is the fact that some 
final bath states may be different from the initial one, i.e., that some real modifica- 
tion can be introduced in the phonon bath, that renders the two-particle Green's 
function of Eq. (14) irreducible to the product of two single particle Green's func- 
tions. Thus we see that the dressed single particle Green's function only contains 
information on the elastic scattering processes, in which no trace is left in the 
phonon bath, while a complete (and in general irreducible) two-particle Green's 
function is required to fully describe dissipative scattering. 

We have just seen the decoupled propagators only contain contributions from 
elastic scattering. However, not all the elastic processes are contained in T O and R °. 
To see this, we note that, because of the definition (15), T O can be written 

TOm, ba(E)=h2VEnbVEma Z (+) x a ; E )  2, P~G . . . . .  (xb, (23) 
ct 

where 

tx  Xb; E ) - - J  ~ ~ dteie' /h[--iO(t)(O, ~] ~l',(Xb, t) ~k,,+(x,, 0) 10, ~>]. (24) G(+) ¢tct, nm~ a, --oo h 

On the other hand, the total elastic contribution T el is obtained from (13) by 
restricting the sum over final states [fl> to the case [fl> = Is>. Thus one can write 

T el ( ~- nm, ba~ 1~ } = hZl~ Enb I) Ema ~ P~ ' ' (  + ) t x lkl . . . . .  I b, Xa'~ E)I z. ( 2 5 )  
ct 

From comparison of (23) and (25) it is clear that, in general, T el 4: T °. The type of 
elastic processes that are contained in T el but not in T O are those in which the same 
phonon is first emitted and then reabsorbed, or vice versa, or combinations thereof. 
In principle, it is also possible to obtain the same effect if the two phonons are dif- 
ferent but have the same energy. However, these processes would not be included 
in the definition (25), since they correspond to the case e a = e,, but [fl) ~ [~). The 
possibility of resonant elastic scattering is also encountered in other contexts, like, 
e.g., in the theory of Raman scattering 1-40]. The importance of the various types 
of elastic contributions (which may or may not correspond to distinct physical 
processes) has to be studied case by case in the different physical applications of 
this formalism. 

We will return briefly to the above discussion in Section 4, where a diagrammatic 
perturbation theory is presented, and in Section 5, where some two-phonon 
diagrams are calculated. 

C. Symmetry  Properties 

Due to the fundamental time-reversal invariance of the total Hamiltonian (6), 
one can derive from general principles the microscopic symmetry relation 

t,m, ba, a~(E) = t . . . .  b, ~a(E). (26) 
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If this symmetry property is introduced in the basic equation (I0), one obtains 

T,m,b,(E, E') = e ~(e' E)T,,,,,b(E', E), (27) 

which is a detailed balance equation that guarantees the suppression of current in 
the absence of driving forces (see, however, the discussion in Section 6). For the 
derivation of (27), crucial use as been made of energy conservation and of the fact 
that the bath is initially in an equilibrium (Boltzmann) distribution. 

An interesting corollary of the symmetry relation (27) is the compatibility 
between irreversible thermalization and microscopic reversibility. In effect, we can 
think of a sufficiently large phonon bath such that any electron that enters the bath 
will leave it in a thermal energy distribution, regardless of its initial energy. In the 
absence of other electrons the inelastic transmission probability would be of the 
type 

Tnm, ba( E f  , E l )  = Ce  - #Ej (28) 

(where C is a constant), i.e., a Boltzmann distribution independent of the electron 
initial quantum numbers and of the final channel indices (equipartition of energy). 
No matter how "irreversible" the scattering probability (28) looks at first sight, it 
satisfies the symmetry relation (27) and is therefore entirely compatible with the 
reversibility of the microscopic laws. 

3. DENSITY MATRIX APPROACH 

Here we rederive the results of Section 2 following a density matrix approach that 
has been widely used in the literature on dissipation in quantum mechanics 
[34-36], usually in the context of time dependent formulations. We show here that 
this approach can also be applied to the study of stationary dissipative scattering. 
To establish a connection between real time dynamics and scattering properties in 
energy space, it is convenient to consider the evolution of an incident wave packet, 
as is done in Appendix A for the case of phonon-free scattering. The technical 
points on the validity of the conceptual framework apply identically here and will 
not be discussed again. 

A. The Propagator 

If #(to) is the density matrix of the total system (electron plus phonons) at a time 
t o, then at another time t 

#(t) = e iHU-,0)/h#(to ) eiH(,-,o)/h, (29) 

where H is the total Hamiltonian given in (6). It is common to assume decoupled 
initial conditions for the particle-bath system, 

#(to) = pp P B ,  (30) 
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where pp is the density matrix for the electron (which usually is taken in a pure 
state, p e =  1~')<~1) and pB= e-BaB/ZB describes the bath in thermal equilibrium. 
In the particular problem which we are considering, the assumption of decoupled 
initial conditions is entirely appropriate, since at t = to the incident electron wave 
packet is complete localized in one of the asymptotic leads and no interaction with 
the phonons in the same region has yet occurred. The subsequent evolution of the 
density matrix is given by (29). Since we are not explicitly interested in the phonon 
dynamics, we focus on the reduced density matrix that results from tracing out the 
phonon coordinates, 

p(t) =- TrB~(t), (31) 

which in principle describes completely the electron dynamics. Note that this step 
is similar in spirit to that given in Eq. (10), where an equal weight sum is done on 
the final phonon states (equivalent to the TrB of (31)) and initial thermal equi- 
librium is assumed for the bath (equivalent of (30)). At t = to, of course, p(to) = Pe. 
The reduced density matrices at different times are related by a propagator J, 

p(t) = J(t, to) p(to) (32) 

or, in a coordinate representation, 

t) = f l  d~ d~' J(x, x', t; ~, x ,  to) p(~, ~'" to), (33) p(x, x ", ~t X ,  

where p(x, x ' ; t )=  (x[ p(t) Ix'). Below we derive an expression for the propagator 
J in terms of a two-particle Green's function. 

Equations (29) and (31) can be combined into 

e flHB 
p(x, x'; t ) = ~  (x, fl] e - i N ( t - t ° ) / h - -  p e e  iH(t-t°)/h IX', f l )  

ZB 

e -flE~ 

X (~',  ~l ein(t--t°)/h I X', f l )  P(~, ~', to), (34) 

where completeness has been introduced in the second equality. As in Section 2, we 
introduce second quantization for the electron: 

Ix, a )  = ~b +(x) tO, c~). (35) 

If a Heisenberg picture is adopted (see Eq. (9)) one can write (to = 0) 

J(x,x ' , t ; f~,Y~' ,O)=O(t)(~k(Y~' ,O)~k+(x' , t )~(x, t)~b+(f~,O)),  (36) 

where the step function O(t) has been introduced to emphasize retarded propaga- 
tion and, more important, to remind that the evolution of the reduced density 
matrix is not time symmetric. In fact, the result (36) does depend on the particular 
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choice of initial conditions (30). This should have been expected, since the reduced 
electron motion depends implicity on the bath dynamics, and information on it has 
been lost in the tracing process (different total density matrices can yield the same 
reduced density matrix). Therefore, for a relation like (33) to be meaningful, and 
explicit prescription has to be given to obtain the initial total density matrix from 
the reduced one. This is what we mean by sensitivity to the choice of initial condi- 
tions. However, for reasons commented before (namely, the adequacy of (30)), this 
dependence does not affect the generality of our scattering analysis. Rammer [29] 
has performed a diagrammatic analysis of the propagator J(x, x', t ;~ , i ,  0). 
However, unlike we do here, he does not use second quantization for the single 
electron. 

A quick comparison of Eqs. (14) and (36) seems to suggest a paradox: a com- 
putation of the transmission probability requires full knowledge of the dependence 
of the two-particle Green's function on its three meaningul time variables, while the 
propagator J(t) only requires knowledge of the dependence of an equivalent (except 
for the trivial transformation (41)) Green's function on one time variable. One may 
naively conclude that, given that less information is contained in the expression for 
J(x, x; t; ~, x', 0) than is required in the calculation of T,m.ba(E i, Ei), the general 
belief that the reduced density matrix contains all the information on the particle 
dynamics is wrong, since, in particular, it cannot be used to compute inelastic scat- 
tering probabilities (which require three time variables). However, a more careful 
consideration suggests that there must be a flaw in the previous argument, since, 
with complete knowledge of J(t) one should be able to follow the evolution of an 
incident wave packet and, by analyzing it at a much later time, one could infer the 
scattering probabilities. But, if that is effectively so, how can one recover the 
required information on three time variables from an expression like (36) that only 
contains one? The solution to this apparent contradiction lies in the realization 
that, while T,m, ba(E f, Ei) requires detailed knowledge of the temporal dependence 
of the Green's function, very little information is needed on its spatial dependence 
(only its value at two points Xb and Xa in modes X, and Xm)' On the other hand, 
full knowledge of J(x, x', t; ~, ~', 0) (and thus of p(x, x'; t)) requires complete infor- 
mation on the spatial dependence of the Green's function and very little on its 
temporal dependence. If the two approaches are complete, there must be a trade of 
information between temporal and spatial properties. The conversion between time 
and space dependence can be made in the asymptotic leads, where the electron 
propagates freely and a well-defined correlation between time evolution and spatial 
behavior exists. Below we implement this idea and show that one can effectively use 
Eqs. (33) and (36) to derive Eqs. (14) and (16). 

B. Scattering Probabilities 

Let us consider an initial wave packet 

1 (~--E,~ 
~Zma(X, to) = ~ de x~ ae~ el) \ At / ~ma(X) e ,~,o/h (37) 
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that at to ~ - T  is approaching the sample from lead a in mode m, with an energy 
distribution that is strongly peaked around Ee with a small width Ae and which at 
the same time is sufficiently localized in space for the amplitude in the sample 
region to be negligible (see Appendix A for an explanation of the notation in 
Eq. (37) and for a detailed account of the assumptions involved). With decoupled 
initial conditions, the reduced density matrix at to ~ - T  is that of a pure state, 

P ~ma( lO) ----- ] ~-IEima( tO) ) ( ~-t~ma( lO)[. (38) 

The evolution of the density matrix at a later time is given by (32). We wish to 
extract information on the scattering probabilities by analyzing pE~m~(t) at a much 
later time t ~ T, when the wave function has evolved into several (or a continuum 
of) outgoing wave packets that lie entirely in the asymptotic leads. For that pur- 
pose, we first note that, in general, if a density matrix, p = Zu Po ] i ) ( j  I, is written 
in terms of eigenstates of an operator A, A l i )  = a~ l i ) ,  then the probability that an 
observable A takes the eigenvalue a~ is simply P(ai)=Pii = (il  P [i). By extending 
this argument to the continuum of energy eigenstates in the asymptotic leads, 

+ ~-,b(X), we write 

Tnm, ba( Ef, Ei) = ( ~ ~nbl J( t, to) PEima( tO) [~ ~nb), (39) 

where Lie ~ 0, t ~ T, and to'-~ - T  (see once more Appendix A for details on the 
notation). The normalization (~e~l ~ ' , a )  = 6(E--E ' )  (see Eq. (A5)) gives Eq. (39) 
the right units of energy probability distribution. From (36)-(38), Eq. (39) can be 
more explicitly written 

Tnm, ba(Ef, Ei)-= f~LbdX dx' ffLadX dx' f f  d6 d6' 

1 clb,(g--gi) [~'-Ei'~ 
× L1--~e t Ae } q~ ~ ~ ) e'<`-`')t°lh 

+ X '  - i * " +  - ~ '  X E~Efnb( ) ~ema( )] ~Efnb(x) ~e'ma( x ) 

x O(t -- to)(~'(x, to) ~ + (x, t) ~k(x', t) ~k + (~', to)). (40) 

Here we recall that the incoming (outgoing) wave packet is entirely localized in the 
semi-infinite lead La(Lb) and the domain of the space integral in (40) can be 
replaced by L a w L'a(Lb w L'b), as derived in Appendix A. If now we introduce the 
transformation 

~l +m (Xa) = f dya Zm( Ya) I / / +  ( X a )  • (41) 

595/214/2-13 
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which can be easily derived from the definitions (7) and (35), Eq. (40) becomes 

Tnm, ba(Ef, Ei)= I f I f L  dXadXb dXlb dXta f l  de d£ ' 

x A---~ \ " ~ / I  q9 ei(,-~')to/h 

eikEf.b(xb-- x' b) ei(kem~,Xa k~',,mX'.) 
× 

( 2xh )21) Efnb(1) ~mal)e,ma) ) 1/2 
t + t x O ( t - - t o ) ( f m ( x . ,  to)~b+~(Xb, t )qJ.(Xb,  t)~b m (X. ,  to) ) .  (42) 

In order to proceed further, we analyze a more general Green's function 

G . . . .  (Xa, Xb, Xtb, Xta;ta, t b ,  t~, ffa) 

=--O(tb--ta) O(t'b--t'a)(~km(Xa, t.)¢+(Xb, tb)~k.(Xb, tb) ~]m+ (Xa,t tta)) (43a) 

of which the expression (42) contains a particular case (t'. = t a = to and t~, = tb = t). 
Let us introduce the Fourier transform of (43a): 

t G . . . .  (Xa, Xb, Xb, Xla; ta, lb, ttb, tta) 

ffff de; de'o 
-=JJJJ 

' ' ' ' I t .  ! t x e i~*btb ~°'°+~°'° "~'b)/hG . . . .  ( x . ,  Xb, Xb, Xa, e~, eb, ~b, e~). (43b) 

Since both the incoming and the outgoing wave packets are entirely localized in the 
asymptotic regions, it is possible to find two reference points ~ ~ L.  and i b  ~ Lb 
such that xa < xa, x'a and £b < Xb, X'b for all the values of Xa, X'., Xb, and x~, that 
effectively contribute to the integrals in (42). In these conditions, one can write 

t t . t 
a . . . .  (Xa, Xb, Xb, Xa, ~a, ~b, ~b, ~"a) 

= G . . . .  ( ' ~ . '  fib, Xb, £ . ;  ~., eb, e~,, e'~) exp[-- ik . . . .  ( X . - - X a )  -- ik~b.b(Xb --Xb)  

+ ik%nb(X'b -- YCb) + ikv°..~(x'~ - fro)], (44) 

which must be compared with the similar relation (A18) for the single particle 
Green's function. To justify Eq. (44) we must consider first the phonon-free case, in 
which the two-particle Green's function is given by the product of the advanced 
(G~o)) and the retarded (G~o +)) one-particle Green's functions. More specifically, in 
the absence of phonons, 

0 t t . t G . . . .  (Xa, Xb, Xb, Xa, I~a, ~b, ~b, Iffa) 

= (2n) 2 (~(ea-  Eb) ~(~ 'a -  ~tb) G°~-~ )(Xa, Xb;ea)  aO( + )(Xtb, t .  --nrn Xa ~'a), ( 4 5 )  
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where 

f dt g~O(+_)[~. Xa ; ~,) = _iet/Iif, O(+_)[. 
~Jnm ~."~b' --~g LInm ~.X~b, Xa; t) 

(46) 
GO(+-)(Xb, Xa' t  -T-iO(+t)(~,(Xb, t ) + nm ' = ~ l r n ( X a ' O ) ) o '  

where (A)o  -= (01A [0) and 10) is the electron vacuum. It is easy to show that the 
definitions (46) and (2) are equivalent. From (A18) it is clear that Eq. (44) is 
obeyed in the absence of phonons. Since the relation (44) is a property of the 
asymptotic propagation in the leads, ,where the electron does not interact with 
phonons, it should hold regardless of the presence of phonons in the sample region. 
Equation (44) provides the crucial link between spatial and temporal (through the 
energy variable) dependence to which we referred before. 

If (44) is introduced in (43b) and (42), the space integrals can he trivially 
performed. They yield the product of energy delta functions 8 ( G - ~ )  6(eb- -E  s) 
6(G -- E I) 6(e" -- #) and with proper account of all the factors involved, one obtains 

Znm, ba(Ef,  E i )  = ~ • (l)emaV#ma) 1/2 

x G . . . .  (Xa ,  Xb, Xb, Xa; e, Ef, Ef, #)  e i(k'"-~''m°)~", (47) 

where the time-dependent phase factors have canceled. 
Now we can Fourier transform back but, instead of returning to the former time 

variables t., t b, t~,, t'. (see Eq. (43)), we introduce new time variables 

G = t o + Z - s ,  t b= to+Z ,  t 'b=to+t ,  t ' ,=to.  (48) 

We have (the bars are removed from the x's) 

G . . . .  (Xa, Xb, Xb, X.; e, Ef, Ey, e') 

= ~-~ f f f f  dt ds dz dtoG . . . .  (Xa, Xb, Xb, Xa; tO"~ r - -  S, to + r, to + t, to) 

x eit(e'-~)to+(~ &)~+ez, ~l/h (49) 

Due to time-translational symmetry the G in (49) is independent of the variable to 
whose integration therefore yields 2nh 6(e - #). If we now take the limit de --* 0, the 
weight function becomes 5 ( e -  Ei) (see Eq. (A2)) and the final result is 

~fVi f f foo 
Tnm'ba(Ef' Ei) = ~ JJJ-~o d~ dt ds e '[(E'- F4)~ + F~It- F~'~]/h 

x G . . . .  (Xa, Xb, Xb, Xo; Z-- S, T, t, 0), (50) 

which is exactly the result we obtained in the previous section (see Eq. (14) and the 
definition (43a)). 
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A similar analysis can be performed for the reflection probability. However, like 
in the elastic case studied in Appendix A, the propagation of the purely reflected 
wave has to be properly isolated in order to apply a relation similar to (44). In the 
dissipative case studied here, the separation between direct and reflected com- 
ponents is slightly more subtle due to the presence of crossed terms. The most con- 
venient procedure is to consider the phonon-free case and perform an appropriate 
extrapolation to the dissipative case. Apart from this delicate step, the rest of the 
derivation runs analogous to that of the transmission seen above. In this way one 
can rederive Eq. (16). 

4. DIAGRAMMATIC PERTURBATION THEORY 

In this section we derive the rules for a diagrammatic perturbation theory in the 
electron-phonon interaction, which we take of the rather general form 

V= x~2 ~ f dx Mq(x) p(x) Aq, (51) 
q 

where p(x)-~h+(x)~h(x)  is the electron density operator, Aq=-aq+a+q is the 
phonon field operator, aq(a + ) being the destruction (creation) operator of phonon 
mode q, and 2 is a dimensionless coupling constant which we introduce for con- 
venience. The only restriction on the function Mq(X) is that it must be nonzero only 
in a finite region of space. The Hermiticity of V implies Uq(x)=i*q(x),  where 
--q is the time-reversed of phonon mode q. Typically both modes are identical if 
(as we actually assume here) they are localized. Throughout  this section, we assume 
that the electron motion in the absence of phonons (given by the Hamiltonian (3) 
and the Green's functions (2)) is known exactly. The Hamiltonian for the isolated 
phonon system is of course HB= Zq h°gqa+aq • 

A. Preservation of Unitarity in Perturbation Theory 
Before we develop explicitly a perturbation theory in V, we show that unitarity 

will be preserved to all orders in the coupling constant 2. In our problem, the 
condition of conservation of probability can be stated as 

Fma(Ei)~f[~nb Tnm'ba(Ef'Ei)'~-2Rn ..... (Ef, Ei)]dEf:l (52) 

for all energies Ei and channels ma. 
If the scattering probabilities are calculated in perturbation theory, one should be 

able to expand Fm,(E) in powers of the coupling constant 

Fm.(E) = F(m~(E) + 2F(m'~)(E) + 2ZF(~2.)(E) + ""  (53) 

(the coefficients of the odd powers in x/~ are zero for trivial reasons). The zeroth 
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order term F~°J(E) is given by (52) in the particular case were 2 = 0 .  This 
corresponds to the scattering of one electron in the absence of phonons, where 
unitarity must also be satisfied. Thus, F~°~)(E)= 1. Since, on the other hand, 
Fm~(E) = 1 for all values of 2, then we must have F~) (E)  = 0 for k ~> 1. In other 
words, unitarity is satisfied to all orders in perturbation theory. The situation is 
similar to that which we encounter in standard scattering theory where the unitary 
condition S + S =  1, must be fulfilled for any value of the coupling constant [4 l ] .  
However, it is very common to develop perturbation theories for probability 
amplitudes. In those cases, unitarity is only satisfied after the amplitudes have been 
squared and only the terms that contribute to a given order are selected. In our 
approach, we develop a perturbation theory for scattering probabilities and 
unitarity is thus automatically satisfied within each order if all the corresponding 
diagrams are calculated. An explicit check of unitarity is presented in the next 
section for a simple case. 

B. Real  Time Description 

It is clear from (14) and (50) that the reduced scattering probabilities can be 
obtained from the dressed two-particle Green's function defined in (43). In order to 
develop a diagrammatic perturbation theory in the electron-phonon interaction, we 
would like to write the field operators of (14) in a time-ordered form, so that 
Wick's theorem can be directly applied. To that end, we note that the two-particle 
Green's function in (14) can be written 

G . . . .  (x~, Xb, Xb, Xa ; to, tb, Sb, Sa) 

=-- O( tb -- t a) O(sb -- Sa)( ¢,n(Xa, la) ~l n+ (Xb, tb ) ¢ ,(Xb,  Sb ) I]/+ (Xa, Sa) ) 

= (T~¢m(Xa,  to) ~k+(xb, tb) ~k,(Xo, Sb) ~k+m(Xa, S~)), (54) 

where T v indicates time ordering in the time contour 7 shown in Fig. 2, sometimes 
called the Keldysh contour. To obtain (54), we have used the fact that, by defini- 
tion, the times ta and t b always are later in 7 than s, and s b and that, in the absence 
of other electrons, (54) vanishes if Sb < Sa or tb < ta (equivalent to t b > el a in the con- 
tour 7), since in those cases a destruction operator is on the right or a creation 
operator is on the left. 

Sa S b 

ta tb .-"" 
-_ , ~  _- . . . . . . . . .  

FIG. 2. Time ordering in the Keldysh contour. 
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To obtain a more symmetric notation we will introduce some changes. First, we 
adopt a position representation for both the x and y coordinates: 

~b+(Xa) = f dyaZm(Ya) ~ + (Xa), (55) 

where Xa------ (X~, y~). Equation (54) becomes 

G . . . .  (Xa, Xb, Xb, Xa; ta, tb, Sb, Sa) 

f f f f  J * * p J = dya dyb dy'b dyaZm(Ya) Z.(Yb) X. (Yb) Zm(Y.) 

X G(xa, Xb, X~, X'a; t~, t b, Sb, Sa), (56) 

where x~ = (Xa, y'.) 

G(x., x~,, x~, x'~; ta, tb, Sb, Sa) 

-- O(tb -- ta) O(sb -- Sa)(q/(X~, t~) ~ + (Xb, tb) I~(X~, Sb) ~ + (X'a, S~)) 

= (T~b(x~, t~) #J+(x b, tb) #J(X~,, Sb) ~O + (X~,, S~)). (57) 

NOW we introduce the interaction picture, in which 

A (t) =- e i(H° + Ho)t/h A e-  i(.o + HB)t/h. (58) 

The operators in the Heisenberg and interaction picture are related by 

A(t) = 0(0, t) A(t) U(t, 0), (59) 

where 

O(t, t o ) -  Texp { ~  I)odt'f~(t')} (60) 

is the evolution operator in the interaction picture. Equation (57) can then be 
written 

<T~ 0(0, t.) ~(x. ,  t~) O(t~, tb) 6+(Xb, tb) U(tb, Sb) 6(X~,, Sb) 

U(Sb, S.) ~ +(X'~, Sa) 0(S., 0)).  (61) 

Note that here 0(0, t~) and O(Sa, 0) can be replaced by the identity, since they are 
acting on states without electrons, but for the same reason they can be replaced by 
O(--o0, ta) and (J (s . , -oo) .  On the other hand, O(tb, Sb) is equivalent to 
U(tb, 00) 0(O% Sb) and (57) can thus be written formally as 

G(Xa, Xb, Xtb, Xta; ta, tb, Sb, S.) 

= ( T r ~ ( x ~ , t ~ ) ( J ( - - ~ , o O ) 6 + ( X b ,  tb) 6(X'b, Sb) (J (o%-  oO) 6 +(X'a, S.)). (62) 
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On the other band, due to time-translational invariance, the Green's function (57) 
remains invariant under a global time shift: 

G(Xa, Xb, X~, X',; ~ -- S, Z, t, 0) = G(xa, Xb, X~,, X'a; to + Z -- S, to + ~, to + t, to). (63) 

If, instead of Tnm.ba(Es, Ei), we decide to compute 

Pnm, ba(Ef; Ei, E;) =- Tnm, ba(Ef, Ei) 6(Ei - E'), (64) 

the resulting expression is more symmetric in the four time variables since, due to 
(63), the delta function can be replaced by 

6(E~- E') = 2 ~  f ~  ~ dto e i(e'- E~)'°h (65) 

Once Pnm, ba(Ef; Ei, E[) is known, the interesting quantity T,m.ba(E1, EA can be 
trivially obtained from the relation 

Tnm, ba(Ef, E~) = f Pnm, ba(Ef; Ei, E') dE[. (65a) 

By introducing some obvious changes of variables, one obtains 

vfv~ f f f f ~  Pnm, b~(Ef; E~, E')  = (2rch) 2 _ ds~ dSb dtb dta 

xe~te;,. E, so-ei(,~ sb)j/~ G . . . .  (x~, Xb, Xb, xa; t,, tb, Sb, Sa). (66) 

It is preferable to compute (66) instead of (14) because when (56) and (62) are 
introduced in (66) and the U's in (62) are expanded in powers of the interaction 
and Wick's theorem is applied to each term, the resulting contractions will depend 
on the time differences and, after Fourier transforming, the time integrals in (66) 
will be evaluated exactly and then we will be able to formulate the Feynman rules 
for the calculation of (66) directly in the energy space. 

By expanding the evolution operators in (62), we obtain 

G ( x a ,  Xb, X~b, X'a; ta, tb, sb, so) 

= i*-J k~j~ j ~ d t l ' "  dtk dsj.., dSl 
k = 0  j = O  • • o0 - o o  - o o  

× f ax;.-. E E... Z 
Pl Pk qj ql 

× Mp~(x~)-.. Mp,(x,) Mqj(Xj)... Mql(xl) 

x (T~Ap,(q)...~lp,(t~) Aqj(Sj)'' "Aql(S1)) 
× (7~b(xo, to)~(x~, t , ) . . .  ~(x~, t~)~b + (x~,, t~)~b(x~, s~) 

× ~(xj, sj).." fi(Xl, Sl) ~ +(xo, s , ) ) .  (67) 
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Now we apply the statistical Wick's theorem to the expectation value of the time- 
ordered product of field operators [42]. One can easily convince oneself that, in the 
absence of a many-body background, the only nonvanishing contractions are those 
that pair electron operators in the same time branch, since for each contraction of 
the type (T~b(t)~b + ( s ) ) =  (~(t)~b + (s)), there must be in the same term another 
contraction of the type (T~qJ+(t)~(s))=O. This is not the case for the phonon 
operators, for which we can have contractions within the same time branch, giving 
rise to terms of the type (TAq(S)Aq(S')) or (~Aq(t) A+(t')) (~" stands for anti- 
time ordering), or between the two branches, (Aq(t)Aq(S)). 

Thus, the expectation value of the time-ordered product of electron operators can 
be effectively replaced by 

k! j! iJ-gG(o- )(Xa, Xl; ta - / 1 )  "'" G(o-)(xk, Xb; tk-- tb) 

X G (+)(Xb,  Xj;  S b -- S j ) . . .  G(o + ) ( X ' l ,  x a ; s x - -  Sa) , ( 6 8 )  

where 
G(o+)(x, x'; t )=  - i(T~(x,  t) ~+(x' ,  0))  

G(o-)(x, x'; t) = i(T~(x, t) ~+(x', 0))  (69) 

are the time-ordered and anti-time-ordered unperturbed Green's function. In the 
absence of other electrons, we can write 

a(o+-)(x, x'; t)= -~iO(+_t)(~(x, t) ~+(x', 0))  

= ( X I  ['+iO(--}-t) e-iH°t/he .10] Ix ' )  

= f ~ G~o+ )(x, x,, E) e ,Et/h 

G~o+-~(x, x', E)=-- (xl (E--Ho++_ iq) -1 Ix') 

(70) 

(71) 

Xa,S a Xb,S b Xa,Sa x,t Xb,S b 
~ -  I ~ w 

I 
(a) Co) ~/ q 

x' a,t a x' b,t b X'a,ta I X'b,tb 

~ '  X |~ t ! 

..--->--.9 
Xa,S a / X Xb,S b Xa,S a Xb,S b 

Xl, tl x2,t 2 

(c) (d) 
x'~,ta x'b,tb x'~,ta X' x, t'x x~, t': X'b,tb 

FIG. 3. 
function. 

Lowest order diagrams in the perturbative expansion of the dressed two-particle Green's 
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which should be compared with the definition (2). We shall often use the property 

Gto+)(x, x'; E ) =  [Gto-)(x ', x; E)]*. (72) 

It is not entirely surprising that we cast our results in terms of quantum- 
mechanical one-particle Green's functions, since the field-theoretical notation for 
the electron was introduced for pure convenience. 

The contraction of the phonon operators yields three types of phonon Green's 
functions, depending on whether the contraction takes place (a) within the positive 
time branch, (b) within the negative branch, or (c) between the two branches. The 
corresponding expressions are 

(TAo(s)Aq (s ) )=iDq(s-s ' )=(Nq+ l)e-i~qlS-s'l+ Nqe ioqls-s'l (73a) 

( ~'S~q(1) A ; (I') > = iOq(t- t') = [iOq(t'- /) ]* (73b) 

(,4q(t),4+(s))=iDq(t-s)=(Nq+l)e-i~qtt-S)+Nqe ioq(t-s), (73c) 

where Nq is the Bose-Einstein occupation factor (we have used Nq = g q). 

As a result of Wick's theorem, the perutbative expansion (67) admits a natural 
diagrammatic representation. One has to dress with phonon lines a double electron 
propagator. The diagrams for the lowest order terms are shown in Fig. 3. The sign 
of the arrows is important because it indicates the convention for the sign of the 
time arguments. The most generic diagram will be of the type shown in Fig. (4a), 
while the approximation (18) is represented by the diagram (4b), where the dressed 
one-electron propagators are decoupled. 

~ / .  ~ "  _ ~  

( 

(b) 

A d" A 

FIG. 4. (a) Most general representation of the two-particle Green's function. The double line 
represents the dressed one-particle propagator. (b) Most general diagram in the approximation of 
decoupled dressed one-electron Green's function (see Eq. (18) of the text). 
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C. Energy Space Formulation 

When inserting an appropriate combination of (67)-(73) into (66), we are left 
with a multi-dimensional time integral of a function that depends only on the 
differences between the various times variables. It seems natural to expand these 
propagators in terms of their Fourier transforms and evaluate the time integrals 
exactly. We will need the Fourier transforms, 

• Nq + Nq ] iDq(°9)=-- I dt e'~°tiDq(t)= 2iO9 q ~. 2 - - -  .---~ 1 (74a) t_~-~q+in o~2-o~-i~l I 
iDq(Og) = [iDq(OO)]* (74b) 

iD q (Og) = 2rt [(Nq + 1) fi(o9 - O~q) + Nq ~(0~ + ~ q ) ' ] ,  (74c) 

where O)q > 0 and r /~  0 +. 
At each vertex, there is a time integration whose evaluation yields a delta 

function that guarantees the conservation of energy. For example, the vertex of 
Fig. 5 corresponds to 

f dt e-iet/h eiE't/~ ei,Ot = 2rch 6(ho9 - E + E'). (75) 

We have adopted an arrow convention in which a given vertex accommodates both 
the absorption and the emission of phonons, as can be seen by inspection of (74). 
By comparing the phonon propagator (74c) that connects the two time branches 
with the propagators (74a) and (74b) which remain within the same branch, it 
becomes clear that the former corresponds to the real excitation of phonons (and 
requires conservation of energy, which is guaranteed by the delta functions) while 
the latter correspond to virtual phonons that renormalize the particle motion. This 
is a confirmation of the interpretation that was given in Section 2.B. 

The Feynman rules for the calculation of P(Es; E~, E;)  are in many ways similar 
to those found in textbooks of many-body theory (see, for instance, Refs. [28, 42]). 
There are, however, several rules that are specific of our perturbation theory. The 
"common" rules consist in drawing all topologically distinct diagrams that result 

E t E' 

I 
I 

I 
I 
! 

FIG. 5. A typical electron-phonon vertex where time is integrated out exactly. 
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from dressing the double electron propagator with phonon lines assigning positions 
and couplings to each vertex, labeling internal electron and phonon lines with 
energy and mode indices, and summing over these variables while conserving 
energy at all vertices. Gto ÷) (GC0 -)) must be assigned to the electron lines in the 
positive (negative) branch. Unlike in more standard cases, the phonon line must be 
assigned the propagator iOq, iff)q, or iDq, depending on whether the line remains 
in the positive or negative branch or connects them both. Energies El, Ei, and E" 
must be assigned to the external propagators (see, e.g., Fig. 6). The external vertices 
must be labeled with points xa, x b, x'a, and x~ (see also Fig. 6) and projection over 
the transverse modes has to be performed (see Eqs. (50) and (56)). The final result 
must be multiplied by hvlvi(2/21r)~J+k)/2, where j(k) is the number of phonon 
insertions in the upper (lower) particle propagator. Finally, the relevant quantity 
Tnm, ba(Ef, El) can be obtained from the relation (65a). 

The factor hvfvi(2/2n) (j+k)/2 deserves some explanation. The factor j!  k! i j -k  
that appears in (68) cancels exactly with the ik-j/(j! k!) of (67). There are ( j+k )  
electron-phonon vertices, which yields a factor (x/~) j+k. At each of these vertices, 
a time integral of the type (75) is carried out. There are four additional integrals 
corresponding to the four external time variables ta, tb, Sb, and s~ (see Eq. (66)). 
Thus, there is a factor (2nh) j+~-4 coming from the time integrals. The h j+k factor 
cancels with its inverse in the expansion (67), yielding h4(2n) j+k +4. The expansion 
of the real time propagators in their energy dependent Fourier transforms 
introduces some (1/2n) factors (note the conventions in (74) and (46)). There 
are ( j+k)/2 phonon propagators (iD) and (k+ 1) and ( j +  1) electron Green's 
functions in the upper and lower branch, respectively. This gives a factor of 
(2n) 3(j+ k)/2- 2. Combining all these numbers, we obtain (v/2) j + kh4(27z)2- (J+ k)/2 
which when multiplied by the vsv~/(27rh) 2 of Eq. (66), gives rise to the factor 
h2vfv~(2/2n) (j+k)/2 that has been presented in the rules above. We note in addition 
that, given the way the diagram rules have been formulated, only an energy 
conserving delta function (without any accompanying factor) has to be effectively 
introduced at each vertex. This means that, according to convenience, one can 
explicitly introduce a delta function or directly include conservation of energy in the 
assignment of energy variables. 

E' i X I Ef 

X'  a ~  ~ ~ - X~ 
I 
I 

I 

Xa ,~ ~ L ~ ~ Xb 

E i X Ef 

FIG. 6. Diagram representing the real emission or absorption of one phonon. Since the electron lines 
may contain elastic scattering exactly, this diagram represents the distorted wave Born approximation. 
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5. APPLICATIONS 

In this section, we illustrate the use of the Feynman rules derived above by 
applying them to some simple cases. We will compute all the one-phonon diagrams 
and some of the two-phonon diagrams in one dimension (only two leads, each of 
them supporting only one mode). An explicit check of unitarity is performed in the 

former case. 

A. One-Phonon Processes 
Let us calculate the contribution of the diagram in Fig. 6 to the transmission 

probability. This diagram describes the absorption or emission of one phonon. By 
applying the rules derived in the previous section, we readily obtain 

T(~)(Ef, E~) = h2vfv~2 ~ I Idx  dx' Mq(X) M~(x') 
q 

× [(Nq + 1 ) 6(Ef -  Ei + h(Dq) -~- Nq 6(Ef - E i - -  hcsoq)] 

× )(xo, x; Ei) xb; Ej) x', &)  -'a,""Ei) 

f ~t (+ Xa; Ei) 2 = h2vfvi 2 ~ dx G~o +)(xb, x; Ef) Mq (x) G O )(x, 
q 

× [(Nq + 1 ) ~(Ef--  E i + hfOq) + Nq (~(Ef-- E~- h~q)], (76) 

where, in the second equation, x', = Xa and x~ = Xb has been taken, since there is no 
transverse component. Clearly, the first term in square brackets corresponds to one 
phonon emission, while the second is due to phonon absorption. 

We remark that although (76) includes the electron-phonon interaction only to 
the lowest order, it may well contain the elastic scattering to all orders through the 
electron Green's functions G~o +) and G~o -), which can often be calculated exactly by 
a variety of methods. Thus, Eq. (76) represents the so-called distorted wave Born 
approximation (DWBA) [41]. 

In the case where there is no elastic scattering [43], 

eikEIx-- x'l 
,. - -  (77) G~o +)(x, x ,  E ) -  ihvE 

(where VE = (2ELM) m =  hkE/M> 0) and (76) takes the simpler form 

2 M*(x) e i(ki kf)x 
T~)(Ef'Ei)=h2vfVi~q f dx 2 

x [ ( N q W 1 ) ~ ( E f _ E i + h O ) q ) + N q ~ ( E y - E i - h ~ q ) ] .  (78) 

Below we show that this particular result could have also been obtained through 
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the Fermi golden rule in the Born approximation: the (thermal) average scattering 
rate for the electron to go from plane wave Ik~) to Iky) is given by 

2n 
zf,+k,=T L P~ ~ l(k,, fl[ V l k .  a>[ z 6 (ET-E , + e~ -e  a) 

= hL 22~2 q~ fdxM.(x)eiq.i_ki)x 2 

x [(Nq + 1 ) 6 (Ef -  Ei + hcoq) + Nq 6(Ef -  Ei - hooq)], (79) 

where, ( x l k )  = L-1/2 exp(ikx) (L ~ oe ) has been taken. If we divide (79) by the flux 
of incoming particles, rilL, we obtain the probability that the particle is scattered 
from k~ to k s or, treating k as a continuous variable, the probability of being 
scattered into the interval (kf, ks+ dky), where dky-2nIL. Since we are interested 
in the probability T(Ey, E~)clef of scattering into (Ey, Ef+ des), we multiply the 
former probability by (dks/dEy)/(2n/L) = L/2rchv/and obtain for the inelastic trans- 
mission probability in the Born approximation 

L 2 
T(S)(Ef, Ei) z - '  (80) 2rchviv¢ k, ~ ks-, 

which exactly reproduces (78). Thus, T(S)(Ef, E~)= T(")(Ef, E,). 
In more general cases, like those in which there is additional scattering by 

barriers or impurities, our method is much more advantageous than the simple use 
of the Fermi golden rule. First, it provides us with an unambiguous and systematic 
way of calculating corrections to the unperturbed scattering probabilities in which 
all the flux factors are automatically taken into account and, second, in this 
method, elastic and inelastic scattering are treated on the same footing, in such a 
way that unitarity is automatically satisfied to all orders in perturbation theory. An 
application of Eq. (76) to the problem of a tight-binding chain with phonons 
localized in a lateral stub (which already causes elastic scattering)is given in 
Refs. [44, 45]. 

Now we calculate the first-order corrections to the elastic scattering, which are 
given by the diagrams in Figs. (3b) and (3c). One obtains 

r(b)(Ef, Ei) = [ T(C)(Ef, Ei)] * = T(b)(Eg) 3 (Ef -  E,), (81) 

where 

h2v 2 

r(b)(E) = ~ 2G(o-)(xa, Xb; E) Z f &o f f  dx dx' M*(x) Mq(x') 
q 

× a(o +)(xb, x'; E) a(o +)(x', x; E -  ho~) a(o +)(x, Xa ;E) iOq(O~). (82) 
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In the case of free unperturbed motion, where G(o +) is given by (77), unitarity can 
be easily checked. If the spectral decomposition 

G~o+)(x,x,;E)=f °~ dk e ik(x-x') 
_ ~ 2n E -  Ek + iv (83) 

(where Eg =-hEk2/2M) and Eq. (74a) are introduced in (82), the correction to the 
elastic transmission becomes 

2 ~q f ~  dk f dx Mq(x)e  i'k-ke)x 2 T~a~(E) = - hv---~e - 

× [ ( N q +  1)6(E-Ek-hogq)+Nq•(E-Ek+hOgq) ]. (84) 

In order to perform a unitarity check, the reflection channels must also be 
included. The reflection probability in the presence of dissipation is given by 
Eq. (16), where only the first term contributes to inelastic scattering. This term is 
formally identical to expressions for the transmission probability and the same 
Feynman rules can be readily applied. The contribution from diagram (a) (where 
Xb must be replaced by x,) is 

2 2 R(a)(Ef, Ei)-h2-~i~q lfdxeq(x)e-i(ki+kf)x 
x [ ( N q + l ) f i ( E f - E , + h m q ) + X q f i ( E f - E i - h c o q ) ] .  (85) 

By comparing with Eq. (78), we obtain the rather intuitive result that the expres- 
sion for the inelastic reflection probability can be obtained from its transmission 
counterpart by substituting - k j  for kf (ky> 0, by definition). 

To order 2 in perturbation theory, the elastic reflection probability is entirely 
given by the decoupled contribution from the first term of Eq. (16) plus the inter- 
ference terms (second and third terms of Eq. (16)). Therefore, we can apply the 
result (22b) and conclude that, in the absence of unperturbed elastic reflection 
(r = 0), there is no phonon correction to the elastic reflection probability to order 
/l. Thus, using a notation analogous to that of Eqs. (81) and (82), we can assert that 
R(b)(E) = O. 

By comparing Eqs. (78), (84), and (85) it is easy to show that unitarity is indeed 
satisfied. The expression (84) for T~b~(E) contains a sum over intermediate states 
Ik} that exactly cancels the contribution from the inelastic transmission (k > 0) and 
reflection (k < 0) channels. In conclusion, 

f [T~")(E ', E) + Rta)(E ', E)] dE' + T~b)(E) + R(b)(E) = 0, (86) 

which means that there is no correction to unitarity within order 2, as expected. 
The generalization of this result leads to the realization that, at any given order in 
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perturbation theory, the decoupled diagrams yield a correction to the elastic 
scattering probability that exactly cancels the probability contribution from the 
(mostly inelastic) channels that are represented by the irreducible diagrams. This 
statement can ve viewed as a generalization of the optical theorem to dissipative 
scattering in multilead structures. 

C. Two-Phonon Processes 

In this subsection we calculate a selected group of two-phonon diagrams. In 
particular, we study the diagrams shown in Fig. 7, since, as will be seen below, they 
contain some similarities that allow us to understand better the interplay between 
reducible and irreducible contributions to elastic scattering (in the notation of 
Section 2.C, T O and (T el-  T°), respectively). For simplicity, we restrict ourselves 

I I 

S % / (b) ,~v 

(c) 

v ~ | i v 

FIG. 7. A group of two-phonon diagrams. Diagrams (a) and (b) correspond to two real processes 
of phonon creation or, destruction. Diagram (c) is a particular case of diagram 4(b). 
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to the transmission channel in one-dimensional scattering. The contribution form 
diagram 7a is 

h2"~2vfvi T'o'(Es,  ffa  doo f;ffax, ax ax',ax'  
× M*(x~) Mq(x'~) M*(xO Mp(x'~)iD~(~) 

× iD~ (oo~) ,~(E~- E r -  hoo~ - h ~ )  

x G(o - )(xa, x l ,  El) ~ ( -  ) . . . .  " t% (xl ,xz,Ei-hcol)G(o-)(x '2,  xo;Ey) 

× a~o+)(xo, x2; EA 6~o+)(x2, x~; E~-hool) 6~o+)(xl, xo; E3, (87) 

which, from (72) and definition (74), becomes 

= hzJ'2vfvi 2 f (Nq h- 1)(Np + 1 ) [tpq(Ef, E i -  hOJq, T(a)(Es, Ei) Ei)I z 
q, P k 

x 6(E:-- E i + hoJq + hoop) 

+ (Nq + 1) Np ]tpq(Ef, E , -  hooq, E~)] 2 6 ( E f -  Ei + ho)q - h(.op) 

-k Nq(Np q- l ) I tpq(Ef, E i -1- hooq, Ei)] 2 c~(Ef - E i - hooq + hoop) 

+ NqNpltpq(Ef, Ei+hooq, E~)12 6(Ef -E~-hooq-hoop)} ,  (88) 

where 

tpq(Ey, E, Ei)=- f f  dx, dxzG~o + )(Xb, X2 ;E f) M*(x2) a(o + )(x2, Xl ;E) 

x Mg'~(x,) G(o+)(x,, Xa" ~ Ei). 

A similar analysis for the contribution of diagram 7b yields 

T(b)(Ef , E i ) =  h2~2vf Ui E t (Nq + 1)(Np + 1) tpq(Ef, E i --h(J.)q, El) 
q,p k 

× t*p(Ej-, E , -  hoo~, E,) ~(E~- E, + h% + hoop) 

q- (Nq q- 1)Np tpq(Ef, E i -h(J)q, El) t~qp(Ef, E i ~-h(,op, Ei) 

× c~(Ef-  E i -1- hooq - hoop) 

--~ gq (Np  --~ I ) fpq(Ef, E i -~- h(Oq, f i )  tq*p(Ef, g i - h(flp, f i )  

x 6 ( E f -  E~-  hooq -k- hoop) 

-1- gqNptpq(Ef ,  E i + hoo q, El) l~p(Ef, E i -.k hoop, El) 

x 6 ( E f -  E~ - hooq - hfop) t . 

(These transmissions are not 
subsection.) 

(89) 

(90) 

be confused with those computed in the previous 
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Clearly, both in (88) and in (90), the first and fourth terms within brackets 
correspond to the emission and absorption of two phonons, respectively, while the 
second and third terms stem from processes in which one phonon is emitted and 
another one is absorbed. If the same phonon is first emitted and then absorbed (or 
vice versa), an effective elastic process takes place that is not included in the 
diagrams obtained from the product of decoupled one-electron propagators, like 
that of Fig. 7c. We wish to focus now on this elastic contribution arising from the 
case p = q  in the second and third terms of (88) and (90). 

To simplify the analysis, we explicitly assume that modes q and - q  are identical 
and thus mq(X)= M*(x). This is consistent with the initial assumption of localized 
phonons. If T(a)(E) and T(b)(E) are defined as the contributions from diagrams 7a 
and b to the elastic transmission probability, one obtains 

T(a)(E) = h2v222 ~ (Uq q- 1) UqE]fq_(E)[ 2 + Ifq+ (E)I 2] (91) 
q 

z(b)(E)=h2v222 Z (gqq- 1)gq[f* (E)fq+(E)+fq+(E)f* (E)], (92) 
q 

where 

fq+ (E)  -- tqq(E~ E +_ hO q, E). (93) 

As we saw in Section 2.C, diagram 7c can only contribute to elastic scattering. 
One obtains 

+ Nqfq+(E)] 2. T(C)(E)=h2v222 ~ [ (Nq+ 1) fq (E) (94) 

The sum of the three contributions is 

T(a)(E) + T(b)(E) + T(C)(E) 

= h2/)2~. 2 f Z '  [ (Nq  + [)(Np -+-1)fq__ f ~  -1- N q N p f q +  fp*+ 
~- q,p, 

+(NqW1)Npfq f*+ WNq(NpW1)fq+fy ] 

+~ [(Nq+ 1)(2Nq + 1)Ifq [2+Nq(2Nq+ 1)Ifq+l 2 

q 

+2Nq(Nq+ 1)(fq f*+ + fq+f*_)]}, (95) 

where the prime in the first sum implies exclusion of the case q = p. 
It is interesting to compare this result with what one would have obtained by 

analyzing directly the expression for the total elastic probability given in (25). By 
inspection of Eqs. (91)-(94), one can easily convince oneself that the elastic con- 
tribution contained in diagrams 7 a-c correspond to those terms in the general 

595Q14/2-14 
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expression (25) in which both G~,~,(Xb, xa; E) and its complex conjugate contain 
terms of order 2. The sum of such terms in (25) is 

Ttd)(E):h2v222~P~ ~q [(Nq~'-l-1)fq_+Nq~fq+] 2, (96) 

where Nq~ is defined as the occupation number of phonon mode q in the bath state 
I~t>. It is such that 

Nq = ~ P~,Nqo , = ( N q )  (97) 
ct 

is the usual Bose-Einstein occupation factor. The algebraic steps leading to Eq. (96) 
are very similar to those needed to calculate the lowest order phonon contribution 
to the one-electron propagator (see, e.g., the single propagators of Fig. 7c). The 
only difference is that the thermal average is formally replaced by the expectation 
value in the particular bath state [c~ > and the final result is eventually thermally 
averaged over all the possible bath states. In this way, one obtains Eq. (96), which 
can be written as 

T(a)(E)=h2v2A 2 ~ [ < (Nq-~- l)(/Qp + 1) > fq_ f*_ + < NqNp> fq+ fp~+ 
q,P 

+ + + 1)>fq+fL]. 

If one notes that 

it becomes clear that 

< NqNp > ~- NqNp "4- (~ qpNq( Nq + |) 

T(a)(E) = T(~)(E) + T(b)(E) + T(~)(E), 

(98) 

(99) 

as expected. Thus, we have explicitly seen within a selected group of diagrams how 
both reducible and irreducible diagrams give corrections to the elastic transmission, 
defined here as the scattering channel in which the bath does not change state. 
Irreducible diagrams generally correspond to inelastic processes where real emission 
or absorption of phonons take place. However, a marginally effective contribution 
to the elastic scattering can arise from those processes in which the same phonon 
is "really" created and then destroyed or vice versa. These types of processes are 
known to sometimes give important corrections to the conductivity [28]. 

6. COMPUTATION OF THE CURRENT 

Once the inelastic transmission probabilities are known one may attempt t o  
calculate the net current in a given lead as a function of the voltages in the various 
leads. A simple counting argument suggests that the net flux of electrons entering 



S C A T T E R I N G  A N D  DISSIPATION 421 

the sample through lead a must be given by the number of electrons that are trans- 
mitted per unit time from lead a to all other leads b ~ a, minus the electron flux 
entering lead a from those other leads. In quantitative terms, 

ra= Z'ffdEdE' 
"~ b 

x {Taa(E, E ' ) f~ (E ' ) [1  - - fb(E)]  -- Tab(E', E)fb(E) [1  - f ~ ( E ' ) ]  }, (100) 

where 

Taa(E, E')= ~ Ta,,,,b,,(E, E'), (101) 
nm 

(E) = f(E-/~i) = [ e x p ( ( E -  #i)/kT) + 1 ] -J is the Fermi-Dirac distribution, and 
the prime indicates exclusion of the case b = a. In (100), the well-known cancella- 
tion between the electron group velocity, h 1 dE/dk, and the density of states in a 
one-dimensional channel, dn/dE=(1/2n)(dk/dE) has already been included. The 
factors ( 1 - f ( E ' ) )  account for the fact that the electron can only effectively jump 
to another lead if the final state is initially empty. However, one might argue that 
this factor is not necessary since the Fermi statistics only enter through the energy 
distributions of the incoming channels and should not appear explicitly in the 
outgoing channels, which in principle should always be available. Thus, a second 
possible formula for the current (which we will label with a different superscript) is 

I~=e ~"' f f  dE dE'{Tba(E'E') f~(E')-- T~b(E" E) b (102) 

Before we embark on a discussion of the relative merits of ans~itze A and B 
(Eqs. (100) and (102), respectively), let us see in what cases they are different. If we 
subtract Eq. (102) from Eq. (100), we obtain 

Ala g B e~b'ff -Io -Io =-~ dEdE'fo(E')fb(E)[Ta~(E', E)-  T~o(E, E')]. (103) 

The symmetry relation (27) can be rewritten as 

Tba(E, E'; B ) =  e #(E'- e)T,,b(E', E; -B) ,  (104) 

where the definition (101) has been used and the possibility of a nonzero magnetic 
field B has been introduced. It is clear from (104) that, in the presence of inelastic 
scattering, d I  a ~ 0 even if B = 0. 

In the elastic limit (103) becomes 

Z~Ia = h ~b t f dE fa(E) fb(E)[  Tab(E) -  Zba(E)] (lO5) 
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and then AI~ = 0, provided that B = 0. There is one particular case of the elastic 
regime in which A I  a = 0, even if B ¢ 0, and this is the case where only two leads are 
coupled to the sample (NL = 2). In such a case, one can express unitarity with two 
different equations 

Tb~(E) + R~(E) = Tab(E) + Ra~(E) = N~, NL = 2, (106) 

where N~ is the number of both incoming and outgoing channels in lead a (when 
B ¢ 0, channels always appear in pairs of edge states moving in oppposite direc- 
tions; thus the number of incoming and outgoing channels is always the same 
[46-]). Equation (106) immediately leads to T a b :  Tba , which implies A I a = O .  The 
fact that, in the elastic limit, both current ans~itze are equivalent if B = 0 or B ~ 0 
but NL = 2 probably explains why the ambiguity in the choice of current formula 
has been long neglected, or at least underestimated. 

It is clear that, in the presence of inelastic scattering, ans~itze A and B yield 
different results and a more careful assessment is required. Since we lack at present 
a rigorous formulation, we have to base our arguments on as careful physical 
considerations as possible. First of all, we point out that there is a small inconsistency 
which is common to both options if, in Eq. (100) or (102), one uses an inelastic 
transmission probability that has been calculated with the methods presented in the 
previous sections, since there the presence of other electrons has been neglected. In 
Eqs. (100) and (102) we are remedying this previous neglect of the Fermi statistics 
by introducing statistical factors in the initial and (only in case A) final states. 
However, quantum statistics is still being neglected in the intermediate (virtual) 
states which appear if one goes beyond order 2 in perturbation theory. We think 
nevertheless that this is not going to be a major source of error, since quantum 
statistics has its most important effect through the restrictions it imposes on the 
initial and final phase space. Furthermore, the neglect of statistical factors in the 
intermediate states is a long standing practice in the literature on the Boltzmann 
equation, where analogous expressions for the current are considered (the main 
difference lies in the use of scattering rates instead of the scattering probabilities of 
Eqs. (100) and (102)). We note incidentally that a more careful study of the inclusion 
of quantum statistics in Boltzmann equation approaches (particular in the "in" and 
"out" states) which contemplate phonon scattering may also be necessary and that 
the conclusion does not have to be necessarily directly analogous to the one we 
(eventually) obtain for the conductance (see below). 

Let us now discuss the elastic limit of Eqs. (100) and (102). We obtain 

A e 
I a =~'f~j dE{Tbo(E)L(E)[1 - A ( E ) ]  - Tob(E)A(E)[1 - - f a (E ) ]  } (107) 

(108) 
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The condition of unitarity can be expressed as 

N a = ~ '  Tba+Raa=~ ' Tab+Ra., (109) 
b b 

where N.  is the number of incoming (or outgoing) channels in lead a. This implies 

Y~' ~ob = Z '  T0o (110) 
b b 

but note that this type of identity holds only in the elastic case. To calculate 
conductances, we linearize around a reference chemical potential/t0: 

f~(E) "~ fo(E) - fO(E)(#i  -/ to).  (1 l 1 ) 

Introducing (111) in (107) and (108) and using (110), we obtain 

e - - , 1  T 
I A = - ~  b ~(  .b + Tb.)(ga--/tb) (112) 

e p 

Ia~ = -~ ~ b Tab(/t. -- /tb ). (113) 

Thus we see that ansatz B correctly reproduces the Landauer-Biittiker equations 
[19, 37], while option A gives rise to a different result for nonzero magnetic fields. 
Recently, Eq. ( l l3)  has been successfully applied to a number of problems, 
particularly to the study of symmetry properties of the conductance [19, 37] and 
to the quantum Hall effect in microstructures [46]. The predictions of ansatz A can 
be easily obtained from those of ansatz B by everywhere replacing Tab by its 
symmetrized form (Tab + Tb.)/2. Equation (112) gives rise to a four-lead resistance 
formula Rab, ca=(Vc - Va)/I. which markedly differs from the prediction of 
Eq. ( l l3)  [19, 37]. Among the many discrepancies that follow from the difference 
between 11 and I .  B we remark that ansatz A predicts the symmetries 

A A Rcd, ab(B), (114) R.b.cd(B)= Rab.~d(_B) = A 

which have not been observed [471 (in particular, it would predict that 
( R 1 2 , 4 3  - -  R43.12)/2 = 0). 

There is another reason why Eq. (102) should be preferable to Eq. (100) and it 
is that current conservation is not clearly satisfied if, as is the case in both equa- 
tions, Tba(E, E') represents the probability for a particular outcome in a one- 
attempt scattering process. These probabilities have been calculated in such a way 
that the unitarity condition is expressed by (52). The factor ( 1 - f )  describes an 
inhibition of the transmission process due to the Pauli exclusion principle. But if an 
electron is not transmitted from lead a to lead b because the state to which it would 
jump is occupied, then it is not clear how the scattering should evolve. Obviously, 
the electron should go to another lead or be reflected, but these alternative events 
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appear in (52) weighted by the same factors and the "rebounce" possibility is not 
considered in the calculation of their probabilities. Clearly, the unitarity condition 
(52), which was formulated for a single electron, excludes any possible restrictions 
on the availability of final states. In summary, current conservation may well be 
violated if one uncritically introduces ( 1 - f )  factors in the final states, particularly 
if the probabilities have been calculated within a single particle approximation. We 
wish to remark here that this objection would not readily apply to a Boltzmann 
type equation in which (the equivalent of) Tb,(E, E') would correspond to 
transition rates between plane wave states [28, 48]. In such a case, the factor 
(1 - f )  simply gives rise to a longer waiting period in the initial state but does not 
lead to any obvious violation of current conservation. A very similar situation 
presents itself in tunneling studies based on the Bardeen Hamiltonian (see, for 
example, Ref. [41]),  where one is essentially dealing with transition rates between 
stationary waves in each lead. The results obtained from such studies seem to favor 
the presence of ( l - f )  factors. However, we use the formal analogy to the 
Boltzmann equation, where these factors are less problematic. The generalization of 
the Bardeen approach to the study of dissipative magnetotransport in multilead 
structures would probably shed light on the question discussed here. 

After all these considerations, it is clear that Eq. (100) for the current cannot be 
correct, since it leads to results that grossly contradict experimental observations 
and seems to violate current conservation. One may readily conclude that Eq. (102) 
is the correct formula for the current. However, as we argue below, Eq. (102) is not 
completely free of contradictions, although is probably the best expression that we 
can use in the present circumstances. So far we have based the comparison of 
Eq. (100) and (102) solely on their performance in the elastic limit and on some 
considerations about current conservation, and we have seen that ansatz B clearly 
fares better. The situation becomes slightly more disturbing when one pays atten- 
tion to another set of considerations related to the state of equilibrium in which all 
chemical potentials are equal. If the energy distributions in the leads are taken to 
be equal, we obtain 

A e ~ ' I f  I. =-£ dEdE ' {Tba(E  , E')f(E')[1 -- f ( E ) ]  - Tab(E' , E)f(E)[1 - f ( E ' ) ]  } 
b 

(115) 

B e 
I, - -£ Y' I f  dE dE'{ Tbo(E, E') f (E')  - T,~b(E', E) f (E) }. (116) 

In the absence of a magnetic field, the symmetry relation (104) leads immediately 
to I A = 0. However, it does not lead to lab = 0, unless the energy distribution f (E)  
is taken of the Boltzmann type ( ~ e - a e ) ,  something which would correspond to a 
strictly consistent use of the single particle picture. In the case of nonzero magnetic 
field, detailed balance arguments cannot be applied. However, as we know from the 
elastic case with B ~ 0, detailed balance is not strictly ncessary to achieve zero 
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current at equilibrium and, as we see below, the model also fails for reasons that 
have to do with unitarity. To see this, we first note that the unitarity condition 

N~(E)= aE' [Roo(E', E) + Z' r~o(E', E)] 
b 

b 

(117) 

allows us to rewrite I~ as (we focus directly on the equilibrium case fa =fb) 

h J  b 
(118) 

However, neither of the two equations in (117) leads to the vanishing of Ia B as 
expressed in (118), and this is due to the presence of the Fermi distribution f(E). 
We note in passing that if ansatz A for the current is rewritten in a form analogous 
to (118) but with fav~fb and with the ( I - f )  factors, the resulting expression 
would not be, in general, equivalent to (100). This is related to the problem of 
current conservation commented upon above and further suggests the inadequacy 
of Eq. (100). Thus we see that regarding charge balance, neither of the two ans~itze 
gives entirely satisfactory answers. 

The upshot of this discussion is that, in the presence of dissipation, it may not 
be completely consistent to use formulae for the current like Eqs. (100) and (102), 
when the transmission probabilities have been obtained within a single particle pic- 
ture, no matter how intuitively appealing these equations may be. This conclusion 
underlies the need for global transport equations in which the effects of quantum 
statistics and of dynamic electron interactions (either Coulomb or phonon 
mediated) are rigorously or at least consistently taken into account. However, as 
long as we lack a complete and satisfactory treatment, choice B for the current 
equation is probably much more adequate than the option A, since it correctly 
reproduces the elastic limit and is more consistent with current conservation 
considerations. We finally remark that these arguments should not be uncritically 
applied to the (in many regards analogous) context of the Boltzmann equation 
[28, 48], where the introduction of the factor ( 1 - f )  in the final state is probably 
much more adequate and does not lead to obvious contradictions. 

7. CONCLUSIONS 

In this work we have developed a Green's function method to study dissipative 
transport in very small structures within the framework of single particle and 
localized phonon approximations. We have developed exact general expressions for 
the inelastic transmission and reflection probabilities in terms of dressed two- 
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particle Green's functions. We have obtained these results both by analyzing 
directly the scattering amplitudes and through a reduced density matrix approach. 
In both cases we have borrowed from the literature on dissipation in quantum 
machanics [35],  particularly in regard to the tracing out of bath coordinates as a 
means of generating a description of dissipative dynamics. We have also developed 
a diagrammatic perturbation theory in the electron-phonon interaction that 
automatically preserves unitarity to all orders. The use of the corresponding Feyn- 
man rules has been illustrated with applications to some simple cases involving one- 
and two-phonon processes. Finally, we have discussed what is the correct method 
for calculating the current, once the inelastic scattering probabilities are known. 
There is an ambiguity in the way quantum statistics is introduced in the electron 
final states. We have shown that, although the absence of explicit statistical factors 
in the availability of final states provides a more correct picture, there is no obvious 
formula for the current that is entirely free of contradictions. These difficulties point 
out the need for a description of electron transport that incorporates both many- 
body and dissipation effects in a consistent fashion. It is our hope nevertheless that 
the formalism here presented will prove useful in quantitative studies of dissipative 
transport in mesoscopic systems, particularly in case where many-body effects do 
not play an essential role. For  those systems where Fermi statistics is of primary 
importance, this work must be viewed as a useful preliminary step towards a com- 
plete treatment of dissipation in quantum transport within the scattering picture 
first advocated by Landauer [16]. 

A P P E N D I X  A: WAVE PACKET ANALYSIS OF THE RELATION 

BETWEEN GREEN'S FUNCTIONS AND THE SCATTERING MATRIX 

The essence of the analysis which we present in this appendix is the following: we 
consider the evolution of an incident (normalized) wave packet which is in a single 
transverse mode and is eventually assumed to be arbitrarily monochromatic. This 
packet evolves with the full Hamiltonian H 0 and, at a much later time, it becomes 
a linear superposition of outgoing wave packets in the various leads and transverse 
modes with a relative weight given by the transmission and reflection coefficients. 
These can be calculated by projecting the total wave function at very long times on 
the different outgoing wave packets that can be defined in the various channels and 
which are formally similar to the incident one. In particular, they are also nor- 
malized to unity and are eventually assumed to be highly monochromatic. The 
resulting expression for the scattering coefficients is conveniently transformed and 
written in terms of the electron Green's function. In the derivation, some assump- 
tions have to be made regarding time scales and wave packet properties. For the 
sake of clarity, we will only discuss their legitimacy and mutual compatibility after 
all of them have been introduced. 

Let us consider a wave packet that approaches the sample (region S of Fig. 2) 
from the semi-infinite lead a (region La) in transverse mode m with an average total 
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energy E. The wave function for such a wave packet in the remote past (t ~ - T ,  
T ~  ~ )  is 

~ . ~ . ( x ,  t) = & = • ~. .~(x) e , 

where O~(u) is an amplitude weight function that is normalized to unity, 

f I~(u)[  2 du = 1, (A2)  

and 
~-----ma(X) = ( 2~hV ema) --1/2~(¢m (y )  e +_ik (m3) 

is a p l a n e  w a v e  in the  t r a n s v e r s e  m o d e  m o f  l ead  a w i t h  to ta l  e n e r g y  

= Ema + h2k2ma/2M (A4) 

and V~ma = hk~, ,a/M is the velocity of longitudinal propagation. The plane wave 
(A3) would be an eigenstate in the fictitious infinite perfect lead formed by L a and 
L'a ( L ,  w L',), L',, being an imaginary prolongation of the semiinfinite perfect lead L~ 
(see Fig. A1). In Lak3 L'a, the normalization is, of course, 

(~e+--ma I + ¢~Tm'a) =(~mm' (~(~__ ~t). (AS) 

The center of the wave packet (A1) is assumed to be far enough from the sample 
region so that it is appreciably different from zero only within the lead L,.  We will 

t 'a  I i / 0 ." 

X a >  0 k 

t- b 
. , . , , | . ,  

FlG. A1. Imaginary extensions L'a and L~ of semi-infinite leads L, and L b. The combined regions 
L a w L' a and L b u L' b constitute infinite perfect leads. 
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comment later on the required numerical conditions for this assumption to be 
meaningful. From (A2) and (A5) it follows that ( ~ t e m a ( t ) [ ~ e m a ( t ) ) =  1. At this 
point we can borrow from the analysis of three-dimensional wave packet scattering 
given in standard text books and show that, in Eq. (A1), the plane waves ¢~m,(X) 
can be replaced by the retarded scattering states rb(+)tx, which satisfy H ,h(+) r ema x O W ema 

e~b~m+~ ) and whose asymptotic behavior is 

I ~ ¢ e'na(X)' X ~ Z a  ~ma(X) + r . . . . .  ( ~ )  + 
(+) _ ~b,mo (x) - (A6) 

tnm,  ba (8  ) ~ena(X), X e L b .  
- n 

We will argue later that what has been added to (A1) (the outgoing waves) gives 
a negligible contribution. Since all the plane waves defined by (A3) carry the same 
normalized flux 1/2zth, the set of transmission and reflection coefficients displayed 
in (A6) form a unitary discrete S-matrix. It can be shown that (A5) and (A6) imply 
[49-1: 

(fl~(+) [ ¢~(+)) ( ~ ( ~ - - ~ ' ) ( ~ m m , ( ~ a a , .  (m7) r e m a  rs ' rn 'a '  = 

(In regard to the content of Refs. [31, 49] we wish to emphasize that the energy 
delta function normalization (A7) is perfectly compatible with unitarity if, as is the 
case in (A6), the scattering states are defined in terms of constant flux plane waves 
that are related through a unitarity S-matrix. What is wrong is to take the nor- 
malization (A7) for the states d ~4)= t2~hv ]l/2t~(+) which, when written in terms r e m a  - -  • "* 8ma/  v'~ma 1/2 + of the plane waves (~, , ,= (27thv,,,a) ¢~a,  are related by coefficients ~ . . . . .  and 
t,m.b, that do not form a unitary S-matrix. For  these states, the correct normaliza- 
tion is (d  ~+)l d(+) ) <~(k-k') 6mm, (~aa', as has been explicitly shown by Kriman x r e m a  r e ' m ' a '  

et al. [49],  and which immediately leads to (A7). Thus, the work of Ref. [49], 
which deals with the normalization of the states q7 + ), can be used as a constructive 
proof of (A7).) Once the wave function (A1) is written in terms of the eigenstates 
of H 0, we are in a position to study its time evolution: 

1 ( e - E )  (+) e_~t/h 
~ J E m a ( X ,  t )  = f d dc, ~ 1~ ~ema(X) . (A8) 

At a much later time t ~ T, it can be shown (see below) that the incident part of 
~(+) as well as its portion within the sample S, gives a negligible contribution and ema , 

all the amplitude is in the outgoing waves. Thus, at t ~ T (the appropriate value of 
T is to be specified later), one can write 

Z r  . . . .  (E) f d s ~  (~-E  - i e t h ,  ) , J ~ ~+#(x) e x ~ L~, 

~ e ~ ( x ,  t) (A9) N ' ( ) d8 ~ ~ ,~ enbt X j + ( ~ --ieth x ~ t  b, b~a,  
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where the S-matrix elements have been assumed to vary slowly in the scale of Ae 
and have been taken out of the integral sign. For reasons similar to those which 
lead from (A1) to (A8), we can replace the plane waves in (A9) by the advanced  
scattering states, ~b I ) ( x ) -  [~b I ÷)(x)]*, which also obey the orthogonality relations 
(A7). Now we project (A9) onto the outgoing wave packet 

~+,b(X, t) = de - -  g5 ~,+b(x) e ,,t/n, (A10) 

where ~+ can also be replaced by ¢c-). By using (A9) and (A10) in combination 
with the orthonormality of the asymptotic wave packets (which can be obtained 
from (A2) and (A5) or (A7)) we arrive at 

tnm, ba(E ) = (~[tE+nb(t)l ~ItEma(t) ) ,  ( A l l )  

which can be more conveniently written as 

tnm, ba(E) = + (7tEnb(t)[iGCo+)(t - t ' )  l ~Erna(t )),  (m12) 

where we remember that t ~ T.-~ - t' and that the limit Ae ~ 0 has to be taken. In 
(A12), iGC0+) is the retarded evolution operator, 

iGCo + )( t ) = O( t ) e ino,/h e - ,,  = f d E  iG( + )t p~ e - iet/h, (A13) 
27t o ~ Y  

where G~o +)(E) is given by (2). Analogously, 

r . . . . .  (E)  ( ~ n a ( t )  l i G ~ o + ) ( t - t ' ) l  ~em~( ))" (A14) 

Before we proceed further, let us discuss the legitimacy of the assumptions that 
have been made about the scattering process. Some of the arguments we give below 
can be found in standard textbooks [50]. However, the novel nature of multilead 
scattering and, in particular, the presence of asymptotic channels with different 
energy thresholds for propagation poses new difficulties that deserve a separate 
discussion. The assumptions are essentially three: (i) The packet has negligible 
spreading during the time interval in which the wave packet evolution is considered 
(from - T  to T); (ii) the wave packet is sufficiently localized, both at T and - T ,  
for the wave amplitude in the sample region to be negligible; and (iii) the wave 
packet is sufficiently monochromatic, so that the energy dependence of the S-matrix 
elements can be neglected. Below we show that the first two requirements impose 
conditions on the choice of T that can always be met. In a given transverse mode, 
these two assumptions can be quantitatively formulated as (i) h ( z l k ) 2 T / M ~  1, and 
(ii) A x  ~ vT,  where zlk is the wavevector width, A x  ,.~ 1/•k  is the spatial width, and 
v = h k / M  is the average longitudinal vocity in the particular mode considered. 
Clearly, (i) is most stringent for the mode with the highest Ak, which will be that 
with the highest energy threshold Eo, since E =  Eo + h Z k 2 / 2 M  is conserved and 
~JE= h k  z t k / M  is the same for all modes involved (remember that AE is assumed 
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small enough for the energy distribution not to be distorted by the energy 
dependence of the scattering amplitudes). 

On the other hand, (ii) is equivalent to h / A E ~  T, which is independent of the 
mode. Thus, it is sufficient to meet requirements (i) and (ii) for the available mode 
with the highest E o at a given energy E. Both conditions can be combined into 

h Ek 
- ~  T ~  2h (3E) 2, (A15) 

where E k = h2k2/2M is the longitudinal kinetic energy in the highest threshold 
mode. Given dE, it is always possible to choose a time scale T that satisfies the 
double requirement (A15), provided A E ~  E k. In particular, this implies that dE  
can be made arbitrarily small and thus condition (iii) can always be satisfied, even 
close to the threshold and at resonances, where the strongest energy dependence of 
the scattering amplitudes is expected. 

When (i) is satisfied, it is possible to approximate 

e ++_ik . . . .  e ihk~nat/2rn ~- e ihkznC/2M e ik~"~( + x - v e " a t )  (A16) 

at all times ( - T <  t <  T) within the various energy integrals defining the wave 
packets. When (A16) is introduced in (A1), it becomes clearer that (A1) describes 
a wave packet centered around x = -l)Enmt ~> 0 in L a and the subsequent analysis 
becomes more transparent: (AI) can be replaced by (A8) because the added out- 
going waves correspond to wave packets centered around the various x = Ve, b t < O, 
which only have appreciable amplitude in the imaginary L~. As to the sample 
region contribution, ~ +) Oema(X) c a n  be assumed to be smoothly dependent on e for 
x ~ S (see above) and the sample contribution in (A8) would be roughly equivalent 
to a wave packet centered in, e.g., --Venbt, but evaluated at x'-~0, where the 
amplitude is negligible. 

At this point, we can resume our analysis and note that by introducing (A1), 
(A10), and (A3) into (A12) we can write 

, 1  e-- E ( e ' -  E)  e,t,, ,,,,)/h 
tnm, b a ( E ) =  f f  de de ~ @* (-7-~-e ) q ~ \  Ae J 

x r d E ' r  dxg  dx' e-'k"b~ e'k . . . .  
J J~ J ~  . ~° (2nV~,b) 1/2 (2nhv~,m,) 1/z 

;~o( + ) ( r " e iE'(t t')/h × ~,-,,,~,b~,.~, X , E ' )  , (A17) 

where the definition (2) has been used. 
From the previous discussion on the properties of the wave packets, we know 

that the space integrals in (A17) only receive appreciable contributions from 
segments that lie well in the asymptotic regions. Thus, it is possible to find two 
reference points x~ ~ L~ and x b e L b such that x > xb and x ' >  x a for all x and x' 
that contribute significantly to (A17). One can then use the property [51] 

GO~+)tx " E ) -  o nm, ba ,  , X ,  - -  G n m ,  b a ( X b ,  X a ; E) e ikEnb(x-xb)  e ikem~(x' x~) (A18) 
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and formally extend the spatial integrals to Law L', and L b • L'b (i.e., integrate x 
and x'  from - o o  to + oo), so that they can be trivially performed. They yield 
6(t - E ' )  6(t '  - E ' )  with some factors. As a result, 

t.m,~o(E)=f dt~] ~\ At /I 
• 1 /2  0(  + ) -- i(kenbXb + kemaXa) X lh(VenbUema) Gn,n, ba(Xb, Xa" ~ t )  e (A19) 

If we now take the limit of a very monochromatic wave packet, 

J~mo -~e q~ = 6(e - E), (A20) \ At }l 

Eq. (A17) becomes Eq. ( lb)  of the text, as we wanted to show. 
A similar analysis can be performed for the reflection coefficient. However, in this 

case the replacement (A18) can only be made for the purely reflected part of the 
propagator, 

e ike~lx-  x'l 
" E ) = - " ~ ° ( + ) t x  " E ) - ( ~ n m  , (A21) Fnm, aa(x , x , VJnm, aa~ , X , ihV Ena 

for which 

Fn . . . .  (x ,  x ' ;  E )  -~- F n . . . .  (Xa, Xta; E )  e ikEna( . . . .  ) ei~ema(x ' x;), (A22) 

where we have used the fact that x > x,, and x ' >  x'., and that they all lie in the 
asymptotic region L. .  It is important to note that in (A14) the full propagation 
G~0 ÷) can be replaced by the reflected component F, because the free propagator 
which has been subtracted makes ~['tEm a evolve into a wave packet that at t ~ T is 
located far in L'., where no overlap with ~u+ exists, and thus gives a vanishing Ena 
contribution to the matrix element. Once G~o +) has been replaced by F, one uses 
(A22) and, following steps similar to those we studied for the transmission, one 
obtains (we take xa ~- xa) 

r . . . . .  (E) ~- ih(l)Enal;Ema) 1/2 

I eikEna(x'a- Xa)~ 
x G°mt+a)"(x"'x"'E)-f'm' " --ihve,, j e-i(kE . . . .  +kEmaX'a) (A23) 

which immediately leads to Eq. (la), as required. 

APPENDIX B: LATTICE FORMULATION 

In a tight-binding structure the one-electron Hamiltonian is of the type 

H o = Z e , e ~ c a +  ~ A , , , c ~ c , , ,  
R R , R '  

(B1) 
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where sites are labeled by its vector position R, the operator cff creates an electron 
in site R, and the hopping matrix element A aR, is assumed to connect only nearest 
neighbors. The sites R can represent real atoms in a lattice or they can be fictitious 
entities filling a multilead structure with a sufficiently high density. The latter case 
corresponds to the replacement of a continuum problem by a lattice structure for 
numerical purposes, Jwhich is equivalent to the use of a finite difference method to 
solve the Schr6dinger equation [11]. Hard-wall boundaries are simulated by the 
absence of sites and possible variations in the potential U(x) are obtained by 
modulating the site energies e R. The hopping term corresponds to the kinetic 
energy. In order to define the scattering problem, we assume that the tight-binding 
structure is formed by semi-infinite perfect stripes (L3 that are connected through 
a central region (S) where scattering occurs, like in Fig. B1. This means that 

~R = ~0, ARR,= A0<0 for R , R ' ~ L i  (B2) 

and nearest neighbors (in order to have a common energy reference for the lattice 
and continuum descriptions, it is convenient to take e o = 2 d A  o, where d is the 
dimension, cf. Ref. [ 11 ] ). 

The electron-phonon interaction will be of the form (see Eq. (51)) 

l/---- X//-~ E E Mq(R) c~ cn(a q + a +_q). (B3) 
q R 

Below we give some of the most important transformations that are required to 
shift from a continuum to a lattice formulation (some of them are given for d = 1, 
then R - 1) 

ix) --' l 

G(x, x') ~ al~ G(R, R'), k x  ~ 0l, 

Ek  = h 2 k 2 / 2 M  -~ Eo = 2Ao(cOs 0 - 1 ), 

1 f ~b(x) ~ - ~  cR,  ddx ~ a a ~ ,  
R 

v ---, - (2Aoa /h )  sin 0, (B4) 

i d k ~  dO. 
- - o o  

As an illustration, we show that the analysis of Section 2 can be conveniently 
adapted to reproduce the result of Wingreen et  al. 1-22] for T(Ey,  Ei)  in a one-site 
model of a resonant tunneling structure which is essentially equivalent to the struc- 
ture shown in Fig. B1. As in Ref. [22] the space between the barriers is described 
by a single relevant orbital, the weak tunneling through the barriers is given by the 

Ao Ao Ao AL AR Ao Ao Ao 

-3  - 2  -1 0 1 2 3 

FIG. BI. Schematic representation of a resonant site (1= 0) coupled elastically to semi-infinite right 
(/> 0) and left (/< 0) leads which, for convenience, are described by tight-binding chains. 
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hopping energies A z and An, and phonons are assumed to couple only to the 
resonant site (l = 0). Here we choose for convenience a tight-binding representation 
of the semi-infinite leads where the uniform hopping energy is A o and e0 = 0. The 
results do not depend, of course, on this particular choice of lead description. 

Most of the derivation runs completely analogous to the continuum analysis of 
Section 2. The starting point is the equivalent of Eq. (4) in a tight-binding language 
(see (B4)): 

tp~(E) = 2i [Ao[ (sin 0ep sin OEo~) 1/2 e - ~ t ° E ' t - ° ~ ' r ) ~ t + ) ( l , ~ , ~  l'; E), (B5) 

where 1>0 and l ' <  0 (note the change in sign convention for the left lead), where 
vE~ = - (2 Aoa/h) sin 0E~ is the group velocity and 0E~ = cos-  ~ [ ( E -  e~)/2 Ao + 1 ] is 
the dimensionless crystal momentum for motion in the chains when the bath is in 
state ~ and the total energy is E. In this particular problem, everything can be 
referred to the Green's function at the resonant site. This is due to the relation 

G~(I, l ,  E) = G°~B(I, 1; E) ARG~(O, O; E) o ,. " A L G ~ , ( - I , I  ,E),  (B6) 

which holds exactly if, as assumed, phonon coupling only takes place at l =  0. The 
Green's function in the semi-infinite chains are known exactly: 

e iOE#l e -- iOEc~l' 
, G °<+ )( -- 1, l'; E) = (B7) G°~+'(l, 1 ; E ) -  Ao _~, Ao 

As a consequence, 

Z~ R Z~ L oi(OEfll-- OE~I')[.~. ( + )[1"~ G~ +)(l, l'; E) = ~ ~ ~',~ w, 0; E), 

and we can write 

tp,(E) =2i(sin 0E~ sin 0E,) m AR AL t+ ]Ao[ G ~  )(0, 0; E). 

(B8) 

From this point, the derivation is identical to that which leads from (4) to (14). The 
only difference lies in the replacement of h(vsv~) ~/2 by 2(ARAL/[Ao[)(sin 0 I sin 0~) 1/2 
and of xa and Xb by l = 0. Before writing the final result (the equivalent of Eq. (14)), 
we note that the self-energies of the resonant site due to the presence of the leads 
(in the absence of phonons) are [ 11 ] 

XR(E ) = A~O~o+)(1, 1; E)=--7- e '°E, 
/% 

and similarly for L'L(E). The linewidths are thus 

Fr(Ei) = -- 2 A~ sin 0i, FR(EI) = - 2 A--~ sin 0r. . (Bl l )  
Ao Ao 

(B10) 

(B9) 



434 FERNANDO SOLS 

Collecting all the pieces together, the final expression for the transmission 
probability is 

T(E., E3 = F~(E,) F.(E.) Ill d~ dt ds e~(~. ~,). + ~.,_~,s~/~O( 0 0(s) -2-g~- 

× <Co(¢ -s)  c~(¢) Co(t) Co+(O)> (B12) 

which is the result first obtained by Wingreen et al. [22]. 
We note that the linewidths F L and F R are intrinsic properties of the system and 

do not depend on the particular choice of a tight-binding description for the leads. 
Our derivation of (B12) is therefore completely general. A similar analysis can be 
performed for the reflection probability R(Ej, E~), with results that agree also with 
those of Ref. [22]. 

A P P E N D I X  C: EXPLICIT PROOF OF UNITARITY 

Unitarity is satisfied if 

f[~nb znm'ba(Ef'Ei)~-2Rn . . . . .  (Ef, E i ) l d E f ~ l  ( E l )  

for all E, m, and a. To show that (CI) can be obtained from Eqs. (14) and (16) in 
the text, let us rewrite these in a slightly different way: 

A B Tnm, ba(Ef, E,) = (~ba (~nm 6(Es-- Ei) +Tnm, ba(Ef, Ei) +Tnm, ba(Ef, Ei) (C2a) 

Tnm, Ei)=~eik,(xb--x'b, _ d'dtdsei[(F'i-E*)'+EIt-E's]/hO(t)O(s) 

X (I]lm(Xa, T --S) I/In + (Xb, Tj) I/An(X'b, t) I]A+m (Xa, 0 ) )  (C2b) 

B T.,..ba(EF Ei) = 6ba 6.,. 6(E F -  Ei) 2hvi Im G(. + )(xa, xa; Ee). (C2c) 

We have made use of the freedom to choose the reference points in Eq. (4) for 
t.m, ba,#~(E). When squaring this expression in (8) we can choose different reference 
coordinates for t.,.,b.,a~ and its complex conjugate. If b---a, we assume Xb, X'b > Xa. 
Incoming and outgoing channels are formally treated now on the same footing, 
except for the presence of the term T B, which is nonzero only when the bath 
channels are identical (nb=ma).  Equation (C1) can now be rewritten as the 
condition 

where 

A F ~ rma(E) = - ,n~(E), ( C 3 )  

A(.) -- ~ ~ T.Am(~)~(EI, Ei) (C4) Fm. (Ei)= dE s 
nb 
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From the definition (70), it is easy to see that 

f 
oO 

B d'c e iEt/h Fma(E) = --!')Ema -oo e-n lz l (Om(Xa,  "C) O + (Xa, 0 ) ) .  (c5) 

The transformation of F2a o n t o  the negative of Eq. (C5) requires substantially more 
algebra. First we note that the freedom of choice of reference points can be phrased 
a s  

o A ~x; T--,~°(Er' E,)- o, t~Xh T.m.ba(Ef, El)= A _ (C6) 

which implies that, in (C2b), we may replace v r by (ih/M)O/OXb or (-ih/M)O/OX'b 
acting on On + (Xb, 3) or 0 , (x ; ,  t), respectively. In particular, we choose the substitu- 
tion 

m [-aO:(x~, 3) ' ] 
vjO, +, (Xb, 3) O.(X'b, t) ~ ~ L ax~ O.(x;, t ) -  O. +(xb, 3) 80.(Xb,ox,b t) (C7) 

in Eq. (C2b). The explicit dependence on v i has now disappeared and, in (C4), the 
integral over Ey yields 2nh 6 ( 3 -  t). If x~ = Xb is taken again, we can write 

fo o ( Fma(E)=Vem a dt dseie('-s)/n e -n(t+') Om(X., t--s) 

h + aO.(x~,t) ~O+(x~,t) 

(c8) 

Obviously, the expression within curled brackets is the current flux leaking out 
of the sample region into the asymptotic leads. By applying the divergence theorem 
and invoking the continuity equation 

t~p(x, t) 
Vj(x, t) + t~-----~ = 0, (C9) 

the current flux can be written as 

- ~  dx Op(x, t) (C10) 
Js 0t ' 

where p(x, t ) =  0+(x,  t )0(x ,  t) is the electron density operator and the integration 
is performed over the sample region S. If (C10) is introduced in the curled brackets 
of (C8) and the times t and s are replaced by the variables t and z = t - s ,  Eq. (C8) 
becomes 
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A dTe  iEz/h dt e-q(2t ~) dx Fma(E) = --VEma 
0 

Om(Xa dp(x, t )  + X 3 ) T O m ( X a ,  O)), 

(¢11) 

(c12) 

where 30 = max(0, r). The integral over t is performed by parts and then the limit 
~ 0 ÷ is taken where needed. The result is 

fsff Fma(E)A : VEma dx dya dy '~z*(Ya)  Zm(Y'a) _ ~ dr e iEz/h e rtl~l 

× (¢(x~,  z) p(x, Zo) ~ +(x ' ,  0) ) ,  (C13) 

where xa = (xa, ya), x'a = (xa, y'~), and the decomposition (55) has been employed. 
Now we make use of the equal time commutation relations 

[p(x, t), ~b +(x, t)]  = ~b+(x, t) 6 ( x -  x')  (C14) 

and its hermitian conjugate, which are satisfied by both Fermi and Bose field 
operators. We can apply them to our particular single electron problem, where the 
result must not depend on the choice of statistics. For z < 0, 3o = 0, and we have 

(g,(x~, 3) p(x, o) g, + (x'o, o ) )  

=(ffJ(Xa,"f) ffJ+(Xta, O))(~(X--X'a)"{-(ffY(Xa,'~)ffJ+(Xa, O) p(x,O)) (C15) 

but the second term is identically zero, since the expectation value is taken over the 
electron vacuum. Analogously, for z > 0, Zo = 3, and 

(~J(Xa, T)p(X,T,)ffY+(Xta, O))=(ffJ(Xa, T)ffJ+(XIa, O))6(X--Xa). (C16) 

Since the sample region S can always be taken large enough to include the reference 
points xa and x'a (in fact, we assumed Xb > X, for b = a), the integral over x can be 
trivially performed. The result is 

f f  r ~ ! FA~(E) = 1)Ema dya dyaZm(Ya) Zm(Ya) 

f 
oo 

x dzeie*/he-nM(~k(xa, r)$+(x'a,O)) ,  
oo 

(C17) 

which is obvious identical t o  -FBa(E),  as given in (C5). 
Therefore, we have shown that the unitarity condition (C1) can be explicitly 

derived from the general expression (C2) (equivalent to (14) and (16)) by invoking 
the continuity equation (C9). 
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