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Abstract 

In this paper we address the problem of reconstruction of signals from their nonequally spaced samples. Exploiting the 
close-to-band structure of the composing matrix, a two-stage procedure for the recovery of uniform samples from 
nonuniform samples has been suggested by Plotkin and Swamy (1987). In order to reduce the computational complexity, 
a special procedure of partitioning the composing matrix into a set of overlapping submatrices was used. Then the error 
in the estimate was reduced by applying an iterative procedure. The present paper is an extension of results presented by 
Plotkin and Swamy (1987). In this we propose a modification to their procedure, so as to recover an equal number of 
uniformly spaced samples as are those in the nonuniform set. We show that the iterative algorithm converges 
conditionally and the conditions are weak and may be implemented easily. Computer simulation results have been 
presented which show that the proposed technique performs well even for deviations of nonuniform sample positions well 
beyond the corresponding uniform positions. The proposed method is attractive from computational point of view also. 

Zusammenfassung 

In dieser Arbeit sprechen wir das Problem der Signalrekonstruktion aus nicht/iquidistanten Abtastwerten an. Unter 
Ausnutzung der 'Closed-to-Band'-Struktur der Composing-Matrix wurde von Plotkin und Swamy 1-1987] eine zweistufige 
Prozedur zur Berechnung von/iquidistanten Abtastwerten aus nicht-/iquidistanten vorgeschlagen. Um den Rechenauf- 
wand zu reduzieren, wird eine spezielle Prozedur benutzt, bei der die Composing-Matrix in einen Satz von iiberlappen- 
den Submatrizen zerlegt wird. Dann wird der Sch/itzfehler durch die Anwendung einer iterativen Prozedur reduziert. Die 
vorliegende Arbeit ist eine Erweiterung der von Plotkin und Swamy (1987) angegebenen Resultate. Dabei schlagen wir 
eine Modifikation ihrer Prozedur vor, indem die gleiche Anzahl von /iquidistanten Abtastwerten wie die des nicht 
/iquidistanten Satzes ermittelt wird. Wir zeigen, dab der iterative Algorithmus bedingt konvergent ist, und dab die 
Bedingungen schwach sind und leicht implementiert werden krnnen. Es werden Simulationsresultate wiedergegeben, 
die zeigen, dab die vorgeschlagene Technik gut arbeitet selbst for groge Abweichungen der nicht-fiquidistanten 
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Abtast-Positionen gegenfiber den zugeh6rigen/iquidistanten Positionen. Die vorgeschlagene Methode ist auch unter 
dem rechnerischen Gesichtspunkt attraktiv. 

R~um~ 

Nous nous int6ressons dans cet article au probl6me de la reconstruction de signaux d partir d'6chantillons espac6s 
irr6guli6rement. Une proc6dure en deux 6tapes exploitant la structure proche d'une structure d bande de la matrice de 
composition pour le recouvrement d'6chantillons uniformes ~i partir d'6chantillons non uniformes a 6t6 sugg6r6e par 
Plotkin et Swamy (1987). Dans le but de r6duire la complexit6 des calculs, une proc6dure sp6ciale de partitionnement de 
la matrice de composition en un ensemble de sousmatrices se recouvrant 6tait utilis6e. L'erreur d'estimation &ait alors 
r6duite par application d'une proc6dure it6rative. Le pr6sent article constitue une extension des r6sultats pr6sent6s par 
Plotkin et Swamy (1987). Nous proposons dans celui-ci une modification de leur proc6dure permettant d'obtenir un 
nombre d'6chantillons uniform6ment espac6s 6gal ~ celui des 6chantillons non uniformes. Nous montrons que 
l'algorithme it6ratif converge conditionnellement, que les conditions sont peu restrictives, et que l'implantation est ais6e. 
Des simulations sur ordinateur sont pr6sent6es afin de montrer que la technique propos6e marche bien m~me lorsque les 
d6viations des positions des 6chantillons non uniformes sont bien sup6rieures aux positions uniformes correspondantes. 
La m6thode propos6e est 6galement attrayante du point de vue calcul. 
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I. Introduction and 

The significance of signal reconstruction from 
their nonequally spaced samples has been well rec- 
ognized in the context of filter design, speech pro- 
cessing, power spectral estimation, holography, as- 
tronomy, and data compression. In most of these 
problems, either equally spaced samples are not 
available or variations in the instantaneous band- 
width of a signal necessitates nonuniform sampling 
rates corresponding to local characteristics of the 
signal. The classical Shannon sampling theorem 
and the numerous modifications show that a finite 
energy signal x(t), band-limited to If[ ~< fo and sam- 
pled at or above its Nyquist rate (2fo), is uniquely 
determined by its uniformly spaced samples 
{x(nT)} where T =  1/2fo and its samples at any 
instant tm can be reconstructed as 

x(t~) = Ax(nT),  (1) 

where x(t~) is the vector of reconstructed samples, 
A is a matrix with (m, n)th element of the composing 
functions, 

A,.,. = ~(t,., nT) = 

m , n = l  . . . . .  N, 

sin O)o(tm -- nT) 

tOo(tin- nT) ' 

(2) 

x(nT) = [x(T), x(2T), . . . ,  x(NT)]  x (3) 

is a given set of equally spaced samples with (.)T 
denoting the transpose operation. In Eq. (2) 
O9o = 2nfo and t ,  is the ruth time instant. One may 
note that the reconstruction of x(t) is almost exact 
in the interval { T -  NT} {i.e. for the finite order of 
matrix A) and the number of reconstructed samples 
need not necessarily be equal to N, to achieve 
a certain value of the r.m.s, error. 

The problem of reconstructing x(t) does, how- 
ever, become a difficult one when the available 
signal samples {X(rm)} are not uniformly spaced, 
i.e. Zm ~ roT, and one cannot use Eq. (1) for recover- 
ing {X(tr,)}. A number of algorithms have been 
proposed in the past for the recovery of the signal 
when {x(zm)} are available. 

A typical reconstruction procedure may be found 
in 1-12] whose main disadvantage is that in practice 
a set of composing functions has to be generated for 
every data block. Wiley [11] applied a theorem due 
to Sandberg [9] concerning the convergence of 
nonlinear mappings in Hilbert spaces to the design 
of an iterative algorithm for the reconstruction 
of band-limited functions from nonuniformly 
spaced samples. This method recovers the function 
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without error provided the nonuniform sample 
positions do not deviate too much from the corres- 
ponding equally sample positions. Marvasti [3] 
suggested a simple iterative procedure which in- 
volves low-pass filtering of the nonuniform samples 
followed by sampling and low-pass filtering cycles. 
It has been shown that the technique works well 
when the average sampling rate is higher than the 
Nyquist rate. In their recent papers, Marvasti et al. 
[4, 5] have applied an algorithm based on the gen- 
eralized iterative deconvolution to obtain equally 
spaced samples from the given nonequally spaced 
samples. 

Plotkin et al. [7] have proposed a method in 
which the set of nonuniformly spaced samples were 
conformed to a special correcting function and this 
function was then used as a multiplicity factor to 
correct the signal, reconstructed by the direct ap- 
plication of Eq. (1). It was also shown that under 
certain restricted conditions, such as the deviation 
of sampling positions [z,,I around the correspond- 
ing synchronous positions {nT}  does not exceed 
one-half of the average sampling step T, the recon- 
struction technique allows one to use the standard 
composing functions. Clark et al. [2] have shown 
that a nonuniform sample sequence can be ob- 
tained by applying a coordinate transformation on 
a uniform sequence and then by using an invertible 
transformation one can recover the original signal. 
All these methods try to recover the original signal 
directly from the nonuniform sequences. 

Following the classical Shannon's theorem, 
Plotkin and Swamy [6] argued that since x(t, ,)  in 
Eq. (1) could be any arbitrary set, the given set of 
nonuniform samples could be one of the possibili- 
ties. Then the relation between the nonuniformly 
spaced samples y = x(zm) and the corresponding 
uniformly spaced samples x = x ( n T )  is given by 
Eq. (1) where A is the composing matrix with ele- 
ments 

sin COo(Z., - nT)  
A , . , .  = , m ,n  = 1 . . . . .  N ,  (4) 

O~o(~., - n / 3  

with 

r , , = m T + f i t ,  m =  1 . . . . .  N, (5) 

as the nonuniform sample instants. In Eq. (5), 6t is 
a random variable distributed in the range 
( +_ J T / 2 )  where J is called as the jitter parameter. 
Once the nonequally spaced samples y are avail- 
able, one can find the corresponding uniform sam- 
ples x by solving the system of linear equations 
(y = Ax) .  Then Eq. (1) can be invoked to recon- 
struct the original continuous signal. Thus, the re- 
construction of a signal becomes a two-step pro- 
cedure in which the first important step is to solve 
a set of linear equations. 

In [6], authors suggested a special iterative pro- 
cedure for the reconstruction of uniform samples 
x(nT) .  This procedure has been also extended to 
the two-dimensional (2-D) case [1]. By exploiting 
the close-to-band structure of the matrix A, they 
reduced the number of computations in the recov- 
ery of uniform samples. 

The present paper is an extension of results pres- 
ented in [6]. This paper is organized as follows. 
Section 2 introduces a modified version of the iter- 
ative procedure, which unlike in [6] recovers an 
equal number of uniformly spaced samples as are 
those in the nonuniform set. We show that the 
iterative algorithm converges conditionally and the 
conditions can be met easily. The performance of 
the proposed method is evaluated in Section 3 and 
is compared with that of the recently proposed 
iterative algorithm of Marvasti [5], using the mean 
squared error (MSE) in recovering the uniform 
sample set as the criterion. Finally, in Section 4 we 
present some concluding remarks. 

2. lterative technique for the recovery of uniformly 
spaced samples from their nonuniformly 
distributed counterparts 

In this section we first examine the nature of the 
matrix A and show that it has a structure that is 
close to a band matrix. We then propose an algo- 
rithm to solve the set of simultaneous equations in 
(l). The proposed algorithm exploits the inherent 
structure in A to reduce the number of computa- 
tions. We also show that an iterative procedure, 
which reduces the error in the recovery of uniform 
samples, converges conditionally. 
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2.1. Nature of  matrix A 

Recall the matrix A with elements as in Eq. (4). 
Using Eq. (5) in (4), we obtain 

sin n[(m - n) + q(m)] 
Am,, = , m,n = 1 . . . . .  N, (6) 

r~E(m - n) + q(m)] 

where we have used the relation ~Oo = n / T  and 
q(m) = 6 t /T  is the normalized random sampling 
position, distributed uniformly in the range 
( +_ J/2), where J is the jitter parameter. One may 
note here that a jitter value of unity implies that the 
nonuniform sampling positions {fit} deviate from 
their corresponding uniform sampling positions by 
a maximum of + T/2. From Eq. (6) we note that 
the absolute values of the off-diagonal elements of 
matrix A decay as the column index moves away 
from the main diagonal. The rate of decay, how- 
ever, depends on the value of q(m). To see the 
nature of this decay, we have plotted in Fig. 1 the 
normalized element values as a function of the 
off-diagonal element number for various values of 
q(m). We observe from these plots that even for 
a value of q(m) as large as 0.995 (which implies that 
the nonuniform sample position deviates from the 
uniform sample position by an approximate time 
equal to T/2), the element values drop below 10 dB 
(from the maximum value) for off-diagonal posi- 
tions beyond 9. Thus, the matrix A has an inherent 
structure that is close to a band matrix where the 
bandwidth that contains the significant elements is 

"~ -10 

-15 

-25 

:. ...... ~. 0.~ ................. i ......... ~ .................. 

-30 
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Off-diagonal element number 

Fig. 1. Magnitude of elements in matrix A. 

dependent on the value of q(m), which in turn is 
dependent on the jitter parameter J. 

The other important aspect of the matrix A is 
with respect to its ill-conditioning. Recall the 
matrix A with elements as in Eq. (4). The matrix will 
be singular if A,,,, = A.,+ t,,, for n = 1, 2 . . . .  , N 
and this can happen only ifzm = r,,+ 1 which in turn 
implies that adjacent nonuniform sample locations 
are identical. Although this occurrence has a finite 
probability while generating the nonuniform 
sample locations, it can be and should be avoided 
as one does not convey any extra information 
by transmitting the same sample twice! Thus, 
the potential problem of ill-conditioning while 
solving the matrix equations in the recovery of 
uniform samples from the nonuniform ones can be 
avoided. 

2.2. The basic procedure 

We note from the discussion in Section 1 that 
equally spaced samples of a signal can be recovered 
from the corresponding nonuniformly spaced ones 
by solving a system of linear equations y = Ax. 
Higher dimensionality of A (in the case of large 
data lengths) increases the computational complex- 
ity and one way to reduce this is to use a system of 
equations of reduced size. In what follows we pro- 
pose a method in which the matrix A is partitioned 
into overlapped submatrices each with a reduced 
dimension (see Fig. 2). Since A is close to a band 
matrix, each of the elements of vector y is a result of 
a few elements of vector x, and the effect of rest of 
the elements is rather weak. Thus, we can reduce 
the number of simultaneous equations required to 
solve for each element of x by considering only 
those that are strongly coupled. However, this in- 
creases the number of matrix equations to be 
solved but each with a reduced dimension. As it will 
be shown below, the complexity of the whole pro- 
cedure is reduced significantly as a result of the 
proposed method. 

There is one important aspect of this partitioning 
that needs attention. This is regarding the ill-condi- 
tioning of each of the submatrices. Recall the dis- 
cussion on the ill-conditioning of the matrix 
A where we have suggested a nonuniform sampling 
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ll] r 
MxM 

[ 
Fig. 2. Partitioning of matrix ,4 into overlapping submatrices. 

NxN 

methodology which avoids the coincidence of two 
adjacent nonuniform sample locations. The other 
possible nonuniform sample location which causes 
singularity of the submatrices is the coincidence of 
ruth nonuniform sample location with (m + 1)th 
uniform sample location. Although, the probability 
of occurrence of such an event is very small, it can 
lead to very large errors as explained below. It is 
easy to see from Eq. (4) that such an occurrence 
makes the ruth row of A all zeros except at 
(m + 1)th location where it is unity. Since the 
(m, m + 1)th element is not a diagonal element, 
there are at least ( M -  l) submatrices (of size 
M x M) which have a row with (M - 1) elements 
including the diagonal one as zeros. Further, one 
cannot rule out the possibility of one submatrix 
whose last row is all zeros! It is obvious that such 
submatrices can lead to very large reconstruction 
errors. To avoid this problem, one needs to see that 
the nonuniform sample locations do not coincide 
with their adjacent uniform ones. However, this can 
be done either at the transmitting or receiving loca- 
tion. At the receiver location, the nonuniform 
sample location that is problematic, can be altered 
by a small amount.  Our  experiments show that 
even a shift as small as 1 0 - 3 T  can reduce the 

reconstruction error substantially. The proposed 
technique is described below: 
Step 1. Make the necessary alterations to the 
nonuniform locations to avoid ill-conditioning of 
the submatrices. 
Step 2. From the nonuniform sample positions 
form an N x N matrix A with elements as in Eq. (4). 
Then form (N - M + 1) overlapping submatrices 
of size (M x M), where M takes on an odd value 
(starting with 3) such that 

A ~r) = ( A , . , . ) ,  m ,  n = 1, 2 . . . . .  M and 

r = 1 , 2  . . . . .  ( N + M - 1 ) .  (7) 

Step 3. From the given nonuniform sample vector 
y = x(zm) of length N, form (N - M + 1) overlap- 
ping subvectors, each of length M, such that 

yt,) = [y(r), y(r + 1) . . . . .  y(M + r - 1)] T, 

r =  1,2 . . . . .  ( N + M - -  1). (8) 

Step 4. Solve for vector ~(r~ = ~t,~(nT) from the 
matrix equation: 

y('~ = A <'~ x <'~ (9) 
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either by using a direct inverse or  Gaussian elim- 
ination method.  In the above (?) denotes the esti- 
mate  of  the quantity.  
Step 5. F o r m  the solution vector 3: from 3:tr), 
r =  1,2 . . . .  , ( N + M - 1 ) , a s  

5c = [3:(1) . . . . .  k(1)(fl), 3:(2)(fl) . . . . .  5C(N-M)(fl), 

.~t/V - M + l)(fl) ..... 3:(S - M + I)(M)-IT ' (I0) 

where fl = (M + 1)/2. The rationale for forming 
the vector 3: as in Eq. (10) is as follows: we observe 
from Eqs. (7)-(9) that there are multiple solutions 
for each of  the elements of  vector x (except for the 
first and last (M - 1)/2) and these are available as 
elements of  vectors 3:('). Out  of these multiple solu- 
tions for each of  the elements of  x, we propose to 
choose the middle element of each of 3:(') as the 
solution element. The number  of  such solution ele- 
ments is ( N - M + I ) .  The first and last 
[ (M - 1)/2] elements of 3: are, however, taken from 
3:(1) and 3c tN+M- 1) respectively. Note  that this pro- 
cedure of  using the overlapped submatrices A t') 
instead of  A and choosing the middle element of  
each of  3:tr) to form 3: is in essence the one suggested 
in [7],  whereas the recovery of  the first and last 
(M - 1)/2 elements of  3: is the modification pro- 
posed in the present paper. 

To see how well the above procedure recovers 
the uniform samples from a set of nonuni form sam- 
pies, let us consider the following example. 

E X A M P L E  1. A single sinusoid with frequency 
f = 4300 Hz  was considered. The sampling interval 
was chosen as T = 10 -4  s and the number  of sam- 
ples considered was N = 50. A jitter value of  J = 1 
was considered for generating the nonuni form 
sample positions. A uniform r andom sequence of 
instants in the range __+ J/2 was generated and the 
r andom sampling points deviating from the uni- 
form sample posit ions were identified. Then the 
matrix A was formed with elements as in Eq. (4). 
The set of  nonuni form samples y were obtained 
from the uniform sample vector x using the equa- 
t ion y = Ax. Then the proposed  method  was ap- 
plied with a submatr ix size M = 7 to estimate 3:. 

Fig. 3 shows that  the recovered signal f rom 
which we observe that  3: is almost  same as x. To 

1.5 

1 ; 

0.5 , ' 

o 

"0"51 

150 05 1 

t ;, 

2 25 3 35 4 45 5 
Time in Seconds x10-3 

Fig. 3. Uniform and recovered samples. Signal: single sinusoid 
of frequency 4300 Hz. Sampling time: 10 -4 s. Jitter value: 1. 
( ): equally spaced samples of the signal. (- ) equally 
spaced samples, recovered from the nonequally spaced samples, 
using the proposed method. 

10 2 
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!!!!!!!!!!!!!!!!!!!i!!!!!!!!!!!!!!!!!!!i!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!i!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!! 
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Fig. 4. Performance of the Proposed Method. Signal: single 
sinusoid of frequency 4300 Hz. Sampling time: 10 -4 s. Jitter 
value: 1. 

quantify the closeness of the recovered signal with 
the original one, we use the MSE, t/, as the cri- 
terion: 

r / =  I Ix  - 3c112/11x II 2 , (11) 

where I1"11 denotes the L2 norm of the vector. In 
Fig. 4 we have plotted t /as  a function of  the num- 
ber of samples for various submatrix sizes, from 
which we note that  the MSE is about  4% for a data  
length of  30 for an M = 7 and the MSE increases as 
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M takes values as 5 and 3. This is expected because, 
with a smaller dimension of the submatrix, one will 
not be able to capture the elements of A that have 
significant magnitude. 

2.2.1. Computat ional  complexi ty  
In spite of the substantial error in the recovery of 

the uniform samples, the proposed method is at- 
tractive from the computat ional  complexity point 
of view. Assuming that we use the Gaussian elim- 
ination to solve the matrix equation, we would 
need PD multiplications, where 

~D = ( 2N3 + 3N2 -- 5N + 6) /6 ,  (12) 

for a data length of N [8], whereas the number  of 
multiplications in the proposed technique will be 

p p = ( N - M +  1)(2M 3 + 3 M  2 - 5 M + 6 ) / 6 . ( 1 3 )  

To compare the number  of multiplications in the 
proposed method with that of the direct solution 
we computed PD and PP for N = 50 and M = 7. 
The number  of multiplications in each case are 
/tp = 5896, whereas/~n = 42876. 

Although the proposed method has an advant- 
age in terms of the computations, the MSE may 
become unacceptably large as the jitter value J in- 
creases especially for the case J > 1. In order to 
reduce the MSE, in what follows we apply an iter- 
ative algorithm. 

2.3. I terative improvement  

The proposed method of Section 2.2 {Ref. Steps 
1-4} estimates the vector .~ from A and y. Once k is 
available one can obtain an estimate of.~ based on 
given values of 3c: 

p = A~ (14) 

and the error in the estimation of y as 

ey = y -- .~. (15) 

Note that the error in y is a direct result of the error 
in x. Thus, expressing y and $, in terms of x and 
3c, respectively, we obtain an estimate of the error in 
3c as 

ey = A e x .  (16) 

10 2 , 

I01 ................ 

ioo I .......... i . _ 

10-3 . . . . . . . . . . . . . . . . . . .  2 . . . . .  i-,.: ............ " ? ' ~ i  M 3 . . . . . . . . . . . . . . . . . . . . . . . .  

1o-, ........ ~ .................. :, .......... " • ;~'~ ........................... 

10 4 
1 3 4 5 6 

N u m b e r  o f  I terat ions 

Fig. 5. Mean squared error in the proposed method. Signal: 
single sinusoid of frequency 4300 Hz. Sampling time: l0 -4 s. 
Jitter value: 1. Number of samples: 50. 

Thus, the error in the estimation of x is related to 
the error ey (which can be computed) and the rela- 
tion is same as the matrix equation (1). This enables 
us to obtain an estimate of ex, using steps 2-5 of 
Section 2.2 and correct the error in 3: as 

-r2 = -rl + ex, (17) 

where the subscript indicates the iteration number. 
The steps in Eqs. (14)-(17) together with those in 
Section 2.2 could be repeated till the normalized 
error [lex 11/11-~ l[ is reduced to  a small acceptable 
value e. 

To see how the iterations, suggested above, help 
in reducing the MSE we again consider the signal 
of Example 1. Fig. 5 shows the MSE(q) as a func- 
tion of iteration index k for submatrix sizes 
M = 3, 5 and 7. An iteration index 0 is for the basic 
recovery steps (7)-(10). From Fig. 5 we note that 
r/~< 10-2 even for an M = 3 and k = 3. Thus, the 
proposed method together with the iterations re- 
covers the uniform samples with a very low MSE. 

2.3.1. Additional computations 
Recall Eq. (13) where the number of multiplica- 

tions #p required for Steps 2-5 of Section 2.2 was 
given. The iterative technique of Section 2.3 re- 
quires Pl additional multiplications for each iter- 
ation, where/~i is given by 

/q = N 2 + #e .  (18) 
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In (18), N z is due to the multiplications required in 
obtaining .~ and pp is for estimating ~x. Thus, the 
total number of multiplications for the whole pro- 
cedure (basic recovery plus k iterations) is given by 

p = k N  2 + (k + 1)/tp. (19) 

In what follows we establish that the proposed 
method together with the iterative procedure does 
converge to the true solution of x, subject to certain 
conditions. 

2.4• Convergence analysis  

Recall the matrix equation (9). Let the solution to 
these linear equations be written as 

x(~)= A(') y (~ , (20) 

where 

A(~) = [A(,)]- 1 (21) 

It is then easy to see that the solution vector k of 
(10) can be expressed as 

3¢ = T y ,  (22) 

where 

T = H P .  (23) 

In E q  (23) H is an N × ( M N )  matrix given by 

H~__ 

- A . ) (1 )  

A(X)(fl- 1) 

a(x)(fl) 

0 

0 

0 

0 

0 . . . . . .  

0 . . . . . .  

0 . . . . .  

A <2) (/3) . . . . .  

0 . . . . .  

0 . . . . . .  

0 . . . . . .  

0 

0 

0 

0 

A (N- M) (fl) 

o 

o 

0 

0 

0 

0 

o 

A (N ~+'(/3) 

AIN M+,(M) 

(24) 

where A (r) (i) denotes ith row of the matrix A (r). In 
(23), the matrix P is an ( M N  x N matrix given by 

-/M 0 0 ... 0 

Z M I M 0 "'" 0 

P =  Z M Z M I M "'" 0 , (25) 

ZM Z M ZM • . .  I M 

with I M as an M x M identity matrix and ZM as 
a column vector of M zeros. Recall Eq. (17) where 
the estimate 2 is corrected by an estimate of the 
error ex. Using Eq. (22) in (17) the new estimate of 
x can be expressed as 

3¢a = Ty + TO, - .~). (26) 

Using the relations between y, 2, x and 2, it is easy 
to show that 

1 

21 = T ~ ( I -  A T ) i  A x ,  (27) 
i=o 

where / i s  an N × N identity matrix. It can be shown 
after some work that the estimate 3:k at the kth 
iteration is given by 

k 

3c k = T ~ ( I -  A T ) '  A x .  (28) 
i = 0  

The terms in the summation of above equation 
form a geometric series and Eq. (28) can be further 
simplified to give 

2k = T [ I  -- (I  -- A T )  k ] T  -1 x. (29) 

One may note here that T is a full rank matrix and 
hence invertible. We can further simplify Eq. (29) to 
give 

2k = X - -  ( I - -  T A  )k X ,  (30) 

which shows that 3Ok approaches x as k increases, 
provided all the eigenvalues of ( l -  TA)  are less 
than unity in the magnitude sense [10]. Thus, the 
proposed method has a conditional convergence. 

The complexity of the matrices T and A does not 
permit us to draw any conclusions on the behavior 
of the eigenvalues of ( I -  TA) .  However, we took 
the help of computer simulations to look at the 
nature of these eigenvalues for a given A and 
T which in turn is a function of the submatrix size 
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Table 1 
Number  of trials in which the max imum eigenvalue of (! - TA) is less than unity 
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N = 5 0  N =  100 N =  150 

J M = 3  M = 5  M = 7  M = 3  M = 5  M = 7  M = 3  M = 5  M = 7  

0.5 100 100 100 100 100 100 100 100 100 
1.0 100 100 100 100 100 100 100 100 100 
1.5 100 100 100 100 100 100 99 100 100 
2.0 69 99 100 37 97 100 32 98 100 
2.5 7 83 100 1 60 95 0 48 92 

M and jitter value J. One hundred trials, each with 
a different random sequence for the nonuniform 
sample instants, were conducted for various values 
of N, M and J and the results are presented in 
Table 1. The entries show the number of trials in 
which the maximum eigenvalue of ( I -  TA) is less 
than unity. We note from these results that the 
iterations converge in most of the cases and one 
may have to use a larger submatrix (M) as J is 
increased. 

3. Performance evaluation 

In this section we present some computer simula- 
tion results to evaluate the performance of the 
proposed technique. The criterion used for the 
evaluation is the MSE in recovering the uniform 
samples from the given nonuniform set. We also 
compare these results with those obtained with the 
recently proposed Marvasti's technique [5]. 

3.1. Results on MSE 

Recall Eqs. (11) and (30). We can express the 
MSE as 

'7 = I 1 ( I -  T.4)k x f l2 / l lx l l  2. (31) 

From (31) we note that q is a function of the 
matrices T and A and the number of iterations k. 
The important parameters that govern the proper- 
ties of T and A are (i) the matrix dimension N, (ii) 
the jitter parameter J and (iii) the submatrix size M. 
To bring out clearly the inter relations among these 
parameters and the dependence of t / on  k, we as- 

sume a tolerance limit e on q, and find the combina- 
tions of M, J and k (for a given N) that satisfy the 
condition q ~< e. 

For  these simulations we consider three types of 
signals: 
- Single sinusoid xss(t) = cos(2~ft), f =  4300 Hz. 
- A chirp signal xc~(t) = cos(2~(fl t  + ((f2 - f l ) /  

2nT)t2)), where fa = 100 Hz and f2 = 4500 Hz. 
- Low-pass random signal x~p(t), obtained by fil- 

tering a white Gaussian sequence in a low-pass 
filter with cut-off frequency 4300 Hz. 
The rationale behind selecting the above set of 

signals is to demonstrate the capability of the tech- 
nique for various cases: A single sinusoid is for the 
monotone close to the maximum frequency. 
A chirp signal is to simulate a case where the signal 
covers the entire low-pass band up to maximum 
frequency. Chirp signal, although covers the entire 
frequency band, it has some regularity in its struc- 
ture. To represent a real-world signal, a low-pass 
random signal was also considered. In all these 
cases the sampling interval was chosen as 
T =  10 -4 s. A set of 50 uniform samples were 
drawn from the above signals and nonuniform 
samples were obtained for various jitter values. The 
technique proposed in Sections 2.2 and 2.3 was 
used to recover the uniform samples and the MSE 
was computed for each iteration. The iterations 
were stopped when the condition, q ~< e (e = 0.1%), 
was met. In Fig. 6 we have plotted kmi. (minimum 
number of iterations required for r/~< e) as ~ fun c- 
tion of J for M = 3, 5 and 7, respectively. From 
these plots we note that the results are almost 
identical for the three types of signals considered, 
and for a moderate jitter value J = 1 the number of 
iterations could at the most be 3 for M = 3. 
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Fig. 6. Performance of the proposed method. Sampling time: 
10 -4 s. Number of samples: 50. ( ): single sinusoid; (- - ): 
chirp signal; ... : low-pass random signal. 

3.2. C o m p a r i s o n  wi th  M a r v a s t i ' s  t echn ique  

Marvasti  et al. [5] have applied an iterative 
method for the recovery of uniform samples from 
their nonuniform counterparts, using the following 
procedure: 

X k +  1 : 2 P S x  + (P - 2PS)Xk  , (32) 

where 2, x and x k are the convergence constant, the 
original finite energy signal and the recovered 
signal at the kth iteration, respectively. P and S are 
the band limiting and ideal nonuniform sampling 
operators. P S x  is the given nonuniform sample 
vector. It was also shown in [5] that the iterations 
converge for 0.5 ~< 2 ~< 1. To be in tune with the 
notation of the present paper  P is taken as an 
identity matrix (as the signals considered are al- 
ready band-limited) and S = A. Thus, (32) can be 
rewritten as 

Xk+ 1 = 2 y  + (I --  2A)Xk . (33) 

The iterations of(33)with 2 = 0.95 were applied for 
the three types of signals considered earlier and it 
was found that the results are identical for all the 
three signals. The plots of kmin are superimposed in 
Fig. 6 from which we observe that k,,in is large even 
for a jitter value J = 1.2. 

It is easy to see that the number  of multiplica- 
tions in Marvasti 's  technique are k N  2 which is 

comparatively less than the proposed method for 
a given k (see Eq. (19)). However, the kmin for the 
same MSE is less for the proposed method, and 
hence it appears to be advantageous computation- 
ally also. 

4. Conclusions 

In this paper we have addressed the problem of 
reconstruction of signals from their nonequally 
spaced samples. Exploiting the close-to-band struc- 
ture of the composing matrix, a two-stage proced- 
ure for the recovery of uniform samples from 
nonuniform samples has been investigated. The 
first step consists of the special procedure to solve 
a set of linear equations to estimate the uniform 
sample vector. This procedure utilizes a set of over- 
lapping submatrices to reduce the dimensionality 
of the system of equations thus reducing the com- 
putational complexity. Then the error in the esti- 
mate is reduced by applying an iterative procedure. 
It has been shown that the proposed technique 
converges conditionally to the true solution. The 
simulation results, however, show that these condi- 
tions are weak and may be implemented easily. 
Computer  simulation results have been presented 
which show that the proposed technique performs 
well even for deviations of nonuniform sample posi- 
tions well beyond the corresponding uniform 
positions. The proposed method is attractive from 
a computational  point of view also. 
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