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Point-contacted solar cells exhibit three-dimensional transport effects due to a spa-

tially inhomogeneous surface recombination. Complex multi-dimensional finite ele-

ment simulations are commonly applied to model such devices. This paper presents

an empirical analytic equation for the diode saturation current of a point-contacted

base of a solar cell that accounts for three-dimensional transport. The input para-

meters of the model that characterize the back surface are: recombination velocity

at the contacts; recombination velocity between the contacts; fraction of surface area

covered by the contacts; and the contact spacing. We test this model experimentally by

conducting spatially resolved minority-carrier lifetime measurements on silicon

wafers with point contacts of various sizes and spacings. The diode saturation cur-

rents derived from the lifetime measurements agree with the values predicted by the

analytic model. Copyright # 2005 John Wiley & Sons, Ltd.
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current; analytical model

INTRODUCTION

H
igh-efficiency Si solar cells have contacts that cover only a few percent of the device area, while the

rest of the surface is electronically passivated by a dielectric coating. In order to reduce the series

resistance the contacting area is distributed over the whole device area. A point-contact geometry

results.1–3 While point contacts have previously been used only in high-quality laboratory cells the application

of point contacts to industrial solar cells is within reach.4

Figure 1 schematically sketches a solar cell with a point-contacted back surface, facing upwards. The con-

tacted area fraction is f ¼ �r2=p2, with r being the point radius and p being the period length of the square

pattern. Spass is the surface recombination velocity (SRV) in the passivated area between the contacts, while

Smet is the SRVat the point contacts. The surface parameters Spass, Smet, f, p, and the bulk minority-carrier diffu-

sion length L control the diode saturation current j0 and thus the device efficiency. A theoretical model to predict
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j0 (Spass, Smet, f , p, L) is thus required for an optimization of the point contact geometry and for characterizing

back-contacted cells.

A transport model for point-contacted rear sides has to consider three dimensions in space due to the inho-

mogeneous surface recombination. Finite element device simulation programs, such as DESSIS5 have thus been

commonly used. However, since rear point-contact patterns have a low degree of freedom, it is advantageous

and feasible to derive flexible analytical solutions instead of using sophisticated modeling each time a new

device design has to be optimized. Another approach has been used by Rau, who developed a three-dimensional

transport model based on the Fourier decomposition of the transport equations.6 This Fourier approach is easier

to implement and much faster than the finite element technique. This advantage comes at the price of being

restricted to solar cells that obey the superposition principle.

The numerical finite element approach, as well as the Fourier approach, give access to the spatial distribution

of the excess minority carrier concentration and other quantities derived there from. However, this spatially

resolved information is not required if one is only interested in the device efficiency. Fischer has described

an alternative fully analytic technique to calculate an effective back surface recombination velocity of a

point-contacted solar cell.7 Fischer’s approach is simple to implement and sufficient to calculate the diode

saturation current j0, which is an important parameter for the cell efficiency.

In this paper we use Fischer’s approach7 to calculate the diode saturation current j0(Spass, Smet, f, p, L) with a

single analytic equation. The price to pay for the simple analytic form of the model is that no spatially resolved

information is being generated. We present a minor extension of Fischer’s model and, more important, demon-

strate agreement with experiments.

THEORY

For a full area contact with a spatially homogeneous back surface recombination velocity S1D the transport is

one-dimensional and the well-known result for the diode saturation current is8,9

j0;1D ¼ Dn0

L

S1DL þ D tanh W=Lð Þ
D þ S1DL tanh W=Lð Þ ð1Þ

with D being the minority-carrier diffusion constant, n0 the equilibrium minority carrier density, and L the bulk

diffusion length in the base of thickness W.

Figure 1. Sketch of a solar cell with passivated rear side and point contacts. The metallization fraction is f¼ �r2/p2 for a

square pattern of circular contact points
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For a point-contacted rear side Fischer defines, analogously to Equation (1), the effective recombination velo-

city S3D to yield the correct diode saturation current.

j0;3D ¼ Dn0

L

S3DL þ D tanh W=Lð Þ
D þ S3DL tanh W=Lð Þ ð2Þ

of the point-contacted cell. This relation still depends on the value of the bulk diffusion length L. However, in

high-efficiency cells we often have L�W. In the limit L/W!1 we find

j0;3D ¼ Dn0

S3D

D þ S3DW
ð3Þ

where the dependence of S3D on the diffusion length L is removed. In this paper S3D is, by definition, an effective

recombination velocity that yields the diode saturation current j0,3D of a point-contacted device with negligible

bulk recombination by Equation (3). A theory for j0,3D may thus be tested by measuring and calculating S3D

instead of j0,3D provided the bulk recombination of the samples is negligible.

We derive an expression for j0,3D in three steps. The first two steps follow the treatment by Fischer. We briefly

outline his derivation here since the original reference, a PhD thesis,7 is not readily available to the reader. The

third step generalizes Fischer’s work and is presented here for the first time.

Step 1: ðL ¼ 1; Spass ¼ 0; Smet ¼ 1Þ
Following Fischer,7 we neglect bulk recombination ðL ¼ 1Þ, assume zero SRV (Spass¼ 0) in between the con-

tact points, and infinite SRV at the contacts (Smet¼1). The plan for solving the minority-carrier transport pro-

blem is to exploit the formal equivalence between two physically very different entities: (i) minority-carrier

concentration under forward injection through the p–n junction (injection case); and (ii) the electrostatic poten-

tial that causes the majority carriers to flow in a device of identical geometry, but with two ohmic contacts

(ohmic case). This formal equivalence permits as to express the diode saturation current in terms of the series

resistance of the point-contacted structure. Numerical studies and analytical formulas can be obtained from the

literature.10–12

Under forward injection, the excess minority-carrier concentration n(r) in the base depends on the position

r¼ (x, y, z) and is determined by the Laplace equation (injection case). The Laplace equation

r2nðrÞ ¼ 0 r2�ðrÞ ¼ 0 ð4Þ

also holds for the electrostatic potential �(r) that determines the majority-carrier flow when both sides have

ohmic contacts (ohmic case). The boundary conditions at the p–n junction

nðx; y; 0Þ ¼ njct �ðx; y; 0Þ ¼ �jct ð5Þ

are also formally identical, when assuming a highly conducting emitter that causes a spatially homogeneous

excess carrier concentration njct at the junction for the injection case and when assuming a highly conductive

metal contact that causes a constant potential �jct in the ohmic case. Neither minority carriers nor majority

carriers must enter the surface between the contacts since Spass¼ 0. Thus

@n

@z

����
z¼W

¼ 0
@�

@z

����
z¼W

¼ 0 ð6Þ
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holds between the contact points. The minority-carrier concentration nmet vanishes at the metal contacts due to

an infinite SRV Smet¼1. Without any loss of generality we may assume the electrostatic potential at the point

contacts to vanish. Thus we find

nðx; y;WÞ ¼ 0 �ðx; y;WÞ ¼ 0 ð7Þ

at the contact points. The current densities for minority and majority carriers are then

jmin ¼ q

Z
jct

Z
D
@n

@z

����
z¼0

dxdy jmaj ¼
Z

jct

Z
1

�

@�

@z

����
z¼0

dxdy ð8Þ

respectively, where � is the base resistivity (in � cm), and q is the carrier charge. The integration extends over

the junction area that is positioned at z¼ 0. Alternatively jmin is expressed by the saturation current (Equation 3),

and jmaj by Ohm’s law

jmin ¼ qDnjct

S3D

D þ S3DW
jmaj ¼

�jct

RS

ð9Þ

with RS being the series resistance of the point-contacted base in the dark in � cm2. From Equations (8) and (9)

we find

S3D

D þ S3DW
¼ 1

njct

Z
jct

Z
@n

@z

����
z¼0

dxdy and
�

RS

¼ 1

�jct

Z
jct

Z
@�

@z

����
z¼0

dxdy ð10Þ

The two right-hand sides of Equations (10) are identical since n and � both obey the Laplace equation with

identical boundary conditions. We thus find

S3D

D þ S3DW
¼ �

RS

ð11Þ

for a cell with Spass¼ 0, Smet¼1, and L¼1. Using Equation (3), the diode saturation current is then

j0;3D ¼ D
n0

RS=�
ð12Þ

Solving Equation (11) for the effective surface recombination we find

S3D ¼ D
RS

�
� W

� ��1

ð13Þ

Knowing the series resistance RS, we may thus either calculate j0,3D or, equivalently, an effective recombina-

tion velocity S3D. The latter has no physical meaning other than to yield the correct saturation current

when inserted into formulas that were originally derived for one-dimensional transport. We therefore prefer

to discuss a physically sensible entity, the saturation current j0,3D rather than the effective surface recombination

velocity S3D.

Step 2: ðL ¼ 1; Spass ¼ 0; Smet < 1Þ
The approximation of Smet¼1 that we made in Step 1 is certainly not a good one if local back surface fields are

used. As a consequence of Smet<1, the excess minority-carrier concentration at the point contacts is not zero
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but has an average value nmet> 0 under forward injection in the dark. We now consider the minority-carrier cur-

rent densities for finite Smet as being a superposition (sum) of the Step 1 case (Smet¼1 and thus nmet¼ 0,

injection from the junction side thus njct> 0) and the case where both contacts have interchanged roles (Sjct¼1
1 and thus njct¼ 0, injection trough the point contacts thus nmet> 0). Since the currents are flowing in opposite

directions in both cases and since the series resistance does not depend on the direction of current flow we find a

total minority current density

jmin ¼ D
njct

RS=�
� nmet

RS=�

� �
ð14Þ

when applying the result from Step 1 to both cases. Note that Equation (14) is only approximately valid since

the excess carrier density at the point contacts is assumed to be constant, which is not the case in reality. By

definition of Smet we also have

jmin ¼ f Smetnmet ð15Þ

with f being the metallized area fraction. The latter relation applies since recombination in the bulk and at the

passivated surface in between the contact points is zero and thus the total minority-carrier current equals the

recombination current at the contacts. Solving Equations (14) and (15) for j0,3D¼ jmin� n0/njct yields the diode

saturation current

j0;3D ¼ Dn0

RS

�
þ D

f Smet

� ��1

ð16Þ

Using the left-hand part of Equation of (9) the corresponding effective SRV becomes

S3D ¼ D
RS

�
þ D

f Smet

� W

� ��1

ð17Þ

As required, Equations (12) and (13) are retrieved from Equations (16) and (17), respectively, in the limit of

Smet!1. Note that Equations (16) and (17) hold independently of the actual contact geometry, which enters

only indirectly via f and RS.7 The metallization fraction f and the series resistance RS are the only relevant para-

meters.

Step 3: ðL ¼ 1; Spass � 0; Smet < 1Þ
In this step, we extend the model to a non-vanishing SRV Spass in between the contact points. We apply the result

from Step 2 to the two complementary structures that are shown in Figure 2(a and b).

The sample in Figure 2(a) has an emitter on the bottom surface and point contacts of area fraction f on the top

surface. All point contacts are assumed to be interconnected (interconnection not shown in Figure 2a). As for

the Step 2 case we assume Smet<1 (thus finite nmet> 0) at the point contacts and Spass¼ 0 in between the

contacts. The saturation current

j0;3D;a ¼ Dn0

RS

�
þ D

f Smet

� ��1

ð18Þ

follows directly from Step 2 and is marked here with an additional sub-index a to distinguish it from the satura-

tion current of the structure in Figure 2(b).

Figure 2(b) shows the complementary structure with a contact having circular holes on the top and a full area

emitter on the bottom. The area fraction covered by the contact is (1 � f ). The contact’s SRV is assumed to be

Spass<1 (thus npass> 0). At the holes we assume a recombination velocity Smet¼ 0. Since the results of Step 2
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do not depend on the specific contact geometry we simply interchange the role of the point contacts and the

passivated region to find the saturation current

j0;3D;b ¼ Dn0

~RRS

�
þ D

ð1 � f ÞSpass

� ��1

ð19Þ

of the complementary structure shown in Figure 2(b). Here ~RRS is the series resistance of the complementary

structure of Figure 2(b).

We approximate the carrier concentration of the Step 3 case (that is L¼1, Spass� 0, Smet<1) with the sum

of the carrier concentrations for the two complementary cases. Consequently, the recombination currents add

and we find the saturation current

j0;3D ¼ Dn0

RS

�
þ D

f Smet

� ��1

þ
~RRS

�
þ D

1 � fð ÞSpass

� ��1
( )

ð20Þ

for L¼1, Spass� 0, Smet<1 as the sum of Equations (18) and (19). Note that this ‘parallel diode approxima-

tion’ does not account for interaction between the passivated and the metallized areas. It is therefore only

approximately valid for large diffusion lengths compared with the period length, L� p. However, our experi-

mental data will show that Equation (20) fits the experiment for L� 3p within the experimental error.

The corresponding surface recombination velocity follows from Equation (9):

S3D ¼ D

RS

� þ D
f Smet

� ��1

þ ~RRS

� þ D
1�fð ÞSpass

� ��1
� ��1

�W

ð21Þ

Figure 2. Sketch of two diodes with different rear contact geometry: (a) point-metallized diode with the SRV Smet under the

contact points, and no recombination (Spass ¼ 0) between them; (b) diode with a metallization scheme complementary to (a).

The SRV under the metal is Spass, while we assume Smet¼ 0 in the holes
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Step 4: ðL < 1; Spass � 0; Smet < 1Þ
If bulk recombination were not negligible (L similar to or smaller than W), then inserting Equation (21) in

Equation (2) should be a good estimate for the actual saturation current since both extreme limits L! 0 and

L!1 give the correct result.

Modeling the series resistance RS

The theory given above is as good as is the equation for calculating the series resistance RS of the point-contact

pattern, and that of the complementary structure ~RRS. In order to calculate RS a specific contact pattern needs to

be assumed. Here we assume the pattern that is sketched in Figure 1. Following previous work,7,13 we use the

approximate series resistance

RS ¼ p2 �

2�r
arctan

2W

r

� �
þ �W 1 � exp �W

p

� �� �
ð22Þ

for a square pattern of circular point contacts with radius r and spacing p. The specific resistance of the base is

denoted by �. This approximate formula interpolates between the ‘large-scale’ case of p�W, and the ‘small-

scale’ case of p�W. This approximation was shown to have an accuracy of better than 5%.6,7,14

The large-scale case is represented by the first term on the right-hand side of Equation (22), and describes the

spreading resistance of a point contact opposite to a conducting surface, normalized to the area p2. For a very

large contact spacing p, the series resistance RS approaches RS¼ �W/f. The small-scale case is represented by

the second term. For very small contact spacing p, the base series resistance RS approaches that of a completely

metallized wafer RS¼ �W.

Note that RS represents only the base resistance of a solar cell in the dark. In order to model the complete

series resistance of a solar cell, the contribution of the emitter and front contact grid have to be also considered.

Earlier investigations showed that the base series resistance of point-contacted solar cells is mostly independent

of the actual operating point and illumination of the cell, since the current-flow pattern is governed by spreading

resistance and not by injection effects.14–16 Thus, RS may also be considered as an approximation for the base

resistance under illumination.

The calculation of ~RRS is similar to that of Equation (22). Again, we interpolate between the small-scale case

(p�W) that leads to ~RRS ¼ �W , and the large scale case (p�W):

1

~RRS

¼ 1

�W
� 2�r

� p2 arctan 2W
r

� 	
exp W

p

� � ð23Þ

In the large-scale case, the series resistance is increased by the second term on the right-hand side of Equation

(23) that represents the metal-free holes. A parallel connection of the holes with the perforated contact would

result in a completely metallized wafer with the resistance �W. We see that for very large contact spacing p, the

resistance approaches the expected value ~RRS ¼ �W=ð1 � f Þ.
Equations (21–23) thus represent a general approximate model for the effective back-surface recombination

velocity of a point-contacted base with arbitrary values for Smet, Spass, f, and p. In combination with Equation (2)

this model may be applied to calculate the diode saturation current for finite bulk diffusion lengths L.

EXPERIMENTAL

We use (100)-oriented boron-doped FZ wafers with a thickness of 300 mm and a resistivity of 1�4� cm.

The doping concentration is NA¼ 1� 1016 cm�3. The sample design for the lifetime measurements is

sketched in Figure 3. After removing the native oxide by a 1 min treatment in 2% HF solution in water we

deposit 50-nm-thick a-Si:H films on both sides of the wafers by plasma-enhanced chemical vapor deposition
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(PECVD). The deposition parameters are described elsewhere.17 The surface recombination velocity on both

wafer sides is then Spass.

We form an aluminum point pattern on one side of each wafer by evaporating Al through shadow masks.

Each mask is divided into six segments patterned with holes of different radius and spacing plus two sections

with f¼ 0 and f¼ 1, respectively, in the center of the wafer. We use 18 different combinations of point radii r

ranging from 120 to 920 mm and point spacings p ranging from 1�0 to 5�0 mm. The metallization fraction f varies

from 0�013 to 0�5. The samples are then annealed at 210�C for 3 h to dissolve the amorphous Si into the Al. Thus

local Al contacts form.17,18 The surface recombination velocity rises in the Al-covered regions during annealing

from Spass to Smet. The SRV remains unchanged in the non-Al-covered regions.17

We measure the spatially resolved effective minority carrier lifetime �eff of our samples by the microwave-

detected photoconductance decay method (mPCD). A short laser pulse illuminates the sample from the

non-metallized side, and the local effective minority-carrier lifetime �eff is extracted from the transient micro-

wave reflectance. White bias light, corresponding to 1 sun, shines on the sample. Its above-bandgap photon flux

is 2� 1021 m�2 s–1 as measured with a calibrated Si solar cell.

Figure 4 shows the lifetime map of one wafer with the contact distance p¼ 1�5 mm. The metallization fraction f

varies from 0�05 to 0�38 in the six outer sections. The center of the wafer is divided into a fully metallized

semicircle and a non-metallized semicircle that is completely passivated. Bright areas have high effective minority-

carrier lifetimes, while dark areas exhibit low lifetimes. We see the Al contact points as spots of low lifetime.

Lifetime measurements are taken on a square grid with a spacing of 250mm in x- and in y-directions.

DATA EVALUATION

This theory for the diode saturation current requires the values of the metallization fraction f and the distance p

of contact points as well as Spass and Smet. While f and p are defined by the masks used for sample preparation

the values of Spass and Smet have to be measured.

We deduce Spass from the non-metallized center region of the lifetime map shown in Figure 4. To this end we

solve the equation19–21

tan �0Wð Þ ¼ 2SpassD�0

D2�2
0 � S2

pass

ð24Þ

with

�0 ¼ D�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��1

eff

� �
� ��1

q
ð25Þ

Figure 3. Sketch of the sample designs for mW-PCD lifetime measurements. The wafers are passivated on both sides with an

a-Si:H layer. Aluminum points with radius r and spacing p are applied to one side. Dimensions are not to scale
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for Spass. Here W is the wafer thickness, D the diffusion constant,22 and � the bulk lifetime. For the latter we use

the parameterization proposed by Kerr and Cuevas that accounts for Auger, radiative, and Shockley–Read–Hall

recombination.23 For a 1�4� cm boron-doped Si wafer we calculate � ’ 3�6 ms. The bulk diffusion length

L¼ (D�)0�5 is then 3�3 mm, which is about ten times the wafer thickness. We use the harmonic mean lifetime

h��1
eff i in Equation (25) since in our case the diode saturation is proportional to the inverse effective lifetime

(j0;3D / ��1
eff ). Here hxi denotes the arithmetic mean h��1

eff i ¼ N�1
PN

i;j¼1 �
�1
eff ðxi; yjÞ over measurement positions

(xi, yj). This average is determined from a sample area of about 1 cm2 which we select as to exclude process-

induced inhomogeneities such as the lines that appear in the f¼ 0�05 section of Figure 4.

The effective minority-carrier lifetime for the non-metallized sample areas is h��1
eff;f¼0i

�1 ¼ 620 ms. This

value corresponds to the effective surface recombination velocity Spass¼ 20 cm/s at the a-Si:H passivated sur-

faces. For metallized samples we determine S3D using19–21

tan �0Wð Þ ¼
Spass þ S3D

� 	
D�0

D2�2
0 � SpassS3D

ð26Þ

together with Equation (25) since one side of the metallized samples is passivated by amorphous Si. We

use Spass¼ 20 cm/s to determine S3D. The evaluation of the lifetime map of the fully metallized center area

in Figure 4 yields S3D¼ Smet¼ 5� 105 cm/s.

The symbols in Figure 5(a) denote the measured recombination velocities S3D for metallization fractions f of

0�013, 0�03, and 0�1. The effective surface recombination velocity ranges from 400 cm/s for f¼ 0�1 and

p¼ 1 mm to 43 cm/s for f¼ 0�013 and p¼ 5 mm.

The symbols in Figure 5(b) show the same experimental data after conversion into diode saturation currents

with Equation (3). We use n0¼ ni
2/NA, where ni¼ 1�05� 1010 cm�3 is the intrinsic carrier concentration of Si

at 300 K in the case of NA¼ 1�0� 1016 cm�3 as the acceptor concentration of the Si wafers.24 The saturation

currents range from 0�54 nA/cm2 for f¼ 0�1 and p¼ 1 mm to 0�077 nA/cm2 for f¼ 0�013 and p¼ 5 mm.

Figure 4. Experimental map of the effective minority-carrier lifetime �eff of a wafer with p¼ 1�5 mm. Brighter areas

correspond to higher lifetimes. The contact points are visible as dark spots
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The symbols of Figure 6 are experimental diode saturation currents j0,3D for a point distance p¼ 1�5 mm and

various metallization fractions f¼ 0–1. The lifetime map of Figure 4 is used for calculating j0,3D. The values of

j0,3D rise from j0,3D¼ 0�11 nA/cm2 at f¼ 0�013 to j0,3D¼ 1�8 nA/cm2 at f¼ 1.

COMPARISON WITH THEORY

We use the experimental results for Spass¼ 20 cm/s and Smet¼ 5� 104 cm/s in the theoretical Equations (20) and

(21). The values of f and p are known from the design of the shadow masks that defined the point contacts. Our

theory thus contains no free fit parameters.

The theoretical lines in Figure 5(a) show the SRV derived from the analytical model with the Equations (21–23).

The theory fits the experimental data for all three metallization fractions f¼ 0�013, 0�03, and 0�1 within the experi-

mental error. Typical values of f for high-efficiency solar cells are f< 0�05.25

The lines in Figure 5(b) and Figure 6 are theoretical values generated with Equations (20, 22, and 23). Since the

j0,3D data in Figure 5(b) are merely a translation of the S3D data from Figure 5(a), the agreement between experi-

ment and theory is as good as in Figure 5(a). The line in Figure 6 gives the theoretical diode saturation current j0,3D

for a wider range of metallization fractions at p¼ 1�5 mm. The recombination velocity rises from S3D¼ Spass for

f¼ 0 to S3D¼ Smet at f¼ 1. The diode saturation current changes rapidly with metal coverage at f< 0�1. For high

values S3D�D/W, we see from Equation (3) that j0,3D saturates at Dn0/W, which is 1�9 nA/cm2 for our samples.

These measurements confirm the analytic theory for the whole range of metallization fractions f¼ 0–1.

Figure 5. (a) Effective surface recombination velocity of point-contacted surfaces of various metallization fractions f:

experimental data drived from the mPCD-measurements (symbols) and theoretical data calculated with Equations (21, 22,

and 23); (b) diode saturation current j0;3D for various metallization fractions f: experimental data (symbols) and theoretical

data derived from Equations (20, 22, and 23)
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CONCLUSION

In conclusion, we report an easy to handle approximate analytical model for the effective back-surface recom-

bination velocity and the diode saturation current in point-contacted solar cells. We test this model using life-

time measurements on passivated Si samples having point contacts with distances 1 mm< p< 5 mm and a

metal coverage 0< f< 1. The measured data fit the theoretical calculation within the experimental error.

The model has no free fit parameters.

Using the results presented here, three-dimensional transport effects in point-contacted devices can be con-

sidered without the necessity to perform finite element three-dimensional simulations. The analytical model

may be helpful for device simulations, since Equations (2, 21, 22, and 23) provide the effective rear recombina-

tion velocity and diode saturation current that are necessary parameters for simulating the cell performance.

However, care must be taken when calculating the actual series resistance of a solar cell, since Equation

(22) represents only the base resistance in the dark. In order to model the complete series resistance of a solar

cell, the contribution of the emitter and front-contact grid have to be also considered. Deviations of the base

resistance under illumination from RS have been shown to be small.14–16
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10. Schöfthaler M, Rau U, Füssel W, Werner JH. Optimization of the back contact geometry for high efficiency solar cells.

Procceedings of the 23rd IEEE Photovoltaic Specialists Conference, IEEE, New York, 1993; 315–320.

11. Catchpole KR, Blakers AW. Modelling of the PERC structure with stripe and dot back contacts. Proceedings of the 16th

European Photovoltaic Solar Energy Conference, Scheer H, McNelis B, Palz W, Ossenbrink HA, Helm P (eds).

Stephens: Bedford, 2000; 1719–1722.

12. Heiser G, Aberle AG, Wenham SR, Green MA. Two-dimensional numerical simulations of high-efficiency silicon solar

cells. Microelectronics Journal 1995; 26: 273–286.

13. Brooks RD, Mattes HG. Spreading resistance between constant potential surfaces. Bell Systems Technical Journal 1971;

50: 775–785.

14. Kotsovos K, Misiakos K. Three-dimensional simulation of carrier transport effects in the base of rear point contact

silicon solar cells. Journal of Applied Physics 2001; 89: 2491–2496.

15. Altermatt PP, Heiser G, Aberle AG, Wang A, Zhao J, Robinson SJ, Bowden S, Green MA. Spatially resolved analysis

and minimization of resistive losses in high-efficiency Si solar cells. Progress in Photovoltaics: Research and

Applications 1996; 4: 399–414.

16. Heiser G, Altermatt PP, Williams A, Sproul A, Green MA. Optimisation of rear contact geometry of high-efficiency

silicon solar cells using three dimensional numerical modeling. Proceedings of the 13th European Photovoltaic Solar

Energy Conference, Freiesleben W, Palz W, Ossenbrink HA, Helm P (eds). Stephens: Bedford, 1995; 447–450.

17. Plagwitz H, Nerding M, Ott N, Strunk HP, Brendel R. Low-temperature formation of local Al contacts to a-Si:H-

passivated Si wafers. Progress in Photovoltaics: Research and Applications 2004; 12: 47–54.

18. Plagwitz H, Brendel R. COSIMA technology for screen-printed point contacts to the rear of passivated Si solar cells.

Technical Digest of the 14th International Photovoltaic Science and Engineering Conference. Chulangkorn University:

Bangkok, 2004; 267–268.

19. Luke KL, Cheng LJ. Analysis of the interaction of a laser pulse with a silicon wafer: determination of bulk lifetime and

surface recombination velocity. Journal of Applied Physics 1987; 61: 2282–2293.

20. Kousik GS, Ling ZG, Ajmera PK. Nondestructive technique to measure bulk lifetime and surface recombination

velocities at the two surfaces by infrared absorption due to pulsed optical excitation. Journal of Applied Physics 1992;

72: 141–146.
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