1
dq9r dr—q
1~B) * J

2 ~F
“qu — Ty

: 2
Am) = DVH(QT“) +2p

(4.23)
“where = 0,2/ cf, qr = R,/D,y.

. To calculate the critical value of the pump parameter
- we expand Eq. (4.22) into a power series with respect

toh/qe ., A+ 1';1) / D,g* < 1. Then, we obtain the
foliowing soft mode (m = 1):

| L 4R.Jm
rz,.f Vo g (1-P)°

It is seen from Eq. (4.24) that GDI develops only
when R>0, 1. e., as follows from Eq. (4.21), when 8, <0.

The growth rate reaches the maximuom value

Aowe = B2/ (2¥D, (1-B)) ~12!,

(4.24)

m=my = (Ryrg/4yD, (1-B))%  (4.25)

For the critical value of the pump parameter R, (m),
determined from the condition A = 0 we obtain the fol-
lowing expression

R (m) = (8D m/Foe + 1) Yreg (1= B) /4./m .

(4.26)
Thus at R > R, (m) the coupled fields of deformation
(Eq. (4.18)) and vacancy concentration (Eq. (4.19))
Start to grow exponentially in time, forming the surface
radial ring “star”-structure.

It follows from Eq. (4.26) that the initial ray struc-
re appearing after reaching the minimum critical
alue of the pump parameter contains my, rays

4

2 -1 Rm'm
Mg = ToTy /8D, = ( 7 ) my, (4.27)
_Where R, 18 determined by the expression
' 12
Ryn = (1-B)y(D1;/2) (4.28)

If R, > R,;, then several structures with different
number of rays m are excited simultaneously, and the
overall picture of the deformation can be obtained by
mming over n:

:_€~Z< 4

m 2
) exp (———2— + A (m) t)cosm(p
Terr

Fetr

(4.29)
= ng cos niq)'
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At a given value of r / ry the term &, for which
d,,/dm = 0 provides maximum contribution to the
sum (4.29). From this condition we obtain the value of
My OF the number of rays in the harmonic, having the
largest amplitude at a given value of r / r. Using
Eq. (4.24) for A(m), for m,, at the end of the pulse we
obtain the following expression

2 Tet -2
Mmax = My (1- rcrfln (7") /SDVTP) » (430)

for r — 0, my,, — 0 and for r = 1y, My, ~> .

Thus, with the increase of the distance from the cen-
ter of the spot the harmonics containing larger and larger
number of rays dominate.

Apart from the ray-star solution, the system of
Egs. (4.13) and (4.15) with the boundary conditions
(4.6a), (4.16), (4.17) has the radial-ring solutions
which are obtained by substituting (r / 7., cos me —
J.(gr} cos m@ in Egs. (4.18) and (4.19), where J,(gr) is

the first type Bessel function of the mth order, g > r;flf is

the wave number. At m = O this solution corresponds
to the concentric ring structure. If there is some
preferred direction on the surface then one should
replace (r/rp)"cos m@ —» €9 in the solution of
Eqs. (4.18 - 4.20), which corresponds to a grating struc-
ture. For these solutions the dependence of A on wave
number g is determined by Eq. (4.22), similar to the
case of radial rays (see Fig. 2a for the visual represen-
tation of possible structures formed in vacancy GDI
under different conditions).

4.1.3. Comparison of Theoretical and Experimental
Results

We interpret the experimentally observed structures
of Sec. 4.1.1 as the DD structures, formed due to the
vacancy GDI. The axial symmetry of the laser field,
together with the isotropic (polycrystal) structure of the
metal surface leads to formation of the axially symmet-
ric vacancy-deformational structure, i.e., ray-star struc-
ture. (Consideration of influence of the crystallographic
symmetry on the vacancy GDDI will be given in
Sec. 4.3). As it follows from the above analysis, the sur-
face relief must be modulated, which in fact does take
place. The vacancy pileups arising due to the GD1in the
valleys of the surface relief must lead eventually to
void formation (Secs.5.1 and 5.2). Periodic void
formation is indeed observed in these experiments (see
Fig. 11e).

Let us make numeric estimates of the number of rays
My CTitical vacancy concentration n, and the time of
GDI development. From Eq. (4.28) for R,,;, (for the case
of nonstationary temperature distribution) at B = 0.5,
1=1, Y= 10" cm™, Ey/ kT = 103, D, = 105 cm?s7,
T, = 1072- 1073 s we obtain R,;, = 10%s1. Assuming that
e = 8T, (T, 2 T,) or i, = go1, (1, > T.), where g is
defined by Eq. (4.21) with R = R, at |8,] = [8,] =
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107 erg, cl2 = 10" cm?s 2, p~5 g-cm“3 we obtain the
following estimate for n_: '
N, ~5x10% em™.

Atry= 107 om, = 1072 cm, we have my,; ~ 10% From
Eq. (4.27) at R, = 3R ;;, we have m, = 10°, which corre-
sponds, by the order of magnitude, to the experimen-
tally measured number of rays. The time of GDI

developmentis A~ =71, /10=10"- 105,

max
We carried out computer calculations of the result-
ant deformation field on the surface existing by the end
of the laser pulse for different values of r/ r., using
Eq. (4.29) in relative units

At

z 172
LR, Y m
£ = z COS MYPEXP | 2o 2 ((—)
m=m, L Rmin Tv m'mit
- reff__'z_p m ]
r Tvminit

The summation is. performed over the number of har-
monics m from m; to m,, for which A(m) > 0 (m, , =

[R,/ Ry T (R, / Ry — 12 ) at light intensity
exceeding the threshold R, = 1.IR,;,. Then, at
TpT;l = 30, Mgy = 50, mn, = 20, m, = 200. At reff’l F>1

the summation can be extended up to my = 60. The
results of the computations are shown in Fig. 12. It is
seen that with the increase of the distance from the cen-
ter, multiplication of the number of rays via bifurca-
tions of them takes place. This behavior corresponds to
the experimental findings (Fig. 11c).

Thus, the qualitative and quantitative correspon-
dence of the theoretical and experimental results
enables one to make the conclusion that the formation
of the periodic ray structures on the surface of a metal
under the action of millisecond laser pulses occurs due
to the development of vacancy GDI.

It is seen from Egs.(4.21) and (4.24) that GDI
occurs only under the condition R, > 0, i.e,, 8, < 0. In
the case of thermal-fluctuation generation rate in
Eq. (4.3) E;= E, and 6, = 0, < 0, so that this condition
is automatically fulfilled.

4.2, Vacancy Diffusion-Deformational Instability
(DDI) in Films '

In thin plates and films the bending deformation
may be significant for development of GDI and DDI.
This circumstance is demonstrated here for DDI in the
case of unsupported plate (film) [75] and in Sec. 4.3 for
DDI in the case of a thin film on substrate. The case of
GDI due to bending deformation of the film was con-
sidered by us in earlier works [28, 29].

- Letus consider a thin metal plate of thickness . The
z-axis is directed perpendicular to the plate, and the
plane z =10 coincides with the middle plane of the plate.
The laser radiation acts upon the surface z = A/ 2,

EMEL’YANOV

{a)
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Fig. 12. Dependence of the amplitude of surface deforma-
tion “star™-structure due to vacancy GIDI on the angle ¢ at
different values of r (numerical calculation according to
Eq. (4.29qa): the number of rays m =20, e/ r= 1.5 (a); ray
muldtiplication via bifurcation, rz/r = I.I% (b): the number
of rays m = 56, r.p/ v = 1.1 (compare with Fig. 4b) (c).

creating vacancies. The mechanism of generation of
vacancies is insignificant, and we assume the genera-
tion rate G, in the right-hand side of Eq. (4.6) for n,
spatially uniform along the surface.

In this case the boundary conditions are given by

on, _on,
(3—5 ) = (32 )m-’l =

2

The bending deformation of the film is described by the -
bending coordinate {, or displacement of the points of
the middle plane along the z-axis. Under the bending
deformation the strain is coupled with the bending
coordinate by the relation

div U = ~zvAL, (4.32)
where v = (1 ~ 20}/ (1 - o), 6 is the Poisson coefficient.

| (4.31)

]
==
2
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The nonlinear equation for the bending coordinate
ollows from Ref. [76], if one takes into account the
force acting on the film due to vacancy-elastic contin-

oty

face z =~h/2attimes 7> h* /7 the temperature is-ﬁﬁg.ﬁﬁ;' =
ear function of z: Lo

uum interaction energy (cf. Eq. (1.1)):

%, oy I PG L ‘
::.-é"l'j'f" 12 A"(;- B Gxx'a‘?+6yy5;5 cxyaxay o
) Bv h/zanvc{

—h/2

(4.33)
Here & = E/ p(l ~ o2, E is Young’s modulus,

2 2
A= é%— + ™) is the two-dimensional Laplace operator.
X

y
The stress tensor

9%¢
ijm"i“:"? (1“6)@;4‘ GajkAEIC Z

q
+ (1+cr)aT8jk+1ij‘F.

= Here

1,967 1 ¥’
Nzx“—i(a) "ic(é—y—) 3
_ 13t 1 ag? 4.34
yy—“i("a;) —50(53) ’ ( )
i g o
ny"“ (1—6) (é-x" 5;)

Eqs. (4.6) and (4.31) form a closed system of equa-
tions describing the bending deformations interacting
‘with the vacancy field.

Note that it follows from Eq. (1.1) that the tangential
mponents of the forces exist F, , ~ (grad n), ,» which
yield additional contributions to tﬁe r.h.s. of Eq. (4.33)
Which are by a factor of ¥2d2> 1 smaller than the terms
taken into account (here vy is the decay constant of n,
along z, d is the period (along the surface) of vacancy
structure, developed due to the instability considered).
- We consider first the linear regime. Let us represent
the variables in the form

n, = n0+n1, g - C0+Cl’ U = U9+Ul’

where 7, Lo, and Uy are spatially uniform along the sur-
face solutions and n,, £, and U, are small spatially non-
Uniform perturbations.

- Consider first the spatially uniform distribution of
Yacancies. From Eq. (4.6) we obtain the equation for n,

2
d'ny,

822 TV
der the action of laser radiation on the surface
h /2 with effective thermal runaway from the sur-

+G, = 0. (4.35)
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T = T,,wAT(g-z)/h.

Under the condition y./D,T, <1 the solution of

Eq. (4.35) with the boundary conditions (4.31) can be
represented in a simplified form

no(2) = g7, exp [:’(g -2 | (4.36)
= ny exp !}_7(5 -Z)},

where Y= EAT/ kTh.

In the equation for n, we take into account that
under the conditions of the experiments of interest
(0T ~ 107?) the linear term in the brackets in Eq. (4.33)
proportional to 6, is a factor of 10%(h / d) > 1 less than
the second term in the Lh.s. of Eq. (4.33), here d ~ A
(see Eq. (4.49)).

We restrict ourselves to the case for which the coef-
ficient of surface diffusion D, > D, where D, is the
coefficient of the bulk diffusion (this assumption is not
principal and is made only for the sake of simplicity of
treatment).

We introduce the notation

h h h
n=n(z= E)’ Ry ("5) 4"1(5)-

Then, the linearized system of equations for ny, G
has the form

2,2
ch evn
Tl At =
an 4.37)

5;1 =DyAyn— 'n- 1o8, VD ALL, /2KT.

The spatial symmetry of the problem determines the
form of the solution n, and &;. The simplest case cor-
responds to the one-dimensional geometry, with the
x-axis being the preferred direction. We consider this |
case first in the linear regime.

The solution of Eq. (4.37) is developed in the form
(= A exp (igx+ A +c.c,

4,38
n(q) = B.exp (igx+Af) +c.c, (4.38)
where A, B, = const. Substituting qu (4.38) in
Eq. (4.375, under the condition \? <€ q'c*h? 1 12 we
obtain the dispersion equation for A

A= R,~Dyq -1, (4.39)

where the external pump parameter is given by
R, = 602vn,D,/pc kT . (4.40)

Thus, to each wave number q corresponds the critical
value of the pump parameter R, = R_.(g), such that at
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R, > R..(g) one has A(g) > 0, i.e., exponential growth of
the Fourier amplitudes of the coupled fields of bending
deformation and vacancy concentration is realized. The
threshold of the instability is determined by the condi-
tion
R,>1,

i.e., concentration of vacancies n, exceeds the critical
value n,:

N = PCkTH /60°vDyT,. (4.41)

A stabilization of vacancy DDI occurs due to the
nonlinearity of the bending deformations. In the one-
dimensional case, one has (in the stationary case) the
following equation

A A Y

12 3,4 254 ox ph’

The equation for n, follows from Eq. (4.37) at
on, /ot = 0. Substituting (4.38), where A = 0 into
Eq. (4.42) and into stationary equation (4.37), in the
uncoupled harmonics approximation we obtain the

expression for the stationary Fourier amplitude of the
bending deformation field

(4.42)

12

A h R, 1
e (D 1 ‘12 + T;} )
and also the expression for the Fourier amplitude of the
vacancy concentration field

(4.43)

R, pHg
S A S (4.44)
1210,[ (Dyg +71,)

1t is seen from Eq. (4.39) that at ny > n,, the maximum
value of the wave number exists

12
R, -7,
q’“"’“ﬁ( Dy } ’

such that the amplitudes of Fourier harmonics with
g > g, do not grow, because for them A(g) <0.

The resultant picture of the coupled fields {; and n,
is obtained by summation over all possible wave num-
bers of independent Fourier harmonics: gy, < ¢ S go»

2
where the value ¢,,, = (AMJ12/¢h) s determined
from the condition of validity of the dispersion
Eq. (4.39). At the characteristic values of A, ¢, b, g, (see
below) g / go ~ 107, and because of this the summa-
tion can be carried out in the limits 0 S g < g

g, =M12Aqei"x+c.c.,

RS

B,

(4.45)

(4.46)

. .
no=N Z Be¥ +c.c.,

Q54
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where N = L/ 2nh, L is the length of the plate in the
x-direction. We limit our consideration to the case of a

sufficiently weak pump (0 < R, - 'cf < 1:;1). Then
from Egs. (4.43) and (4.46) we obtain (after integra-
tion) the resultant field of deformation in the form

g, = (W/x6) (Ry1,—1)7sin(ggx).  (447)
The vacancy concentration field is given by

my = Clsin (g01) (4,/%= 1240/ +24/00) 100
+ cos (qox) (dga/x ~24/5Y 1,
where
C = R,AHpgy (R,T, - 1)/ (120,17./6) .

As is seen from Eqs. (4.47) and (4.48), the period of
the quasilocalized periodic structure formed is equal to

e
n
d=2n/qy= 2% /D"'cv(vﬁnn -1)

It follows from Eq. (4.49) and the expression for R,
(4.40) that the period of the structure increases with
increasing h.

In the case of isotropic medium and uniform distri-
bution of intensity in laser-beam cross-section, all
directions of vector ( are equivalent. The resultant field
is obtained by substituting cosqr = cos{qrcos@) in
Eq. (4.46) instead of cosqx and switching from sum-
mation over { to integration over q (7 and ¢ are polar
coordinates in the plane of the plate). Then, we have

L, = 20qy (R,T,~ 1)1, (go") 7 (g57:/6) » (4.50)

(4.49)

n = CUJ, (qor) (g/r—16G,/7 +64/g,r)
+Jy(qor) (4ge/P =32/79 1,

where Jy(g,r) and J,(g,r) are the first-type Bessel func-
tions of the zero and first order. One can easily check
that expressions (4.47) and (4.48) for x —» 0 as well as
the expressions (4.50) and (4.51) for r — 0 remain
finite. For axial symmetry of the laser field the center of
the laser irradiated spot is the coordinates = = 0. The
consideration given here remains valid if the spot
radius ry > d. From Eqs. (4.50) and (4.51) one can see
that the resultant fields of deformation and vacancy
concentration are complicated concentric structures
with a nonequidistant set of maxima, the magnitude of
which decreases with the distance from the center of the
spot.

Apart from the one-dimensional gratings and con-
centric rays, formation of the ray-star structures is also
possible. Let us consider this case in detail.

Let the laser have Gaussian intensity distribution in
the transverse cross-section of the beam given by
Eq. (4.4). Then on the surface of the plate z = h /2 under
the condition h <€ ry and with effective thermal run-

(4.51)
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away from the surface z =~k / 2 the stationary temper-
ature distribution has the form

T(r) = Tyexp (mrz/rﬁ).

~ Let us now find the stationary distribution of
vacancy concentration assuming that generation of
- vacancies occurs due to the thermal mechanism. Under
 the conditions r < ry and E, = E, > kT the stationary
“vacancy distribution is given by

ngy (r) = const exp (—E, exp (rz/ rg) /kTy)
2 » (4.52)
=ngexp (—r/ry),

where ryg = ro(kTy / E)"? < r,. Then, taking into
- account Eq. (4.52) one obtains the following equation
~for ny:

on, "
~0,VDynoh (AY Y exp (= /rly) /2KT,.

In the derivation of Eq. (4.53) we neglected the depen-
‘dence of T on r, because at r < r, the function 7(r)
varies little. Eq. (4.37) for {; remains unchanged. The
solution of Egs. (4.37) and (4.53) is developed in the
form of radial rays:

m 2
£, =4 (é) cos (m) exp (_;l;m + F\.t),
_ N (4.54)
n =B (;-) cos (mQ) exp (—%— + At |,
eff

Tegs

here m is an integer. Substituting solutions in
Eq. (4.54) into Egs. (4.37) and (4.53) and assuming
! 1y <€ m, we obtain the following expression for the
wth rate of vacancy DDI with formation of radial

Q-1 7 = 4(m+ 1)/, (455)

te the value of R, is given by Eq. (4.40).

- The dispersion Eq. (4.55) is similar to Egq. (4.39)
Provided the substitution g ~» 7 is made.

To evaluate the number of rays in the structure we

use {}2 = qé, where g, is determined by Eq. (4.45).
en,

m = qg"esz/‘i = thr:ff/dz. (4.55a)

°t us evaluate the critical concentration of vacancies
cording to Eq. (4.41). At p = S5g.cm™, ¢ = 105 cm-s~,
= 800K, &~ 102 cm, K = 102 ergeem™, a’=
0% em3, |0, ] = Ka¥ ~ 1070 erg, 6 = 0.3, D, =% =
* cm? from Eq. (4.41) we have n.. ~ 101 cm, Note
at. with decreasing plate (film) thickness the critical
lue of vacancy concentration decreases n,, ~ A2,
ASER PHYSICS
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At ny = Lln, from Eq. (4.49) we obtain the
following expression for the period of the structure
d ~ 6 x 107 cm. In the case of ray formation it follows
from Egq. (4.27) that their number is m = 10 under the
condition d = r,4.

Evaluate now the characteristic time of vacancy

DDI. From Egs. (4.39) and (4.49) we have 7. =

d*/ 47Dy ~ 107 5, i.e., observation of the vacancy DDI
is possible with the use of CW-lasers. Then, the condi-
tion of validity of the dispersion Eq. (4.39) A2 <

g*c*h* / 12 reduces to the form /12D, /ch <1, which
evidently holds at the values of parameters used above.

The theory of vacancy DDI in thin plates and films
developed above enables one to interpret the experi-
mental results of the work [77], for which the forma-
tion of periodic concentric-ring and radial-ring (star)
structures of deposits was observed in the deposition of
Ni-ions from solution on the surface of thin (A ~ 10~ cm)
metal plates, the other side of which was irradiated by
a cw-laser with intensity of 10* - 103 W.cm™2. Note
that due to heat conduction into the solution the con-
dition of presence of temperature gradient along the
z-axis was fulfilled, so that the distribution of vacancy
concentration nonuniform along z was established,
which is a prerequisite of the DDI with bending defor-
mation (it can easily be seen from Eq. (4.33) that at
n,(h/2) = n,(~h / 2) bending deformation does not
occur). The above numeric estimates (as to the number
of rays and period of ring structure) are close to the
experimental observations of Ref. [77] (see Fig. 13 for
comparison).

It is interesting to note that the “star”-structure was
observed also in Ref. [78] in Ar*-laser-induced chemi-
cal etching of Mo films on glass substrate. The number
of rays increased with increasing laser power (Fig. 14),
in accordance with the vacancy GDDI theory devel-
oped here.

4.3. Diffusion-Deformational Instability (DDI) on .
Semiconductor Surface

Now we consider the case in which the defect grat-
ings are formed due to the self-consistent strain-
induced defect fluxes along the surface of the semicon-
ductor. We illustrate this phenomenon of the sequerice
of structural transformations at the surface of Si under
irradiation by p-polarized millisecond laser pulses, and
elucidate the nature of created structures in the solid
and molten phases of the surface layer, and possibilities
of controlling the structure geometry by changing the
external control parameters [79].

4.3.1. Defect Grating Formation on Si Surface

The experimental studies in Ref, [79] were carried
out with mirror polished surfaces of (111) and (100)
monocrystalline silicon wafers with a thickness
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A=05mm. The Nd:YAG laser which provided
pulses of polarized output radiation at A= 1.06 im with
pulse energy Wup to 3 J and pulse duration 1, =1.6 ms
was used for surface irradiation. The p-polanized laser
radiation was focused on the surface of the Si wafer to
a spot diameter 7, = 1.2 mm. The diagnostics of surface
changes with the help of recording of thermal radiation,
probe-beam specular and diffraction reflection enabled
one to follow the dynamics of development of the
ordered structures in solid and molten phases. The irra-
diated samples were also studied with optical and elec-
tronic microscopes, and a profilometer.

Surface irradiation was performed as follows: laser
fluence at the surface of the Si wafer was increased
stepwise from @ = 7.0 J.em™? to ®; = 95.5 J.cm™, the
sample being shifted perpendicular to the incident laser
beam after each laser shot, thus ensuring irradiation of
fresh surface area. Experiments were carried out both
in atmosphere and in a vacuum,

We focus here only on those experimental findings
of Ref. [79] which pertain to the discussed problem of
defect grating formation. The irradiated samples were
studied with a microscope and a profilometer. At a nor-
mal incidence of the excitant laser beam and at laser
energy fluences up to @ = 8.5 J.cm™ no changes in sur-
face morphology were observed. Increase of laser flu-
ence over 8.5 J.em? caused formation of a cell-like
structure. Bvery cell was either a melted square (in the
case of the (100) surface symmetry) or triangle (for
(111) surface symmetry) (on the photograph the cells
are seen as points ~ see Fig. 15a). In the range of flu-
ences @; = 8.5 - 25 J.cm™? the cells in the irradiated spot
were distributed randomly, but the sides of the cells
were all oriented along the crystallographic directions.
With fluence increase we observed a rise in the cell
size, and secondly, the cells were ordered forming a
two-dimensional cell structure (or two-dimensional
grating); with period d; = 3 - 3.5 um (see Fig. 15a),
laser fluences @, = 25 J.cm™ the average cell size was
about 1 - 3 um and the cells completely covered the
irradiated area. Orientation of the two-dimensional
grating did not depend on laser radiation polarization.
However, further evolution of the two-dimensional
grating of cells with the increase of fluence in the range
@, =25 - 34.5 J.cm? depended on relative orientation
of crystallographic axes and vector of polarization of
laser radiation. '

Thus, when the electric field amplitude E of the
laser radiation was oriented along one of the crystallo-
graphic axes of the surface (100), increase of the num-
ber density of cells (and their fusion) in a direction
perpendicular to this axis (see Fig. 15b) was observed.

"Thus, in this case a “one-dimensional” grating with
period d; = 3 - 3.5 um, oriented perpendicular to the
crystallographic axis mentioned above and electric
field E, was formed at the surface. When the electric
field E did not coincide with any of the crystallo-
graphic axes, similarly, two gratings were formed ori-
ented perpendicularly to the crystallographic axes of
the surface with period d, = 3 - 3.5 um (see Fig. 15a).

EMEL’YANOV

Studies of the transverse cut with an electron micro-
scope showed that gratings with a period 4, are formed
due to surface relief modulation with an amplitude of
about 2 X 1075 cm.

When the laser radiation was incident on the surface
at an angle o, the formation of surface structures
described above was also observed at corresponding
laser fluences, their period being independent of the
angle of incidence and being equalto d; =3 - 3.5 pm as
in the case of normal incidence. However in this case,
apart from the structures just described, a new type of
grating started to appear with a period given by a well-
known expression [22 - 26]:

A= 1.06 pm, I ~ 10* J-om™

D

NN
1
1

/]
\L—Cu

Fig. 13. Star structure of Ni deposit formed in laser depo-
sition from solution [77]. In the inset the experimental
arrangement is shown. The “star”-structure of the deposit
is formed on the inside face of the Cu plate.
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Fig. 14. Scanning electron micrographs of ray-star struc-
tures etched into Mo / glass film by means of Ar* laser irradi-
ation (2ry = 16 pm). P = 10 mW (a), 20 mW (b), 50 mW (c),
100 mW (d), 500 mW (e), 150 mW () [78].

A

a 1-sin o’

A is radiation wavelength and oriented perpendicular to
- the laser electric field E. When vector E coincided with
ne of the crystal axes, two gratings with a similar ori-
entation perpendicular to E were observed at the sur-
‘face, with the period of one of them being independent
of the angle of incidence and equal to d, = 3 - 3.5 um,
.and the period of the other varying depending on the
angie of incidence. When the vector E did not coincide
with the crystal axis a complicated superposition of
‘three gratings was observed, that is, two gratings with
-period d, oriented perpendicular to the crystallographic
axes and one grating with period d, oriented perpendic-
‘ular to E (see Figs. 15b, 15¢). It should be noted that at
‘normal incidence of the laser beam, gratings with a
onstant period ¢, dominated, while the gratings with a
eriod , dependent on the angle of incidence were
eak. With increase of the incidence angle the “con-
ast” of gratings with a constant period d, rapidly
Ecreased and at o = 30° gratings with-angle-dependent
eriod d, dominated (see Fig. 15d). Similar studies
Were also carried out in a vacuum at 10 torr. The
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Obviously, the grating with a period and rulings
perpendicular to the electric field vector E of the laser
field is the interferential (/) grating [22 - 26], usually
created under the influence of p-polarized laser radia-
tion sufficiently intense to cause melting of a thin sur-
face layer. Similar /-gratings have been observed at
other durations of laser pulses. Thus, dynamics of for-
mation of [-structures at the surface of Si under excita-
tion by a nanosecond laser pulse (= 1.06 Lm) were
studied in Ref. [22]. Diagnostics of surface changes
were performed by using mirror reflectivity and diffrac-
tion of the probe pulse. Similar studies were carried out
with microsecond pulses (A = 10.6 um) [80]. Periodic
structures observed in these studies were of interfer-
ence origin and are well understood.

Gratings and cell structures with a period indepen-
dent of the angle of incidence are the most interesting.
Creation of cell structure at the surface of Si was
observed earlier in a number of experiments. It is well
established that these structures are formed due to local
melting of the surface. However, the nature of these
structures as well as that of quasiperiodic local melting
under laser excitation of semiconductors currently
remain under study.

We attribute the appearance of lattices with a period
d, to generation and ordering of defects in a thin (of the
order of 105 cm) surface layer of a semiconductor.
Laser excitation leads to generation of a great number

“of point defects (vacancies and interstitials in the near

surface layer with thickness of the order of 107° cm)
(Sec. 3). The spatially uniform field of point defects
with concentration ny, becomes unstable as the latter
exceeds a certain critical value ng > n, and diffusion-
deformational instability develops, leading to forma-
tion of either extended defects (voids or dislocation
loops) (Sec. 5) or periodic gratings of point defect accu-
mulations. ’

The mechanism of DDI is similar to that considered
in Sec. 4.2. The fluctuating harmonic of defect concen-
tration gives rise to the appearance of a harmonic of
surface deformation. Because a defect in the field of
deformations possesses energy (Eq. (1.1)), there appear
defect fluxes directed toward deformation potential
wells. This causes gain of the initial amplitude of the
seed Fourier harmonic of defect concentration and
development of the instability. As a result, defects are
self-localized at deformational potential wells which
they themselves created. DDI is stabilized by nonlin-
earity of the elastic continuum (Sec. 4.2). Thus, accord-
ing to the concept of DDI, two scenarios for grating
formation with a period d, are possible:

(1) deformation-induced point defect condensation
with formation of dislocation loops (Secs. 5.1 and 5.2)
and subsequent self-consistent deformation-induced
redistribution of the loops either by glide (Sec. 7.1) or
by climb (Sec. 7.2) accompanied by formation of peri-
odic gratings of dislocations;

(2) formation of periodic point defects accumulates
with subsequent possible creation of dislocation loops
in those piles. Consideration of the dislocation-defor-
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Fig. 15. Photographs of laser-irradiated Si (100) surface. The direction of the x-axis (pointer) coincides with one of the crystallo-
graphic directions. a= 0° The electric field vector E is directed at an angle of 45° with respect to the x-axis. Two-dimensional cell
structure is observed {a); o= 0°, E || x. The grating with d, = 3.5 jim and rulings perpendicular to E appears (b); o= 30° E is
directed at an angle of 45° with respect to the x-axis. Superposition of three gratings, two with d; = 3.5 tim oriented perpendicular
to the crystallographic axes, and one with-the period d; dependent on incidence angle and oriented perpendicular to the vector
E (c); o= 45°(d). One-dimensional grating with a period d, depending on the incidence angle. ’

mational instability (Sec. 7) shows that the processes of
dislocation self-organization are too slow and can be
neglected on a time scale of 107 s, thus only the second
scenario seems to fit the experimental findings of

Ref. [79].

Local deformation caused by local accumulation of
defects causes decrease of the melting temperature
1811, so that at sufficiently high laser intensity the
gratings of defects manifest themselves by the onset of
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local melting (Sec. 5.3.2). Note that, as predicted by
the theory of DDI (see Sec. 4.3), when the surface:
grating of defects is formed even without melting, the
surface relief becomes periodically modulated, the:
defects being accumulated either at minima (vacan-
cies) or at maxima (interstitials). However, the ampli-
tude of relief modulation is small (h ~ 107 cm) and is
less than the amplitude of the relief H > 10 cm
appearing as a result of inhomogeneous melting. The
1992
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theory of periodic grating formation consisting of
laser-induced defects (vacancies and interstitials) as a
result of development of DDI is described in
Sec. 4.3.1. It is shown that the main experimental fea-
tures as to the period and orientation of gratings with a
period obtain a theoretical account within the frame-
work of this model.

The model of DDI taking into account point defects
explains, in particular, variation of grating orientation
with a period when orientation of the E vector of a suf-
ficiently strong laser field changes with respect to the
crystallographic axes. In fact, in a weak field E, defor-
mation-induced point defect fluxes are directed prima-
rily along distinguished crystallographic directions
(at the (100) surface the latter are perpendicular to each
other) due to anisotropy of elastic coefficients. Hence
two orthogonal gratings are formed in this case. Cross-
ing of these two gratings forms a cell structure of defect
accumulations which is revealed by local melting
(Fig. 15a).

A sufficiently strong laser field with the vector E
oriented along one of the crystallographic directions
breaks covalent bonds along this direction and thus vio-
lates the symmetry of deformation-induced fluxes of
point defects (see Sec. 4.3.3); as a result, the two-
dimensional grating (Fig. 15a) is transformed into a
one-dimensional grating (Fig. 15b). If vector E of a
strong laser field with intensity close to the melting
threshold is oriented at an angle of 45° with respect to
the crystallographic axes, then the symmetry of point
defect fluxes is restored and there must appear a two-
dimensional grating with a period, and moreover, an
ordinary /-grating with a period and rulings perpendic-
ular with respect to E, which is in fact observed in
experiment (see Fig. 15c). The DDI theory quantita-
tively predicts also the period d, of the defect-deforma-
tional gratings, as well as characteristic time of their
formation (see Sec. 4.3.2).

Lastly the fact that at o > 30° the only grating left on
the surface is an /-grating with period d, is explained
by the influence of the /-grating on the formation of
defect grating with period d,. In fact the interference
light field, spatially periodic along the surface, leading
to I-grating formation (see the discussion in Sec. 2.6
and Refs. [22 - 26]) gives rise to periodic surface tem-
perature and hence strain fields. This brings about peri-
odic forces acting on the defects and resultant periodic
defect fluxes tending to redistribute the defects and to
form a defect surface grating with period d4,. When
d, € d, these periodic forces are averaged out and
mutually cancel, so that a defect grating with DD-period
d, 1s formed. On the contrary when d, > d, the spatially
oscillating strain field with period d; entrains defects

. into periodic potential wells forming a defect grating
~ with the same period d;. Thus the condition d, = d, is the
. critical condition of disappearance of d, grating, i.e., the
. angle of incidence must exceed the critical value

. ?"'L
o>o, zasin (1~ =) .
d,
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At Ap =1 pm, d; = 3.5 pm we have that the d,-grating
disappears at o = 30°, which in fact is recorded in
experiments of Ref. [79]. This hypothesis of defect
entrainment by interference surface light field needs
further experimental investigation.

Thus, from the point of view of the DDI model
implying defect ordering the main features of Si surface
morphology changes remaining after excitation by
linearly polarized laser radiation and seen by microscope
are quite explainable. Let us proceed to the exposition of
quantitative theory of defect-deformatinal grating for-
mation at semiconductor surfaces under laser irradiation.

4.3.2. “Film-on-Substrate” Model of Surface DDI

We assume here that a high concentration of point
defects (vacancies (d = v) or interstitials (d = 1)) is cre-
ated in the near surface layer of a semiconductor under
laser irradiation. As was shown in Sec. 3 the high val-
ues of point defect concentration can be achieved as a
result of simultaneous action of three factors: reduction
of energy required for formation of new defects by
approximately an order of magnitude due to local elec-
tronic excitation near earlier created defects, laser-
induced heating, and deformation of the surface layer.
The thickness h of the subsurface layer, in which
enhanced defects generation takes place was deter-
mined in Ref. [54]. It was found that the value of A,
60 - 100 nm is less than the optical absorption length
and is determined by the initial material defectiveness.
It will be assumed here that, according to Ref, [54], the
thickness of the laser-induced defect enriched layer h is
also determined by the material destructivity and
amounts to about 10~ cm.

The defect enriched layer will be considered here as
a film of thickness s with density p; and Young’s E;
module, and the rest of the semi-infinite crystal as a
substrate with parameters p, E with which the film is
tightly bonded. Let the plane z = 0 be the interface
plane between the film and the substrate, and the z-axis
be directed inside the crystalline substrate (Fig. 16).
There are two equivalent orthogonal crystallographic -
directions at the (100) surface of Si. Let the x-axis be
along one of these directions and the y-axis be along
the other. :

It will be assumed here that the diffusion coefficient
of defects along the surface (or along the film) D, is
much larger than that into the bulk, Dy » D,, which is
usually the case. Then defects are redistributed only
along the film, and one can write

ny (x: Y2, t) = nd (x! 3’, t) €xp (""Yd (Z +h) ) . (456)

Here the constant quantity v, is determined by the ini-
tial processes of point defect creation and governs the
thickness of the defect enriched surface layer. Thus, it
will be supposed here that v, = #'. The equation for
defect concentration has the form
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film
~h ~h
0 X
substrate
W
2y (@
vacancy piles

Fig, 16. A model of the film-on-substrate. Defects are
homogeneously distributed along x, the film is non-
deformed {a); formation of coupled gratings of bending
deformation and concentration of defects (b).

ony 1
Y = DdAgl (ng) — %‘;nd
o @4.57)
—_g-f,f div, (negrad, (div (U))),

U; is the medium displacement vector in the film and
subscript |l indicates the differentiation in respect to x
and y. Deformation of the surface layer (or film) is
described by the bending coordinate . This coordinate
satisfies the equation

9* o
é?gwflézsﬁ(t;) Q) = —

pett’

here c? = E¢(p;(1~062) )_E, o; is the Poisson coeffi-
cient of the film, 6, is stress normal to the film, fi is

the term describing film bending nonlinearity
(cf. Eq. (4.33)). Film bending is related to compres-
sion-stretching deformation of the film

div (Up) = —v, (z+h/2) AL,

(4.58)

(4.59)
where v, = (1-26,)/(1-0,).

Moreover, film bending is also related to elastic
deformation of the surface of the substrate which is
governed by the equation for the displacement vector of
the elastic continuum of the substrate
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2
g.g =AU+ (&~ %) grad divU + Fy, (U). (4.60)
t

The term Fy; describes nonlinearity of the elastic
continuum. At the film-substrate interface we have the
following boundary conditions.

Displacement along the z-axis must be continuous at

z =10, hence
Ul o= £. (4.61)

Tangential stress due to defects in the film must be
compensated for by tangential (shear) stress developed
in the substrate at z = 0. Hence, taking into account
Eq. (4.56), we have

aUru U, 9 e
n (_3; +§§;) = ed»a;; _[”d (x ¥, 2)dz

- edh;,%ucnd *x ),

(4.62)

where n,(x, y) is the defect concentration at the surface,
X, = {x, ¥}, and L is the shear modulus of the substrate.

Stress normal to the plane z = 0 determines o(x, y)
in the film

oU, oU, oU, G_L(X,J’)_
(3““2: + (1-2B) (3‘; '*‘3; ) z=0"—“p-;lg‘**,
B=clrel.

(4.63)

Displacement along the x and y directions at the bound-
ary z = 0 can be neglected, because for example

R g _ hm
Ulico = 35,725 =7

dl g’
where d, is the period of the defect structure formed
under DDI (see below). Because under bending- DDI in
a film the condition (hn) /d, < 1 holds, it is seen from
Eq. (4.64) that U, < U,, so that displacement along x
(and similarly along y) can in fact be neglected.

The set of Eqs. (4.57 - 4.63) is a closed set describing
DDI in a surface layer containing defects. We limited
our analysis here to consideration of only the linear
stage of DD1 (or stability analysis of Egs. (4.57 - 4.63)).
This enabled us to determine the threshold of DDI
geometry and period of the DD structures and character-
istic time of their development.

Later on we shall limit our consideration to DDI in
the one-dimensional case, where defects are redistrib-
uted only along one crystallographic direction x, We seek
the solution of the set of linearized Eqs. (4.63 - 4.65) in
the form :

4.64)

Ry = Ry + Nexp (igx +Al),

=Aexp (igx+Ap), (4.652)

o, (x) = o, exp (igx+Af). (4.65b)
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9 exp (igx+Af),

N ix, Ce "
{4.65¢)

L= (—ide_

U,= (xBe " +gCe "yexp (igx+ A),
4 L

- where ny, is the spatially homogeneous distribution of
efects n at the surface. The solution in this form con-
* tains seven unknown quantities: A, B, C, N, ¢, ¢, and A.
' The expression for the components of the displacement
vector in the substrate is similar to the free part of the dis-
placement vector under EDTI (cf. Eq. (2.18)) and both
are the analogxcs of the displacement vector U in the sur-
face acoustic (Relay) wave (see Ref. [76]).

From Eqgs. (4.57 - 4.63), using Eq. (4.65), one
obtains six homogeneous algebraic equations for deter-
mining the seven unknown quantities listed above (for
details see Ref. [79]). Thus, the set of Egs. (4.57 - 4.63)
permits one to find the dependence A = A.(g). If the con-
dition A*/ ¢, < ¢* holds (this limit can be taken only at
the end of aiI calculations) for the growth rate of DDI
" one obtains

A=-(Dyg +17)
6E(1~20)0%n
+quh—l ( ' ) Pl 10 ]
E.(1-06") (1-26)kTu

Eq. (4.66) is derived from a more general expression of
Ref. [79] under the condition

peigh /12pct >2(1-B)
(this condition holds under assumptions made). For
clearer presentation of the results obtained let E = E,,
¢ = Oy, and take into account that ¢ <€ 1,

Then from Eq. (4.66) we obtain finally the following
expression for the DDI growth rate

(4.66)

2
8,140

A= —(Dyg’ +13) + Dygh™ T (4.67)

The dependence A = A(g) is plotted in Fig. 17. The
maximum value Ay, is achieved at ¢ = g,

!al a0

18
) ¢
The maximum growth rate vaIue is equal to

A‘ = qumax ‘-l'

ma

). (4.68)

Tmax =

(4.69)

An instability appears at Ay, > 0, that is, when the spa-
tially homogeneous defect concentration exceeds a crit-
ical value ny,, obtained from Eq. (4.69)

h KTy
JD4T, 392'
Note that DDI appears at any sign of 8, (6, < 0° for
vacancies and 8, > G for interstitials). -

At characteristic values of the parameters & = 10°5 cm,
T=15x100K, p =102 erg-crn®, |8, =107 eV, D, =

(4.70)

Rgg > Ngor =
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10% cm?s7, 7, = k2 D7’ = 105 s from Eq. (4.70) one finds
that the critical defect concentration is ny, = 10 cm™3,
Thus, the development of DDI at the surface leads to for-
mation of a grating of defect concentration (Eq. (4.65a))
and grating of bending deformation coupled to it
(Eq. (4.65b)), the grating period being equal to

n kT

d, = = h . 4.7
3‘Bdf2"do

Qmax

At the same values of parameters as those used when
estimating (4.70) and at ng = 3 X 10" cm™3 (which is an
order of magnitude larger than the critical value (4.70))
one obtains the defect-deformational grating period
value d; = 3 X 10~* cm, which is in agreement with the
experimental results of Ref. {79] (see Fig. 15). Note the
important peculiarities of the obtained results.

(1) The time of surface defect grating formation, #;,
is determined from the expression which can be derived
from Eqgs. (4.68) and (4.69)

T
ta= My = g (4.72)
ng/Mge,— 1

Thus, near the threshold ((n2/n2_, — 1), — ) (criti-
cal slowing down typical of phase transitions); at large
excesses of the threshold (ni/ nia 1)

-1

= (DyqL.) 4.73)

AtD,= 107 cm2 S ua =20 /dyand d; =3 x 10 cm -
one obtains from Eq. (4.73) that the defect-deforma-
tional grating formation time is ¢; = 2 X 10~* s. Conse-
quently the grating has time to develop during the
millisecond laser pulse.

(2) The surface grating period is proportional to the
film thickness d, ~ h. This characteristic feature of DDI
with bending deformation in films takes place also in
the theory of boundary formation under laser-induced
recrystallization of thin semiconductor films on sub-
strates (Sec. 4.4) and under formation of surface dislo-
cation gratings (Sec. 7).

It is- interesting to note that the one-dimensional
gratings of surface relief are formed under ion implan-
tation of the Si surface [107]. The periods of these grat-
ings (d ~ 0.5 - 10 um) are proportional to the thickness -
of the implanted layer % in accordance with the theory
of DDI developed in this section.

(3) Since ng, ~ exp(~E 5/ kT), where E is the effec-
tive energy of defect formation (renormalized by laser
excitation, (see Sec. 3), -from Eq. (4.71) one obtains
dy ~ Texp(Eey / kT), that is, the grating period rapidly
decreases with increase in temperature.

" (4) From Egs. (4.65a) and (4.65b), and the results of
Ref. [79] we obtain that the ratio of amplitudes of the
surface grating of defect concentration and of bending
deformation of a film is equal to
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Fig. 17. Growth rate of the DDI as a function of the wave
number g of the grating: {1) — g < Rauw (2) = ng0= Ny
(3 ) = Rag > Ry er

L A
where |const| > 0. This means that vacancies
(sgn(d) < 0) are accumulated at the surface relief min-
ima (where { > 0) (see Fig. 16), while interstitials, on
the contrary, are accumulated at surface relief maxima.

M _ N _constisgnd, (4.74)

(5) If the x and y directions are both equivalent and
preferred, that is, frequency of elementary jumps of
defects while migrating along the x or y direction is
much higher than along other directions, then DDI
must lead to formation of the two-dimensional grating
of defects and bending deformation given by formulas
similar to Eq. (4.65)

ng(x,y) = Nexp (At) cO8g,,,XCOS G, Y

where g,,,, and the period d, are given by Egs. (4.68)
and (4.71).

(6) We considered a linear regime of DDI-exponen-
tial growth of surface grating amplitudes in time. DDI
stabilization occurs due to nonlinearity of the film
bending deformations (the term fig in Eq. (4.58)) or due
to nonlinearity of the elastic continuum (the term Fyy, in
Eq. (4.60)). If elastic nonlinearity is taken into account
one can describe the stationary state of the bending
deformation grating and defect concentration grating
coupled to it. Although this nonlinear problem has not
yet been solved in the present “film-on-substrate”
model, the nonlinear solution for unsupported film
(Sec. 4.2) enables one to envisage that the amplitude of
the surface periodic relief is of the order of or less than A.

(4.75)

We note that in this state the defects are trapped in
potential strain wells with high diffusion barriers, so

that D, — 0. Since T, = I; / D, where [ is the mean dis-

tance between the defect sinks, then T4 —» oo, and this
state in fact is stationary.
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- cell with an introduced defect (interstitial i) is shown

Let us now discuss the question of when one can
expect the formation of one-dimensional or two-dimen
sional gratings with the period d, under the action of a
strong linear polarized laser beam. '

4.3.3. Control of Defect Flux Direction by Linear
Polarized Laser Light

Let linearly polarized laser radiation be incident on
a surface (100) of a covalent semiconductor (Si) at an -
angle o, and E, be the electric field component along
the medium surface (see Fig. 18). Arrangement of
atoms in an elementary cell of Si, which are bound by
covalent bonds, is shown in Fig. 18a. The elementary

from above in Fig. 18b. If the electric field vector E, is
directed as shown in Fig. 18 the field interacts only with
electron bonds 2 ==1, 1 == 4 and does not interact
with bonds 3 == 1 and 1 == 5. In a sufficiently strong
laser field the number of excited bonds directed as
2==1 is expected to be large. It is important that
excitation of bonds will take place primarily in a vicin-
ity of defects which renormalize locally (reduce) by
their elastic field the electronic transition frequency
from the upper to lower state of a covalent bond (or
from valence band to conduction band). Electron
transition from lower, bonding state to upper, antibond-

ing state signifies bond breaking. '

Suppose that the laser-induced breaking of bonds
1==2, 1 == 4 occurs in a vicinity of the interstitial,
while the bonds 3 == 1 and 1 == 5 remain nonexcited -
(see Fig. 18b). This means that force constants of inter- -
atomic bonds K, and K, tend to zero (K}, = 0, K, = 0),
and force constants K, K;s retain their initial values.
The probability of a defect (interstitial or vacancy)
jump from one equilibrium state to another via a saddle
point (atom 1) (see Fig. 6b) along the 4 ==
direction is

where v = const and the activation energy of the jump
is determined by the force constant K}, [82]
K 14a2|

61

When the bond 1 == 4 is excited the activation energy
H,; > 0, and jump probability along the 4 == 1 ==2
direction becomes much higher than jump probability
along the direction 3 == 1 == 5, because the quantity
H,, remains unchanged (K5 = vexp(—H,; / kT)).

H, = (.77

Thus, under excitation by sufficiently strong laser
radiation linearly polarized along one direction of
bonds, there appears asymmetry in probability of ele-
mentary jumps in a vicinity of a defect: jump probabil-
ity along the electric field vector E, is higher than along
a perpendicular direction.

LASER PHYSICS
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(100)51

(a)

o, g

2 5
C\ (110)
E,
S
C/ - {c)

3

Fig. 18. Controlling elementary jumps of a poin defect in Si
by means of a linearly polarized laser field. Atoms with cova-
lent bonds in a cell {a); plane (100) viewed from above. The
vector E, is directed along the 2 == 1 == 4 bonds. Bonds
2 == land 1 == 4 are broken by excitation with the field E,.
The pointer shows the direction of dominating jumps of a
defect (one-dimensional grating formation) (b); vector E, is
directed at an angle of 45° with respect to the bonds. A two-
dimensional cell structure of defects is formed (c).

When describing defect migration in terms of diffu-
sion this means that there appears laser-induced diffu-
sion asymmetry, namely, defect diffusivity in a
direction of E, (along the 4 == 1 == 2 bonds) is larger
or much larger than diffusivity in a perpendicular direc-
tion. Under development of the above described DDI
the asymmetry of diffusivity coefficients must lead to
- formation of a one-dimensional grating of defects with
rulings perpendicular to E, (see Fig. 6b). It is seen from
. Fig. 18c that when the electric field E, is directed at an
angle of 45° with respect to the bonds 4 == 1 ==2 and
3 == 1 ==5, symmetry of diffusion along these direc-
tions is restored, so that a two-dimensional DD grading
of defects must appear as a result of DDI. These conclu-
sions are in agreement with experimental observations
described in Sec. 4.3.1.

In summary, the theory of point defect DDI devel-
oped in this section satisfactorily describes the main
experimental data on laser-induced generation and con-
trol of surface gratings at the surface of Si. Agreement
between experimental data and predictions of the the-
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ory enabled us to conclude that the process of point
defect ordering accompanied by formation of the
defect-deformational gratings revealed by inhomoge-
neous melting is responsible for surface relief grating
formation with a period d, = 3 j)im independent of inci-
dence angle.

4.3.4. Electron DDI on the Surface
of a Semiconductor

The results obtained in Sec. 4.3.2 are valid also if one
considers the electron-hole pairs as a defect subsystem.
In this case ny = #, is concentration of e-h pairs and the
defect-elastic continuum interaction energy is again
given by Eq. (1.1). Thus all the formulas obtained in
Sec. 4.3.2 remain valid for the case of e-h pairs if one

puts iz ~ ”{5’ where v, is optical absorption coefficient
(we assume that during the time of electron DDI devel-

opment ¢, the electron diffusion length (D) < y;t
where D, is electron diffusion coefficient).

As a result of electron DDI development the surface
grating of clectron concentration and strain (Eq. (4.65))
with the period (Eq. (4.71)) arises. The electron DDI
occurs under exceeding of the critical concentration of
e-h pairs — (Eq. (4.70)). In these expressions 0, = § is
now the interband deformation potential. On the (100)
surface two orthogonal gratings of electron concentra-
tion must be generated, the intersection of which forms
the cell surface structure. The periodic increase of sur-

" face electron concentration leads to periodic increase of

surface temperature and resultant periodic surface
damage, i.e., to formation of surface cell structure.

Let us evaluate the critical concentration of e-h pairs,
the period of electron DD structure and the time of elec-
tron DDI development.

For the critical concentration of e-h pairs from
Eqg. (4.70) we have
kT -
= —J-—*—ia'i:l"—'z— "3X10i90m 3
(D.t,) " 36

at h ~ v;' ~ 105 cm, D, ~ 10 ems7), 1, ~ 107 s,
6~ 10eV, u ~ 102 erg-cm™, kT ~ 0.1 &V, i.e., at tem-
perature close to melting. Such concentration can be
achieved under the action of powerful picosecond laser
pulses.

For the time of electron DDI development from
Eq. (4.72) we obtain under the condition of strong
exceeding of the threshold

"’eCl‘

2
n’ecr
e ) '
Thus the electron DDI develops during a time much
less than the time of electron-hole recombination ..
For the period of cell structure (grating) we have
from Eq. (4.71) at ny = 3n,,

di=2 um.

t, = \_’rc(
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Formation of two-dimensional surface structure of
cells in the form of evaporation craters was observed
on Ge surface under irradiation by powerful picosec-
ond pulses of an Nd : Yag laser in Ref. [38].

The time of formation of this structure was 10-10s,
i.e., it was formed after the end of a laser pulse. The
characteristics of electron surface DDI as regards time
of development, critical concentration and structure
period correspond well to the experimental findings of
Refs. [38, 71].

4.3.5. Metastability of Defect-Deformational
Structures

We will show now that the periodic or localized DD
structures formed due to the GDDI development are
metastable or stable states of the material, appearing
due to the phase transition of the second kind.

For this aim we consider the free energy density of
the coupled elastic continnum and defect fields,
neglecting for simplicity the surface effects.

We represent the deformation and defect concentra-
tion as in the above treatment in the form

divU=E,
Ng = Ngp + gy
where &, ny, are spatially uniform distributions and ny,,
g, are spatially nonuniform variables (assume &; < &,
ng; <€ ng). Correspondingly the free energy density
F=F,+F, (4.78)

where F, = U, - TS, consists of the deformed elastic
continuum energy density with allowance for anhar-
monism

K .
Ul elast ng + KBa&:’ (479)

(B, is anharmonism constant) and defect-elastic contin-
uum interaction energy density

Upig = ~ ed”¢1§1 - edndlgll- (4.80)

Here &, is a self-consistent part of the deformation due
to the nonuniform defect concentration ny,. We take
into account also the possible spatially nonuniform
deformation due to the external forces &, (for example,
deformation due to initial dislocations).

The entropy density is given by the expression
§ =8, + §,, where

SI:k (ndo - ndt) In (V/Vo) + kndlln (V;/VD) 3

(4.81)

V is the crystal volume, V, is the volume of spatially
nonuniform phase, V, is the volume of space quanta-
tion. From Eq. (4.81) we have for the entropy

S, = —kngIn 8, (4.82)
where 8, = V/ V| is the inverse relative volume of the

inhomogeneous phase (in the case of periodic DD struc-
ture, for example, 8, = 2).
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Eqgs. (4.78 - 4.80) and (4.82) yield the expression for
the free energy. It is convenient to express it through the
variable ny,. For this aim one can use the equilibrium
equation for n,;, which in the considered bulk case is sim-
ilar to Eq. (4.57), where now ng = ny, + n1g, is the bulk con-
centration, dn, / d¢ = 0, the sign || is removed and 1, = o0
in accordance with the discussion of stationary (equilib-
rium) state in Sec. 4.3.2. Moreover, one should put
divU, =&,. Then from Eq. (4.57) one has

_ kTng

gl = 6;;;; = EdX, (4.83)
where we introduced the small parameter g, = kT / 0,;
X=ny, / nyis a dimensionless order parameter of phase
transition. Using now Eq. (4.83), we have for the free
energy density

_ sgnd
Fl——nquTInsl(i mgl)X
(4.84)

n
+Re (1- )X +KBEX".

der

Here the critical spatially-uniform defect concentration is

kT
Byey = K-

267"

With exceeding of ny, the phase transition to the state
with ny; # 0 occurs, At T'= const in Eq. (4.84) there are
two externally controlled parameters ny, and E.

The dependence of the free energy F, on the order
parameter in the absence of the external local deforma- -
tion (§; = 0) is shown in Fig. 19 at different values of -
control parameter ng. It is seen that at ng < ny, the
most probable value is ny, = 0, which corresponds to the :
spatially uniform phase. At ny, > ny,, the spatially non-
uniform metastable state with ny, > 0 is formed. The

(4.85)

F[\
(3.) nd>nc§cr
,;
!
7
F
! ’
b - :
0 ~<_ | ¥imax 4 x
-_‘ . 1 I
'-__ 1 rFa
-~ ”
b "7

Fig. 19. Dependence of the free energy F; on the defect
concentration x of inhomogeneous phase. Formation of
metastable state x,, in the absence of external deformation
(&)= 0) (a); the case £y # 0 (b).
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6rder parameter depends on the external parameter
according to the faw (ng / ng, — 1 <€ 1):

12
Ryp | Ny
ngs—(—-1 ,
Jed’ P

i.e., phase transition of the second kind takes place.
The height of the potential well in which a defect is

trapped is

%_I_(_("do

? 2 Mo
—~1) =107( - 1) eV,

: ar Mger Raer
‘ie., Wyis of the orderof 1 - 10 eV.
-~ This value may turn out to be larger then the height

of the potential barrier of the nonuniform phase forma-
tion W, (see Fig. 19)

Wy

Wy o= -24T— 1,
Ry

n this case the stable state is formed.

From Eq. (4.84) one can see that with the help of
external local deformation one can eliminate energy
barrier of DD structure formation. For this, in the case
- of vacancies (sgn d = —1) the compressive local defor-
“mation is needed (&' < 0) and in the case of interstitials
_ (sgn d = +1) — the dilatation deformation (&} > 0). The
magnitude of the deformation compensating the barrier
of inhomogeneous phase formation as. follows from
Eg. (4.84)is

. kT
ngf = mh’ 5,

., |& | ~ 10 - 107, In Fig. 19b is shown the behav-
Jdor of the free energy, with allowance for the external
. deformation, eliminating the barrier. In this case the
DD state is stable. From the above consideration it fol-
ows that DD structures, (especially localized DD
tructures) are preferentially formed in the vicinity of
nitia! inhomogeneities of the elastic continuum, for
mple in the vicinity of dislocations,

4.4. DDI and Subboundary Formation
in Laser-Induced Recrystallization of
Semiconductor-on-Insulator Films

- We now want to show that the theory of DDI in
Ims, developed in Sec. 4.2, with some modifications
an be applied for the problem of subboundary forma-
lon in laser recrystallization of semiconductor-on-

nsulator films.

4.4.1. Introduction

The problem of subboundary formation in laser
am recrystallization of amorphous and polycrystal-
- serniconductor films on insulators used in fabrica-
0 of integrated circuits is of great practical and
entific interest (see Refs. [11, 12]). In the process of

¢ melting recrystallization the molten zone of
dth  and length L, arising due to the action of a laser
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beam (or some other energy beam) moves along the
Si-film of thickness & with scanning velocity v (see
Fig. 20). After the passage of the molten zone the
monocrystalline seeds elongated in v-direction and
separated by the subboundaries are formed. The sub-
boundaries form quasiperiodic structure with period d
in the direction perpendicular to v. Experimental
investigations of this effect have revealed the follow-
ing main facts. The subboundaries consist of the arrays
of dislocations elongated parallel to v {84 - 86] (see
Fig. 20). The mean distance between the subbound-
aries d is proportional to 2 and for a regime of rather

high scanning velocity (v > 0.1 mm-s™!) the period d is

proportional to ./v, where v = |w] [84, 86]. The sur-
face relief of the recrystallized film with the subbound-
aries is periodically modulated in the direction
perpendicular to v with the period d [85, 93]. The sub-
boundary angular misalignment W is inversely propor-
tional to 4 [87]. The crystallization front in the film is
periodically faceted with the subboundaries emerging

from the interior corners of the interface (see Fig. 20)
{84, 88].

A number of models have been proposed to
explain the experimental facts [11, 12]. In our opin-
ion, however, there is no model which from the uni-
fied point of view is able to explain all the above-
mentioned facts yielding at the same time quantative
agreement with experiment, in particular the depen-
denciesd=d(v, i) and y ~ 1 /4.

In this section we consider a new DD mechanism of
subboundary formation in beam induced film recrystal-
lization [89, 90] on the basis of which the quantative
theory is developed. The theoretical results obtained
are in good agreement with the above experimental
results.

The considered DD mechanism consists in the
following. We assume that after the solidification of the
melt a large number of point defects with concentration
ny are trapped in the film [17, 18]. When defect concen-
tration ny exceeds a certain critical value n,, the spa-

_ tially uniform defect distribution becomes unstable and

the formation of one dimensional defect grating begins,
with simultaneous appearance of a film bending defor-
mation (Sec. 4.2). Defect clusters then undergo defor-
mationally induced collapse into dislocation loops

Radiation flux

Fig, 20. Geometry of quasiperiodic subboundaries formation
in the model of Si-film with Si0; cap at 7 > 0 (see the text),
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(see Secs. 5.1, 5.2), thus forming periodic dislocational
pileups, i.e., subboundaries.

4.4.2. Coupled System of Equations for Bending
Deformation and Defect Concentration

In practice the multilayered structures are usually
used (for example Si0,~Si-8i0,). To clarify the
basic features of DD mechanism we however use the
simplest model of a single Si-film, taking into
account the lateral stress ¢, due to the constrain,
imposed by the interface with the SiO,-film.

Let the z-axis be directed perpendicular to the film,
z = 0 be in the middle of the film thickness, x-axis be
directed perpendicular to vector v (Fig. 20). In the
geometry of Fig. 20 there exist large temperature gradi-
ents along the v-direction. The latter give rise to the
strong defect fluxes along this direction, hindering the
process of periodic defect distribution formation in the
v-direction. Due to this the defects grating is formed
only along the x-axis. We write an equation for n, in a
one-dimensional approximation, similar to Eq. (4.57)

and aznd nd andgd az .
Under bending deformation we have as usual
div U = —zvd*{/ax’. (4.87)

In the equation for bending coordinate (4.33) we
take into account the lateral stress ¢, occurring due to
the presence of an interface between the Si-film and
Si0,-films:

o’ N AN AN A (aC)“"
or 12 34 Pox 2094 dx 220
2 (4.88)
_% _{ (Vny), dz
ph 4%

We note that near the solid-liquid interface only
G, = O, exists while the stress component in the v-direc-
tion is negligible, because the solid can freely expand
into the melt.

4.4.3. Periodic DD Grating Formation

We suppose that due to the nonuniform distribution
of deformation (along the z-axis) in the solid Si-film in
Si0,-8i-8i0, sandwich structure, the nonuniform dis-
tribution of the defects is established along the z-axis,
so that ny(h /1 2) > ng(—h / 2) and for simplicity we
neglect ny—h/2) in comparison with ny(h/2) in the
right-hand side of Eq. (4.88) (see the discussion at the
end of this section). We represent the variables in the
form Ry = Ny + Hass C = CO + Q-l’ U= UO + Ul where Pans
Lo Uy are the solutions spatially uniform along the sur-
face and ny, = ny(h/2), {;, U, are spatially nonuniform
perturbations
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= ZCQ (1) exp (igx) +c.c.,
‘ (4.89)

ng, = anq(t) exp (igx) +c.c.
q

Then for ny,, {; we obtain from Eqgs. (4.86 - 4.88) the
following equations

i’fdl - d?j’idlﬂ_’_‘_g ndoethDdi):El’ (4.90)
ot ot T 2T 5yt
of 12 55 Poxt 2 9x Ox ph ’

(4.91)
We put o, = —Ony, assuming that the stress due to the
presence of defects (vacancies) exceeds the thermal
and Si~-SiQ, lattice mismatch stresses. Egs. (4.90) and
(4.91) are the closed system of equations describing the
spontaneous formation of DD (bending) structures in
the film.

4.4.4. Linear Regime of Instability

Putting in Eq. (4.89) {0 = exp(A), ng(®)
ngexp(Ar) and neglecting the nonlinear term in
Eq. (4.91) we obtain under the condition A? <
q*c*h? /1 12 for the growth rate A:

A= Ma) = (Ralod’/ (1 +104") ~Ded’ ~ 1),

(4.92)

‘where the control parameter R, and J, are as follows

Ry = 602vnyDy/pc’kTH:,

lh=pc’h/120,.

As it follows from Eq. (4.92) the dependency A = A(g)
can have a maximum A = A, when ¢ = g

12 2
A'max = [R;/Z“ (Dd/lﬁ) ] - 1/1:(1,
L e w (4.93)
Gmax ™ z" {(Rdlﬁ/Dd) - 1]
[\

From Eq. (4.93) one can see that A, > 0 if
w - 2
Ry>Ryy = [ (DS + el 4:94)

and g, is real if R, > D / I, Thus if Ry > Ry, (i.e., the
critical vacancy concentration is exceeded) the Fourier
amplitudes of the coupled grating of bending deforma--
tion and defect concentration begin to grow exponen-
tialty in time. The Fourier harmonic with g = ¢q,,,, has
the maximum growth rate A = A, and is dominant in
the excitation spectrum. In the following we confine
ourselves to consideration of the grating with A = A_,.
and 4 = 4max-
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4.4.5. Nonlinear Stationary Regime

' The stabilization of the instability occurs due to the
onlinearity of bending deformation. In stationary

ime (Ong / 9t = 0, 8%, / 9 = 0) from Eqs. (4.90),
4.91), and (4.89) where L () = §, = const, ng(5) =
4 = const and g =g, We obtain the expression for the
- stationary Fourier amplitude of the film bending defor-
ation static wave

12

LA D N (4.95)
* J6 D+ 1/, d '

s one can see from the comparison of Eqs. (4.92) and

4.95) the real value of £ appears under the fulfillment

“of the critical condition (4.94). For the amplitude of the
‘defect concentration wave one has

nag = Reph'q'C, /120, (D, q" +17) .
‘Close to instability threshold

: Rdcr < N/E( ’VRdcr+ 2/'\/’{1}

der the condition |84} / kT # 1 from Egs. (4.89) and
.96} (g = gmax) ONE Obtains for the deformation

(4.96)

R ! /4
¢ =2 (RaeTq )
- )
B, +h

X [(Ry/Ryr) ' - (4.97)

‘The formation of bending deformation grating (4.97)
curs as a phase transition when the concentration of
defects exceeds the critical value ny,, following from
(4.94) (184 /1 kT > 1)

Ny>Ng = P kTh'/603vD,T,. (4.98)

ell above the threshold when Ry > Ry (ng > ny.)
d Dyg,. = 171, from Egs. (4.95) and (4.89) we find
the deformation

¢, = -2_’61 (184 72k " c0s ganx -

J

Similarly from Egs. (4.96), (4.99), and (4.89) for the
-oncentration grating one has

n, = sgnd 4Jgn§0a3 (|9, v/2kT) " cos GrasX -

(4.100)

s seen from Eqs. (4.99) and (4.93) the period of DD
mg is

(4.99)

A, =2R/q,4
o b (4101)
mh(12a'ng4)  [(|6/2kT) “ =11 .

hus the periodic coupled static DD wave is formed in
e film due to the DD instability with defects being
if-trapped in potential wells,
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4.4.6. Periodic Subboundary Formation. Comparison
of Theoretical and Experimental Results

In Sec. 5 it is shown that the defect clusters are unsta-
ble with respect to transition to the localized state with
formation of dislocation loops (Sec. 5.2). If these pro-
cesses of spontaneous generation of dislocations take
place in spatially periodic defect clusters formed due to
DD instability described by Eq. (4.100), then as a result
the periodic arrays of dislocations (i.e., subboundaries)
are formed with period given by Eq. (4.101),

Thus we have obtained the periodic subboundaries
with the same period as the undulation of the surface
(Fig. 20), This picture corresponds to the experimental
data {85]. As follows from Eq. (4.100) the subbound-
aries (which correspond to maxima of n,,(x)) are located
in the case of vacancies in the valley of the surface relief
(min {,(x)) (Fig. 20), i.e., in the compressed regions. It
is known that in the compressed Si the melting temper-
ature is decreased (see Sec. 5.3.2 and Ref. [81]). Due to
this the crystallization front on the surface of the film
must be faceted with interior corner locations coincid-
ing with the locations of subboundaries (Fig. 20), which
in fact is experimentally observed [91].

Let us discuss the formula for the period of sub-
boundaries (4.101) in the case of vacancy mechanism.
To estimate n,,, we note that in the experimental con-
ditions the melt duration at a given point is equal to
T =1/ v (we assume that local melting and solidifica-
tion occur instantly with the onset and the end of illu-
mination). During this time interval 1 the
concentration of generated vacancies reaches the
value n,, = g, = gl / v, where g, = g (T) is vacancy
generation rate in the melt (see the discussion at the
end of the section). Taking the above-obtained expres-
sion for n,, into account we obtain from Eq. (4.101):

A, = const (v) Vh, (4.102)
where
2n 3, -2 ™ -12
const = —= (g, a’l) [(8,v/2kTN"" -1}
JE 19y

and for the values of v under consideration 07’/ dv=0
[92].

Thus the DD mechanism explains two basic experi-
mental dependencies of the distance between the sub-
boundaries A, ., ~ A and A, ., ~ Jv [84, 86]. Now we
show that Eq. (4.102) yields also quantative agree-
ment with experimental results [84, 86]. According
to Eq. (4.102) for A = 5 x 10 cm we obtain the

dependency A, = 3 x 10-%./v, where [v] = mm-s!
{84]. For T'~14x10°K, 6,=Ka*~ 10" Erg (K~5 %
10" Ergem’®, n7l = 6 ~ 2 % 10 cn®), using v = v,,, =
0.1 mm-s™, /=1, =1 mmin Eq. (4.102) we estimate the
vacancy generation rate as g, =2 X 10%cm 3571, At
these values of parameters the estimated value of n 4 ~
2x10%cm3and n/no=2.5x 10* =nv/ g I, and exper-

imental degendency [84] is well reproduced. According
to Eq. (4.98)
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Ry = (KT110,)(1 1 6va®X(D, / D),
if t=Hh?/ D,, where D, is the coefficient of diffusion along
the z-axis. For D, / D, ~ 10 we have 7, ~ 10 cm and
the critical condition (4.98) is fulfilled. One can see from
Eq. (4.99) that

Y = 200/0x!, 2 = CONSLG,, ~ /A,

Such dependency was found experimentally in Ref. [87].

The important question pertaining to the DD mech-
anism of subboundary formation considered here is:
what is the nature of vacancy generation in Si melt with
the assumed generation rate g, = g (T)?

We propose here the following mechanism of
vacancy generation in the 8iO,—S8i~810, structure.

1t is known that very intensive dissolution of oxygen
from the SiO, interface into the Si melt occurs during
the melt duration. In the process of Si melt solidifica-
tion, oxygen atoms move back to interface forming
Si0,, leaving a vacancy in the film. Thus, the situation
is similar to the pump of vacancies in laser-induced oxi-
dizing of Si surface in air (see Ref. [16] and Sec. 4).

Assume that the concentration of vacancies trapped
in the solidified melt is proportional to the concentra-
tion of oxygen atoms dissolved during the melt dura-
tion I / v. Then the generation rate g, = g (7) is in fact
the dissolution rate of oxygen during the melt duration.
The deep dips in the concentration distribution of oxy-
gen trapped in solidified Si film at the SiO,~Si interface
[93] seem to corroborate this hypothesis. From this
point of view the nature of the interface in SOI struc-
tures is of primary importance for the problem of sub-
boundary formation in zone melting recrystallization.

Another important aspect of influence of interfaces
is connected with the symmetry of the SOI structure.
We considered asymmetrical binary structure 8i0,~Si,
and assuming the interface defect generation mecha-
nism, postulated asymmetry of vacancy distribution
along the z-axis. _

As a result we obtained a bending DD grating with
period d proportional to the thickness of the film 4. In the
sandwich SOI structure Si0,—Si-Si0, or in multilayer
structure the symmetry of vacancy distribution along the
z-axis can also be violated due to asymmetry of thermal
conductivity conditions at two opposite interfaces of the
Si-film with the SiO,. In this case the bending DDI still
takes place with the period of DD grating proportional to
the film thickness. But in those cases where the symme-
try of vacancy concentration is restored, bending defor-
mation is impossible and is replaced by the longitudinal
deformation of the film with symmetrical undufations of
the opposite surfaces of the Si-film, the period of which
(and thus that of subboundaries) is independent of the
film thickness. The experimental data of Ref. [93] corre-
spond to this picture.

Thus the DD mechanism of subboundary formation
in beam recrystallization of Si-on-insulator film, devel-
oped in this section (see also Refs. [89, 90]) is able
under reasonable assumptions to explain basic experi-
mental results. From the viewpoint of DD mechanism
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the subboundaries are formed as a result of DD instabil
ity and phase transition of the second kind unde
exceeding of the critical concentration of point defects
(vacancies) trapped in the Si-film during rapid solidifi
cation of the melt. Further theoretical studies of thi
problem, in particular the development of the theory o
DD instability with longitudinal deformation of th
film, are urgently required.

5. THRESHOLD EXTENDED DEFECT
FORMATION IN SOLIDS

In Secs. 3 and 4 we studied formation of the periodic: -
point defect structures on the surfaces and in films
Now we want to show that the same DD mechanism:
which are effective in formation of periodic defect
deformational structures in systems with boundaries
lead to the formation of localized DD structures in the .
bulk, ie., extended defects: voids and dislocation -
loops.

It is well known that under the action of external
energy fluxes a large number of voids and dislocation :
loops are formed in solids. Thus, intense generation of -
voids takes place after ion implantation [21, 94 - 96],
irradiation with high energy particles [20] and laser :
irradiation [97]. A common feature of all these cases is
the generation of a large number of nonequilibrium
vacancies. The cause of the void formation is conden- -
sation of these defects into clusters which are embry
onic voids. The classical theory of the voids generatio
has a very limited applicability in the above-mentione:
cases due to the very high vacancy concentrations an
nonequilibrium conditions of their generation. More
over, the sharp threshold character of the void forma
tion observed in experiments [98, 99] cannot
explained from the classical (thermodynamic) point of
view. .

In Secs. 5.1 and 5.2 vacancy-strain (VS) mechanis
of the nonequilibrium threshold formation of voids an
dislocation loops in solids is considered. The physic.
essence of it consists in the following. The extern
action (irradiation, injection, implantation, etc.) create
large densities of nonequilibrium vacancies in solids.
fluctuational increase of the vacancy field causes aloc
nonuniform compression of the medium. Due to this, 1
accordance with the model of rigid inclusions [30, 31
there appears a force acting on the elastic continuum
This force causes the appearance of the vacancy flu
directed into the compressed region, which leads to th
positive feedback and VS instability developme
when a certain critical value of the vacancy concentr
tion n, is exceeded. The instability is stabilized by th
nonlinearity of the elastic continuum. As a resu
vacancies accumulate in the compressed region create
by themselves, in this way forming a vacancy cluste
Due to the deformational energy barriers (see Sec. 5.
the diffusion of vacancies out of the cluster is strong
suppressed. The threshold vacancy concentration pr
dicted by the proposed theory (n,. = 10" cm™3) is
agreement with the experimental values obtained in th
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investigation of threshold void formation during ion
implantation [99].

“ In Sec. 5.1 we consider the mechanism of cluster
formation, using the ad hoc assumption about the char-
acter of medium nonlinearity, taking into account only
the cubic strain term. This simplification enables one
to develop a Landau-type theory of cluster formation
as a phase transition of the second kind and obtain an
analytical expression for the number of vacancies con-
densing into a cluster. In Sec. 5.2 we use the empirical
law for the dependence of pressure in solids on strain,
_taking into account an infinite series of powers of the
- medium strain. The effective nonlinear diffusion equa-
tion governing the process of cluster formation is thus
derived and is solved analytically, yielding expres-
sions describing the shape of the cluster and the strain
nside it. The same mechanisms as those considered in
Secs. 5.1 and 5.2 can be used also for the description
of other point defect (interstitial or doping atom)
clustering.

- The cluster of point defects is unstable with respect
o formation of voids or dislocation loops. Depending
on the number of vacancies in the cluster it may assume
either a spherical (in isotropic medium approximation)
hape (void) or a disk shape of monolayer thickness,
.e., a dislocation loop. In Sec. 5.2 we study the condi-
tions of either voids or dislocation loop formation from
_the point defect clusters depending on temperature and
_ the size of clusters.

It is usually accepted that the main cause of dislo-
‘ation generation in crystals under the action of laser
ight is shear stress generation due to nonuniform heat-
ng, similar to generation due to mechanical stress
100]. In accordance with this point of view, disloca-
ions cannot be generated in the case of uniform laser
irradiation. The strain-induced mechanism of laser-
nduced generation of dislocations due to spontaneous
ndensation of nonequilibrium vacancies (or intersti-
Is), pumped by laser radiation, considered here is
 connected with the presence of laser-induced shear
esses and must take place also in the case of uniform
mination. The theory developed here on the basis of
-mechanism enables one to estimate the radius of
enerated dislocation loops, their number density and
he threshold value of vacancy concentration
Sec. 5.1).

In Sec. 53.1 we apply the concept of threshold
Xtended defect formation for developing the theory of
radation of injection lasers. It is shown in Sec. 5.3.2
t this concept enables one also to draw an interpreta-
1 of the experimentally observed effect of anisotropic
lting of semiconductor surfaces under the action of
Cf radiation with pulse duration 1, =1 jis - 1 s (see also
. 43.2). In Sec. 6 the mechanism of cumulative
sive damage of semiconductors by a train of sub-
cshold laser pulses is developed on the basis of the
chanism of threshold condensation of the point
ects’ feld,
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5.1. Threshold Laser Pumping of Point
Defect Clusters [101, 102)]

The equation for the vacancy concentration n is as
follows:

anV_D A 1 G DVBVd. d&
3"; - v nv‘“::wnv"‘ V__,EI—'— iv (nvgra ),

(5.1)
G, is the rate of vacancy generation by an external

source. The equation for the deformation is given by
(& =div Uy

o* -

5"5 = c{AE +¢;B,AE’ ~ 8 p ' An,,

t

where B, is the elastic continuum anharmonicity con-
stant, 8, = —~Ka®. Contrary to Secs. 2 and 4, we do not
impose here any boundary conditions on n, and the vec-
tor U,

The closed system of Egs. (5.1) and (5.2) has the
stationary spatially uniform solution

no = G, & =dvU, = 0.

First, let us investigate the stability of this solution.
€ and n, are represented in the form

(5.2)

n, = nv0+nv1’ invli <nvO’

n, = N"’Zquxp (iqr +Ap), (5.3)
q

g, = AFEZE,qexp (iqr+ AD), (5.4)
q

where N is the number of atoms in a crystal.

Substituting Eqs. (5.3) and (5.4) into Egs. (5.1) and
(5.2) and neglecting nonlinear terms with respect to
perturbations, we obtain the following expression for
the growth rate at the threshold of instability

A= -D,(1-n,02/pcikD g’ ~1;". (5.5

If the vacancy concentration exceeds the critical
value:

N>Ry = pe,kT/ 62, (3.52)
ie,ifG, > G, = pcfkT/ zvef,, the effective diffusion
coefficient becomes negative, and any fluctuation of the
vacancy density field grows and becomes more sharp.
For T= 10* K, n,, = 1073, g3 ~ 10" cm™3.

Stabilization of the VS-instability takes place due to
the elastic continuum anharmonicity. In a steady state,
neglecting vacancy sink and putting 1™ = 0 (for justifi-
cation of this assumption see below) from Egs. (5.1)
and (5.2) we obtain:

ny = -n,(0,/kNE,, (5.6)

G.7

A[(l - ::::)%ﬁ ﬂasj} = 0.
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In the approximation of independent modes, substi-
tuting Eq. (5.4), where A = 0, into Eq. (5.7) we have

(nvo/nvcr" 1) E.iq = Bagqlgq]z- (5.8)
Now, one can express &, in terms of §,
E,=N"Y E exp (igr) = (V/8TN)
q (5.9)

x [ & exp (iqr) dy,

where V is the volume of the crystal.

Substituting the expression for £, derived from
Eq. (5.8) in Eq. (5.9), we obtain:

-1 """'1]&8 5.10
&;-“Eﬁ(m“) (r), (5.10)

where n=a.

According to Eq. (5.6), the inhomogeneous vacancy
field is connected with the strain field:

12

)
Ry = nVOl VE (fﬂ)‘_l) 6(1-)'

nkTﬁ:Q Ryer

Thus, we obtained the 8-like distribution, which corre-
sponds to formation of the vacancy cluster. As one can
see from Egs. (5.10) and (5.11) the process of cluster
formation occurs as a phase transition of the second
kind with the spatially homogeneous vacancy concen-
tration 7., being the contro} parameter and inhomoge-
neous concentration n,, being the order parameter.

A vacancy cluster formed as a result of the VS-insta-
bility can assume a spherical shape or collapse to a disk
of monolayer thickness, i.e., form a void or dislocation
loop. To show this, one should use the approach
enabling one to obtain the shape and finite size of a
vacancy cluster. Such an approach is developed in the
next section.

(5.11)

5.2. Strain and Shape of Metastable Point Defect
Cluster. Formation of Voids and Dislocation
Loops [102]

Let us consider in more detail the vacancy clustering
effect and the resulting formation of voids and disloca-
tion loops. The vacancy field is described by the diffu-
sion equation with the strain-induced vacancy drift. In
approximation of an isotropic medium we have:

on,/ot = VD, Vn,— (D,/kD)n F], (3.12)
where F, = ~V(oU / an,) is a force acting upon one

vacancy, U is the elastic energy of a unit volume of the
medium with vacancies: ‘

£ g
~[Pdg = —[{exp 1-B (& +Qn,)] ~ 1} o'dE
0 0

(5.13)

U=

EMEL'YANOV

Here Pis the pressure, {3 = ¢®. Due to the high pressures

in the core of a vacancy cluster it is necessary to take -
into account nonlinear dependence of pressure on com- -
pression. Here we use the following empirical depen- -
dence [103}:

p&) = o (exp (-E) - 1), (5.14)
where o and B are determined by relations B/ .= K,
1+ B = —K, where K is the bulk modules pressure
derivative at zero pressure [103]. When compression is
small this equation transforms into the ordinary equa- .
tion of the linear theory of elasticity. Moreover, in
Eq. (5.13) we take into account that the vacancy
induced strain is
g, = —Qn,. (5.15)

From Egs. (5.12) and (5.13) we obtain the following
nonlinear equation for vacancy concentration

an,/dt =V [D,Vn,~ (D,/kT)n,V { (Q/)
xexp (B (E+Qn,)) (1—-exp (BE)) } 1.

In the same way, we obtain an equation for the medium
strain:

pdt/af = VA [ (1/a)yexp (-B(E+Qn,))].
(5.17

We introduce here the assumption of bulk modules
dependence on vacancy concentration:

(5.16)

K =K,( —f;i) : (5.18)
n is the number of atoms per unit volume. The depen-
dence (5.18) is the simplest analytic model of lattice
softening at large vacancy concentrations due to which
the strain collapse stabilization occurs.

Further on we can use Eq. (5.17) in the adiabatic
approximation, putting 9% / %tz = 0, because the time
of static strain field formation is far less then the char-
acteristic diffusion time. In this case, substituting:
Eq. (5.17) into Eq. (5.16), after simple transformations
we obtain the closed equation for dimensionless con-
centration of vacancies

ou/dt=VI[D(u)Vul,

t=tD.n?, V= (3/3m,09/9, 3/9K),
(5.19)

u=n,/n

cr?

V3 :
where N=xn_, %= yni‘:3 , X =zn, are coordi-
nates, and the critical vacancy concentration n,
kT ! KQ? coincides, by the order of magnitude, with

Eq. (5.5a), because K = pcl2 —4u/3.

The dimensionless diffusion coefficient D(u) =

1 - [u(1 — eu)lexp(—Peu).
Eq. (5.19) is the nonlinear diffusion equation with
the coefficient D(u) depending on vacancy concentra-
tion. This dependence is shown in Fig. 21. When
vacancy concentration exceeds the value n, =~ n, the
diffusivity becomes negative, and any vacancy density
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Fig. 21. Effective diffusion coefficient of a vacancy D in
" dependence on the vacancy concentration u=n, [ n,, (in
- accordance with Eq. (5.19), B= 10, £ = 10, D(u)) =
D(uz) = 0, uy = LO0I, 1y = 6776,

fluctuation begins to become sharper in space. Thus, as

e critical concentration is exceeded, the vacancy field
collapses into clusters whose shape and size may be
determined from the static solution of Eq. (5.19). Static
solution of Eq. (5.19) is obtained from the following
nonlinear equation:

Au = —[dIn|D (u)|/dul (Vu)>. (5.20)

Here we restrict ourselves to consideration of the one-
imensional case, which corresponds to the strongly
isotropic medium where a particular direction (for
example, x) exists, along which the diffusion preferen-
tially occurs. In this case in Eq. (5.20)

v am & n®

d it may be solved analytically. In order to do this,
troduce a new variable v= du/ dn. Then, eliminating
in Eq. (5.20), we obtain:

dv/v = —[din|D (u)!/du] du. (5.21)

€ variables are separated and the solution has the
rm:

v=C/ D),
ere C is an arbitrary constant. We shall obtain the

solution of the one-dimensional Eq. (5.20) from this
uation, using the above-introduced definition of v:

n = C[Dwdu+c,. 5.22)

€ constants in this expression may be determined
' the physical conditions: C| is the shift along the
rdinate axis (space position of the whole cluster),
 C determines the number of vacancies in a cluster
d should be chosen so that a cluster size obtained
Eq. (5.22) corresponds to the real void sizes. For
tance, for voids with size 200 A observed in
[104] C ~ 105, In a general case the size of a void
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will be determined by the number of vacancies in local
fluctuation, and therefore the average radius of origi-
nating voids is determined by the probability of such
fluctuation. It will require further investigation to deter-
mine exactly the size of the originating voids, depend-
ing on driving conditions.

The vacancy concentration dependence on the coor
dinate, given by Eq. (5.22) is shown in Fig. 22. It has a
peak in the middle and extremely steep edges. Based on
these results, one can expect that in the three-dimen-
sional case a vacancy cluster formed in such a way
would have a core with extremely large vacancy con-
centration and sharp boundaries. As one can see from
Eq. (5.15), a static localized compressive strain is cou-
pled with the cluster, shown in Fig. 23. Thus, vacancies
are trapped inside the self-consistent strain well.

Due to the high point defect concentration in the
region of a cluster it may serve as a seed for a void or a
dislocation loop. In the idealized one-dimensional case
considered above we obtained a vacancy cluster in the
form of a plane layer. In a real anisotropic medium
(crystal) one should expect the formation of crystallo-
graphically faceted or disk-shaped vacancy clusters.
These clusters are unstable under certain conditions with
respect to collapse into voids or disks of monoatomic
thickness (i.e., the dislocation loops [105]), leading to
minimization of their free surface. Consequently, either
voids or dislocation loops are formed, depending on rel-
ative values of energies of their formation. Dislocation
loops are formed under the following condition [17]:

L
3H

b7 [In (r/a) +Z] +nr'y
s (5.23)
—2m (r/a) a kT < 4x (%rza) Yops

-0

104_
n,/ng
103

102 ]

10 A

1

1 T T

~20 ~-15-10 =05 00 05 10 15
x (1075 cm)

Fig. 22. Shape of vacancy cluster u = u(x) in the one-dimen-
sional case in accordance with the formula (following from
Eq. (5.22)): 1) =2#{u—uy+ (1/ Be)exp(~Bewy) [(1 -2/ B) X
{(exp(~Pe(u ~ug)) = Dlut 11 Be) + u~up}| - £{ (exp(—Pe x
(6~ wy)) = D+ u— ul) 1}, where x = Cn, 75, € =
15X 105 B=10, e= 10"




440

0.05 -

0.00

-0.05

B _0104
5
A

-0.15 4

-{.20 4

~0.25 4

~0.30 e T e
20 -15 ~1.0 =05 00 05 10 15
x (1078 cm)

Fig. 23. Deformation well, coupled with vacancy cluster
{in accordance with Eq. (5.15)). The values of parameters
are the same as in Fig. 22.

where b is a Burgess vector, equal in this particular case
to the interatomic distance a, r is the loop radius, o is

the Poisson ratio, 1 is the shear modulus, ¥' is the ..

energy of the stacking fault created by the loop, z=2 is
a constant, which takes into account the strain energy in
the core of the dislocation, o = 3 is the coefficient
which takes into account a change of the entropy of a
crystal per atom in the dislocation core, and 7, is the
specific surface free energy of the cluster.

The expression in the left-hand side of Eq. (5.23)
is the free energy of the dislocation loop formed from
the vacancy disk of monoatomic thickness. In the
right-hand side of Eq. (5.23) there appears the surface
energy of a spherical cluster, which has the same vol-
ume as the disk-shaped cluster.

Taking y' = 10 - 102 erg-cm?, ¥,y = 107 - 10P erg-cm™?,
W= 10" erg-cm3, b =5 x 10 cm, T= 10° K, we obtain
that Eq. (5.23) is fulfilled (i.e., dislocations are formed)
if the dislocation loop radiusis » < 104 ~ 5 X 10”7 cm
(see Fig. 24).

The theory developed in Sec. 5.1 enables one to esti-
mate the radius of the generated dislocation loops. The
number of vacancies accurulated in the cluster,
according to Eq. (5.11) is equal to

12
-1)

nvcr )

nvﬁ‘ Bv[
nkTﬁza

If these vacancies form a disk of monoatomic thick-
ness (dislocation loop) its radius is

_ nvOJev'
B a[ nnkT }
(5.25)

In a wide region of values of §, and n.q, for the dis-
location loop radius we have rg, ~ 10a ~ 5% 1077 cm.

Ry

( (5.24)

N, = Inv.la’r =

12 172 }_ n /4
(P _p

N,
Fas = a( ")
7 5;/4 Boer

EMEL’YANOV

Thus, the mechanism considered here predicts
vacancy condensation into clusters when the threshold
concentration 7., is exceeded, and formation, mainly,
of dislocation loops, the number density of which can
be estimated as n.,o/ N, ~ 1017 cm™,

Apart from laser irradiation, a dense vacancy field
can be formed by other types of radiation. For instance,
irradiation with high-energy particles (with ion, elec-
tron or neutron beams) must lead to generation of a
large number of point defects, which can condense into
clusters and eventually form the dislocation loops. Note
in this connection that in Ref. [106] the formation of a
dense net of small dislocation loops with an average
loop radius of about 3 nm was observed in neutron irra- -
diated copper species. It is in good agreement with the
estimates of dislocation loop sizes obtained in Sec. 5.1.
Additionally, the model of dislocation formation under
the influence of external radiation presented here pre-
dicts preferential generation of dislocations in the
deformed regions of the medium, for instance, near the
initial dislocations (see the general discussion of the -
DD structure formation in Sec. 4.3.4). This in fact was -
observed in Refs. [105, 106].

Note that the mechanism of defect cluster formation
considered here is similar to the polaron formation in
ion crystals with the autolocalization of the electron in
the deformed region of the crystal lattice, created by the
same electron [137].

According to the mechanism considered here,
powerful laser radiation (along with other types o
radiation) can pump a dense field of dislocations in &
solid. Smali dislocation loops under sufficiently long
(>10-? s) irradiation grow due to trapping of poin
defects. In its turn, the large density dislocation field
is unstable: when a certain critical density of disloca
tions is exceeded a dislocation-strain instability (sim
ilar to VD-instability described here) develops which
leads to the periodic dislocation structure formation

K
1600
dislocation
1
1200 o0ps
voids
800 +
400 -
i | 1
4.6 48 50 rla

Fig. 24. Diagram of void dislocation loops creation in
accordance with Eq. (5.23).
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o types of periodic dislocation structures were
observed experimentally: interplane structures (in the
form of ideally straight lines, reflecting the crystal
symmetry of the surface (see Sec. 7.2) and in-plane
structures (or vein structures) (see Sec. 7.1).

. The models of strain-diffusion instabilities describ-
ing dislocation self-organization by climbing and glid-
ing were developed to explain the formation of these
o qualitatively different types of dislocation struc-
tures (see Secs. 7.1 and 7.2).

¢ The above mechanism of vacancy cluster formation
may be responsible for the phenomena of degradation
of optoelectronics devices (Sec. 5.3.1) and anisotropic
~melting of semiconductors by laser irradiation
(Secs. 5.3.2and 4.3.1).

The effect considered is valid also for other types of
int defects and dopants that are described by the
odel of rigid inclusions. For example, it may describe
the interstitial clustering, leading to the dislocation loop
formation, and clustering of impurities. The duration of
these processes ¢ may be estimated as ¢ ~ d? / Dy;. Here
d*is the distance between separated clusters and D is
the effective diffusivity. Taking into account a strong

ain-induced increase of the effective diffusivity
modules (see Fig. 21) we obtain for the above-described
ase of vacancies that ¢ ~ 107 s. We believe here that the
vacancy diffusion coefficient is about 10~ cm?s~! at
quilibrium vacancy concentration.

From the point of view of free energy of the DD
-structures (Sec. 4.3.5), a point defect cluster is a local
_ metastable self-consistent state of coupled point defects
ind strain fields. :

[

[ N e L T

5.3. Applications of the Concept of
Diffusional-Deformational Threshold
Condensation of Point Defects

3.3.1. Mechanism of Threshold Degradation of
Optoelectronic and Light Emitting Devices

)

Degradation phenomena in optoelectronic devices
e of great importance from the practical point of view
2, 108]. In this section we want to show that the effect
f threshold formation of the DD structures (clusters,
ds, and dislocation loops), together with the mecha-
usm of recombination-stimulated point defect genera-
10n can explain the experimental results obtained in
udies of degradation phenomena. We do so with an
xample of degradation of injection lasers.

Investigation of operation of the heterolasers has
ealed two most typical stages of their degradation:
al gradual degradation, logarithmically depending
0 time, and after a certain moment, rapid (“cata-
rophic™) degradation. The following empirical equa-
8 established experimentally for the injection laser

E}l}n)}e T (the gradual degradation stage duration

T = Aj'exp (E,/kT—vly), (5.26)
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where ¥, Ay, E, are the empirical constants, Tis the tem-
perature, J, is the driving current. The physical mecha-
nism leading to such behavior, and in particular to
Eq. (5.26) has not yet been clarified.

In this section the microscopic mechanism of the
semiconductor lasers’ degradation is proposed. Based
on it, the existence of two the above-mentioned degra-
dation stages is explained, and in addition a derivation
of Eq. (5.26) is performed. Good agreement with the
experimental data is obtained.

The physical essence of the mechanism being pro-
posed consists in the following [102]. Creation of non-
equilibrium electron-hole pairs by the external action
(in this case, by an injection) leads to the recombina-
tion-enhanced point defect generation (see for exam-
ple Ref. [110] and Sec. 3). Gradual accumulation of
point defects during the laser operation corresponds to
the gradual degradation stage. When concentration of
point defects exceeds a critical value n,, the threshold
generation of extended defects (dislocations) begins
(Secs. 5.1 and 5.2).

It is this intense threshold dislocation generation
due to the above-described vacancy-strain (VS) (or
interstitial-strain) mechanism that leads to the rapid
degradation of a laser diode (at the rapid degradation
stage a dense dislocation net formation was observed
experimentally [111]).

Let us ptoceed to the derivation of Eq. (5.26) for
gradual stage duration T, which in accordance with the
above-described VS-mechanism, is equal to the time
interval in which the point defect concentration n,
reaches the critical value n,,, i.e., :

Py = G,T, (5.27)

We use the following explicit expression, derived in the
theory of recombination-enhanced defect creation
[110] for defect generation rate G, in Eq. (5.27):

p

Gy = 4(m T NNV (D) (ddi /g o oo

X (E.~¢,) exp [~ (E;~¢_) /kT],

where N, N, are the densities of excitons created by
injection, and of atoms in a crystal, respectively; V, is
the mean volume of interaction between a lattice atom
and an exciton; d, d, are the dipole moment of an exci-
ton and of an atom, respectively; €, is the dielectric
permeability of the medium,; r,, is the average radius
of the interaction between an atom and an exciton;
Ey is the energy of a point defect formation; and &,, is
the exciton energy. Exciton energy in the case of elec-
tron injection into the conduction band may be esti-
mated as g, = E, + eV} where ¢ is the electron charge,
Vis the electric potential on the p-n junction, E,is the
band gap.

From Egs. (5.27) and (5.28) we obtain the micro-
scopic expression for 1

T = n,,/G, = Aj'exp [ (E;—~g) /kT], (5.29)
where
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Ay = (KQA/KT) 4 (1) V2 (NN, Vo B (kD))
, (5.30)
X (dd,/e,re) (Er—e,) "

If we assume that the operating point lies on an
approximately linear part of the current-voltage charac-
teristic (CVC) of a laser diode, then V= [,/ 5, where s
is the CVC steepness. Then Eq. (5.29) may be
expressed exactly in the form of Eq. (5.26):

T = Ay'exp (E,/kT—vly), (5.31)

where
Y = e/skT, (5.32)
E, = E;~E,. (5.33)

Let us show now that the values of microscopic expres-
sions in Egs. (5.31 - 5.33) are in agreement with empir-
ical values in Eq. (5.26) obtained in Ref. [109].

When s ~ 2% 10? mA-V-1, T~ 10* K from Eq. (5.32)
we have ¥ ~ 107! mA™1, and when K ~ 10 erg-cm™?,
N, ~ 10% cm™, N,, ~ 10¥ cm™, v, ~ 10718 cm?® [110],
g~ 10, 72, ~ 10718 cm?, d ~ 1078 esu, d, ~ 10" esu
[110], E, ~ 1 eV, from Eq. (5.30) we obtain Ay~ 10°h.
These numerical estimates of 7, Ay, E, are close to the
empirical values [109].

Thus, the microscopic degradation mechanism of
laser diodes which consists in recombination-enhanced
point defect (for instance, vacancy and interstitial) gen-
eration and their spontaneous condensation into dislo-
cation loops under exceeding of the critical defect
concentration n,,, yields the microscopic expression for
gradual degradation stage duration T which is in good
qualitative and quantitative agreement with the empiri-
cal formula. A similar expression is obtained in the case
of excitation of electron-hole pairs instead of excitons.

5.3.2. Nonuniform Light-Induced Melting
of Semiconductor Surface

One of the possible manifestations of deformation-
induced condensation of defects in clusters and thresh-
old formation of extended defects, considered in
Secs. 5.1 and 5.2, is the effect of anisotropic melting of
the semiconductor surface under the action of light
[112 - 114, 138]. This effect consists in appearance of
local melted regions on the surface of Si [114] or Ge
[138] under the action of optical radiation (CO, and
Nd : YAG lasers [138], Xe lamps [114}). The form of
these regions (triangles, squares) depends on the crys-
tallographic symmetry of the surface, while their
dimensions and number density depend on the pulse
duration and light intensity [114]. This effect takes
place under both uniform and nonuniform illumina-
tion, so that it cannot be related to the generation of
dislocations due to the shear stresses. It has threshold
character and occurs as the threshold energy density
10-10? J.em™ is exceeded, Moreover, the number
density of the locally melted regions increases with the

initial defectivity of the crystal (for example, after ion .
implantation). '

From the viewpoint of the DDI theory of defect-
clustering, exposed in Secs. 5.1 and 5.2, the mechanism
of the effect of nonuniform melting can be developed
along the same lines as the theory of the threshold deg- -
radation of optoelectronic devices (Sec. 5.3.1).

Laser radiation generates the field of point defect
concentration in the subsurface layer of a semiconduc-
tor with the generation rate depending on intensity and -
wavelength of the radiation. After a certain irradiation -
time, when concentration of point defects reaches the .
threshold value, the process of defect clustering begins, -
according to the DD-mechanism. Due to high compres-
sive strain inside the vacancy cluster (see Fig. 23) the
melting temperature inside the cluster on the Si surface -
is lowered (by approximately 100 X at P ~ 10 kbar
[81]). Accordingly, the cluster regions are melted prior
to the melting of other regions. Thus, the melting
threshold time (at a given radiation intensity) is equal to’
the time of reaching the critical point defect concentra-
tion,

Note that the condensation of light-generated point
defects occurs preferentially near the initial inhomoge- .
neities of the crystal dopants, initial dislocations and
other defects, which enhances either the point defect
generation rate (Sec. 3.1), or the probability of defect:
cluster formation (Sec. 4.3.5), or favorably influences
both these processes. This fact explains the experimen-
tal fact of increase of the density of locally melted:
regions with the increase of the initial defectivity of the.
surface (for example due to ion implantation). In the
case of periodic point defect surface structure forma-:
tion the nonuniform melting of the surface occurs
accordingly periodically (see Sec. 4.3.1). .

We can estimate the generation rate necessary for.
reaching the threshold concentration n,. ~ 10* em2.s7t
using n., = G,t and the experimental value of the.
threshold irradiation time T (at / = const). For Xe-lamp:
7~ 1sand G, = 10" cm™3s7, for Nd : YAG laser.
T~3%107%sand G, ~ 10* em™.57L, :

5.3.3. Cumulative Explosive Damage
of Semiconductors by Train of Subthreshold
Laser Pulses

We proceed now to consideration of multishot las
damage effect from the viewpoint of the concept of
threshold condensation of point defects.

Multishot laser damage (MLD) of optical compo-
nents is a very important problem in laser technology.
The MLD effect is a universal phenomenon, observed.
in metals, semiconductors and transparent dielectrics.
Understanding of thé nature of small accumulative
structural changes, leading to sudden catastrophic dam-
age induced by multiple irradiation of material by rela-
tively weak ultrashort laser pulses is the prerequisite for
successfully solving this problem. At present vast
experimental data have been obtained regarding MLD
in different materials.
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Fig. 25. Dependence of critical number of laser pulses
leading to damage on the intensity of a pulse in series: the
points are experimental data for Si from Ref. [119]; solid
curves are calculated accordmg to Egs. (5.46) and (5.49)
with By = 0.8 eV (1), E; = 0.85 eV (2), E; = 0.9 ¢V (3).
Values of other parameters in Egs. (5.46) and (5.49) are
given in the text.

- The cumulative effect in metals was investigated in
‘many works [3] In Ref. [115] MLD was mvesugated in
‘Cu and Ag mirrors. The typical result of the experiment
1s the increase of the threshold number of pulses m,
leading to damage with decreasing intensity of each
‘pulse (Fig. 25).

However, accumulation of microscopic structural
‘changes prior to the macroscopic damage was not
clarified. The diagnostic methods exploited in
Refs, [116 - 118] were sensitive only to the macro-
damage and were not helpful in determining the
nature of the accumulation process.

The MLD effect in semiconductors was investigated
Ref. [119], where it was shown that in Si the depen-
dence of threshold number of pulses on pulse 1ntens1ty
m = My,(f) is similar to that in metals, and there exists
¢ minimum intensity I, below which no damage
occurs at any number of pulses (Fig. 25).

- The MLD effect was investigated also in transparent
olators, in alkali halides and plastics (see Ref. [120).
general, the obtained results concerning the depen-
ence my(f) and I, correspond to those found for
paque media. For the explanation of the MLD-effect
two principally different mechanisms were proposed.
statistical mechanism (SM) of Ref, [121] assumes
at there exists the finite probability of damage by a
gle pulse at any intensity. There is experimental evi-
ence both in favor of SM mechanism [121] and
gainst it [122]. It seems likely that the SM mechanism
escribes only the damage due to the initial defective-
¢ss of the crystal.

-~ ‘Another approach is based on the idea of certain
radual microscopic structural changes, being accumu-
ted from pulse to pulse (see Ref. [120]). It was
med in Ref. [123] that a gradual pileup of disloca-
$ occurs under MLD in metals with formation of
odical dislocation structures leading to increase of
sorption and eventual damage.
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In the recent model of Ref, {124] it was assumed
that under MLD the point defects, generated due to
localization of energy of excited electron-hole pairs on
some atoms in a crystal lattice, are accumulated from
pulse to pulse. The point defect accumulation induces
local stresses, leading, as the threshold stress value is
exceeded, to plastic deformation, which, in the author’s
opinion, is the beginning of rapid and irreversible
changes of optical properties of the material. This
model corresponds well to the experimental results on
MLD in alkali halides.

In this section we use the idea of point defect accu-
mulation for developing the model of MLD in strongly
absorbing semiconductors [125]. As in Sec.3, we
assume the thermal fluctuation mechanism of point
defect generation with energy of defect formation
decreasing due to laser-induced local electronic excita-
tion, heating, deformation and due to the defect-
induced deformation. The last aspect is of primary
importance for the mechanism of MLD developed here
because it leads to explosive defect accumulation, sim-
ilar to some extent to the thermal explosion in the exo-
thermal chemical reaction or explosive crystallization
(see Sec. 8). The principal difference between the ther-
mal explosion and the point defect concentration explo-
sion lies in the nature of the positive feedback in these
processes: in the first case it is effected through the tem-
perature field and in the latter ones — through the defor-
mation (strain) field.

The model of MLD developed here, with no or only
slight modifications can be applied also to dielectrics
and metals.

We focus here mainly on the problem of multishot
damage in semiconductors (we have taken Si as an
example), illuminated by a series of short (T ~ 1070 g)
laser pulses with the wavelength in the absorbing
region of the spectrum (A = 532 nm, y = 10 cm™, the
repetition rate At™, r, is laser spot radius, rgy > 1).

The essence of the proposed mechanism of the
cumulative damage in strongly absorbing semiconduc-
tors is as follows. Due to laser pulse-produced heating,
laser-induced strain and decrease of formation energy
the enhanced formation of point defects occurs in a thin
(hg = 10 ¢m) subsurface layer (Sec. 3). The rate of
defect production is greater than the recombination rate
because the equilibrium concentration, corresponding
to the renormalized formation energy and elevated tem-
perature, is much higher than that prior to laser pulse
action. Between the laser pulses the medium cools
down practically to its initial temperature, because the
time interval between the pulses Az is larger than the
effective time of temperature relaxation,

At the same time, laser-generated point defects
(vacancies and interstitials) do not have enough time to
disappear from the defect-enriched layer of thickness Ay
during the time interval between successive pulses. The
defects bring about lattice strain resulting in a decrease
of their own formation energy. This leads to more effi-
cient defect generation during the next pulse.
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When the concentration of point defects n, reaches
the critical value ny,, of extended defect formation the
spatially uniform distribution of generated defects
becomes unstable and formation of defect clusters and
voids begins (Secs. 5.1 and 5.2). We assume here that
with further increase of point defect concentration at
higher threshold concentration

ndamage = Bdndcr ’ (534)
where B, 3 1, the fusion of voids into the cracks occurs,
which signifies the beginning of damage. Note that the
cracks, i.e., void pileups, can be formed as a periodic
structure (see Sec. 6). Thus, Eq. (5.34) is the postulated
damage criterion, which we shall use in the following
consideration.

The main assumption of the MLD model under con-
sideration is that the field of point defect concentration
in a crystal is unstable intrinsically. This means that
accumulation of a certain type of point defects
decreases the formation energy of these defects, which
corresponds to the attraction between them.

As a model of collective defect interaction we take
an elastic interaction described by Eq. (1.1). The
medium strain consists of two parts

where div U, is the strain due to defects and div U is

strain due to laser-induced heating and plasma excita-
tion. Strain of the medium &, = div U, due to the pres-

ence of concentration of point defects n, is found from
Eq. (5.2). In the stationary case we obtain, using

K=pcl,B.=0,v—>d

(div U), =&, = Qng; Q, = @’sgnd.  (5.35)
It follows from Eqgs. (5.34) and (5.35) that H; = -0,Q4n,
and the defect formation energy F, is given by

F, = E;—0,Q,7,. (5.36)

Here
E, = E,~E, —0,div U, (5.37)
where E,, is the thermal-fluctuation formation energy,
E,. is the energy of local electronic excitation, decreas-
ing the effective formation energy (Sec. 3).
The rate of temporal change of the relative concen-
tration of defects Ny = ny/ n is determined by competi-

tion of the generation rate G, recombination rate R,
and diffusion

ON,/dt = D,O'N,/3x* + G,—R,, (5.38)
where D, is the diffusion coefficient. Eq.(5.38)
assumes different forms during the pulse and in the
time interval between the pulses.

During the pulse due to the high value of equilib-
rium concentration :

Ng = exp [~ (E,~ |0, Ng) /kT1,

where the temperature 7 = T(J) is a function of laser
intensity. Due to the low diffusion on the time scale of
pulse duration, one can neglect recombination and dif-
fusion in Eq. (5.38). Thus, during the pulse the rate of
change of relative defect concentration can be obtained
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from Eq. (5.38), where G, is given by the expression for
the thermal fluctuating defect generation rate, with
allowance for Eq. (5.36)

ON,/3t = Gy = Vpexp [~ (Eq~ |8, Ny) /KT],

(5.39) .
where vy, is the Debay frequency. To find concentration -
of defects, generated during the pulse, we assume that T
in Eq. (5.39) is equal to its value averaged over the pulse
duration. Then, from Eq. (5.39) we obtain the additional
number of defects generated by one mth pulse

AN, =g In[1-v,T. 8]
X exp [~ (Eg~— [0 Na (-1,)) /kT,1 1,

where N,(-1,) is the relative defect concentration after
the action ofp (m — 1)th pulse, €, = k7, / [G,]. :
After the end of the pulse the temperature falls fo
room temperature during the time Y3 ! =107 s € At
(x = 0.1 cm®s™, At = 1072 s), the electronic excitation
and laser-induced strain in Eq. (5.37) disappear in a time
interval of the order of carrier recombination time T <€ Az
(for Si T = 1077 ). Thus, after the end of the pulse the
generation rate (5.39) sharply falls and is insignificant
during the time interval between the pulses, i.c., during
the time interval Az one can put G, = 0 in Eq. (5.38). .
Thus, at the time interval between the pulses the dif-
fusion and recombination of defects are the only impor-
tant processes and are described by equations

(5.40) :

N/t = D@*N,/ 37" ~ No/1,,
ON,/dz,_, =0,
(Nd) ful Ny (0) kda (@),

(5.41)

where T, = I / Dy is the defect Lifetime (I, is the mean
distance between the defects sinks), Ny(0) is the defect
concentration on the surface at a time moment ¢ = 0,
which corresponds to the end of the mth pulse.

The solution of this problem is as follows

Nz, 1
= hy/ (2nD 1) W‘f {exp [ (~(z—E&)* /4D )]
0

texp [(~(z+8)° /4D )] T (N9, _od8:
whence for defect concentration on the surface one
obtains
Ny(z =0, 8) = Ny(0) hy(rD) " Pexp [-t/1,].
Hence, the number of defects which recombine or dif-
fuse away at a time interval Az between two successive :
pulses and no longer participate in cooperative interac-
tion is given by :
AN, = Ny(0) (1 = hy(DAD ™ %exp [~At/1,]).
(542)
The inequality AN’ — AN >0 yields the criterion -
of the beginning of defect accumulation: the number of
LASER PHYSICS
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ccts generated during the pulse must be higher than
i %er of annihilated ones in the time between the

sequential pulses Af. From the critical condition

N" = AN, we obtain the equation for the threshold
wmperature Tth after the exceeding of which the defect
ccumulation begins

VpT,exp [—-Ey/kT,]

(5.43)
= {exp (~Ey/kT,) +AN,1 (1-0),
here C = hy (RD,AL) exp [-At/T].
/e rewrite Eq. (5.43) in the form
E, (5.44)
To = Eo/k (- +10%57,0).

Thus, the threshold temperature is approximately pro-
ortional to the defect formation energy. Because
T{IL), Eq. (5.44) determines the threshold value of
tensity I, below which no damage occurs after action
f any number of pulses.

-+ At T> Ty one can neglect recombination and diffu-
ion of defects between the pulses due to the exponen-
ial dependence of G; —~ Eq. (5.39) ~ on temperature.
Then, integrating Eq. (5.39) we obtain the defect con-
entration after the end of the mth pulse

_ N,=—-—¢nll-mA/e)],

‘here A= vpT,exp [-Ey/ kT ).

- Equating N,, to the reiatlve concentration of defects
t which damage occurs (5.34) we obtain the equation
or determining the number of pulses leading to dam-
I-mA/e, = exp [-B,N,/g,]. (5.45)
Using Eq. (5.5a) for N, we have BN, / g; =

pc; / K= By » 1. Substituting exp (-By) = 0 in
(5.45) we obtain the following equation for the crit-
number of pulses m:

= (KT,/|8,)) (1/vyT,) exp [E,/KT,). (5.46)

Now, we have to find the dependence T = (]}, For the
bsorption coefficient we use the following formula
9]

Y(T) = vy,exp [T/T], (547
ere ¥, and T, are constant. Due to T, > T, ~ 1072,
vhere T, is the electron-phonon re axatzon time, we
an use the heat conduction equation. Because the heat
iffusion length [ = o, P2 =105 cm, we can neglect
eat diffusion and write

/3t = I(1-R)yyexp [T/T ) /e, (548)

Ty
= Ty—T,In {1 ~I(1=R)y,T,e"/ (Tscv)}
(5.49)
- (5.49) determines the temperature T in Eq. (5.46).
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Using Egs. (5.46) and (5.49), we carried out com-
puter calculations of the critical number of laser pulses
m,, after which the damage occurs. We used the values
of parameters corresponding to experimental condi-
tions of Ref. [119}: 1, = 80 ps, Ar = 0.01 s, R = 0.37
(at 532 nm), ¢, = 0.678 J-cor>, Y, = 5 X 10° el T, =
430° K, vp = 1083 ! , 0g = Kad = 1010 erg (K = 10’2
@ = 102 cm‘3) The only free parameter is the defect
formation energy E;, which was varied in a vicinity of
leV.

The calculated dependence of the critical number of
pulses on pulse intensity is shown in Fig. 25, in compar-
ison with the experimental results of Ref. [119]. It is
seen that the present mechanism of accumulative explo-
sive laser damage can well reproduce the experimental
dependence. The shape of the curve m, = m . (I) shown
in Fig. 25 is typical also for other materials [120].

In conclusion, the mechanism of accumulative laser
damage is developed. In accordance with this mecha-
nistn the laser pulse generated defects give rise to the
appearance of the medium strain which decreases the
defect formation energy, thus creating the positive
feedback. As a result, the dynamics of defect accumu-
lation from pulse to pulse is similar to thermal explo-
sion. Two successive threshold processes determine the
microscopic picture of the accumulative damage.

The first one is the threshold formation of clusters of
point defects and voids, and the second one is the thresh-
old fusion of voids into cracks leading to damage.

6. FORMATION OF PERIODIC RING VOID
STRUCTURES IN LASER VAPOR
DEPOSITION OF METAL FILMS

In Sec. 5 we studied the formation of extended
defects due to DDI of point defects. When the concen-
tration of extended defects, generated due to the strain-
induced condensation or due to any other mechanism,
exceeds certain critical values the field of extended
defect interacting with elastic continuum may become
unstable and the DDI of extended defects develops,
leading to the formation of extended defect periodic
structures. We proceed now to the consideration of
these instabilities. In Sec. 6 we consider the void DDI
and in Sec. 7 — two types of the dislocation DDI.

6.1. Theory of Void Diffusional-Deformational
Instability

One of the processes accompanied by intensive void
formation is laser-induced deposition of metal films, It
is known that many excess vacancies are formed inside
the deposited layer during condensation at sufficiently
low temperatures (T < T, / 3, where T, is the melting
temperature) [19]. The number of excess vacancies is
reduced, in particular, through their condensation into
stable complexes of macrovoids (Secs. 5.1, 5.2). The
cylindrical through-macrovoids are formed in this way
in thin films with thickness 4 ~ 100 nm [19]. This pro-
cess is accompanied by the formation of additional
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Fig. 26. Film on the glass substrate. 1~ substrate, 2 - film,
3 - carbonyl. oyis lateral stress in the film due to laser hear-
ing of the sanalwich film-substrate system (a). Part of the
film on the glass substrate in the deformed state. Due to the
instability the voids form periodic pileups at the interface,
locally decreasing &, The vacancies in the upper half of the
film are automatically accumulated in the compressed
regions, forming narrow clusters (channels) (D).

interfaces between gaseous phase, metallic film, and
substrate, but thermodynamically this state turns out to
be more favorable than the system of randomly distrib-
uted vacancies [19].

The accepted opinion is that the voids are randomly
distributed throughout the film. In this section we want
to show that an ensemble of voids can make a transition
into a spatially ordered state, forming the periodic rings
(concentric ring macrovoids), when the number of
voids exceeds a certain critical value [127].

The periodic macrovoid structures are formed as a
result of the development of a void DDI, consisting in
the following. A thin film, which is coupled to the sub-
strate, can be subjected to the fluctuations of the bend-
ing deformations. Such an initial bending deformation
is accompanied by the occurrence of spatially periodic
areas of dilation and contraction of the film. These
deformations lead to development of the directed
vacancy fluxes, which give rise to the directed void
fluxes. Spatially periodic piles of voids are formed at
the interface due to resultant deformation-induced
transfer of voids, giving rise to a periodic stress modu-
lation, perpendicular to the plane of the film. The sub-
strate thus produces a periodic force, which acts on the
film, thereby amplifying the initial deformations and
leading to the onset of instability. We consider a thin
film with the thickness k, having interfaces with the
substrate 1 and vacuum 3 (Fig. 26a). The z-axis is
directed from the surface z = 0 into vacuum (Fig. 26b)
and r is the radius vector in the xy-plane (Fig. 26b).

The temperature gradient along the z-axis and the
difference of thermal expansion coefficients of the fiim
and the substrate as well as the lateral bell-shaped tem-
perature distribution lead to the occurrence of exter-
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nally applied stresses in the film: along the z-axis (6)),
and a lateral stress o, (Fig. 26a).

We write the equation for the bending coordinate {
(see Sec. 4.3) in the form

32§ h3 2
hpg;z" + —lg“PAfZS” ho AL + fur (8)

=0, (1-5,N),

where fi; accounts for the nonlinearity of bending
deformations (cf. Eq. (4.33)). The right-hand side of
Eq. (6.1) takes into account the local decrease of ¢, in
the film due to the formation at a given point r of the
cylindrical voids with number density N [cm?] and
cross-sectional area (Fig. 26b) (the cylinder axis is
along the z-axis).

We assume that these voids with the number density
N(r) are formed by vacancy condensation either via the
strain-induced mechanism of Sec. 5.2, or some other
mechanism. Because the remaining gas of vacancies is
adjusted adiabatically to the ensemble of voids we can
put

(6.1)

N = Bn,,
where [ = const, n, is the bulk density of vacancies.

As was shown in Secs. 1 and 4 the deformation
occurring in the film gives rise to a deformation-induced
drift of vacancies. Now we want to demonstrate that the
diffusion and drift of vacancies lead to diffusion and
drift of voids.

We denote the strain in the film
E=divU=-zA( (6.2)
and represent the variables &, N, n,, and & in the form
C = §0+C1! N = NO+N1

ny=ngtn,, §=8+§,,

where (o = 0, Ny, 1,0, and &; are the mean, spatially uni-

form values and &,, Ny, n,,, and &, are the fluctuations.
The vacancy flux is determined by the equation

3 D V|9§nVO . U

vi = ngad Ry "————"—g[addw ’

o ! kT Y (6.3)
0 = Ka'=10,].

Due to the presence of the vacancy flux, the velocity
of the void movement is equal to

Vvoid (6.4)

The void flux is then j,q0 = Ny V,ea- Taking this formula
as well as Egs. (6.3) and (6.4) into account, we obtain
the diffusional and drift terms in the continuity equa-
tion for the fluctuation of a number density of voids

oN, = DAN DiO|N, 6.8
or ~ TUTRT (6.5)
where D = a’n D, is the coefficient of the resultant
void diffusion due to the adsorption and emission of.

3
= —d Jv}.

A div U,,
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ancies. In deriving the diffusional term in Eq. (6.5)
used N = Bn,,.

- Now we express div U, in Eq. (6.5) through ;. It
il be shown below that the void ordering takes place
ly in the lower half of the film, where z < 0 (here the
Ictuations grow in time). In the upper half (z > 0) the
uctuations are damped out. With the aim of describing
1 movement of the lower halves of the voids, let us
utin Eq. (6.2) z =~k / 4. We have div U, = h/4AL,.
ing this relation into account, we represent Eq. (6.5)
e form

oN
é“r] = DAN, - gAL,, (6.6)
) :_herc
_ hDN,|9| 67
= “dkr ©7
inearizing Eq. (6.1), we have
- 32&1 2 Czhz 2
i_- é? —c"ArE:,1+—I-Q«Ar?;I = —RN,, (6.8)
1 re we denote
Cz = S!'_ = WG'LSO
"op’ hp

8. (6.6) and (6.8) constitute a closed system of
ons describing void DDI in a linear nonstationary
me, {0 which we shall confine our consideration in
section. To find the stationary solution one must
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evidently take into account the term fy, in Eq. (6.1)
{cf. Sec. 4.2).

Seeking the solution of the system (6.6), (6.8), we
assume that the dependence on r, which is determined
by the temperature distribution, is slow in comparison
with the characteristic scale of the structure (this
assumption is valid for the experimental situation, dis-
cussed below, where the characteristic scale of the
structure observed is d = 3 X 10~ cm, Fig. 27b). Thus
we may put ¢, = const and seek the solution of the sys-
tern (6.6), (6.8) in the form

Ni(r, )= (Aly(gr) €, & (r,0)=ATy(qr) ",

(6.9)
where A and B are constants, Jy(gr) is a Bessel function
of the first kind. In accordance with Eq. (6.9) the fields
of void concentration and bending deformation form
concentric ring structures (Fig. 2) with their center at
r=0, and whose amplitudes grow in time with the
growth rate A. From Egs. (6.6), (6.8), and (6.9) we
obtain the system of two-linear homogeneous algebraic
equations for A and B. The condition that the determi-
nant of this system vanishes leads to the dispersion
equation determining the dependence A = AMg):

2,2
(A +Dg") (x’+q2cﬁ+"—lg—q“) = Rgq'. (6.10)

For g’cf » A? (this condition is in fact satisfied in
experiments of Ref. [127]) we have from Eq. (6.10)

b z
A=-Dg+-2L_ (6.11)
1+ 1,q
where
b = Rg P EH
=5 = 5.
G CE 12

The void DDI arises for A > 0. In the upper half of
the film (z > 0), as it can be seen from Eq. (6.6), one has
g <0. Thus, according to Eq. (6.11), instability is absent
in the upper half of the film.

The dependence A = A(q) according to Eq. (6.11) for
b> D is shown in Fig. 28. The maximum value A=)
is reached at the point g = g, :

Mo = %(3{—9”/55), 6.12)
()]
1 b v

Tmax = z;(g“ n . (613)

~ The value g,,, determines the distance between the
rings

2r 2ni,
= . =5
9 max ( ’lb/D—l)

It is seen from Egs. (6.12) and (6.13) that the void
DDI (A > 0) arises with the formation of the ordered

d =

(6.14)
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Fig. 28. Qualitative dependence of the growth rate of the
ring periodic structure, according to Eq. (6.11). Ap., and

d = 2ng,..:1 are the growth rate and the period of the domi-
nant structure, respectively.

structures (g, is real), provided the threshold condi-
tion b 2 D 1s satisfied, that is,

b LI

g, N
b= 5 Moo g 2 (6.15)

D

The number density of cylindrical through voids in

the film of thickness versus temperature is determined
by the equation [19]

W B

N, = GH'e ™, G = Gye 7, (6.16)

where G,, 7 are the constants, E,, is the activation
energy of a vacancy. For T = const, Egs. (6.14) and
{6.16) dictate the following dependence of period d on
the film thickness A

L2

d=2 3 Yhz )
=2l JBRep (—gp) =1 . (61D)
where
B = ts 9 En
= 5T 0€Xp (~7) -

Thus, for T = const there are two critical values of A,
for which d — oo (Fig. 32). On the other hand, for
h = const there is a certain critical temperature T= T,
(determined from the condition b = D)) above which the
void DDI develops.

6.2. Experimental Investigation of Periodic Void Ring
Structure Formation

The formation of the concentric ring void structures
was observed under laser vapor deposition of metallic
films in Ref. [127]. The experimental setup is shown in
Fig. 29. The glass substrate with diameter 80 mm and
thickness 2.5 mm was installed in a vacuum camera
(1075 torr) and the central part of the substrate was illu-
minated by CO,-laser radiation with power 10 W,
which was focused to a 1 mm diameter spot. The opti-
cal absorption coefficient of glass at the wavelength
10.6 ym is large enough to render the substrate plate

- optically thick. The substrate plate was heated by laser
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radiation for 25 min in a vacuum in order to reach a sta-.
tionary temperature distribution. The gas was then let
into the vacuum chamber from a container with carbo-
nyl (Mo(CQ)s, W(CO);, or Cr(CO)g) through the inlet.

The pyrolytic carbonyl dissociation took place near-
the heated surfaces, which resulted in Mo, W, and Cr
film deposition on the substrate. To avoid undesirable
effects of laser radiation (melting, surface evaporation,
and so on) the deposition was studied on the surface
opposite to that absorbing laser radiation. The surface
temperature had a bell-shaped distribution with the
maximum value T = 500°C in the center of the laser
spot (r = 0) and with a halfwidth r = 5 mm.

After gas injection a 100 nm thick metallic film was
deposited on the surface over a time £, ~ 20 - 30 5. The
film thickness h(r) varied, with its maximum value at
r = 7 min. The characteristic radial distribution A(r) for
intermediate times is shown in Fig. 27a. At deposition
times ¢ > t,, in the vicinity of maximum value h(r), film
de-adherence begins to occur in the form of periodic
rings centered at r = 0.

The investigation of the light transmission of the
film revealed i this region the presence of circular,

uasiperiodic (with the center at tfne point r = 0} voids
ig. 31). The radial distribution of a number of these
ring voids N () per unit length is shown in Fig. 27b.
This distribution correlates with the distribution h(r)
(compare Fig. 27b with Fig. 27a). The characteristic
distance between the rings in the region of the maxi-
mum distribution N (7) is d =3 x 10~ cm. ,

The surface relief of the film, obtained by a pro-
filometer along the coordinate r in the region of maxi-
mum N () also reveals the quasiperiodic concentric
voids on the surface with the width Ar < 0.4 um
(Fig. 30). However in the regions 7 < ry,, and r > 7y,

(max N(r) = N(7,,,)) the profilometer did not

record such voids, whereas microscopic study of opti-
cal transmission and reflection showed a whole set of
concentric voids. From this, one may conclude that the
voids in these regions have quite a small width,
Ar < 0.1 pm.

6.3. Comparison of Theoretical
and Experimental Results

Let us discuss the physical mechanism of the void
DDI in more detail. Owing to the initial fluctuating
bending deformation, periodic alternations of the
stretching and compression arise in the lower and upper

Fig. 29. Experimental setup. 1 — vacuwm chamber, 2 ~ K-8
glass substrate, 3 — cw COp-laser, 4 — inlet and container
with carbonyl [127]. ’
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