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Abstract — Two basic models for rectangular contacts to planar devices, the Kennedy-Murley Model
(KMM)[1] and the Transmission Line Model (TLM)[2, 3] are discussed and compared. The KMM
does not take into account the interface resistance between metal and semiconductor, whereas the
TLM disregards the vertical structure of the semiconductor layer. An extension of the TLM is derived
(ETLM), which approximately considers this vertical structure. KMM and TLM thus appear as
special cases of the ETLM. The calibration of the latter on the KMM then yields a simple quantitative
criterion for the applicability of the KMM or the pure TLM. Measurement results on typical alum-
inum-silicon contacts are described satisfactorily by the (E)TLM. Concurrently with the applicability
criterion, the KMM proves inadequate for these contacts due to the disregard of interface resistance.
Conclusions are derived from the TLM pertaining to current distribution over the contact area and
to contact resistance. In particular, the contacts are classified according to their operation mode.
Finally, the TLM approach is applied also to circular contacts.

NOTATION

Rationalized MKSA units are used

A, contactarea

C constant used in the ETLLM

C' capacitance per unit length

C* capacitance per unit area

contact length

frequency

line shunt conductance per unit length
complex line shunt admittance per unit length
thickness of semiconductor layer

complex current

current (d.c.)

V=1

current density

peak current density

average current density

end correction for resistor calculation
diffusion length of dopant atoms

distance between two contacts on a resistor
line resistance per unit length

contact resistance

contact resistance of an intermediate contact
contact resistance of a terminal contact
contact resistance of a vertical type contact
contact end resistance
lateral crowding resistance of a rectangular contact
(w < W)

sheet resistance of a resistive layer

total series resistance of the semiconductor layer
beneath the contact

radius; variable distance from a center point
radius of a circular contact
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voltage (d.c.)

complex voltage

resistor width

contact width

variable distance from the leading contact edge
characteristic line resistance

complex characteristic line impedance

characteristic resistance in the ETLM

attenuation constant of a transmission line («, = d.c.
value, a* for ETLM)

B phase constant of a transmission line

y propagation constant of a transmission line (= a +
)

n

Q N*INNRESNC

JB)
distance between resistor edge and contact edge
ratio of vertical resistances of interface and semi-
conductor layer per unit area

p. contact resistivity ({2 cm?)

p¥ apparent contact resistivity

pp resistivity of a homogeneous semiconductor layer

(Q cm)
Q normalized frequency
w 2-7-f

1. INTRODUCTION

THE OHMIC contacts to planar devices are of great
importance in the quality and reliability of mono-
lithic circuits. Hence, these contactsi need a
thorough analysis, especially in view of the ever
increasing component densities in monolithic
structures.

The first published attempt to describe the
typical planar contacts of such monolithic struc-

TIn the following these contacts to planar devices shall
be shortly referred to as ‘planar contacts’.
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tures was that by Kennedy and Murley[1]. Their
computation shows a strong current crowding
in these contacts. A different approach (Trans-
mission Line Model) independently made by
Berger[2] and by Murrmann and Widmann[3-5]
led to qualitatively the same main result. However,
due to the different basic assumptions, uantitative-
ly as well as in other details, large differences
occurred.

Although there has been some evidence[2, 3, 5]
that the Kennedy-Murley Model does not
adequately describe the usual aluminum-silicon
contacts due to the disregard of interface resistance,
a clear criterion for the applicability of one or
the other model has been missing. Furthermore,
some other questions mainly pertaining to a variety
of operation conditions remained unanswered.

This paper gives a more extensive discussion of
the planar contact. After an introduction of the
basic assumptions underlying the different models,
the Transmission Line Model (TLM) will be
described, including the alternating current
operation. Then experimental validity checks will
be shown. An extension of the TLM, as it also
allows the TLM to match the Kennedy—Murley
conditions approximately, will define the validity
ranges of the models and confirm the experimental
findings. A discussion of the planar contact under
different operation conditions concludes the paper.

2. BASIC CLASSIFICATION OF PLANAR CONTACTS

According to the direction of current flow in
the semiconductor near the planar contact, two
basic types of planar contacts are imaginable:
the horizontal and the vertical type. For better
illustration, a cross section of a common bipolar
transistor is shown in Fig. 1. Near the base contact
region the main current most likely flows horizon-

COLLECTOR EMITTER BASE
CONTACT CONTACT CONTACT
N*
v 1
3 N*
SUBCOLLECTOR SUBSTRATE

Fig. 1. Cross section through a planar NPN transistor
with main current flow indicated by arrows.

tally, which leads to a current crowding at the
contact edge. This characterizes the horizontal
type. At the collector contact, however, the
current would be expected to flow mainly vertically
in a rather uniform distribution, due to the low-
ohmic subcollector. Thus the collector contact
would represent the vertical type. At low current
levels, the emitter contact likely belongs to this
category too; however, at high current levels the
minority carrier injection is pushed to the emitter
edges and then the contact probably becomes
the horizontal type.

With the contact resistivity p, (2 cm?) as defined
below [equation (2)], the contact resistance R, of
a pure vertical type can easily be calculated using
the equation

R., = p./A. (A.= contact area). (1)
The more difficult horizontal type and its models
are the sole subject of discussion in this paper.
The contacts on a diffused resistor appear to be
the simplest and best representatives of the
horizontal type and shall, therefore, be used in the
analysis. The above mentioned base contact of
a vertical NPN transistor, emitter and collector
contacts of lateral bipolar transistors as well as
source and drain contacts of field effect transistors
can be expected to be further samples of the
horizontal type of contact.

3. MODELS FOR THE HORIZONTAL TYPE
OF PLANAR CONTACT
The subdivision of the contact region into the
following main parts is assumed to reflect the
reality well* [compare Fig. 2(a)].
— Semiconductor layer with a steep concentra-
tion gradient of the diffused impurity atoms
— High-ohmic interface layer
— Contact metal.
The terms by which these parts are usually
characterized are well known. For the diffused
layer these are the sheet resistance R,(Q/(]) and
the junction depth X; (or the diffusion length L),
both in conjunction with the type of profile
(complementary error function or gaussian).

*There are procedures for contact making, which
result in a larger number of different layers than listed
above; however, for the most common aluminum-silicon
contact the list is considered sufficient.
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Fig. 2. Diffused resistor (a) cross section (b) top view.

Interface layers usually are characterized by the
contact resistivity p,:

Ve (v, = voltage across the layer)
Je (.= current density there).

pe= (2)

The basic mechanisms which cause interface resistance
and those which determine its amount are qualitatively
well understood (see e.g. the contributions in[6]). Differ-
ences in work functions of metal and semiconductor,
and surface states may lead to a depletion layer at the
semiconductor surface. Electric current can surmount it
by thermionic emission or by tunneling. For both
mechanisms a voltage drop is required to obtain a net
current. A thin layer of foreign matter—if present
between metal and semiconductor—also requires a
voltage drop to obtain a tunneling current. Sufficiently
accurate quantitative predictions of the voltage~current
density function of such metal-semiconductor interfaces
have not been generally possible yet. This is especially
true for the depletion layers of highly doped semiconduc-
tors typically present in ohmic contacts. Therefore,
the interface still is preferably described by the lump
sum ‘contact resistivity’, which is to be determined
experimentally. One has to observe, however, that

the defining equation (2) requires an ohmic behaviour of
the interface and a current flow vertically to it. Although
the current flow mechanisms of the interface usually lead
to more or less non linear characteristics, these can be
approximated by a linear one within a range of sufficiently
small voltages v,. Measurements by Ting and Chen{7] on
typical contacts on highly doped silicon (surface doping
= 3 X 10" cm~2) have shown good linearity up to at least
a few 10 mV of interface voltage. This covers well the
usual contact stresses. These results are confirmed by
the author’s measurements (Table 1). The required
vertical current flow is approximately guaranteed even
for the adverse geometry of a typical horizontal contact
due to the high resistivity of the interface compared with
that (pg) of the undisturbed part of the semiconductor
beneath. For example p.-determinations using the TLM*
as well as the measurements by Ting and Chen yield
ratios p./ps > 10~ cm in the typical surface doping range.
The average resistivity p of the interface layer having
a Otypical thickness of 10-100 A would then be p > 10*-
103 pg.

The contact metal can also be characterized
by its sheet resistance R,; however, as this usually
lies at least 2 orders of magnitude below that of
the semiconductor, the metal will be considered
a constant potential plane in the following.

In Fig. 3 the basic approximations made by
Kennedy and Murley[1] on one side and those by
Berger[2] and Murrmann and Widmann[3-5] on
the other side are indicated and compared with
reality. The two different approximations may be
considered as extremes of the reality. Hence,
they shall be called KM-extreme (after Kennedy
and Murley) and TL-extreme (since it leads to
the TLM). In the KM-extreme the interface
resistance vanishes (p,— 0), but the semi-

*To be published elsewhere.

Table 1. Contact parameters of typical aluminum-silicon contacts in monolithic circuits according to
the measurements in Figs. 7,8 and 9

1 2 3 4 5 6 7 8 9
5% linearity
R, Pe a w-Z w- R (KMM)*  Lgausstan Heg™ up to
Contacton (/) (Qcm?) [(um)™] (Rcm) @ cm) (pm) (pm)  n(hey*) (mV)
Base 176 12X 105 038 4-7x10°2 1-5x 102 09 17 24 100
Isolation 233 69%x1077 0-18 1-25x 1073 6:5%x10¢ 2-2 56 1 25
Emitter 523 28x1077 043 1-2x10°3 2:4x 1074 0-5 0-9 7 20

*Profile measurements on these diffused layers showed a rather uniform carrier concentration down to some depth
before the rapid fall-off started. Therefore, it appeared reasonable to approximate them by homogeneously doped
layers of thickness /.y rather than to use the theoretical gaussian profiles with the diffusion length L. This improved
the KMM-figures of R, (column 5) by about a factor of 2.
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Fig. 3. Comparison of TL- and KM-approximation with reality.

conductor layer has a finite thickness A#.* In the
TL-extreme just this thickness becomes zero
(h — 0), but the layer retains its sheet resistance
R,. As the top views in Fig. 3 show, both for the
TL- and the KM-extreme, the contacts are
assumed as wide as the resistort, which also
departs from reality, where for tolerance reasons
usually w < W is maintained.

To arrive at a conclusion as to which approxima-
tion (KM or TL) is more realistic, experimental
data and some more considerations are necessary,
which will emanate from the TL-extreme.

4. THE TRANSMISSION LINE MODEL (TLM)

The TLM for the horizontal type of planar
contact has been proposed independently by

*The current distribution calculations by Overmeyer
[8] for homogeneous resistive layers having metal
contacts also correspond to the KM-extreme, but are not
directly aimed to contacts on semiconductors.

+In the case of KM-extreme this seems not to do justice
to Kennedy and Murley, who included contacts with
w < W in their computation. However, this was not truly
three-dimensional either.

Berger[2] and by Murrmann and Widmann[3-5].
The latter started with the differential equations
for the TL-extreme and took special solutions for
the conditions of interest. Because of the identity
of these differential equations with those of
a transmission line, Berger directly started with
more general solutions, the well known trans-
mission line equations (5) and (6). Although this
difference is subtle, the use of the transmission
line equations as a general solution for the steady
state facilitates the insight into the contact
behaviour.

In Fig. 4 a cross section of a contact in the TL-
extreme is compared with a transmission line
section. To include the a.c.-operation, shunt
capacitances are also drawn in the equivalent
circuit of the line. This comparison tells that the
resistance of the semiconductor layer corresponds
to the series resistance R’ of the transmission line,
and that the interface resistance is the counterpart
of the parallel shunt line conductance G'. Finally,
the contact metal corresponds to the return lead.
In the transmission line no series inductance has
been considered, since a simple estimate tells that

| CONTACT METAL
INTERFACE LAYER
SEMICONDUCTOR LAYER (e
w
i vix)
——— - —
i ilx} iy
W 31
1v, ES Gdx Cidx vy
— AV — WM R - ————
— ) R'dx [t
4 t ! 12
| S x=d

Fig. 4. Comparison of the contact region (TL-extreme) with a transmission line.
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in the contact the inductance may be neglected as
compared with the series resistance, even at
extremely high frequencies.

Thus for the transmission line model of the
contact region, the following equations of the
primary line parameters can be written by com-
parison

&R 3)
w

1
G’ =%V-+jw-wC* =w<;+ij*) (4)

(C* = capacitance per unit area).

The well known line equations (see e.g.[12])
then describe the current and voltage distribution
along the contact according to Fig. 4:

Y (x) =¥, coshyx—[, + Z sinhyx 5)
1(x) =1, cosh yx—V,/Z sinh yx. (6)
In these equations the secondary line parameters,

known as characteristic impedance Z and propaga-
tion constant y are [compare equations (3), (4)]:

Z= \/(*g;:)‘—’%\/(Rs‘Pc) \/(TJITCTE) ()

y=a+ f8=V(RG') = \/(&)-\/(1 + _FwC*p,).

Pe
®)
Now a normalized frequency is introduced:
Q== )
e
we= (C*-p.)7. (10)

Since the d.c.-value of the characteristic impedance
becomes

z=%Vmw¢ (1)

and that of the propagation constant (which then is

a pure attenuation constant)

o= ®)

(12)

equations (7) and (8) can be simply written as

zZ
- £ 13
4 V+_#9) (13)

and
y=aV(1+ ). (14)

Whether the frequency dependence of the contact
has to be considered depends on the cut-off-
frequency w. [equation (10)]. By estimating C*,
taking the silicon lattice constant ( =~ 5 A) as an
absolute minimum for the depletion layer thickness
and by using experimentally determined p.-values,
this frequency has been found to lie at least in
the range of GHz for typical aluminum-silicon
contacts. Therefore, for these the frequency
dependence usually need not be considered. This
might not be true for other metal-semiconductor
pairs.

For the most important d.c.-case the line
equations (5) and (6) become

v(x) = v, cosh ax —i; - Z sinh ax (15)

(16)

(x = distance from the leading contact edge,
compare Fig. 4. The index of o, has been omitted
for simplicity).

From these equations all questions pertaining
to the currents, current densities and voltages as
well as to their quotients (resistance values) can
be answered. Before this will be done in more
detail, basic conclusions for experimental validity
checks of the model will be discussed.

i(x) = i, cosh ax —v,/Z sinh ax

5. EXPERIMENTS

To check whether the model is valid in spite of
the approximations used (Fig. 3), it is reasonable
to compare measurements with theoretical
conclusions from the model. However, adequate
data on contact resistivity p. to be inserted in
the model are missing. It does not seem reasonable
to extrapolate from the few data reported in the
literature (e.g.[9]) to the diffused resistor structures
at hand, mainly as the difference in contact area
is very large (ratio > 10*) and as the dependence
on process differences and semiconductor surface
doping might be too strong. Theoretical predictions
are even less useful at present*,

*Compare the small print remarks in Section 3.
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The second unknown, the sheet resistance R, of the
semiconductor layer beneath the contact metal, can be
easily determined as long as it remains identical with that
of the original resistor diffusion. However, one can
imagine that the latter might be changed by the contact
making process. This is evident for Mo-P1Si-Si contacts,
where the PtSi forms a relatively low-ohmic layer.
Chang’s measurements{11] indicate, that the TLM is
applicable to this contact type, if the changed sheet
resistance is considered. Even on his Al-Si contacts
Chang found, that they could be satisfactorily described
only by assuming a severe lowering of sheet resistance,
although there is no evident physical background in this
case. The author’s measurements on Al-Si contacts as
presented below do not confirm this Chang’s observation.
Rather an undisturbed sheet resistance has been profit-
ably assumed throughout the evaluation of the measure-
ment results.

Instead of assuming a certain contact resistivity
beforehand, the model can be checked via the
contact length dependences and the interdepend-
ences of measurable contact features. Two terms
seem useful for this purpose, the contact resistance
R, and the contact end resistance R,. It is con-
venient to refer contact resistance to the end
correction term & usually used for calculating
the total resistance R, of a monolithic resistor
(compare Fig. 2)

R = Rs(ui/+ Zk). (17)
by setting
R. =Rk (18)
so that
th=Rs-%}+2Rc. (19)

With these equations the hypothetical separation
between resistor body and contact region is made

H. H. BERGER

directly at the inner contact edge*. Therefore,
in case of w= W (compare Fig. 2) the contact
resistance becomes equal to the input resistance of
the TLM-two-port Fig. 4:

am vl
iy

R, (20)

With i(d) =i, =0 (compare Fig. 4) R. then is
according to equation (16)

Uy

1 liz=0

R, = Z coth ad. 2n

Hence, with increasing contact length d, the contact
resistance approaches asymptotically to Z.
Already with ad = 15, R, deviates from Z only
by 10 per cent.

For the usual case (w < W) equation (21) only
approximates the actual contact resistance, as the
TLM besides its other inherent approximation
(h — 0) does not consider the non-uniform current
spread around the contact present with w < W.
As will be shown in Section 7, the error very likely
is small for practical purposes.

A resistor structure with three equal contacts in
different distances as depicted in Fig. 5 allows to deter-
mine R, according to equation (19). This equation,
when applied to the separately measured resistance values
R, and R,, leads to

— Ryl _‘Rl'lz
Re="20=1) 22
It should be noted that equations (17) and (18) make
practical sense only as long as k or R, are independent on
the contact distance /. Or in other words, the current
distribution near a contact must not be noticeably
influenced by the other contact. With the usual designs
(w < W) it requires a minimum distance between the

*A more general definition of contact resistance is
possible and will be published elsewhere.

R’y R, v
AN |
w = 50 um
[T T 4 =38pm DIMENSIONS
2 Iz 15 um USED
h I 1 l‘ =150pm
—o{d fe—-

Fig. 5. Resistor test structure for determination of contact resistance
R and contact end resistance R,.
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contacts. In the design of diffused resistors this require-
ment is usually considered and must be observed,
of course, also in case of the test structure Fig. 5 to
render equation (22) valid as well as equation (26) below.

R_-measurements on aluminum-silicon contacts
of a typical monolithic process have shown that
even near the minimal contact length (= 4 um) R,
does not decrease substantially when the contact is
prolonged. The small decrease almost vanishes in
the measurement error. Therefore, a quantitative
comparison with the model is difficult, although
qualitatively the contacts behave as expected.

A better means of comparison is the contact end
resistance R,. This term has been defined[2] as
voltage drop v, = v(d) at the end of the contact
divided by the input current i, for i, = 0 (compare
Figs. 4 and 6):

Vs

R, =%

I lis=0

(23)
From the line equations (15), (16) this term

becomes

Z
R.= sinh od

(24)

Equation (21) tells, that Z can be determined from
R, for long contacts (ad = 2). The attenuation
constant is according to equations (11) and (12)

(25)

R, can be calculated from R, and R, of the structure
in Fig. 5, if one assumes that the semiconductor
sheet resistance beneath the contact metal equals

‘l v2
R{—= o®
//
7,
AW Ly 4

/// _,/’/ (\‘ ,//

Rc% AR TLM 'vz %R'—'
A

VY

i

Fig. 6. Measurement of contact end resistance R,
according to equation (23).

that of the resistor body:

R,= (R,~Ry) - -2~ (26)
L~
Figures 7-9 show the measured contact end
resistances vs. contact length for three different
contact types (aluminum on base diffusion,
isolation diffusion and emitter diffusion). The full
lines indicate the theoretical curves calculated
from the measured R, and R, = Z of long contacts,
using equations (25) and (24). Table 1 lists all
measured or calculated parameters. For the base
diffused silicon case (Fig. 7) the agreement with
the model is satisfactory. The isolation diffused
case (Fig. 8) allowed a comparison also of the

4_'43 T T ¥ T T

5 —_— 10
d (um)

Fig. 7. Measured contact end resistance R, vs. contact

length d for aluminum contacts on base diffused silicon,

compared with TLM-prediction. (Estimated maximum
errors: Ad = *0-3 um, AR./R, = +0-5%).

nog)!zr. h ° coth «d
10915 X \K‘
B o~
100- ° F3 x
Re
2 1 x
7 sinh «d

143 wa T ¥ T T

d( pm)

Fig. 8. Measured contact resistance R, and contact end

resistance R, vs. contact length d for aluminum contacts

on isolation diffused silicon, compared with TLM-

prediction (only average values because of small scatter-

ing of results; estimated maximum error: Ad =~ +=0-3 um,
AR./R, =~ *5%, AR./R, = +=0-5%).



152 H. H. BERGER

2

(log)-—RL h
4

16

3

»
°

d {pm)

Fig. 9. Measured contact end resistance R, vs. contact

length d for aluminum contacts on emitter diffused silicon,

compared with TLM-prediction. (Estimated maximum
error: Ad = *0-3 um, AR./R, = =0:5%).

R.-values, since there the contact length depend-
ence was just large enough. A good coincidence is
found here too. Only the contacts on emitter
diffused regions behaved somewhat erratic (Fig. 9).
A closer inspection revealed that these contacts
were very non-uniform. Of course, in this case
the model cannot apply well. But still, the general
trend is satisfactory. In total the measurements
show that the TLLM is a useful approach*.

The rule of thumb of Kennedy and Murley[1]
R, = 0-5R,L/W (L = diffusion length of dopant
atoms) predicts contact resistances smaller at
least by a factor of 2 than obtained in the measure-
ments above, even if a larger term ‘hy is used
instead of L (compare columns 4-7 and the
footnote of Table 1). This indicates that the
interface resistance may not be neglected at least
in case of these typical aluminum-silicon contacts.
A more general statement will result from the
following considerations.

6. THE EXTENDED TLM (ETLM)

Although the TLM has proven itself satisfactory
for the most important aluminum-silicon contacts,
an inclusion of the vertical resistance of the semi-
conductor layer would increase the confidence in
the model for application also to other metal
semiconductor pairs.

For this purpose a contact on a homogeneously

*Murrmann and Widmann(5] also obtained a satis-
factory agreement of measured R, = f(d) with the TLM
for an A 1-contact on a base diffused resistor.

doped semiconductor layer of bulk resistivity pg
shall be considered first. As indicated in Fig. 10 the
addition of a part C < 1 of the vertical semicon-
ductor resistance of a unit area p;-h to the contact
resistivity shall approximately account for the
vertical voltage drop in the semiconductor layer.
With this supposition an apparent contact resistivity
p& can be defined by

pE =pc+C-pph. (27)
Inserting this apparent contact resistivity into

equation (12) instead of using the actual one, one
obtains the new attenuation constant

1

1
o (28)
TN m+C)
where the relation
Pn
== 29
R,=" (29)
and the abbreviation
Pe
== 30
n= o h (30)

have been used.

Accordingly, using equations (11) and (12)
one obtains the new characteristic contact
resistance

Z*=Rs-—hv;\/(-q+C). (31)

The term m can be interpreted as the ratio of the
contact interface resistance to the vertical semi-
conductor resistance in a prism cut out vertically
to the contact plane. Hence it is imaginable that
it predicates the relative influence of the contact
interface on one side and of the vertical extension
and resistivity of the semiconductor layer on the
other side on the current spreading in the contact

CONTACT METAL

APPARENT (A —1— INTERFACE LAYER

INTERFACE LAYER
A ? ?—s&mcounucron LAYER

Fig. 10. Extension of the TLM by defining an apparent
interface layer.
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region. Concurrently with this consideration,
the KM-extreme in which the interface resistance
is neglected (p. =0, n=0) can be characterized
for practical purposes by n < C according to
equations (28) and (31). Vice versa, the TL-
extreme where the vertical extension of the semi-
conductor layer is neglected (h—> 0, n — «)
practically meansn > C.

A reasonable value for C can be found by com-
parison of the characteristic resistance Z* with
results of Ting and Chen(7]. By conformal mapping
they have determined the contact resistance of
an infinitely long contact on an homogeneous layer
at the KM-extreme:

(32)

T =

In4
RcIKMst' T

The comparison with equation (31) immediately
tells (p = 0):

C= (1—‘;74)2 =019, (33)

Overmeyer{8] has shown that at the KM-extreme
the current distribution over the contact length is
almost identical for a homogeneous layer and
a diffused layer, if one sets 7= L. (L = Diffusion
length of the dopant.) Indeed, if one takes the KM-
rule of thumb[1] R, =~ 0-5R,L/W the comparison
with equation (31) then yields C = 0-23 which is
close to the value obtained for the homogeneous
layer. Thus 0-2 would be a good number for C and
can be easily retained.

Model measurements (n = 0-7 and = 1-5) have
shown that the extension of the TLM by the
apparent contact resistivity and C = 0-2 is indeed
a satisfactory approximation for practical purposes.
Also the theoretical comparison of the current
distribution for n = 0 on the basis of Overmeyer’s
calculations[8] proves satisfactory (see Fig. 11).

The changeover from the TLM to the ETLM
basically means a new and more general inter-
pretation of the parallel shunt conductance
fequation (4)] of the transmission line, where now
the apparent contact resistivity is assumed
determining. Since in the measurement evaluations
of the foregoing section the contact resistivities
have been indirectly determined via the TLM,
these values (column 2 of Table 1) should rather
more generally be interpreted as apparent contact

10 L 1

- -
X
"/w.h_

2<
ec=°, d/"‘ »!
AFTER OVERMEVYER (8)

ETLM - APEROXIMATION -
(6C-h=23)

*/h

Fig. 11. Current distribution along a rectangular contact

on a homogeneous resistance layer under KM-extreme

(after Overmeyer), compared with the ETLM-approx-
imation.

resistivities p¥ of the ETLM.* A correction by
about — C/n X 100 per cent then yields the actual
contact resistivity [compare equations (27) and (30)].
According to the calculated n (Table 1), the contact
on isolation diffusion requires the largest correction
of 20 per cent. For all three contact types n lies
far away from the KM-extreme (n < 0-2) which
underlines that the KMM is indeed not applicable.

In total, the ETLM has yielded a criterion to
determine, whether the KMM or the TLM is
valid for a given contact, when contact resistivity
and the semiconductor data are known. Further,
the ETLM allows to approximately describe
contacts even down to the KM-extreme, in a range
where closed analytical expressions have not been
available. It further tells, how to separate the
actual contact resistivity from the apparent one
determined via the ETLM.

*The calculated o and the measured Z accordingly
should be interpreted as pertaining to the ETLM (a*, Z*)
as well.
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7. THE EFFECT OF THE CONTACT WIDTH
APPROXIMATION

So far it has been shown that one of the TLM-
approximation errors, the infinitely thin semicon-
ductor layer, can be lessened by using the ETLM.
The other approximation error, namely assuming
that the contact extends over the total resistor
width (w = W), is not as easy to resolve but does
not appear severe either with typical contacts.

The problem is illustrated in Fig. 13, where
a sketch of the current lines is given for a contact
region with w < W. In the semiconductor layer
outside the contact the resistance is increased
when compared with a contact of w = W, due to
the lateral current crowding. For reference pur-
poses this effect shall be designated as lateral
effect. Contrary to the latter contribution, the now
(w < W) partly utilized contact sides might reduce
the transition resistance between metal and
semiconductor as compared to a contact of the
same width but with w = W_ This shall be referred
to as gap effect.

The lateral crowding resistance for a sufficiently
long contact can be roughly estimated* by assum-
ing a contact with zero contact resistivity on an
extremely thin semiconductor layer, thus reducing
the problem to a two-dimensional one.

Ting and Chen[7] have calculated this lateral
crowding resistance R; by conformal mapping.
Their result can be written in the form

_ an+1 0 K?
2m\K K—1 K2—1

) (34)

with K = (w+ 28)/25 (compare Fig. 13).

Since 8 is predetermined by mask alignment and
etching tolerances, it seems reasonable to plot
curves of constant 8 and variable w, as shown in
Fig. 13. E.g. with a typical ¢ = 0:4/um and 6 = 2-5
pm the peak error of the TLM would be estimated
to 8 per cent. Measurements by d’Andrea and
Murrmann[10] on various contact configurations
seem to indicate that the actual influence of the
lateral effect on the contact resistance is smaller
than the estimate of equation (34) or even is
covered by other influences.

*Strictly speaking, both the lateral and the gap effect in
general cannot be calculated separately, since the contact
features are a boundary condition for the lateral current
distribution and vice versa, the lateral current distribution
affects the transition resistance of the contact.
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Fig. 12. Sketch of lateral current crowding at a contact
w< W,
? - d
R -1 -
= 36/ 1 %_ 4

] d»d
o 23,75 um

!

{ =25 pm
I

)

]

T T
0 2;) /:0 —_—
w (um)

Fig. 13. Normalized lateral crowding resistance as a

function of contact width w for fixed distances & (contact
edge < resistor edge).

Chang[11] has suggested to approximately
consider the gap effect alone by shunting the
series resistance of the TLM by that of the two
8-wide gaps between resistor and contact side
edges. According to his measurements on 58 um
wide resistors this modification becomes significant
for gaps 8 = 15um and fits satisfactorily to the
data. However, since usual fabrication tolerances
allow for 8 < 4 um, the modification does not
appear necessary for practical structures of this
resistor width and contact type.

Again from a practical viewpoint, measurements
on contacts of various widths but constant §
would be very helpful to gain a better insight into
the relative significance of the lateral and the gap
effects. Such measurements are not available yet.
However, all the other data indicate, that the
accuracy of the TLM for usual contacts with
w < W is sufficient.

8. CONCLUSIONS FROM THE TLM

Above it has been shown that the TLM, or
where necessary, the ETLM is a useful approach
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to describe planar contacts of the horizontal type.
Therefore, it is worthwhile to draw some con-
clusions from the TLM for the contact behaviour
under various conditions. Some of them have been
presented already in[2-5]. For the sake of com-
pleteness they shall be included here.

For the TLM two-port shown in Fig. 6 in the
special operation mode i, = 0, more generally any
value of i, is possible. The contacts shall be
classified after their operation mode:

(1) i #0, i,=0 terminal contact

)i, #0, i, #0 intermediate contact
@) iy =1, symmetrical supply contact*
b) iy =—1i, unloaded tap

The designations have been chosen according to
the prevailing function or geometrical arrangement
of the contacts in those operation modes.

The simplest case is the terminal contact. The
contact resistance for this type has been given
already by equation (21). Using equations (11) and
(12) it can be written as

R, = R,,-ad coth ad 35)
with
— _Pe
Rcv w e d ’ (36)

which is the contact resistance for a contact with
uniform current distribution [‘vertical planar
contact’” compare equation (1)]. Depending on
the value of ad the following approximations for
R, can then be derived (error smaller than 10 per
cent):

R, =Ro=-Po  (0<ad<0s), 37)
Re ~Ro+iRy (O<ad<15), (38)

3

*An example for this contact type most likely is the
base contact between two emitter stripes of a bipolar
transistor.

where
(39)
Finally

R.~Z=V(Ry Ry)(1'5 < ad < ®), (40)

These approximations provide a relation between
the contact resistances of the horizontal and the
vertical planar contact.

The current density in the contact area is accord-
ing to equation (2)

joy =22

c

(41)

From the line equations (15) and (16) follows with
the condition i, = 0:

_cosh [ad(1—x/d)]

vlx) =i-2 sinh ad

(42)

With equations (41), (11) and (12) it can be written
as

cosh [ad(1—x/d)]
sinh ad

j(};)z od , (43)

where j—= iy/wd is the average current density in
the contact area. Figure 14 shows the current
distribution over the relative distance from the
leading contact edge for various ad-values. The
peak current density, of course, occurs at the
leading contact edge (x=0) and has the value
[equation (43)]

iy

j=;-a-cothad. (44)

That means, it depends on the contact length d
the same way as the contact resistance (see Fig.
15). For a sufficiently long contact (d = 1-5/a)
both the contact resistance and the peak current
density cannot anymore be diminished appreciably
by contact prolongation. There exists a final value
for both. Since J increases with «, and since the
KMM (n — 0) yields the largest o [compare
equation (28)], the KMM usually predicts pessimis-
tic current density values.

*Thus R,, is the total series resistance of the semi-
conductor beneath the contact.
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Fig. 14. Current distribution along a rectangular horizon-
tal planar contact, ad = parameter.
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Fig. 15, Normalized peak current density j or normalized
contact resistance R, as a function of normalized contact
length 4.

Contact resistance and current density of the
intermediate contact can be derived most easily
from the terminal contact by linear superposition

of the current-voltage distributions caused
separately by i, and i,.
For the contact resistance this leads to
Ri=Roq+R, 2. (45)

4

where R, and R, refer to the terminal contact.
liz/iy| is unity for the symmetrical supply contact
and for the unloaded tap. Thus their contact
resistances differ from that of the terminal contact
(R.) by just a contact end resistance (R,).

The superposition of the current densities results
in [compare equation (43)]

j(_x)= ad { [ ( _f)] i }
7 sinh ad cosh|ad|1 d +i| cosh ax;.
(46)

A contact type of interest not considered so far is
the circular contact* with a radial current flow
(e.g. the emitter contact of a circular PNP transis-
tor or the source contact of a circular FET).
By solving the differential equations for the here
radially dependent line parameters R’ and G’,
one obtains for the contact resistance

\/(R “ pe) T ol Fary)
— s c/ . 47
R. Ty 2[— 2T (Fary)] “n
and for the current distribution
i _ To(Far)
7N 57, (Fara)] (48)

(r = distance from the contact center)
(rq = contact radius).

The quotient of the Besselfunctions occurring in
equation (47) is shown in Fig. 16 with its approx-
imations. Further a diagram for the current
distribution has been drawn (Fig. 17) similar to
Fig. 14. However, comparisons with the rec-
tangular contact must consider that the circular
contact has one degree of freedom less than the
rectangular contact.

*Ring contacts are not considered here, since they
usually have a radius r; large enough so that they can be
treated approximately as a rectangular contact of width
w = 2mry (see also the approximations by Murrmann
and Widmann [4]).
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Fig. 16. Quotient of Besselfunctions pertaining to contact
resistance R. and peak current density j=j(r;) of a
circular contact, and its approximations.
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Fig. 17. Radial current distribution on a circular contact,
arg = parameter.

9. SUMMARY AND CONCLUSIONS
In this paper a relationship between the two

basic models (KMM and TLM) for the horizontal
type of contacts to planar devices has been
revealed via the extended TLM (ETLM). Namely,
the ETLM-approximation provides a continuous
transition from the KMM to the TLM, each one
having its certain range of applicability.

The calibration of the ETLM on the KM-
conditions, for which the work of Kennedy and
Murley[1], Ting and Chen[7] and Overmeyer[8]
has been used, has yielded a simple quantitative
criterion for these ranges of applicability. This
criterion weighs the relative influence of contact
resistivity on one side and the resistivity and
vertical structure of the semiconductor layer on
the other side. According to the criterion and to
measurement results, usual aluminum-silicon
contacts follow the (E)TLM, but not the KMM.

The ETLM-transition established between
KMM and TLM aids to realise, that both models
must concurrently predict the non-uniform current
distribution in the contact area and the relative
insensitivity of contact resistance to contact
prolongation, although with quantitatively quite
different results.

From an engineering point of view, the (E)TLM-
approximation (including w < W) appears to be
sufficiently accurate for the treatment of at least
the usual planar contacts. As has been shown in
the last section, various operation conditions as
well as circular contacts can be readily described.

A weak point in the application of the (E)TLM
is the lack of sufficient data on contact resistivity
vs. semiconductor surface doping for various
contact metals. However, the TLM itself provides
a new tool to gather such data and thus might also
be able to promote the adjustment of theoretical
predictions of contact resistivity.
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