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1. INTRODUCTION

' I.1. General Characteristics of Generation-Diffusion-
L Deformational Instabilities

- o One encounters permanent structural and morpholog-
:~ical changes in matter interacting with strong laser radi-

G ation with energy density W = W, where W,_ is the

threshold energy density of melting, in various ficlds of
laser physics [1] and laser technology. Among them, one
can list such phenomena as the gradual and catastrophic
degradation of light emitting devices [2], cumulative
laser damage of optical components [3], nonuniform
melting of the semiconductor surface (Sec. 5.3.2),
ultrafast laser induced structural phase transitions on the
semiconductor surfaces {4 - 9], and various processes of
laser-induced treatment of materials: multipulse laser
annealing [10], recrystallization of thin amorphous films
[11, 12], thin film deposition [13] and other applications.

- The time of light-matter interaction necessary for

- inducing structural changes in materials responsible for
- these phenomena can be varied from 1071 s to minutes,

~"depending on the value of W and other conditions of
irradiation and the material used.

These changes can be the aim of laser treatment, for
example, in the case of laser material treatment, or be
undesirable or disallowed in the case of gradual or cata-
strophic degradation or damage.

Studies of the nature of laser-induced structural
changes are not only of scientific interest, but are also of
great practical importance because understanding of the
physics of the process can enable one to control the latter.

The structural changes induced by a laser beam occur
in the lattice subsystem of the material (which in most
cases of interest can be considered as an elastic contin-
uum), whereas laser radiation of the wavelength we are
interested in excites directly only the electronic sub-
system. This excitation creates plasma of nonequilib-
rium carriers in the subsurface layer of semiconductors,
relaxation of this plasma leading to lattice heating. The
nonuniform plasma and lattice heating give rise to strong
deformation of the subsurface layer of the material.

These three factors of laser action, namely, elec-
tronic excitation, heating, and deformation under the
conditions of high level of excitation lead to intensive
generation of defects, including point defects (electron-
hole pairs (i.e., the plasma itself), vacancies and intersti-
tials) and extended defects (voids, dislocation Ioopsf
subboundaries and other extended imperfections).
Intensive generation of defects takes place on the sur-
face and in the subsurface layer in a variety of laser-
treatment processes, carried out in different materials
and in different modes of laser irradiation, due to the
above-mentioned factors of laser action or other gener-
ation mechanisms. We can mention here at least three

! Although electron-hole pairs are excitations in the electronic
Spectrum and not Iattice imperfections, we include them into the
unified treatment here because of the analogy of their behavior in
the effects considered below, Note that standard classification of
defects also includes electron-hole pairs as one of the types of
point defects [14, 157,
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processes of defect production which occur during the
above listed interactions between le_mer beams and sol-
ids, which we shall be concerned with:

— point defect generation in pulsed laser radiation
interaction with strongly absorbing semiconductors and
metals in modes prior to melting [16];

—capture of high concentrations of vacancies and
interstitials in rapid laser-induced melt solidification
(17, 18}

~intensive formation of point defects in laser-
assisted thin film deposition [19].

The dense fields of defect concentrations are pro-
duced also under the irradiation of solids by energetic
particle beams [20] and under ion implantation [21].

These point and also extended defects, being rigid
inclusions into the elastic continuum, deform the latter
[30, 31] and vice versa, the deformation changes the
spatiotemporal distribution of the defect ficld.

Thus from this point of view, a situation universal for
all the above listed, and at first sight quite different, phe-
nomena of laser beam-solid interactions arises: the laser
treated rmaterial can be modelled by two subsystems —
the elastic continuum and the field of defect concentra-
tion, interacting with each other. In this work we adopt
and develop this defect-deformation (DD) model of a
solid and apply it to various practical problems men-
tioned above.

Because of the monotonous transverse distribution
of energy in the excitation beam cross-section (for
example, the Gaussian distribution in Fig. 1), the con-
centration of generated defects is usually assumed to
decrease monotonously along the surface as the distance
from the center of the irradiated spot increases (Fig. 1).

In this work we want to show theoretically and exper-
imentally that both the process of defect generation itself
and the generated dense field of defect concentration are
unstable with respect to localized or periodically
extended perturbations, the resultant instability leading
to formation of defect ordered structures of various
types. We call this novel broad class of laser-driven sur-
face instabilities *generation-diffusion-deformational
instabilities” (GDDI), because they develop due to the
interaction of the defect concentration field, generated
by laser radiation and changing due to diffusion, with
self-consistent deformation of the elastic continuum of a
host material. The onset of GDDI is accompanied by
abrupt, and in some cases catastrophic changes of the
optical, mechanical, and electrophysical properties of
the materials, which have various manifestations.

Particular cases are possible when instability devel-
opment is completed during the process of generation of
defects without any participation of diffusion. We call
these instabilities “generation-deformational instabili-
ties” (GDI). Instabilities developing due to diffusion
when the generation process is over are called “diffu-
sion-deformational instabilities” (DDI).

GDI starts when the intensity of the laser pump 7
exceeds a particular critical value I, while DDI devel-
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Fig. 1. Physical mechanism of feedback in point defect
GDDI (r is the coordinate along the surface): laser inten-
sity distribution (a); monotonous distribution of laser
generated defects (b); fluctuation harmonic of surface
strain (c); periodic potential wells due to interaction
energy (1.1) (d); j, are deformation-induced defect fluxes,
G, is deformation-enhanced defect generation rate; Fou-
rier harmonic of defect concentration arising due to j,
and G, (e). The feedback is dué to the force Fy~ grad ny,.

ops when the number density of point (or extended)
defects ny exceeds a particular critical value n, (1, ~
10% - 10?° cm™).

Either extended periodic or localized DD structures
are created on the surface due to the point defect GDDL
These periodic or quasilocalized point defect clusters are
embryonic extended defects and transform to them,
forming periodic or quasilocalized void fields or disloca-
tion loop concentrations. In the case where localized
extended defects are formed in this way with their num-
ber density exceeding a particular value, the second
stage of DDI can take place with self-consistent spatial
redistribution of extended defects, leading to formation
of periodic extended defects-deformational surface
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structures. Thus, at sufficiently high levels of excitation,
GDDl in the long run is ended with formation of periodic
extended defects-deformational structures, according to
two possible scenarios: (1) accumulation of point
defects, threshold formation of periodic point defects-
deformational structures, formation of periodic extended
defects-deformational structures; or (2) accumulation of
point defects, threshold formation of extended defects,
threshold formation of periodic extended defects-defor-
mational structures. The formation of these structures
leads eventually to material damage. We consider below
this hierarchy of transformations of coupled fields of
defect concentrations and deformations from the unified
point of view of the DD model of the solid.

The development of the concept of GDDI was stim-
ulated by numerous observations of laser-driven forma-
tion of surface periodic structures in the form of one and
two-dimensional gratings, concentric rings or radial
ring structures of different nature (periodic surface relief
modulations, alternations of different phases or pileups
of voids or dislocations, and so on). The particular geo-
metric forms of these structures are determined by either
symmetry of the laser field — in the case of isotropic sur-
face, or by crystalline symmetry of the surface; cases
where the symmetry of the structure is determined by
the interplay of the above two symmetries also exist. In
general, the period of these surface structures is deter-
mined by the level of surface excitation. It is not propor-
tional to the wavelength of excitation radiation and is
insensitive to its angle of incidence. No spatial coher-
ence of radiation is needed for excitation of these struc-
tures. In this review, we present numerous examples of
such structures and identify them as the DD structures.

The DD structures differ qualitatively from the peri-
odic surface relief gratings (surface ripples), appearing
on surfaces of semiconductors and metals due to inter-
ference instabilities occurring under the action of spa-
tially coherent linearly polarized laser light (see
Refs. [22 - 26]). The periods of surface ripples are pro-
portional to the wavelength of the excitation radiation,
and depend on the angle of incidence, and the wave vec-
tor of the surface ripples’ grating is collinear with the
vector of polarization of the laser wave. Due to this dif-
ference it is easy to discriminate surface ripples from the
DD structures.

One of the most striking examples of a DD structure
is the universal “star’*-structure, which is recorded under
quite different conditions of irradiation and on quite
different materials. Similar “star”-structures were
observed, for example, under picosecond laser irradia-
tion of the VO, films (Fig. 4), irradiation of metal sur-
faces with millisecond pulses (Fig. 11), cw-laser
irradiation of thin metal plates (Fig. 13) and films
(Fig. 14), in laser-induced recrystallization of amor-
phous semiconductor films (Fig. 38), and in laser etch-
ing of semiconductor films [69]. The similarity of
geometry of these “star’-structures indicates certain
universal mechanism of their formation in quite differ-
ent materials and under widely varying conditions of
laser irradiation. To explain formation of the “star” and
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other DD structures we proposed the concept of GDDI
[27 - 29]. Since then, a number of experimental and the-

- oretical works have been done, dedicated to studies of
“‘the DD structures’ formation, and development of the
" GDDI concept and its application to interpretation of

different phenomena, connected with strong laser beam-

" solid interactions. The present work is the review of the

original results, obtained in both theoretical and experi-
mental studies of GDDL

The physical mechanism of GDDI consists in the
following. A strong laser beam generates a large number
of point defects in the subsurface layer. In continuum
approximation [30], we describe the defect subsystem
by the field of defect concentration #n,(r, £}, where the
subscript d denotes the particular type of point or
extended defects (d = e for electron-hole pairs, d = v for
vacancies and so on); r = {x, y, z} is the radius-vector of

.. the space point. The fields of defect concentrations

.2 together with the temperature field 7(r, ) comprise the
- gerieration-diffusion (GD) subsystem, described by the
- generalized GD-variable ¥; (¥; = nyor 7).

" The second subsystem is the elastic continuum of
the host material, described by the displacement vector

U(r, ) = {U,, U,, U,} with boundary conditions corre-
sponding to a particular case considered (the bulk, the
surface of the material or the thin film).

Coupling between the GD and D fields occurs due to
the point defect-strain interaction, the energy density of
which for an isotropic solid or crystal of cubic symme-
try is given by Refs. [30, 31] :

H, = -0 ,n,divU,, (1.1)

where for vacancies and interstitials 0, = sgn dKa?, K is
the bulk elastic modulus, a is the lattice parameter and
sgn v=~1,sgni=+1[30, 31]. Eq. (1.1) describes also
the case of electron-hole-strain interactions, for which
84 (d = e).is the interband deformation potential with
sgnd- depending .on the type of energy band valley

-~ pumped by laser [32]. For dislocation-shear strain
- ., inferaction -the coupling. energy is different from
© o UBgo(L10) (Sec. 7.1y,

" The "';éddpti'ofx-. of point defect-strain interaction

' '."e'ne'rg‘y- in the form of Eq. (1.1) is a crucial step in the

development of the GDDI model because it automati-
cally determines the GD-D coupling coefficients both
in the equation for the displacement vector and in the
effective diffusion equation for defects. In the case of
DDI with the thermal fluctuation generation of vacan-
cies and interstitials the anzats (1.1) automatically
ensures the positive feedback between the GD and D
subsystems, and in the case of GDI for electron-hole
pairs the sign of the feedback can be positive or nega-
tive depending on the particular case.

The feedback link under the GDDI is as follows.
The fluctuation of deformation modulates the energy of
formation or of the migration of a defect
E; = Eg ~0,divU and also modulates the absorption

coefficient that gives rise to modulation of defect pro-
duction rate, diffusion rate and medium heating rate. In
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the DDI the spatial redistribution of defects occurs due
to deformation induced defect fluxes which are found
from Eq. (1.1): the force acting on a defect

f, = —grad H,
gives rise to the defect flux
i = n"z;Ddgrad div U, 2

where D, is the diffusion coefficient. The resultant
appearance of the inhomogeneous GD-fields gives rise
to, appearance of forces F, ~ grad n, and ¥y ~ grad T
deforming the elastic continuum and enhancing the
seeding deformation fluctuation. Thus there appears
positive feedback, leading after exceeding the critical
value of the externally controlled parameter, to onset of
the GDDI (see Fig. 1).

In the GDDI, certain spatial Fourier components of
the coupled GD-deformational fields grow exponen-
tially in time. In the general case they have the following
structure

(aU,-/axj)q
=A; (@) P (qryexp {io+ik~v,2}, (1.3)
Y;= B, (q) ® (qr) exp {icoqt + ilt——’}'qz} ,

where the wave vector q lies in the plane of nonde-
formed surface z = 0 (the z-axis is directed inside the
medium), A = A(q) is the growth rate and v, > 0 is the
inverse value of surface field penetration depth into the
bulk (usually v, ~ g, see Fig. 2).

The eigenfunctions of Laplace operator ®(qr) in
Eq. (1.3) describe the structure of coupled fields on the
surface. Their particular forms are determined by the
symmetry of the problem in the surface plane deter-
mined by either a crystallographic symmetry, or by a
symmetry of the laser field (see Fig. 2).

The cases of excitation of dynamic coupled
GDD fields at the surface, where o, #0and A >0, as well
as generation of static fields (0, =0, A > 0) are possible.

The time of GDDI development #, (its order of mag-
nitude) is determined by the inverse growth rate ¢, ~ A1,
GDDI develops under the conditions of the competition
of the pump and dissipation due to diffusion and recom-
bination (see Fig. 1), its growth rate in general having the
following structure

A= =T~ Dud +Gy(a), (1.4)

where I;Lff is the effective linear and nonlinear recom-
bination constant, and G(q) describes distribution of the
pump over the g-modes.

At the GDDI threshold, when pump intensity (dose)
is equal to its critical value G (¢) = G,(¢), one has A = 0,
and above the threshold the growth rate can be repre-
sented in the form

2, ,Galq)

A= (Tt Dedh) (m—l).
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representations of geometry of the corresponding surface
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Fig. 2b. Swiface concentric ring DD structure. Computer
simulation of m = 0 Bessel function Jolqr) corresponding to
Fig. 2a {a); schematic view of sample cross-section; DD
structure penetrates from the surface into the bulk by the
distance of the order of structure period (b).

Thus the diésipation rate determines the order of
magnitude of the time of GDDI development:

fa~ (Tyngr + Dallma) » (1.5

where g,,,, 15 the wave number of interest (for example,
that corresponding to the maximum of the dependence
A = A(q)). Depending on the magnitudes of 1. and Dy,
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the value of , varies from 1073 - 107" s (for electron-
strain instability) to 10? s (for voids and dislocations).

The dependence of the growth rate A on g determines
whether the resultant GDD field will be localized or
periodically extended. In the case where the dependence
A = A(q) has a maximum (Fig. 3a), periodic coupled
fields are generated. In the case of monotonously
decreasing dependence A = A{q) (Fig.3b), a quasi-
localized GDD field is formed, which is a cluster of
defects in a self-consistent deformation well
(Figs. 14, le).

The competition between the pumping and dissipa-
tion, reflected by Eq. (1.4), is a characteristic feature of
so called dissipative instabilities, examples of which are
readily found in Refs. [33, 34]. The GDDI represent a
novel type of dissipative instability closest to the well-
known diffusion-diffusion instability described by two
coupled diffusion-reaction equations [34 - 36]. In the
GDD system one of the diffusion fields is replaced by the
field of deformation. This replacement leads to qualita-
tive changes of system behavior, the most dramatic of
which is the possibility of creating metastable or stable
structures, persisting after the end of the pumping (it is
known that the most characteristic feature of usual dissi-
pative instabilities and resultant stationary dissipative
structures is the presence of pumping {34 - 36]).

In fact, stabilization of GDDI occurs owing to the
nonlinearity of either the elastic continuum or of the dif-
fusion field. In the case of crystal lattice imperfections,
generation of static fields leads to creation of defect-
deformational metastable (or stable) surface structures,
being pileups of defects captured inside the self-consis-
tent deformation wells. The local (or global) minimum
of the defect-elastic free energy, corresponding to the
appearance of a new. spatially nonuniform coupled
defect-deformation field, appears at the critical value of
the external control parameter corresponding to the
onset of GDDI (see Sec. 4.3.4). If the dimension L, of
these pileups of defects (vacancies or interstitials, for
example) turns out to be less then the mean distance
between the defect sinks 1;, then the defects, captured in
self-consistent strain wells cannot recombine, and such
a state can exist for a long time (the diffusion is defor-
mationally suppressed).

The review contains the following sections. Sec. 2
describes a prototype of the GDDI — electron-deforma-
tion-thermal instability (EDTI) under interband elec-
tronic transitions, induced by powerful laser pulses with
durations 1, ~ 107 - 107" s and quantum energy fi® > E,
the fundamental band gap. EDTT leads to formation of
coupled periodic (along the surface) fields of deforma-
tion and electron-hole pairs concentration (and temper-
ature, if 7, > T, — the time of electron-phonon
relaxation) on the surface during the time interval
1, ~ 107 - 10713 s (depending on the laser pump inten-
sity). These fields may be either of dynamic nature (cou-
pled surface acoustic-diffusion waves) or of static
nature, It is shown that the periodic deformationally
induced modulation of the fundamental band gap may
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3 Fig.3. The schematic view of typical dependencies of
© o GDDI growth rate A on the wave number g, Extended peri-
" odic DD structure is formed with the period 2n/ q,,.. (a);
. quasilocalized DD structure is formed with a few oscilla-
o Hons with the period 2/ qq (b).

q o\ 6;

o semiconductor-metal phase transition with the
ation ‘of surface periodic superstructures of alter-
‘nating metal ‘and" semiconductor phases. The experi-
- mental results on inducing such superstructures in VO,

- films by using picosecond lasers are interpreted from the

- viewpoint of EDTL The possibility of ultrafast laser-

“induced phase transition to a centrosymmetric semicon-
ductor-like phase in GaAs under the action of powerful
femtosecond laser pulses is shown and relevant experi-
mental results are discussed.

In Sec. 3 the electron-deformation-thermal model
(EDT) of pulsed laser-induced point defect generation
in semiconductors under the conditions of interband
electronic transitions is developed. The experimental
results, obtained for Ge and GaAs are interpreted from
the viewpoeint of the EDT model. The EDT mechanism
- of point defect generation in semiconductors is shown to

.~ fesult in formation of surface periodic defect structures

ted to: laser-induced point defect
nterstitial) generation in metals and semi-
ors and formation of periodic surface structures

~of point-defects. The theory of vacancy generation-
deformational instability on the surface is developed by
analogy with the EDTI theory. The experimental results
on surface “star”-structure formation under millisecond
laser irradiation of the Ti surface are discussed. It is
shown that in thin films the bending deformations may
play the dominant role in GDI, leading to the specific
dependence of the period of the DD structures d on the
film thickness /1 (d ~ k). In Sec. 4.3, the diffusion-defor-
mational instability occurring due to the defect spatial
redistribution along the surface by diffusion and defor-
mationally-induced defects fluxes is considered, DDI
with participation of vacancies and interstitials is con-
sidered in Sec.4.3.2. In Sec. 4.3.4 the DDI theory is
extended to the case of electron-hole pairs. It is shown
that the DD structures generated due to the DDI are
LASER PHYSICS
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metastable self-consistent states of coupled defect-
deformational interaction. The experimental results on
surface grating formation, obtained in the case of miili-
second laser irradiation of Si surfaces are interpreted
from the viewpoint of point defect DDL. It is shown that
one can control the direction of deformationally-
induced defect fluxes along the surface by means of
strong linear-polarized laser radiation. Another interest-
ing possibility following the experimental results
obtained is the interaction between the interference sur-
face ripples and defect grating, leading to periodic defect
entrainment by the interference surface light field.

As an example of another application of DDI theory,
a novel mechanism of subboundary formation in zone-
melting recrystallization of a semiconductor on insula-
tor (SOI) films is developed, which explains from a uni-
fied point of view the basic experimental results
obtained in the studies of the technologically important
SOI-problem.

The theory of formation of extended defects due to
the threshold development of DDI in a dense point
defect field interacting with a strain field is presented in
Sec. 5. The DDI theory predicts the threshold formation
of localized point defect clusters captured into self-con-
sistent strain wells, where concentration of the point
defects exceeds the critical value ny ~ 10" em3, and
predicts also the geometric form of these clusters and
permits one to evaluate the pressure inside them,
Depending on the particular conditions, defect cluster-
ing leads to either voids or dislocation loop generation.
The expressions for the number of generated loops and
their radius are obtained.

As applications of the DDI theory of threshold
extended defect generation we consider the mechanism
of threshold degradation of injection lasers, yielding the
explicit analytical expression for laser lifetime T as a
function of the driving current, which isin good agree-
ment with the empirical law (Sec. 5.3.1). As another
application we consider the mechanisms of the nonuni-
form faceted melting of Si surface by laser radiation
(Sec. 5.3.2) and of cumulative explosive laser damage
of semiconductors (Sec. 5.3.3).

In Secs. 6 and 7 we consider the situation for which
a high density of extended defects is created on the sur-
faces of solids either due to the DD or some other con-
densation mechanism, or due to laser induced
deformations. Sec. 6 is devoted to consideration of the
void-deformational instability in thin films, occurring
when the number density of voids exceeds the critical
value. The theory explains the experimental results on
the formation of periodic concentric ring void structures
in laser deposition of thin metal films. In Sec. 7 two
types of dislocation-deformational instabilities are con-
sidered. The first one occirs due to the dislocation glide
and leads to the formation of periodic dislocation pile-
ups in the gliding plane (the in-plane structure). The sec-
ond one, occurring due to the dislocation climbing with
the exchange of vacancies, leads to the formation of
interplane ordered dislocation structures in the form of
periodic ideally straight lines. The experimentally
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Fig. 4. Surface periodic metal-semiconductor structire induced in VO, film by the picosecond laser pulse [37]. Grating: one-
dimensional laser intensity distribution (a); “star”-structure: axial laser intensity distribution {(b). The ray multiplication by bifur-
cation with increase in the distance from the center of the irradiated spot is clearly seen {cf. Fig. 11).

observed dislocation periodic structures of both types
are discussed from the point of view of the theory of dis-
locational-deformational instabilities.

Sec. 8 is devoted to consideration of exothermal
laser-induced instabilities with the participation of defor-
mations. As an example we consider the crystallization-
deformation-thermal instability (CDTI) on the surface of
amorphous semiconductors and in thin semiconductor
films. In these instabilities the laser pulse serves as only
an initial activator, and the instability itself develops due
to the latent heat of crystallization. It is shown that CDTIL
leads to formation of the periodic surface structures of
different (amorphous and crystalline) phases.

In conclusion, in Sec. 9 we summarize our discus-
sion of GDDI and outline the perspectives of future
research in this field of laser physics.

2. ELECTRON-DEFORMATION-THERMAL
INSTABILITY (EDTI) UNDER INTERBAND
TRANSITIONS IN SEMICONDUCTORS

2.1. Introduction

In this section we consider the prototype of
GDDI - the electron-deformation-thermal instability
developing under the action of short (107 - 1077 5)
laser pulses on strongly absorbing (in the range of inter-
band absorption) semiconductors. The defects of inter-
est are the electron-hole pairs. Here we consider the
case of GDI (the case of electron-hole DDI is consid-
ered in Sec. 4.3.4). The development of electron GDDI
in semiconductors is shown to lead to ultrafast phase
transitions in semiconductors.

The physics of ultrafast laser-induced surface phase
transitions is interesting for applied problems of
pulsed-laser modification of surface layers of semicon-

ductors, which are currently attracting much attention.
Phase transitions induced by laser pulses are due to the
change in the state of the lattice subsystem, whereas
laser radiation with the photon energy 7w > E, (where
E, is the width of the band gap) interacts with the elec-

tron subsystem. Thus, the electron-phonon interaction
and the corresponding transformation of the absorbed
energy play a key role in the effects mentioned above.

The usual mechanism by which the absorbed energy
is transferred to the lattice consists of electron-electron,
electron-phonon, and phonon-phonon relaxation stages
with relaxation times Ty, of the order of a picosecond.
The resultant spatial distribution of the lattice changes
should reflect a monotonic reduction of the radiation
intensity away from the center of a laser-iluminated
spot and an exponential reduction of the absorbed
energy with depth in the investigated medium (with a
characteristic scale at least equal to the linear absorp-

tion length f"{g] }.

However, a number of experimental results obtained
using high-power ultrashort laser pulses cannot be
explained on the basis of these standard representations.
Thus, instead of a monotonic pattern, it is frequently
found that ordered surface structures are formed. For
example, irradiation with picosecond laser pulses of a
semiconducting phase of VO, creates a spatially peri-
odic surface pattern representing an alternation of
metallic and insulating phases, and if the laser field has
axial symmetry, it is found that concentric rings appear
at the center of the spot and radial rays are formed at the
periphery (a “star” pattern is observed), whereas when
the field has slab geometry it is found that one-dimen-
sional gratings are obtained (Fig. 4) [37]. Pulsed laser
irradiation of the surface of a semiconductor also gives
rise to concentric ring structures representing an alter-
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S natlon of crystalline and amorphous phases [38]. Some
- = results support a nonlinear mechanism of transfer of the
-7 Jaser energy to the lattice at high pump intensities. For
+gxample, a reduction in the absorptxon length by an
““order of magnitude compared with v;' is reported in
. “Ref. [39]. It was experimentally shown in Refs. [6-9]
- that high-power femtosecond pulses induce structural
"~ changes (or superfast transition t0 a new state (see
 Sec. 2.7)) of the crystalline lattice in the subsurface
layer of a semiconductor during a pulse, i.e,, in a time
much shorter than T,,;.

These experimental observations can be interpreted
in terms of the formation of laser-induced instabilities
on the surface of a semiconductor, leading to a periodic
" change in the resultant state of the lattice along the
-, semiconductor surface and a strong increase in the
- - effective optical absorption coefficient.

We' shall review in this section two new laser-
; duced instabilities on the surface of a semiconductor:
ctron-deformation instability (EDI) and a defor-
-thermal instability (DTI), the theory of which
' can account for the experimental results (in particular
i the formation of the ordered structures) mentioned

" above., These two instabilities can occur simulta-
- neously, giving rise to an electron-deformation-thermal
- instability (EDTI) [27, 41, 42].

The physical mechanism of the EDTI is as follows.
The surface deformation & = div U (U is the displace-
ment vector of the medium), electron-hole plasma with
concentration n, and temperature 7" modulate spat:aiiy
the wxdth of the band gap:

E, = E— 08~ n,— 2.1

" where: Egﬁ is the equilibrium value of the band gap:
dEdE=0;0=0,—80,,; 0, and 8, are the deforma-

"'-tlon potentia]s of the conduction and valence bands,
. The phcnomenoioglcally introduced coef-

ates in the conduction band {43],

|9E; 43T} > 0 allows for the
s'aresult of heatmg [44]. Modulation
S of B results 1n - modulation of the interband optical
o absorptlon coefficient, causing accordingly an addi-
-~ tional medulation of n, and E,. The resultant forces
F,=-0 gmd n, and FT— ~Kou grad T (K is the bulk mod-
ulus and o. is the thermal expansion coefﬁcxent) main-
' tain initial displacements of the lattice, giving rise to an
instability of the amplitude of the surface strain & and
also of the carrier density n, and the temperature T
when a certain critical intensity of the laser pump radi-
ation is exceeded.

In this section we consider the solution of the
boundary value problem of the development of the
EDTI on the surface of a semiconductor under strong
optical absorptlon conditions. A general dispersion
- equation is obtained for the EDTI and its solution deter-
.. mines the rate of the exponential growth (with time) of
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the Fourier amplitudes of the coupled fields of €, ., and
7 on the wave vector (A = A(q) = X' + iA"). Tt follows
from this equation that three qualitatively different
instabilities can appear under the EDTI conditions. The
first is the mstablhty of surface acoustic waves (A" =0,
A’ > 0), which is initiated by thermal surface acoustic
waves. The second is an instability (softening) of the
acoustic surface wave frequencies. The third is the
instability of surface static deformations (A" =0, A' > 0).
In the last case the instability begins from the initial
fluctuations of the temperature or carrier density. The
present section represents a detailed study of the last
instability.

We shall show that the EDTI can create complex
ordered configurations of the coupled surface fields of €,
n., and T (in the form of gratings, rings, rays, “stars,”
and radial-ring cells formed by the intersection of rings
and rays, Fig. 2). The periods of these structures are
expressed as a function of the parameters of the investi-
gated material and of the intensity and duration of the
laser pulses, and determine how far these structures
penetrate from the surface into the material, A nonlinear
steady-state EDTI regime is considered, which becomes
stabilized because of the nonlinear Auger recombina-
tion of carriers and also because of the optoacoustic
nonlinearity. The steady-state values of the Fourier
amplitudes of strain, carrier density, and temperature are
determined as a function of the wave vector ¢ and of the
pump radiation intensity. It is shown that the modulation
amplitude of the band gap width along the surface, in
accordance with the mechanism described by Eq. (2.1),
may in principle reach values at which E, vanishes ina -
spatially periodic manner, i.e., a laser mduced semicon-
ductor-metal transition accompamcd by the formation
of ordered surface structures is induced.

The present paper’s allowance for the deformations
(strains) and for the influence of the surface is a funda-
mentally novel feature of the theory of laser-induced
insulator-metal phase transition, which can explain the
formation of complex periodic structures on the surface
(in earlier works [39, 40] laser-induced semiconductor-
metal phase transition was investigated without allow-
ance for these two factors). Numerical estimates of the
parameters of these structures showed that the EDTI
mechanism may be responsible for their formation,

2.2. Closed System of Equations of EDTI

We shall consider a two-band semiconductor filling
the semispace z > 0 and assume that a laser wave is inci-
dent normally on the z = 0 surface:

E(r,0 (2.2

Here E = E(r)f(7); iy = 1, when 0 St < 75 ) =
whentr<0,r>1,;7 » 18 the duration of a 1aser puise
and r = {x, y}.

In the case under discussion (g' ® 1, £ > &£"), the
equation for the temperature of the medium is (see
Ref. [39])

= Eexp (——ioat+ ikz) +c.c.
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2me"

5 e IEexp (—72),

(2.323)

where 7 is the thermal diffusivity, ¢, is the specific heat
per unit volume, €' is the real part of the dielectric per-
mittivity of the medium, Y= 0e" / ¢()'? is the optical
absorption coefficient, and c is the velocity of lightin a
vacuum.

The equation for the density of nonequilibrium car-
ries can be written in the form

ane e 3 2g" 2

UV e = e | ! s

at DeAne + T ‘YAne Tl:ﬁ[—:" 1 exp ( YZ)

) (2.3b)

where D, is the carrier diffusion coefficient, T, is the lin-
ear recombination time, and 7, is the nonlinear Auger
recombination constant.

The equation for the displacement vector of the
medium with the forces, following from Eq. (1.1) has
the form

Ju
~7

i AU+ (cf = ¢)) graddivU+ Y ferady;,
H

F=nT

(2.4)
where ¢, and c, are the longitudinal and transverse veloc-
ities of sound, f, =8/ p, fr=—Kot/ p, and p is the density
of the medium. It follows from Eq. (2.1) that the optical
constants €" and €' depend on n,, 7, and &, In the range of
values of n,, 7, and & of interest to us, the dependence of
£" can be represented in the following form if we use the
expression for the interband permittivity of a semicon-
ductor € = £ + i’ and allow for Eq. (2.1):

it " as" 1 L "
e'= ety (B n,+B,T+0E) = g5 +¢£]. (2.5

A similar dependence can be written down also for
¢'. However, since in the range of frequencies we are
interested in we have £ > ¢" (g' ~ 10, € ~ 107!) and
Je'/ 3w ~ 0" / dw, we shall ignore the change in
£' = const. Therefore, we have y="1,+7,, where y, o< €.

We can see from Egs. (2.3) that, in the presence of a
laser field, Eq. (2.5) should establish a relationship
between the diffusing fields of n, and T and the defor-
mation {strain) of the medium.

Solutions are developed in the form
n,=nytn, T=Ty+T, E=E +&,
U=4,+U,,

where ny, Ty, &g, and Uy are the solutions of Egs. (2.3) and
(2.4) subject to Eq. (2.5), obtained in the zero-order
approximation with respect to n,, 7, and & under the
appropriate boundary conditions at z = 0 (see below).
The actual form of these solutions is unimportant for the
purpose of the present treatment; the only significant fac-
tor is that these solutions are constant along the surface
over distances r <€ r, of interest to us (7, is the radius of
the laser beam) and vary sufficiently slowly in time over
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intervals on the order of the instability development time
(see below). We shall now consider the stability of the
solutions, ng, Ty, and &, Linearizing Egs.(2.3) and
applying Eq. (2.5) yields equations for n,=Y,; and
T, = Y, which can be written in a unified manner

3Y;,
= 48,0 Y,

= (Ejggﬁ + Eeri + E‘jnnl) exp (—Yp2)»

(2.6)

where j = n, T; ALD) = ~xA + T (03 Xr = X5 Xn = Dos
'c;l =0, 't;l =17+ yAng(t). The coupling coefficients
are described by the following expressions

ge" .
g, = 23»6 §Eizcﬁ/a‘nﬁ, i=nT,E,
0 Br B,
Gltﬁ = —ﬁ’ Oy ?{’ Cn ™ F (2'63)
w0 mﬁr mﬂn
Cpg = e’ GO = .’ Gy, = .

The boundary conditions for ¥; can be written in the
form

=0, Ypl,_. =0 @.7)

It should be noted that, in general, the boundary condi-
tion at z = 0 on a surface with relief is of the form

&Y,

aZ z,»,;g BZZ i

U, (0) =0,
¢]

=

where U,(0) is the displacement of the surface points
z = 0 along z, which describes the surface relief. How-
ever, under the conditions of interest to us the addi-
tional term is small (its value amounting to 107! - 10~
of that of the first term, see Sec. 2.6), so that we shall
ignore it and use the boundary conditions specified by
Eq. (2.7). The nature of the boundary conditions for U,
depends on the symmetry of the laser field and on the

required type of solution (see Sec. 2.3). '

The system of Eqs. (2.4) (where U=U,, ¥;=Y;) and
(2.6) can be solved analytically in two limiting cases:
(1) weak optical absorption (bulk case); (2) strong opti-
cal absorption when ;' is less than the depths of
penetration of the surface material excitations, n;, T}, &;
into the medium (surface case), We shall consider the

case (2) because it is of greater practical interest. We
can then write Eq. (2.6) in a simpler form:

oY,
3 +Aj0 (1) Y;

= (E’jéél +€jTT1 +€jnnl) 1Z=QCXP (~Yo2) -

(2.8)
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Here -:A,',g: ""DcA + T Lo =T +Yanp ) z=0?
o AT

2 3. General Dispersion Equation for EDTIL

Formation of One-Dimensional Surface Gratings

‘We assume that as result of breakdown of the sym-

metry of the field or medium, there is some preferred

“direction x on the {x, y} surface. Then, the boundary

" “conditions on the z = 0 surface for the vector U, can be
i written in the form (we write U, = U)

U, au, ¥, 2,
Dty

N
j:n‘T Cl

e =Y

U,
+(1-2B)5-"=0,

2.9

B'= ci/ci. We look for the simultaneous solu-
" the system of Egs. (24 - 2.6) adsuming
const in Eg. (2.2).
We specify the strain &, and the diffusion field ¥, at

& = A () exp (iqx + jkdr],
GEnts ° (2.10)
N Yj, = A; (1) exp (iqx +PLdtJ,

b

-~ ‘where A(f) = A(g, ) is a function proportional to the

amplitude of the initial strain and A;(f) 1s a slow func-
- tion'of time. This solution describes the surface field of
- the'strain, carrier density, and temperature in the form
- of one-dimensional gratings (Fig. 2). The solution of
(2.8) satisfying Eq. (2.10) can be found in the form:

[B, (0 exp (=%,2) + C; (D exp (-82)]
i d) st @D

{2.11) ‘into  Eq.-(2.8), allowing for
onditions of Eq. (2.7) and Egs. (2.10),
'-that-_;ifyb_ >3, (e, if C; > B), then

R . ¥
= A'éj'g'exp (i'qx + j?&dl—- 51.2]
S 0
X {x}.yﬁﬁj [1 -

rLoarin”?
8 =8 = %Lq2+-——"3mwf

(2.12)

-t

2 & )T
xYed )

f=nT i/

where

2.13)
j

The functions f(7) = A;(8), §;(1), A1) obey the condition
for slow change with time f-{(#)f(r) / 9t < A, which
reduces to the condition that the functions ny, Ty, and &
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vary little on a scale of A (adiabatic approximation).
We now solve Egs. (2.4) and (2.9). We represent the
vector U in the form U = U, + U, where

divU, = 0, rot U; = 0. (2.14)
Eq. (2.4) then yields equations for the vectors U, and Uy
Fu,

= (2.15)
t

= AU, +38,, grad 3 £Y;,

J=nT

where o=/ £ 8, =1, ifo=48,,=0,if =17, is
given by Eq. (2.12). The solution of Eq. (2.15) is devel-
oped in the form

Uy = Bgexp (—k,2) +38_, Z Djexp (-8,2)

J=nT

, @.16)
X exp (iqx + j?\,dt}
)

Substituting Eq. (2.16) into Eq. {2.15) and allowing
for the condition (2.14), we express the components B,,
and B,, in terms of some constant M, and the compo-
nents B, and B, in terms of a constant N. Then, using the
conditions for self-consistency of the solutions

described by Eq. (2.16) and of the expression for &1, _,
given by Eq. (2.10), we can express A in terms of M-

MM
A - 5T
;P

-y Rici (4"~ &)
i XS IN el (6~ 8]

g, 771
11— JJ} ,
s
20" ae”EEiz
emhipcioo0

2KoBwm dg"
— B

D=1

217
R, =

Ry= —— |
’ e'nﬁpcvcfaw

The solution with the vector U can be expressed in
terms of M and N, and is of the form

U,= [xNexp (-x,2) %iqM exp (~Kz2) - A Mig

q)- r
X 2 -gf'exp (-3,2) lexp (iqx«%j?tdt).
0

j=nT 1

(2.18)
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U, = (igNexp (~x,z) — K Mexp (-¥;2))

+XM z P exp (~8;2) exp (iqx+jld),
/ 0

J=nT

2 2
2 A

Ke = {4 T35 »
Cit

-1
@ = R {27, [N +c (¢ ~8)1}

2, 2
Xil -y & _ Riei (g -8) | 1
P %%0%) Ao IV + ¢l (g = 8)) ]

Here,

(2.19)

(2.20)

Substituting Eq. (2.18) into Eq. (2.9), we obtain two
homogeneous equations for M and N.

NS +q) +2iqM(x:1—— MY q>j] =0,
j=nT

® (2.21)
~2ix gN + (Kf+q2)M(1 -y “S"i =0.
janT 4
Equating the determinant of the system (2.21) to zero,
we obtain a general dispersion equation for the EDTI

(which is valid also in the case of radial-ring structures,
see Sec. 2.5):

2 2, 2.° A
4k K~ (X, +q) =~ 2 R,

Crj=ar

2
X Eﬁiqz](tﬁj o (Kf + qz) J/ {XjYQSj (7\‘2/‘712 + qz - 512)

=Y g e+ (Ri+e) (6 -8)1 1.
Jj=nT
(2.22)
A similar dispersion equation takes place also for
the vacancy GDI (see Sec. 4.1).

The dispersion equation (2.22) describes three qual-
itatively different types of the EDTI. We shall consider
each of them separately and limit our treatment of
Eq. (2.22) either to an allowance for the EDI for
R,/ D8, > Ry/ydror to the DTI in the opposite limit.

2.3.1. Generation of Surfoce Acoustic Waves
A=A +iA A >0 = A
The dispersion equation (2.22) was derived ignoring

the viscosity of the medium. If we allow for the viscos-
ity in Eq. (2.22) and also in the corresponding expres-

sions for @, x;, and R;, we have to replace Cil with
¢ (1+m, Mpci), wheren, =nand n,=4n/3 +§

EMEL’YANOV

(n and & are the first and second viscosities). Then, sep-
arating the real and imaginary parts in Eq. (2.22)

A . -1 .
subject to the conditions AT,y/%; <€ A" / i ¢,

gyl & <1, R, €5 < Xfo and ANy, / pei < 1, we
obtain the usual expression for the frequency of the sur-
face acoustic waves: A" = c¢q; 0.87 < 6 < 0.95 [41].
Using the imaginary part of Eq. (2.22) and applying the
conditions A" / 2D,q* <€ 1, we obtain the following
expression for the growth rate of surface acoustic
waves in the EDI case:

q203n 41— 02) c,2
2p Diqc’y,

The expression for the growth rate of a surface acoustic
wave in the DTI case 1s found to satisfy the condition
N 2yg? = 1

A= R (2.23)

n*

2 12
oqn  2¢(1-07)
- +
2p Yo

It is clear from Egs. (2.17), (2.23), and (2.24) that
the generation of surface acoustic waves (A' > 0) due to
the EDI is possible only if de" / dw < 0, whereas in the
case of the DTI, surface acoustic waves can be excited
if 60"/ 9w > 0. The critical value of the pump radia-
tion is obtained from Egs. (2.23) and (2.24) with the
condition A' = 0.

Egs. (2.23) and (2.24) were derived ignoring the
term in the sum in the denominator of the right-hand
side of Eq. (2.22) on the assumption that £, R; < Y,9%.
It therefore follows that changes in the band gap due to
heating (€rp) and breaking of covalent bonds (g,,) are
unimportant in the process of excitation of surface
acoustic waves (but they may be significant in the gen-
eration of static structures (see below)). For more
detailed consideration of surface acoustic-diffusion
waves and interpretation of experimental results of
Ref. [158] on laser-inducted excitation of surface
acoustic waves in GaAs, see in Ref. [159].

A=

R;. (2.24)

2.3.2. Softening of Acoustic Frequencies (A <0, A" — 0)

Separating Eq. (2.22) into real and imaginary parts sat-
isfying the conditions A', A" <€ g¢, , '/ ¢, Xr'y 1<

[N + 'C;; )12 N, A < g%y, we find that the pump

renormalized acoustic frequencies are described by the
expression

7&"2 - QZ (1 _ 253 .
q . 14
1-Bg+ (+T0 /) )

(2.25)

X qu. ),
2, -1 12
(@ +7/%) —R-g;
Q, =2(1-p)gc/ 3-2B)""
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Fig. 5. Dependence of the EDTI growth rate A on the wave
number g, according to Eq. (2.27). The values of the
parameters are given in Sec. 2.6, EDI (a); DIT (b). The
curve I corresponds to the case R; > g, I~ K << g
(schematically).

~. We can see from Egs. (2.25) and (2.17) that softening
of the acoustic frequencies occurs in the EDI case if
1 0e"/dw >0, whereas in the DTI case it occurs if
00g’ 1 dy 5°0. The critical intensity is found from the
ondition &= 0. In fact, the acoustic frequencies do not
d to zero but to A" ~ o%¢’n/ 2p < Q.

Generation of Sraac Periodic Surface Structures
i _S_ubs'tit'u:t'irig__?@.” =0in Eq. (2.22) and using the nota-
o _non._?pf';.k,'we_ find the following equation satisfying the
~ conditions A*/ ¢, < g%, (M + T) /

2
(q +8}-) (6j—q{€s) = 'ITE"BQR(]! (226}

where gg = R / XYo, gre = (R; + € / %% The solution
of Bq. (226)s T A

E..( . )2 2{3 11/2 2
q+qpe : Gre™ 4

2 ]
- qu - 1:}-0 .
(2.2
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The growth rate reaches its maximum value A, at
point g,..., where

Qo = Gre [ (3" +6a+1)7 — 2a+ 1)1,

28 gz (2.28a)
a= s,
1-8 Gre
2 1 2 172
M = jdre5 [ (Sa+1) (54" +6a+1)
(2.28D)

~11a* - 8a+1].

The dependence of A on ¢ according to Eq. (2.27)
is plotted for the EDI case in Fig. 5a and for the DTI
case in Fig. 5b. If R, > ¢, (deformation limit of the
EDTI), the maximum of” AMq) selects a dominant
structure with g = g,,,, # 0, whereas for R; <€ g; (diffu-
sion limit of the EDTI) the maximum in the spectrum
of A = A(q) is reached at g = 0. However, even in the
diffusion limit of the EDTI a dominant structure with
g # 0 is selected. We can demonstrate this by consid-
ering first in greater detail the nature of the initial fluc-
tuation in the EDTI case. At time ¢ = 0 the boundary
condition of Eq. (2.9) contains ¥,,(t = 0) = n,(t = 0)
and Y7, (t = 0) = T(t = 0), which are the Fourier ampli-
tudes of the initial fluctuations of the population and
temperature on the surface (when the simultaneous
correlation function is (¥;(t = 0) ¥;,(r = 0)) = const and
is independent of ¢). Using Eq. (2.18) and the rela-
tionship N = —2igx,M / (Kf‘ + ¢%), which follows from
Eq. (2.21), on the assumption that R;, £; = 0 at t = 0,
and also taking from Eq. (2.27) the expression

A=A(t=0)=—yqg*~ 1;.'; we obtain from Eq. (2.9)

M= Y, = 0)/(1-B) (d +T) . (2.29)

Eqs. (2.18) and (2.29), together with the relationship
between M and N, give the final solution for the vector
U in the EDTI case when static structures are formed,
Then, in the diffusion limit (ejj 2 R;), the EDTI growth
rate is given by the following expression which is
deduced from Eq. (2.27):

A= (re=q =T %) (2.30)
Allowing for Eq. (2.29), we find that Eq. (2.17) yields
an expression for the amplitude of strain on the surface
in Eq. (2.10) at time &£

ALY, (= 0) ]

(%,4"+ 1) i (1-B)
where A is given by Eq. (2.30) (if &; > R, the function
@ of the system (2.17) is indepencfent of gq); allowing

for Eq. (2.10), we find that the resultant strain on the
surface at the end of a laser pulse = 1, is

A=A(gD) = -

& (x, T,) = zA (g, 7,)exp [iqx + J?Ldt).
q ¢
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The strain correlation function is

E () = z (A’ (q, T,) Jexp (ZJldtj

~ [dq(a® (g.7)Yexp (201) ~ [E1da,
4]

where the spectral strain function is

2 2
&2 _ (qRE —4
f q +Ty/ %,
and A is given by Eq. (2.30). The value g = g at

which the maximum of the spectral function is attained
at time ¢ = T, determines, under linear conditions, the

period of a grating in the case when g; > R,. For exam-
ple, in the DTI case (Tje = (), we have

iy
i xj] exp (2h1),

172

Tmax = Qre fOr Gre> (47,0077,  (231a)

-2

T = (47,077, (2.31b)

If we calculate the critical intensity necessary for
the EDTI (found from the condition A= 0) by expand-

ing Eq. (2.22) in terms of the parameters A/ ¢4,

(A + '5;; )/ %4° < 1, we then obtain a soft relaxation
mode:

for qge < (41,%)

R,
b= -t ) -2 (g ey,

1 - {3 i
where R; is given by Eq. (2.17) and g; by Eq. (2.5).

In the case of the EDI from Eq. (2.32) we obtain a
soft carrier-density mode

(2.32)

4q|E§2 agu
A=-(Dg+1 )+ e
(2D,q"+17) o  He 0
, (2.33a)
EaE ) ?
e T B) pcfji

We can therefore see that the EDI appears only
when the condition dg" / dw > 0 is satisfied. This condi-
tion is obeyed by various semiconductors in the range
of frequencies of generally available lasers. In the case
of DTI, we can deduce from Eq. (2.32) a soft tempera-
ture mode;

. 4B w oe" {‘IaE .

A==2%g + g oK
=M Yoo e, 00 | (3T }

(1~ B) PC 1
{2.33h)
We can see that the DTI can be achieved for differ-
ent signs of de" / dw depending on the sign of 8 and on

the relative magnitudes of the first and the second terms
in the brackets of Egs. (2.33). The condition A = 0 in
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Eqs. (2.33a) and (2.33b) yields the critical intensity £z,
for the appearance of the ETI and DT, respectively.

Therefore, it follows from this section that if
|EP > Eir the specific Fourier amplitudes of coupled
fields of static strain (Eq. (2.18)) and of the nonequilib-
rium carrier density, and temperature (Eq (2.12)
develop on the surface exponentially with time and the
process is characterized by the growth rate A,
(Eq. (2.28h)). Consequently, in the linear EDTI case we
can expect structures in the form of one-dimensional
gratings (Fig. 2) with a period '

d = 21/q .. » (2.34)

where, in the case R; ® g, the value of g,,,, is given by
Eq. (2.28a), while for K < 4> it 18 given by Eq. (2.31).

2.4, Laser-Induced Semiconductor-Metal Phase
Transition Involving Superstructure Formation

We consider the nonlinear case for the EDI stabi-
lized by the nonlinear Auger recombination. The func-
tions of interest are described at z = 0 by n,(0) =

nexp(igx), &_,1(0) = € exp(igx), and T,(0) = T exp(igx),
where E,(0) = E,, + E,jexp(igx). Under a steady-state

condition (?u 1)} near the threshold E# = E ) the sub-

stitution Tn =1 4y, nJ* into Eq. (2.32) gives

n (0 =

2
= 1 2 -:} (2.35)
in -1

: q! ,Yl/z L B q

The threshold for appearance of the steady-state values

of n, corresponds to Ez, and naturally coincides with
the EDI threshold of Eq. (2.332). Far from the threshold
(|EP = Eir) we similarly obtain from Eq. (2.27)

12
i (f]“"‘] 2)2 2 Qre— 4
nQ':ml;‘mz{Dc{( 4 £ qul wﬁﬁ] + jﬂﬁ%}

Ta
- Deq2 -ty

(2.36)
Therefore, the dependence of n, on g repeats the
dependence ?\, Mg). Egs. (2.10) and (2.12) yield the

amplitude of a steady-state deformation wave on the
surface

gq = nq(’DeT{)

where 8, = [¢* + (77! +‘\yAn§) / D.}2, while the ampli-
tude of a steady-state temperature wave is

~ ergDES

9 ‘['
£.:X4
Let us obtain from Eq. (2.37) a more explicit formula

for the deformation Fourier harmonic amplitudes n,

3, —€,) /B, 2.37)
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and &, at ¢ = @y and A = A,... Using values given in
Sec. 2.6 for the case of picosecond excitation
(I~ 10° Wem™, 1, = 107" 5) for the parameters enter-
ing the expressions for 8, (2.13) and n, (2.36) we have
5;3 = (nax and

n = lrln/:x'yi./z'

Finnx

(2.37a)
Then, using Eq. (2.6a) we have g,, > D,v,8, so that

nn

from Eq. (2.37) & s = n, €,/ €,; whence

: Monas B,
v ©
Here A, is given by Eq. (2.28b).

If the Auger recombination is unimportant (for
example in the case on the time scale of 103 g, i.e.,
during the  femtosecond pulse  duration
(1,~107" 5,1~ 10" Wem™), see Sec.2.7)) then
the EDI stabilization occurs due to the acousto-optic
nonlinearity. In this case, the nonlinear regime of EDI

- in the bulk of the semiconductor was considered in

- Ref. [41]. Here we outline the derivation of Ref. [41]
and present the results. We represent the strain corre-
sponding to the Fourier harmonic with ¢ = ¢, and

A = A, in the form

& = aq exp (—iQmaxx) +c.c

Then we expand €” similarly to Eq. (2.5) but now we
take into account the cubic term £ g+ aside from the

(2.37b)

Teaux

linear one with respect to &g . Then from Egq. (2.3b)

.~ we find the stationary solution for the harmonic ampli-
Mude o

= ) L ne = nq;‘“x.e.xp (.;...igmaxx) +c.c.
Eq. (2:4) we have the connection
6P, /0. SN
0 connections, we find the Landau
he order parameter & -

maK |

L LR P/
o mnK 6Fmaxﬁ2 aE‘" /aﬂ) Fuiax”

max

 where the pump parameter R, ~ [EP is given in
Ref. [41]. From this equation we obtain

[& - _ﬁ_ 60e" /3w (1~ I«rna:m)l/2
Finax 18[5838" /8(1)3E Rﬂ

AL € = const(w - E, / %) we find for the order
-~ parameter

172

Fmax
ALY

S = S(A0-E) (1- 7

i
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Thus upon high exceeding of the threshold (R, > j -
the amplitude of the deformation wave is

g, =5(ho-E)/le. (2.37¢)

This equation is used for the evaluation of strain in EDI
under femtosecond excitation in Sec. 2.7,

We now substitute Eq. (2.37) and the value of T,in
Eq. (2.1). Then, a wave of the renormalized band gap at
2 = 0 is obtained using an expression for €, given by
Eq.(2.6a) on the assumption that |EP > Eir is
described by

E (0) = Ey—E, () cos gx,

de" Lo 19E

— [ 2 2

Ee1(q) = DB ny (e'nhi™yy/ 29 B + xqc, ﬁgg )
(2.38)

Note that the term f3,, in Eq. (2.1) is balanced exactly
by a part of the second term on the right-hand side of
Eq. (2.37), i.e., effective renormalization in Eq, (2.38)
occurs only due to the deformation and temperature
waves. When the modulation amplitude in Eq. (2.38)
obeys Eyy 2 E,, we find that a grating appears on the
surface, which represents alternating metallic and
semiconductor phases. In the case R, > g; the period of
this grating is given by the value of Gmax Of Bq. (2.28).
In the opposite limit of R; < g; the maximum, 1, in
Eq. (2.36) is attained at ¢ = 0. Then, in Eq. (2.38)"we
can sum over the surface modes:

E,(0) = Eyy~ ¥ Ey, (g) cos (gx)
q

=E,o- [E, ()],
It follows from Eq. (2.36) and the condition €; 2 R, that
ny o< ( qﬁg - ¢H", and using Eqs. (2.39) and (2.38),

. 5 ]
where y,n, > ¢°D, and the second term in parentheses
is retained, we obtain that :

(2.39)

9Re

[y ()1 = [dgeos (ax) (g3, ) ~ sin (g,5).
[

(2.40)

Therefore, for g ® R, a grating with a period
d=2n/ g, forms in the nonlinear EDTI case.

In addition to instability of the Fourier amplitudes
with g # 0 in the EDTI, the amplitudes of the deforma-
tion (strain), carrier density, and temperature fields for
g = 0 also increase exponentially in time, which gives
rise to a spatially homogeneous reduction of E,, ie., it
increases the optical absorption coefficient. This could
account for the experimental observation of a strong
reduction in the optical absorption len gth in semiconduc-
tors at a high rate of excitation with light characterized
by a photon energy £ much larger than E, [37].
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2.5. Formation of Radial-Ring
Electron-Strain Structures

Let us assume that the laser field has axial symmetry
(relative to the z-axis). We seek a simultaneous solution
of the system of Eqs. (2.4), (2.7), and (2 8) subject to
the boundary condition (2.9) written in cylindrical
coordinates, ignoring at first the dependence of E on r
in Eq. (2.2) (the influence of the dependence of the laser
field on the coordinate r will be discussed later). The
solution of the problem in cylindrical coordinates fol-
lows the procedure of Sec. 2.3, provided that we make
the substitution exp(igx) — J,(gr)cos m@ in the expres-
sions of Eg. (2.10) where J,, is the Bessel function of
the first kind of the order m, and m is an integer (the star
structure, see Fig. 2). We then find that the components
of the displacement vector (& = r, @, ) are given by

Uy = (a N exp (~xz2) +b,Mexp (-2}

2.41
+M 2 €y P, exp (- Sz))‘P exp U?»dt) (2.41)

j=nT

where

a,= ¢, Gy =—=a, =K, bmel’ bfP:—.b"zq’
2 2
ey =—k, ¢;=—cy =Ny’
\yz =J,(grycos m@,

1

¥ = 5 (1 (gr) —J, .1 (qr} ]} cos m@,
1 .

‘qu - i [‘]m+1 (qr) +‘]m--1 ((]r)] sin m('p'

The dispersion equation for the EDTI deduced from
the boundary conditions for U and from Eq. (2.41) is
exactly identical with Eq. (2.22). Therefore, the expres-
sions for g, and A, (Eqgs. (2.28a) and (2.28Db)),
which separate the dominant structure in the linear
regime, are valid also in the case of the radial-ring
structures under consideration.

It is clear from Eq. (2.22) that surface harmonics
with any value of m are characterized by the same
growth rate. This degeneracy inmis a consequence of
neglecting the dependence of the laser field E? intensity
on rin Eq. (2.2).

We can find the parameters m by solving the prob-
lem of the growth of the EDTI, assuming a Gaussian
transverse distribution of laser intensity. Consider, for
example, another possible class of surface structures in
the form of radial rays (Fig. 2).

Let us assume that the pump field has a Gaussian
intensity distribution

|E* = Eiexp (—F/r)). (2.42)
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Then, Eq. (2.8) becomes

j]
g TS Eh e e o )

X exp (~Yyz= 1"/ rﬁ)
where €, €, and g7 are given by expressxons in
Eq. (2.6a), provided we replace |E]* with E . The

boundary conditions for ¥, remain the same. We spec-
ify §, and ¥ at z = 0 in the form

2

E, =A ( ) exp ( )cos (m@) exp Uldt) (2.44)

’"o

n 2
Y, = A; () (f—) exp (——%Jcos (m) exp ( kdt).
Fo ry o

(2.45)
Here, as in Egs. (2.9) and (2.10), we are using A for the
initial amplitudes, and A, are slow functions of time,
where m is an integer; we shall assume that m > 1.
Then a maximum of the function (r / rp)"exp(—r* / ré)
lies at a point ryg, = rg(m / 2)12 = ry. Inthe range r<ry
we can assume that (r / r)"exp(—r* / r?,) =(r/ry)" and
Eq. (2.43) can be written as follows:

Wy Ay, = (e h+e, A oy
5 tAY = (A +€,A,+8,A7) (;;) cosm@

2 t
X exp (—% - Y2+ J?Ldl‘).
r 5

(2.46)
The solution of Eq. (2.46) subject to the conditions

r/ry<¢mand¥y, > m"ry' can be obtained in the form

2 t m

: = r r

€A exp (——sz - . +jldt)(;;) cos m@
0 9

i ?

%, YoB ( 2 /m)

(2.47)
where éj is given by Eq. (2.13), provided ¢* is replaced
with &

7= am+1) /7 (2.48)

Using Eq. (2.4} and the boundary conditions for the
vector U in cylindrical coordinates, and following the
solution procedure similar to that described in Sec. 2.3,
and also allowing for the solutions ¥ described by
Eq. (2.47) and the conditions subject to which the solu-
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on of Eg. (2.46) is obtained, we find that the compo-
ents of the displacement vector are described by

- i 1 2 t
U;- =1 exp (’"{5 + J ?Ldt)‘{’,. (a;Mexp (~x,2)
1 o o

- (2.49)
+bNexp (-xz) + M 2 CU(I)jexp (—sz)) ,

L Jj=nT
- where i =z, @, r; ¥, = mcos mQ, ‘¥, = —msin mo, ¥, =
crcosm@sa,=a,=1,a, =~k b, =b,=-x, b, =q;
Cr.j = C‘?j = “;vz / iy CZi = A.tz.
7" Here, xj, and @; are given by Egs. (2.19) and (2.20),
i where ¢* is replaced with &2 given by Eq. (2.48). The
- diépersion equation obtained from Eqgs. (2.9) and (2.49)
- coincides with the dispersion equation (2.22) if ¢2 is
"fj_'fepiaced with c}z, i.e., it specifies A(m). If the expres-
- 5ions for g, (Eq. (2.28a) and A, (Eq. (2.28b)) are
. modiﬁed by replacing ¢* with éz, they give the value of
at which A reaches its maximun:

s 172
w= (Qaery/ B[S +6a+1)  ~ (2a+1)";

R (2.50)
the value of m,,, given by Eq. (2.50) determines the
number of rays in the dominant structure.

o0 2.6, Comparison of Theoretical
oo and Experimental Results
a5 already mentioned above, the symmetry of
ires formed as a result of the EDTI should be
symmetty of the laser beam for an iso-
metry.of the crystal surface.
timates of the parameters
with experimen-

X 10° Wiem? when g = 10* cm. The critical intensity
. forthe DI is (D, / 1)AI0E, / 0T / (¢, 19, / on, ) = 10
~ times larger. It follows from Eq. (2.28) that in the EDI
case we have g5 ~ g ~ 1074 EP esu = 104 -105 em!
o or =6 10° W.em™, i.e., the period d of the struc-
tures is of the order of 1 - 5 um. Eq. (2.28b) yields
A 7 Dot ~ 101 - 101 §71 for the growth rate. The
amplitude of the renormalization E, for the above val-
ues of the parameters is Eg=z1 er i.e., the EDTI can
result in the insulator-metal phase transition. This con-
clusion and estimates of the structure periods as well as
-_t%_xg_xr_-__g-r_owth times are in agreement with the experi-
mental results reported in Ref. [37], where laser pulses
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of T, = 5 X 10~ s duration were used. It was found that
gratings of alternating metal and semiconductor phases
or “star”-like structures were formed on an isotropic
surface of VO,, depending on the symmetry of the laser
field. It follows from Eq. (2.50) that for ry ~ 5 x 10~ cm
[37], the number of rays in the “star”-like structure can
be as large as m = 50, which agrees with the experimen-
tal results (see Fig. 4); moreover, we have ATy~ 5> 1.

It is clearly seen from Fig. 4b that the number of
rays increases with the distance from the center of the
irradiated spot. This increase occurs as a ray bifurca-
tion. A similar phenomenon is observed in the case of
vacancy GDI of Sec. 4.1 (compare Figs. 4b and 11).
This phenomenon is explained in Sec. 4.1 (see Fig. 12).

These estimates allow us to justify the boundary
conditions given in Eq. (2.7). If we use Eq. (2.17), we
find from Eq. (2.12) an expression for (0Y;,/92) I, _,,

and from Eq. (2.18) an expression for U,(0). We shall
assume that in the case of picosecond laser pulses we have
TG(Za t) = Ttos t)exp(_YOZ) and nO(Z! t) = nﬁ(os t)exp(MYOZ)’ £0
that in the DTI case we obtain the following estimate

27,
37

~ (ox% ) [KaT, (0)1/pe ~ 1074,

U, i
tz=0" 35 120

whereas in the EDI case, the corresponding estimate
gives

3, 1 8n11
-2 fz=0/ =
az azEz=O
~ (DAY [0y (0)] /pct ~ 107"

for ny(0) ~ 10*! em, which confirms the validity of the
boundary conditions given by Eq. (2.7) for the case in
question.

In the experiments described in Ref. [79], a (111
surface of crystalline silicon was irradiated with laser
pulses of wavelength A = 0.53 yum, creating one-dimen-
sional gratings of the surface relief in which the lines
were parallel to one of the [110] axes. The dependence
of the grating orientation on the crystallographic axes
indicated that a deformation mechanism was responsi-
ble for the formation of these structures. The structure
period was independent of A, angle of incidence, and
polarization of the incident radiation, but was governed
by the pulse duration. It was found that d, = 3 x 10~ cm
for 7, = 107" 5, whereas d, = 6 x 10~ cm for 1, =
5 X 1071, i.e., the relationship (d, / d;) = (T / T,
was obeyed. In the case of Si, one has ¢, / R, ~ 16, 50
that the period of the EDTI structures should be given
by Eq. (2.31b),ie.,d ~ 1,2, which is in agreement with
the experimental result of Ref, [157].

We note that apart from the periodic surface struc-
tures formed due to the EDTI development, qualita-
tively different surface structures are also formed under
pulsed laser irradiation of the semiconductors
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(see Sec. 4.3.1). These interference structures of modu-
lation of the surface relief with the periods d == Ap,
where A, is the excitation light wavelength, may appear
because of the diffraction of the incident wave from the
surface relief. We can describe these structures by
including interference sources of the EE, type in the

right-hand side of Eq. (2.4), where E, ~ U, | _ is the

amplitude of the diffracted wave. These structures
appeared in the solid phase due to the interference
instability of sublimation or due to generation of cou-
pled diffracted waves and surface acoustic waves (see
Refs. [24 - 26]). The growth rates of the interference
instability as a function of ¢ have very narrow maxima
(see Refs. [25, 26]), the positions of which are gener-
ally different from the positions of maxima of the EDTI
growth rates, so that we can regard these instabilities as
being independent in different ranges of 4. Therefore,
we ignore the contribution of interference sources in
Eq. (2.4) when considering the EDTI (excellent
reviews of the experimental and theoretical investiga-
tions of the interference surface instabilities are given
in Refs. [22, 23]).

In contrast to the interference instability case, the
characteristic scale of the structure formed because of
the EDTI is not governed directly by the wavelength
A, and its geometry is not generally related to polariza-
tion of the incident radiation, so that these two types of
structures are easily distinguished experimentally
(see Sec. 4.3.1).

2.7. Superfast Phase Transition to
Centrosymmetric Crystalline State in GaAs
under Femtosecond Laser Excitation

There was great interest in the past few years in the
nature of phase transitions on the surface of solids
under pulsed femtosecond laser excitation [4-9].
When the pulse duration is comparable to or less than
the characteristic time of electron-phonon relaxation in
solids, principally new mechanisms of phase transi-
tions may be involved. One indication of ultrafast
phase transition on the Si surface under 100-fs pulsed
laser excitation was revealed in Ref. [7} with the use of
time-resolved linear and second-harmonic reflection.

In recent experiments [8] the temporal behavior of
linear and nonlinear optical reflection from the GaAs
surface under 100-fs pulse laser excitation was
observed, which gave evidence of the ultrafast phase
transition to the structurally new phase with properties
different both from that of the initial crystal and that of
melted material. The transition occurs on a time scale
of about 100 fs, which is approximately one order of
magnitude shorter than the time required for the elec-
tron relaxation to the bottom of the conduction band,
the latter time being discussed in numerous experimen-
tal and theoretical studies [5, 7, 45, 46]. Therefore, such
a kind of phase transition cannot be considered as con-
ventional melting following energy transfer from
excited electrons to the lattice, and principally different

EMEL’YANOV

mechanisms should be analyzed. In this section we
present the phenomenological model [47] describing in
a self-consistent manner the ultrafast dynamics of lin-
ear and nonlinear optical reflection from the GaAs sur-
face observed in Ref. [8]. It infers initial ultrafast
transition to the nonequilibrium crystalline semicon-
ductor phase with centrosymmetric lattice structure,
which exists only during the first picosecond after exci-
tation and is followed by melting of the subsurface
layer due to energy transfer to the lattice and its heating
up to the normal melting point.

It was found in Ref. [47] that the structural phase
transition is possible under high electron plasma den-
sity and laser-induced stress in the subsurface layer
achievable during strong femtosecond laser excitation
due to the development of the EDTI. Analysis of lattice
dynamics under laser excitation based on the equation
for the amplitude of the zone-edge TA-phonon mode,
reveals the time required for such phase transition to be
consistent with the value observed experimentally. In
doing so, laser irradiation is assumed to induce coher-
ent shift of atoms from their initial positions to new
quasi-equilibrium positions in a centrosymmetric lat-
tice, rather than the increase of amplitude of their ran-
dom vibrations corresponding to the increase of lattice
temperature. :

The experiments [8] utilized high structural sensi-
tivity of the Second Harmonic Generation (SHG) in
reflection from the surface, in order to study the
dynamics of phase transition in a GaAs subsurface
layer under 100-fs laser excitation. A GaAs crystalisa -
noncentrosymmetric material (symmetry class 43m)
and hence exhibits strong second-order optical nonlin-
earity x'¥ in the electric dipole approximation. There-
fore, laser-induced phase transition to any phase with
centrosymmetric structure {crystalline, or disordered
or melted) is expected to cause an abrupt decrease of
the SH intensity. In the centrosymmetric phase the
second-order susceptibility is nonzero only in the elec-
tric quadrupole approximation, thus yielding a value
of the susceptibility several orders of magnitude less
than that in the electric dipole approximation.

Note that symmetry relations governing the nonlin-
ear susceptibility, relay to the long-range order with the
characteristic length comparable to the laser wave-
length. In contrast, linear reflectivity of cubic crystals is
determined by the band structure and therefore relays to
the short range order within a few coordination spheres.

Pump-and-probe experiments [8] revealed the com-
plicated dynamics of linear and nonlinear reflection from
GaAs at laser fluence three times that of the melting
threshold. The linear reflectivity measurements reveal
more gradual rise with a characteristic time of 1 psup to
the value characteristic of molten (metal-like) material.
In contrast, SH reflection demonstrates an abrupt
decrease with a characteristic time of about 100 fs fol-
lowed by additional fast changes in the first picosecond
and eventual onset of a low constant value,
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The SH dynamics imply the structural phase transi-
e centrosymmetrical state, still semiconduc-
tor-like during the first picosecond after excitation, as is
seen from the behavior of linear reflectivity. Therefore,
- the probléms which should be resolved are the follow-
ihge (1) what is the nature of the state of the material
. existing in the first picosecond after excitation and

'(2) how can the phase transition to this state occur on a
time scale of about 100 fs? Obviously, the second prob-
lem cannot be resolved assuming lattice heating
through spontaneous emission of phonons by photoex-
cited electrons, because the latter process takes at least
several hundred femtoseconds.

There are principally two possibilities regarding the
structure of the short-lived state of GaAs in the first
picosecond after laser excitation. Since SH is sensitive
to the long-range order, the fast drop of the reflected SH
might be due to the loss of crystalline order over the
distance of approximately the laser wavelength, while
the short-range order on the scale of two first coordina-
tion spheres remains approximately unc¢hanged, and
- thus the material remains a semiconductor. This situa-

 tion meets the major conditions of the “cold melting”
hypothesis, which implies lattice disordering {7].

A principally different possibility was considered in
Ref, [47], in which the observed drop of the SH inten-
sity is attributed to a transition to crystalline centrosym-
metrical state which exists only during the first
picosecond after excitation. It is shown that the time
necessary for such a kind of transition js not limited by
the characteristic time of spontaneous electron-phonon
relaxation, and can be of the order of 100 fs.

It is known that in an equilibrium state, covalent
(8%, Ge) and ion-covalent (GaAs, ZnQ, InP, InSb)
. semiconductors undergo phase transitions to new
. Phases (characterized by B-tin, NaCl or orthorhombic
_structure) when the applied pressure exceeds certain
“critical values [48]. In GaAs the transition into the
~orthorhombic semiconductor phase occurs at the
lowest value of reduction of the relative crystal cell
volume dv/ V= -0.17 (in Si the transition to B-tin
“Structure occurs at dv/ v=-0.32). In highly excited
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semiconductors, phase transition can occur at lower N
pressures, and the nature of the final phase may
change. Thus, it was shown theoretically in Ref. [497
that at the electron-hole plasma concentration of
n =10 em™ and electronic temperature 7' = 104 K,
GaAs undergoes a phase transition into a metal-like
centrosymmetric phase possessing symmetry similar
to that of NaCl at dv/ v=~0.1 (see Fig. 6). It will be
shown below that GaAs can undergo ultrafast phase
transition to a new phase with lattice symmetry differ-
ent from the initial one under excitation by a strong
femtosecond laser pulse realized in the experiment of
Ref. [8]. Using phenomenological description of the
laser induced phase transition, the dependence of the
fundamental bandgap E, of a semiconductor on the
modulus of the relative change of crystalline lattice
cell |dV/ V| =§, and the electron-hole plasma concen-
tration n, can be written as (compare (2.1)):

Eg - Eg() - B& - Bnne’

where Eg, is the equilibrium fundamental bandgap,
B.>0 and 0 is the interband deformation potential.
Note that in Eq. (2.51) we neglected the bandgap renor-
malization due to laser-produced heating, which is
insignificant on the time scale of # = 10~'3 s under con-
sideration. At E, = E,, the crystal undergoes a phase
transition to a new semiconductor-like phase, and at
E, = 0 - to a metal-like phase. Thus, the lines E,=E,
and £, = O divide the (n,, £)-plane into three regions:
the iitial semiconductor-like phase (Sy), the new laser-
induced semiconductor-like phase (S,) and solid metal-
like phase (Sy) (Fig. 7). In particular, it may occur that
E,, =0 and thus only semiconductor-metal phase tran-
sition takes place. The initial equilibrium state corre-
sponds to the zero point of this diagram. The excitation
pulse creates plasma with density of about n, =
107 cm™ and lattice deformation of the order of & =0.1
(see below). The critical values n, and & correspond to
intersection of the initial semiconductor-like phase
energy curve with that of the new semiconductor

2.51)

B ¥
B
Sm
metal-like
phase

Ed

& .ew,
semiconductor-
\ like phase

density of free electron plasma

0 (B-E/8,

tv/ivi

Egl®,

Fig. 7. Schematic phase diagram of GaAs. The dotted line
shows ultrqfast wransition from the initial state {0} to the
centrosymmetric crystalline state (1) and the subsequent
slower onset of the mnelt (2).
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(Ey #0), or metal (E,; = 0) phase at the energy diagram
of Fig. 6. It is at this point that the transition to a new
symmetry takes place. This phase transition occurs as a
displacing type II phase transition due to softening of
the optical or acoustic phonon mode. It was shown in
Ref. [50], for example, that under excitation of a dense
(n, > 104 ¢m™) plasma the TA-acoustic mode at the
edge of the Brillouin zone becomes unstable first. We
assume that the amplitude of this unstable phonon
mode obeys the following equation

P/t + 0 (1-0.5-B,n)Q = ~blQQ
(2.52)

and plays the role of the order parameter of this laser-
induced displacing phase transition, where b is the
phonon anharmonicity constant,

ﬁnl = Bn(EgOHEgl)H]’ 61 = e(Eg{J"Egl)“l'

From Eq. (2.52) we have that the stationary state (new
nonequilibrium phase) with the displacement

12
Q= (i/b) (BE+B -1 (253)
is established in the time interval of
r= ) (8,648, - D7 (2.54)

Let us make numerical estimates. The number
density of plasma generated on the surface layer of
the semiconductor by the end of the pulse (without
taking into account diffusion and Auger recombina-
tion; both are unimportant on a time scale t = 10°'% 5)
is n, = y(1 — R)YW/ o, where the absorption coefficient
of exciting radiation y = 4 x 10* cm™, reflection coeffi-
cient R = 0.3, and pulse energy density W=0.21J cm,
® =3 x 10' 571, With these parameters we have n, =
2 % 102 cm™. Let us now estimate deformation of the
subsurface layer. The light pressure yields the compres-
sion with & = fikn / T.K = 4 x 107, where k = 21/},
K =5 % 10" erg-cm™ is the bulk elasticity modulus of
GaAs. The excitation of electron-hole plasma with con-
centration n, = 10?2 cm™ leads to the crystal dilation
E=on, =2 x 1072, where 6, = 2 X 107 cm? is the
relative increase of the crystal volume accompanying
generation of a single electron-hole pair.

The theory of electron-deformational instability
(EDI) in the case of interband transitions in semicon-
ductors (see Sec. 2.4) predicts ultrafast (£ = 107 s) for-
mation of the surface grating of the plasma
concentration » and coupled surface strain grating &q
with the period d, given by Eq. (2.34), of the order of
10° cm (W = 0.2 J.em™) and amplitude & - see

Eq. (2.37¢)
E= &qm = cos 2nx/d,
E, ~(fw-E) /19,

where x is the coordinate along one of the crystallo-
graphic axes of the surface layer.

For (Ao — E,) = 1 eV, |6] = 10 the amplitude of the strain
grating is § = 0.1. It follows from the EDI theory

that this grating penetrates from the surface into the
bulk at a distance of the order of d = 10~ cm, which is
equal approximately to the SH absorption length. After
the end of the pulse the grating disappears with a

characteristic time t = d*/ D, = 1073 5, where D, =

103 em*s™! is the diffusion coefficient of the nonequi-
librium carriers under strong laser excitation.

Thus, it is seen that femtosecond laser pulses used in
the experiment can create dense plasma (r, = 10% cm™)
in highly compressed regions (§ = 0.1) of the subsurface
layer. These values of n, and § meet the conditions of the
laser-induced structural phase transition discussed
above. It follows from Eq. (2.54) that this phase transi-
tion has a characteristic time f < (! = Of = 1035,
where 0y, is the transverse acoustic phonon frequency
at the edge of the Brillouin zone.

Thus, we see that both the threshold condition of the
phase transition and the requirement of its being suffi-
ciently fast may be satisfied in experiments [8]. The
above analysis leads to the conclusion that during the
action of a powerful femtosecond laser pulse, the grat-
ing of alternating different phases Sy, 5, (or Sy, Sy is
formed with the period d = 10~* cm, which disappears
when the pulse is over. If we assume that the symmetry
of $,(S,) phases is such that the value of x® of these
phases is drastically reduced, then a strong decrease of
the SHG intensity on a time scale of 10-"° s should be
observed during the pulse, replaced by the rise of SHG -
immediately after the end of the pulse. If, for example,
one takes = 0, then the SHG intensity drops by 75%,
which indeed was observed in the experiment under
consideration.

Thus, the concept of ultrafast structural phasé tran-
sition of GaAs into a new centrosymmeltric phase can

- explain an ultrafast decrease of the SHG intensity

observed experimentally in Ref. [8]. Note that recent
results of Refs. {9, 51] are in agreement with the present
model., It was found in Ref, {9] that the characteristic
time of fast laser-induced phase transition in GaAs is
strongly decreased with increasing the laser fluence.
Indeed, Eq. (2.54) predicts the decrease of the charac-
teristic transition time to the new crystalline phase with
increasing the level of excitation (i.e., with increasing
n, and £). A detailed analysis which takes into account
plasma dynamics and melting on a longer time scale is
the subject of further theoretical studies.

3. LASER-INDUCED POINT DEFECT
GENERATION IN SEMICONDUCTORS

We now proceed to the consideration of point lattice
imperfections generated in semiconductors during the
action of laser pulses.

As was already said in Sec. 1, pulsed laser irradia-
tion (PLD is currently used to induce modification of
properties of the semiconductor materials [52, 53].
However, the quality of the laser treatment is often lim-
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on-of defects in the subsurface region of
materials [54 - 56]. Another important
iated with light-induced point defect
semiconductors is the gradual degrada-
onductor lasers and light-emitting diodes

established (see Ref. [57] and references
that PLI of the A* and A3B® semiconductors
-onditions of the interband absorption leads
on ‘of:the defect centers already at laser
energy densities of about W= (0.05 - 0.1)W,,, where W,,
s the melting threshold. The mechanisms of their for-
been elucidated completely.

he following factors, which can

1 defect formation: heating, acous-

local electronic excitation (EE) of

+ of a semiconductor, However, it

ientally [57] that under the PLI with

he above-mentioned mechanisms sep-
ause formation of the defects.

the electron-deformation-thermal (EDT)
e laser induced defect formation is consid-
Jhichtakes into account simultaneous influence
the above-mentioned factors on the thermal fluctua-
n rate of defect production in semiconductors.

:In:Seec. 3.2 the EDT theory of the laser induced
‘defect formation in semiconductors based on EDT-rate
“of defect production is developed, which yields analyt-
~ical formulas for dependencies of the generated defect

_coricentration on laser fluence for different conditions.
The theoretical results are compared with the experi-
‘mental ones, obtained for A* and A3B® semiconductors
at W< W,,. In Sec. 3.4 the experimental results on for-
-mation of periodic surface defect structures in GaP
under nanosecond UV PLI are interpreted in terms of
‘EDT mechanism of defect generation, effective under
he EDTI conditions.

3.1. Rate of Pulsed Laser-Induced Point
Defect Production

. Let a laser pulse with duration 7. and energy of the
quantum fiw > E, (E, being the forbidden gap of a
‘semiconductor) act on the surface z = 0 of the crystal
(the z-axis is directed inside the crystal). As has been
noted above, the action of the laser radiation leads to
- three effects which are important in the process of addi-
tional defect formation: heating, deformation of the
subsurface layer, and local excitation of the initial cen-
ters. Let us discuss each of these factors.

. Afraction of the energy of the photoexcited electron-
ole pairs is transferred in the process of electron-phonon
“laxation to the lattice and heats the latter. The thickness
f;.ihe: heated layer for the nanosecond ran ge of laser pulse
Urations (T, = 10 - 30 ns), of interest to us in this section,
1or the values of coefficients of the optical absorption y=
10%- 108 e, is determined by the heat diffusion and
usually amounts to several tm [58].

)
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The strong rise of the temperature T (up to the melt-
ing point) leads to the thermofluctuation generation of
defects [59, 60]. The local rate of thermofluctuation
defect production, neglecting recombination is given
by

P
a?d = Cyexp (~Eg/kT), @.1)

where E, is the energy of the defect formation and
T=T, + AT, T, being the initial temperature and AT
being the temperature rise. The explicit form of the
constant Cy depends on the nature of the defect genera-
tion process.

The defect formation energy can be substantially
reduced owing to the localization of the electronic
energy at some point of the crystal {61, 62]. In A* and
A*B5 semiconductors such localization is possible only
at the defects in the process of the nonradiative capture
or recombination of carriers [61]. All the mechanisms
of defect formation stimulated by the localized EE can
be divided into two groups: the mechanisms of vibra-
tional instability and those of adiabatic instability [62].
In the first case the energy of the EE transforms into the
vibrational energy of the defect, while in the second
case it decreases the potential barrier of the defect tran-
sition to a new equilibrium position. Thus, the localiza-
tion of the electronic excitation at some initial defect
can induce the appearance of new centers, i.e., the pro-
cess of defect multiplication takes place. Effectively,
one can take into account the local electronic excitation
by subtracting some quantity E,, from the energy of the
defect formation E. The magnitude of E,, is deter-
mined by the configurational diagram of the initial
defect and by the peculiarities of the local vibrational
excitation relaxation of this center [61, 62]. Thus, gen- .
erally, it does not depend on the electron-hole plasma
concentration n,. Hence the effective energy of defect
formation is

Gd=

E, = E;~E,,. (3.2)

In the field of strain & = div U of an isotropic or
cubic crystal the energy of defect formation is
(cf. Eq. (1.Dx

Ey = Ey-E, ~8,divU. (3.3)
Expanding E, and E,, in power series of &, we

obtain _
E, = Egy~ Ev,—0,div U, (3.4)

where EgO and ESe are defect formation energy and

energy of electronic excitation in the absence of strain
(pressure) and the effective activation deformation
potential

OEy, . oE,,
TR o

Taking into account the three above-considered fac-

tors of laser action in Eq. (3.1), we obtain an expression

for the rate of point defect production in a semiconduc-
tor under pulsed laser irradiation

8 -9, (3.5)




410

and Eg(}— Ege s eadiv U
GdE“*“ = Cdﬁxp i

dt kT jl’ (3.6

where C, is now some function of the initial concentra-
tion of centers, localizing electronic excitations, and in
general also a function of n,.

The relaxation times of surface deformation and of
the electronic excitation are comparable to or less than
the duration of a crystal cooling [58]. Owing to the very
rapid cooling (10 ks~ for 1, ~ 107 5 [58)), all three
above-considered factors of defect formation under
pulsed laser irradiation have a quenching character
(i.e., the generated defects are “frozen in” after the end
of the laser pulse).

With the increase of the number of pulses the defect
recombination enters into play, and the density of the
laser-induced thermofluctuation defects reaches its sta-
tionary value. The effective values of activation energy
and defect deformational potential 8, appearing in the
stationary expression for ny can be shown to be modi-
fied in comparison with Egs. (3.2) and (3.5) by extract-
ing similar terms due to recombination energy E, and
potential 9,. We do not write these modifications
explicitly, but simply write the stationary solution using

the two phenomenological parameters Ey o and 8, = 6,;

(E.{?AOM EO 9,&)

e

] (3.7

My = CONst exp L— (T, +AT)
where
ES,~El,—0,E>0.

Eq. (3.7) is similar to the usual expression for the
equilibrium point defect concentration [60] and takes
into account three factors of laser pulse influence. In the
initial formulation of the EDT model in Ref. [63] we
have taken into account only dEs/dE in Eq. (3.5)
{omitting 8, and possible contribution JE,, / 9&). The
authors of a similar model in Ref. [64] took into
account all three terms in Eq. (3.5). Due to the unknown
relative contributions of the three terms in phenomeno-
logical formula (3.5) it is impossible to envisage the
resultant sign of 0,, consequently, similar to Ref. [63],
we postulate 8, < 0, and compare the consequences of
this postulate with the experimental results.

It was pointed out in Sec. 2 that deformation of the
subsurface layer under pulsed irradiation stems from
two reasons: heating (the thermoelastic deformation
[66], important only when T, > 1, ~ 107'% 5) and gen-
eration of the electron-hole plasma (photostriction
deformation [67, 68]). For the nanosecond excitation of
electron-hole plasma, considered in this section, the
density of the nonequilibrium carries reaches values of
the order of 102° cmy? [58, 68). Under these conditions
the photostriction deformation turns out to be of the
same order of magnitude as the thermoelastic deforma-
tion [70]. Because in the experiments usually the radius

% The casc for which G4 depends on ny is considered in Sec. 5.3.3.
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of the laser beam r, > ¥, one can consider the defor-
mation as a uniaxial one:

. aU,

E=divU %

In the case of thermoelastic deformation we always

have £ > 0 (dilation). The sign of the photostriction

deformation depends on the structure and excitation of

the semiconductor energy bands: dilation (§ > 0) in the

case of Ge and GaAs {70} and compression (¢ < () in
the case of St [67].

3.8

3.2. The Electron-Deformation-Thermal Theory
of Point Defect Generation in Semiconductors

To determine the number of defects formed as a
result of action of the laser pulses, one must calculate
the values of AT and § as functions of Wand z. As we
shall see in the following, for explanation of the basic
experimental results it is sufficient to know the values
of AT and & on the surface of the semiconductor (z=0).
This circumstance substantially simplifies theoretical
considerations and permits one to determine & directly
from the boundary condition for the displacement vec-
tor of the medium U at the free boundary z = 0 (see
Eq. (2.9): :

4]

E=divU,_, = ~5 AT+ ——%ne, 3.9
1 po
where n, = n,(z)1,_, is the carrier density at the sur-
face z =0, and B, is the acoustic interband deformation
potential (8, > 0 for Si and GaP and 8, <0 for Ge and
GaAs). Let us calculate now the value of AT and div U
for z = 01in Eq. (3.9):

(1) The laser heating of a semiconductor surface.

We use the heat conduction equation

ar cYlE’(1-R)

5 XAT = 2nc,
where R is the optical reflection coefficient (we assume
normal incidence of the laser radiation). The solution of
Eq. (3.10) at z = 0 for 7, > x~'v% has the form

exp (-yz)}, (3.10)

E*(1-r) .
AT = clEl"( )( Py
b nKe,

(3.11)

where X = %c, is the thermal conductivity.
(2) The density of nonequilibrium carriers.

Let us write down the equation for the density of the
nonequilibrium carriers taking into account the rate of
laser generation, linear and Auger recombinations and
the diffusion

g}”e (D) + n (z)

3
W@ =Dbn @

= GE exp (-2)
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ith the boundary condition

(3.13)

“onsider the quasistationary regime, for which
, ;1 and use in Eq. (3.12) the approxima-

Yane (2, 1) =Y,nin, (2), (3.14)

Wh"f_':re n, = n,(z) !, _, is the density of the nonequilib-
tium carriers on the surface.

=D A+T )0 (2) = OlE exp (—y2). (3.15)

'Gl'u't.ion of this equation at z = 0 with the bound-
ition (3.13) has the form

et us consider various limiting cases of the
f interest in practice (3.16).

e case of rapid surface linear recombination
o DY) from Eq. (3.16) we obtain

p]dAuger recombination and

. >T,, YD, we have from

= (3.19)

the following we will study the case (3.17), which
- realized in experiments of Refs. [63, 73]. Then,
stituting Eqgs. (3.17) and (3.11) into Eq. (3.9) and

the expression thus obtained for & in Eq. (3.7), we
ent the latter in a form convenient for comparison
he experiment
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In{n) = In (const) +

, 320y

1+

where W=1,c|E[*/ 2r is the energy density of the laser
pulse,

2{(1-R
= LR G3.21)
(mccv*rp)
0, (1-R) 2ko T\ 17
C2 = ? Ai. 3 {: m+8g(——2—-) %J
pck (nxcvtp) T,0
(3.22)

Let us make numerical estimates of the constants of the
present EDT theory - C, and C, for Ge with the help of
Egs. (3.21) and (3.22). We use the following values of
the parameters: = 2.7 x 10 s, 1, =20 ns, 8, =~10eV,
Tp=300K,p=53gcm™, ¢;=5x 105cm-s~!, R = 0.36,
B=57x10%degrec!, x = 0.6 Wml-degree™, |0, =
10 eV. For laser intensities /; used in experiments of
Ref. [63] (108 W-c2 < 7, £ 5 x 10 Weem™), the time
of the surface recombination is 1, = 1 = 10~ s [23].
Then, from Eq. (3.18) we have C, = 4.8 degree.cmZmJ-!
and from Eq. (3.16) C, = 3.4 degree.cm®mJ-! and
C, / T) = 1.1 x 102 cm?mJ. As we will see in

Sec. 3.3, these numerical estimates satisfactorily corre-
spond to the experimental values.

We formulate now the basic conclusions which fol-
low from the EDT model of the laser defect formation
considered here.

. (1) For W < W,, the laser-induced defects arise ina
* vicinity of the initial centers. Consequently, concentra-

tion of the laser generated defects is proportional to the
density - of initial defects ng(t = 0) (in Eq. (3.20)
(const) ~ ny(r = 0)).

(2) The process of the defect formation under PLI
has a quenching character. The number of defects under
the conditions of validity of Eq. (3.17) grows with
increasing W according to the law (3.20), which is
determined by the parameters of the present EDT the-
ory: Efy — E.., C, (Eq. (3.21)), and G, (Eq. (3.22)).

(3) The dependence of ny on the amplitude of the
laser field can have a character different from Eq. (3.20)
in the case of validity of the condition (3.18) or (3.19).

(4) Under the condition
(Eao—E¢—8,E) <0 (3.23)

the defects arise nonthermally (without thermal activa-
tion).
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3.3. Comparison with Experimental Results [63]3

First of all we consider the data for Ge in the case of
irradiation by nanosecond pulses from a ruby laser.

The surface recombination rate § was deduced from
measurements of steady state photoconductivity. At
each value of the laser pulse energy density W the
dependence of S on the number of pulses N was
obtained. After N = 10 - 20 pulses S reached stationary
value S,,. Then the differences AS = S, - S, were plotted
versus W. The value of S is proportional to the concen-
tration of laser-induced surface recombination centers.

In Fig. 8 curves in AS(W) for two samples with
the lifetimes 1T, = 20 us and 1, = 100 us are repre-
sented (curves 1 and 2, respectively). Solid lines in
Fig. 8 were calculated from Eq. (3.20) with the

following parameters: Eio - Ese =017eV, C, =
8.5 degree-cm®mJ-! (sample 1), (Eo~Eo,) =0.17 eV,
C, = 15 degree-cm®>mJ~! (sample 1,). The magnitude
of C, was taken equal to 4 degree-cm®*mJ~! in accor-
dance with Ref. [58]. From Fig. 8 one can clearly see
rather good agreement between experimental points
and the dependencies calculated from Eq. (3.20).
The energy of bulk defect formation in Ge under the

thermal action (quenching) is about 2.0 eV for vacan-
cies [60]. This value is much greater than the parame-

ters of Ea,— Eo. obtained in Ref. [63]. Such a large

decrease of the defect formation energy shows the
important role of electronic excitation.

The experimentally measured value of the parame-
ter C, is of the same magnitude as that obtained below
from Eq. (3.22). Elimination of the surface deformation
term in the expression (3.22) (|0,4| = 0) causes a large
deviation of the theoretical curve from the experimen-
tal points. This is clearly seen from comparison of the
sohd line 1 and the dashed line calculated in accor-

dance with Eq. (3.20) at Eio—Ege =017eV, C =
4 degree-cm?*>mJ! and C, = 0.

The marked difference of effectiveness of laser-
induced defect creation for samples with different ini-
tial defect density (samples T, and 1,) is in agreement
with the EDT model suggested in this work. When the
initial defectiveness of a semiconductor is increased,
the energy required for a new center formation

becomes lower. In our case the value of ES,—Eq,

diminished from 0.17 eV for the sample 1, to 0.1 eV
for the sample T,. The suggestion about the important
role of the initial defects is supported by the data on
laser-induced defect localization obtained in Ref, [54].
It was found that the defects are distributed in the sur-
face layer with a thickness of 40 - 60 nm. This value is
much less than the absorption depth of the Nd : YAG
laser radiation (103 am) used in Ref. {63] and the heat
diffusion length (1 - 2 X 10° nm).

3The experimental results were obtained by P.K. Kashkarov.
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Fig. 8. Laser-induced change of the surface recombination
velocity in Ge versus laser pulse energy density W. Initial
tifetimes are ) = 20 js (1) and T = 100 pus (2). Solid lines
are calculated in accordance with Eq. (3.20). Dashed line is
calculated for sample T, neglecting deformation in

Eq. (3.20} [63].

Application of photoluminescence (PL) for registra-
tion of defects in III - V materials makes it possible to
carry out experiments at room and liquid nitrogen tem-
peratures. In the latter case the temperature of the
crystal did not increase between the PLI and PL-mea-
surements. '

Let us consider the data for GaAs obtained in the
case of ruby laser irradiation. The most intense was the
band edge line with the maximum at Ao = 1.5 eV
(T'= 80 X). The dependencies of the PL intensity [ and
the PL signal U on the number of laser pulses N was
obtained for each value of W, The magnitudes of / and
U reached their steady state values [, and U, after the
action of 4 - 10 laser pulses. PLI caused the decrease of
PL and PC, the relative change of PL and PC being
rather close to each other. This shows that the effects
observed are due to the generation of nonradiative
recombination centers. In this case, concentration of
the centers induced by PLI follows the relation:

ng~ (I =15,
where [, is the initial PL intensity.

In Fig. 9 the dependencies of In [£; (W) —I5'] are
shown for two temperatures of PLI 300 and 80 K. It is
seen from Fig. 9 that the efficiency of defect formation
decreases at lower temperature (T = 80 K). Therefore,
the thermal activation plays a definite role in defect gen-
eration, and for GaAs the following relation is valid:

O 4]
E,—E,—-95>0.
The comparison of the experimental data with the
expression (3.20) allowed one to estimate the parame-
ters Eog— Eb. = 0.18 eV and C, = 22 degree-cm®mJ-1,
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Fig. 9. Laser-induced change of huminescence of GaAs sam-
ple. Laser irvadiation and photoluminescence measurements
were cartied out at temperature 300 K (1 and at 80 K {2)[63}.

. As in the case of germanium, the magnitude of

" E'io - Ege obtained is much less than the known energy
of thermal defect formation 0.7 - 2.0 eV [60].

Thus the studies of the defect formation in Ge and
GaAs under subthreshold pulse laser irradiation
(W< W,) show that the experimental results obtained
are in reasonable agreement with the conclusions of the
EDT model proposed here. The comparison of measured
data with calculated dependencies enabled us to estimate
the effective defect formation energy in our experiments:

Ej— Eg, =0.1-0.2 ¢V. This value is much less than the

 formation energy of thermodefects ES, = 1.5 - 2.5 ¢V,

- which is evidence of the important role of local elec-
Tronic excitation in the defect generation under PLL

As we have pointed out already, aside from
Eq. (3.20), the dependencies n; on W under different
-conditions can be described by relations of either (3.18)
or (3.19) type. The dependence in the form of
' [ES~CIE]

. | .

Eq. (3.18), ie., g ~ €Xp EL"_—WTO ,J

observed in CdS crystals [65].

©_ Infollows from the EDT model that the efficiency of
laser induced defect generation is different for surfaces
with (111) and (100) crystallographic orientation
because of the difference of elastic and thermal param-
gters for these surfaces.

was in fact

- If the laser defect formation is considered from the
ewpoint of the EDT model the possibility of laser
Induced EDT instabilities on a semiconductor surface
(Sec. 2) should be taken into account. The latter should
nance the role of long-range deformations in this mech-
‘Msm and lead to the appearance of ordered defect struc-
tures. et us proceed to consideration of this problem,
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3.4. Formation of Surface Cell Periodic Structures
Due to PTT in GaP

When studying pulsed laser-induced surface defect
formation in Secs. 3.1 - 3.3, we assumed that the gener-
ated defects are distributed uniformly along the surface
over the irradiated spot. In Ref. [71] formation of peri-
odic (with period 7 - 8 um) defect structures on the sur-
face of GaP was recorded under irradiation by UV
pulses of the excimer laser. Note that radiation of the
excimer laser is characterized by highly homogeneous
intensity distribution over the beam cross-section.

The surface (111) of n-GaP monocrystals (i, =
10" em™) etched in the mixture of HNOQ, and HCI
(1:1) was irradiated by the excimer laser pulses
(T, =20 ns, A = 308 nm) with energy density varied
within an interval of W= 50 - 760 mJ.cm at normal
incidence. The defects were studied using a J-SM-U3
raster electron microscope.

After laser irradiation with W > 10? mJ.cm= the
appearance of periodic dark spots was recorded on the
surface (Fig. 10). The mean distance between the spots
was 7 - 8 um and did not change when W increased up
to the melting threshold W = 300 mJ.cm™2 (cf. Fig. 10).
In doing so, the mean size of the spots increased with
increasing W,

The darkening of the local spots on the surface in the
secondary electron emission regime occurs due to the
increase of electronic work function. Earlier an
increase of the surface potential of GaP under similar
laser irradiation was observed, connected with the
defect generation [72]. Based on these ohservations,
one may assume that the dark spots observed in REM
appear also due to laser-induced defects.

The periodicity in the defect distribution indicates
the development of certain surface instability. Let us
show that the observed picture can be explained within
the framework of the DTI theory developed in Sec. 2.

It follows from the results of Sec. 2.3.3 that the cou-
pled deformation-temperature grating appears on the
surface due to the development of DTI

&= &qexp (igx+At) +c.c.,

. (3.24)
T'=T,exp (igx+Af) +c.c.

The DTI occurs when the growth rate of DTI A > 0
(A is given by Bq. (2.33b)). For GaPat K = 1022 erg-cm—,
0= 35X 10" degree, p =9 gcm™, ¢, = 3 x 10° cm-s~,
8 =10 eV we have in Eq. (2.33h)

OKo/ pcf ~ 107 < {3E, / 3T| ~ 6 X 10~ eV-degree-.

Thusin Eq. (2.22) one has £, > Ry (we putR, =0). The
critical intensity of the DTI is found from Eq. (2.33b):

cE, xve'fee pEt
L= = = g AT 70C JOE T cem™,
“" 2n - e @ ie) 57| ~ 10 Wem
(3.25)

R
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Fig. 10. Raster electron microscope photograph of GaP
surface: before laser irradiation (a), after irradiation with
0.1 (b), 0.16 (c), 0.26 (d), 0.48 (e), 0.76 J-cnr? ().

The value of ¢ determines the period of the grating,
which under conditions considered is given by

Eq. (2.31b):
d = 2n(41)) " ~8 um. (3.26)

Thus the period is independent of pump intensity.
Note that this result is valid only in the limit €, > Ry,
and in the opposite limit we have £, <€ Ry, d ~ E%.

The direction of ¢ is determined by the direction of
the crystallographic axis. There are three equivalent
axes on the (111) surface. In this case the DTI develop-
ment must lead to the appearance of three gratings with
the rulings perpendicular to the axes. The intersection of
these three gratings forms the cell structure of the defor-
mation and temperature field distribution on the surface.

The spatially periodic deformation-temperature
field (3.23) leads to formation of the periodic surface
defect structure, In fact, in a general case, when no
assumptions are made about a particular form (3.6) of
the generation rate G, one can write

G, = G(T,E) =G aG“T aGd. 3.27
¢ = Ga(T,8) = d0+§"ifw 1-“*‘§E gg' 3.27)

If the defects arise nonthermally in the case for
which the condition (3.23) holds, then in Eq. (3.27)
0G,/ 0T, = 0, and from Eqs. (3.26) and (3.23) we have

9G, ,
Gy = Gy +§E E exp (igx +Al). (3.28)
In the case of thermal fluctuation generation rate,
from Egs. (3.23) and (3.7), assuming AT = T, and
expanding Eq. (3.7) in a power series of T and &, one
obtains
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2 (EOAO s Ege) equ
kT4|OE, /9T

n; = const (1 + cos qxex').(3.29)

When deriving Eq. (3.29) we have used the condition
(Edo— Eo) /THOE,/9T > 1
and the relation
T, = -£,£,.,8/ (xyd,—€;,) [0E,/0T],

which follows from Egs. (2.37a, b) at ;7 > (Y0,

As is seen from Eq. (3.28) or (3.29), both for ther-
mal and nonthermal defect generation the periodic
defect grating is formed on the surface due to the devel-
opment of DTI. On a (111) surface the intersection of
three such defect gratings forms the defect cell struc-
ture. The time of grating formation ¢, is determined by

Eqgs. (2.30) and (2.26) (T;y =0, &7 > Ry):

£led! = (g0 - 4] ~10°s™ > 17", (3.30)
0 T P

aty ~0.2cm?s™.

Thus the results on critical intensity (Eq. (3.25)), the
period of structure (Eq. (3.26)) and the time of grating
development (Eq. (3.30)), obtained using the DTI the-
ory of Sec. 3.3.3 correspond to the experimental results
of Ref, [71] (Fig. 10).

It follows from the experimental results of Ref. [73]
that the defect generation mechanism in GaP seems to
be nonthermal (i.e., in GaP inequality (3.23) holds).
Thus, the cell structure formation on the GaP surface is
likely to occur due to the deformation moduiation of
the generation rate (Eq. (3.28)). '

In this section we have considered the mechanism
of defect grating formation due to the GDI. In principle,
the- mechanism of the electron DDI can also lead to a
similar picture (see Sec. 4.3.4). To identify the relevant
mechanism of cell structure formation in GaP, further
experimental studies are necessary. One, for example,
can irradiate GaP surface with pulses of different dura-
tion and use the fact that the GDI grating period

d~ ﬁ; , whereas the DDI period is independent of 1,
{see Sec. 4.3.4). .

4, FORMATION OF PERIODIC
DEFECT-DEFORMATIONAL STRUCTURES
ON SURFACES AND IN FILMS

As it was shown in Sec. 3, laser irradiation greatly
enhances the rate of point defect production in semicon-
ductors. A similar situation takes place in metals, where
the laser-produced heating and deformation lead to the
enhanced rate of point defect (vacancy) generation.
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. The simplest kinetic equation governing vacancy
production under laser irradiation of a metal surface
an be written as [16]

dn
é‘;v = [nvo (T) "'nv] /TVE Gv""Rv,
where 1. is the equilibrium vacancy concentration tak-
ing into account laser-induced rise of temperature T and
. medium strain,

.0

~E,0)}~6,
L) (T) = Rexp {“(Mmm‘%ﬁ?“”g_! .

Here n = a™ is the concentration of atoms, 0, = —Kd3,
- G, and R, are generation and recombination rates, cor-
respondingly, 1, is the defect lifetime
1, = LL/D,, 4.2)
. is the mean distance between the defects’ sink, and
D, is the diffusion coefficient.

At highly elevated temperatures, chemical reactions
on the surface, which is in contact with a chemically
‘active environment, may dominate in the process of
- laser-induced pumping of vacancies into the subsurface
- layer. As estimated in Ref. {16], the powerful fluxes of
-~ vacancies from the surface into the bulk occur in laser-
“induced high temperature (7 ~ 10° K) oxidation of a
metal surface in air (j, ~ 10*! cm251), which exceeds
- the fluxes due to the thermal fluctuating generation of
vacancies (10'7 - 10" em2.57!) by several orders of mag-
~nitude. This means that in these conditions the rate of
- chemical production of vacancies greatly exceeds the
thermal-fluctuation rate given by Eq. (4.1). Because the
hemical reaction (oxidation) is also a thermal activation
process, the rate of chemically produced vacancies on
he surface is given by an equation similar to Eq. (4.1)

G, = gexp [~((Ey—0,div U) /kT),  (43)

ere E, is the activation energy of the reaction, 8, is
e deformation potential of the reaction and g is the
onstant.

Thus, both generation rates — the one due to the ther-
1al fluctuation mechanism (4.1) and the chemical one
1.3) — are modulated by the medium strain. Because
oint defects, being rigid inclusions into an elastic con-
uum, deform the latter [30, 31], there appears feed-
ack leading to instabilities of point defect generation
nd formation of ordered structures of defect concen-
tation during the generation process itself.

In this section we consider two examples of these
ancy generation-deformational instabilities (GDI) —
first one takes place on a metal surface (Sec. 4.1
the second one - in a metal film (Sec. 4.2).

The periodic defect structures can be formed also in
-Process of self-consistent deformationally induced
1stribution of laser generated defects along the sur-
- We consider an example of such diffusion-defor-
nal instability (DDI) on a surface of a
1iconductor in Sec. 4.3.
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As it was mentioned in Sec. 1, the strain wells peri-
odic along the surface are formed as a result of either
GDI or DDI development, which are filled with defects,
the diffusion of the latter being strongly deformationally
suppressed. Due to this circumstance the defects’ struc-
ture persists for a long time, i.e., a metastable state is
formed (see Sec. 4.3.4). Identification of the particular
mechanism (GD or DD) responsible for the formation
of a given structure can be done on the basis of analysis
of the corresponding experimental data (see below).

4.1. Vacancy Generation-Deformational Instability
(GDI) on a Surface of a Semi-Infinite Metal

4.1.1. Experimental Observation of Radial Structures
on the Surface of T

The formation of permanent “star”-like (Fig. 2a) sur-
face structures was observed in experiments of
Ref. [74], using Ti polished plates BT1-0 of thickness
7 and 1 mm, irradiated in air by Nd : YAG laser pulses
(A= 1.06 um, T, = 1 ms) with Gaussian intensity distri-
bution with maximum intensity /, < 105 W-cm2. Nonpo-
larized radiation impinged on the surface at normal
incidence.

Under irradiation in a vacuum the structures were not
formed. A typical radius r,, of the irradiated zone was
2 - 3 mm. At low intensities, formation of an irregular
relief was observed (Fig. 11a). With the increase of Iyup
to the critical value I, = 6 X 10° W-cm the periodic rays
emanating from the centre of the irradiated spot were
recorded (Fig. 11b). The number of rays m increased
with the distance from the centre of the spot r (Fig. 11c),
and at = 2.5 mm amounted to ~10% (217 / m ~ 10 ).
The increase of the number of the rays with the increase
of r occurred as bifurcation of each ray into two rays
(Figs. 11b, 11c, 11d). At a constant value of the irradi-
ated zone radius (r,, = const) the number of rays
increased with increasing /. Further increase of intensity
was accompanied by melting of the center of the spot and
formation of rays at the periphery of the spot (Fig. 11d).
In some cases at the periphery of the spot the number of
rays essentially increased with 27t/ m = 1 um (Fig. 11c).
The surface relief had modulated ray-like structure
with typical depth (the distance between valleys and
peaks) of about 0.5 - 2 jum, as measured with the help
of an interference microscope. For the recorded picture
of the surface the presence of the ray-like void struc-
ture, spatially synchronized with ray-like relief struc-
ture, was characterized by the typical void size s 2 um
(Fig. 1le), which essentially enhanced the diffusive
component of the reflected light. Similar ray-like relief
was recorded also on zirconium.

4.1.2. Theory of the Vacancy GDI

Let us show that the essential features of the exper-
imentally observed picture can be explained from the
viewpoint of the vacancy GDI theory [29, 741.
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We consider a semi-infinite solid bounded by the
surface z = 0 upon which the laser light is incident, with
Gaussian intensity distribution

2
I = [jexp (—-%}
Ty

4.4)

which generates the vacancy field with concentration
n, in the subsurface layer. The origin of forces appear-
ing in the equations for displacement vector U and the

EMEL’YANOV

equation for vacancy concentration due to the vacancy
subsystem were discussed in Sec. 1. In the particular
case of vacancies, from Eq. (1.1) we have (compare
with Eq. (2.4)):

R

ar

2 2 2 . ev
= ¢;AU+ (¢; —¢;) grad div U~ 5 grad n,.
4.5)
Based on the fact that the “star’-structures were not
found under irradiation in a vacuum, we assume the oxi-
dation mechanism of vacancy generation and postulate
using Eq. (4.3) the following equation for vacancy con-
centration ’

dn n, O,n.D,

il D, An, ~ %: + ~ AdivU
. (4.6)
Ij Ey—8,div U]
+ gECXp —W‘——
with the boundary conditions

d

bl Z 0, n,l = 0. (4.62)

9z ;-0

Egs. (4.5) and (4.6), together with corresponding
boundary conditions (4.16), (4.17), and (4.6a) consti-
tute the closed system of equations for description of
the vacancy GDI.

If the laser pulse duration is T, then the distribution
of temperature is given by Ref. [gﬁ]

Fig, 11. Dark-field optical microphotographs of relief formation zones on Ti surface after the action of the laser pulse. Arrows show
the direction to the center of the irradiated spot: the formation of irvegular relief, I < 1, = 6 x 10° Wem? (a); ray star relief struc-

ture formation in the center of irradiation zone Ip 2 I, (b).
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IL(1-R

2 o
Ll =R j I, (Er) exp (—r2€%/4)
]

-_T(i‘, 2, t) = 4xc

X e (1-® (e — k) (4.7)
2./t

I
i‘.
~e (L= (St fyrE)) g,
2./t J
Where_ Jo(€r) is the zero-order Bessel function of the
first kind, ®(x) is the error integral. Under the condition

% > rgx”! the stationary temperature distribution is
mStalled, which in the region r, z <€ r, has the form

T(rz) =Ty (L=r/2r—22/ [nry),

; _l(-Ryry/n @8)
° 2 Jixcv .
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Fig. 11 (contd.). Dark-field optical microphotographs of
relief formation zones on Ti surface after the action of the
laser pulse. Arrows show the direction to the center of the
irradiated spot: the increase of the number of rays by bifur-
cation with increase in the distance from the center of the
irradiated spot {c); melting of the center of the spot and the
shift of the rays to spot periphery, Iy = 21, (d); periodic void
structure formation (e).

In the opposite limit T, < roy~! under the condition for
pp < ok

7 <€ 2./3t one obtains the following expression

T(r, 2, 1) =Tyexp (~r/rd) (1 =zdn/%t/2),
Io(1—R) Jyt
Ty= e
Jmye,

Taking into account Egs. (4.8) and (4.9), the gener-
ation rate under the conditions Oydiv U <€ kT, r < rycan
be represented in the form

4.9)

Ey — 8,divU
gexp (- w)
r Odiv U (4.10)
~ 8eXD | =72~ = | (1 4 ),
r kT,
elf

where (under the condition T, > r,x™") the value of T} is
determined by Eq. (4.8) and v, r,; is given by

Y = JREy/ (KT fx1), rus = (KTy/Eg)r,. (4.11)
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Under the condition 1, < ryx ™ the value of T} is deter-
mined by Eq. (4.9) and ¥, reg is given by

¥ = 2Ey/ (kTyro /), rep= (RkT/E,) ry. (4.12)

We represent the variables in the form n, = ny + ny,
U = U, + U,, where ny, U, are monotonous (along the
surface) solutions and n,, U, are spatially nonmonoto-
nous additions. Taking into account Eq. (4.10), from
Eq. (4.6), neglecting vacancy drift in the following
equation for n;, we obtain

on, n,
3 < D, An,— —
! Ty (4.13)

+goexp (—Yz— rz/ré) (0y/kTy) div Ui _,

with the boundary conditions (4.6a), where n, is substi-
tuted by n,. In the right-hand side of Eq. (4.13) we
assumed that v is much less than the characteristic
length of divU, variation.

Let us determine whether the condition drift of
vacancies can be neglected. At 8;,~ 8, and gy ~ 1:;1 ng the
generation term on the r.h.s. of Eq. (4.13) is greater than

the neglected drift term (4.6), if d > d, = 21, D1, ie
in the case of generation of sufficiently large scale struc-
tures. At D = 105 em?*s™, 1, = 107 s, dy = 6 x 10 cm.
Thus, we confine ourselves to consideration of large
scale structures and neglect the vacancy drift.

We represent vector U, as a sum of the longitudinal
and the transverse components:
U =U+U,;rotU;, =0,divU, =0 (4.14)

The equation for U, follows from Eq. (4.5). Taking into
account Eq. (4.14), we have (omitfing the subscript 1
further on)
BZUQ ) a,n,

5?“& = c,AU, -6, grad (——p——) ,
where e =1, £ 8, ,=0foraa=10, ;=1 foraa=1

The boundary conditions for U, corresponding to the
axial symmetry of laser beam Eq. (4.4) have the form

(4.15)

3U, U, 13U, au o e
7 tar - ag taz T @19
v, o, U, 13U, em
dz +( )(8 ra(p)“ pe
@.17)

Consider first the case of generation of rays and assume
the following form for the deformation & = (divU),_, at
z=0

E = A(r/ry) " cos mpexp (——rz/ir:fff + Ay, (4.18)

where m is an integer. In the case of stationary temperature
distribution, given by Eq. (4.8), A is a constant in
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Eq. (4.18), Ais the growth rate, independent of time. In the
case of nonstationary temperature distribution, given by
Eq. (4.9) A = f,(f) and A = fo(r) are slow functions of time

f;lafu/at <€A, o= 1,2
The solutions of Eq. (4.13) under the conditions
rirg<€my> mmr;fif, [(A+ 'rf) / D,JV? and account-

ing for the boundary condition (4.6a) have the form

=gAexp (—8z—r/rg+ht
iy p ( £f ) 4.19)
X (r/ 1) " cos mo/D,8Y,

where & = g8, / kT, 8 = (& + (A + 1)) / D)2

2
G =4m+ 1)/ 1oy

Taking into account the solution for n; — Eq. (4.19),
we obtain the following expressions for the displace-
ment vector components {i = r, @, Z):

m-1
= f,?"m exp (—F/ g+ AW,
Fest (4.20)

X (aMe ™+ bNe ™ + Mc,®e™),

i

where M, N are constants, ‘¥, = mcos m@, ‘¥, = —msin mo,
W, =reosm@;a,=a,=1,a,=-x, b,=b, = —x, b, = ¢,
-A% e, =A%k = (gt + AT/ cf,t)“z, D=
1 — (R(¢* - 83 1 DASY I (A + ¢ (g? ~ B%)).

is determined by the

C,=Cy=

The pump parameter R,

. expression

R, = —go8,18,|/kTopci. 4.21)

Substituting the solutions (4.20) into the boundary
conditions (4.16), (4.17), we obtain the system of two
linear equations for N and M, Equating the determinant
of this system of equations to zero, we obtain the dis-
persion equation for the vacancy GDI, governmg the
dependence of A on m:

(1<t2 + qz) - 4q21ct1c1
N R+ 44D *.22)
o (W/ei+ (4 ~8))DYB~R, (g ~8)

This equation is similar to the dispersion equation of
EDTI (compare Eq. (4.22) with Eq. (2.22)).

The left-hand side of Eq. (4.22) is the Rayleigh
determinant, governing the dispersion law of the sur-
face acoustic waves [76]. The rh.s. takes into account
the generation of vacancies (8;) and their interaction
with the elastic continuum (8,).

Under the condition A%/ ., < g% (A + 1)/ D,
from Eq. (4.22) we obtain the dispersion relation
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