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Fig. 20. Reflectivity vs. voltage of formation at 10 ma cm--" 
and 250C for zirconium. 

Discussion 
The  d i r ec t i on  of t he  d e p e n d e n c e  of the  r e f r a c -  

t i ve  i n d e x  on the  cond i t ions  of f o r m a t i o n  is s o m e -  
w h a t  su rp r i s ing ,  since,  acco rd ing  to p r e s e n t  theor ies ,  
i t  m e a n s  t h a t  t he  i n d e x  is h i g h e r  t he  l o w e r  t he  con-  
c e n t r a t i o n  of m o b i l e  ions, i.e., of F r e n k e l  defects .  

The  e x p l a n a t i o n  of t he  th in  o u t e r  l a y e r  of a b s o r b -  
ing ox ide  is a t  p r e s e n t  unce r t a in .  I t  c e r t a i n l y  seems  
to b e  s igni f icant  t h a t  t he  th in  a b s o r b i n g  l a y e r  p r e s -  
en t  in fi lms f o r m e d  in d i lu t e  so lu t ion  becomes  a 
t h i c k  l a y e r  in f i lms f o r m e d  in c o n c e n t r a t e d  solut ion .  
I t  is t e m p t i n g  to a s s u m e  tha t  th is  l a y e r  r e p r e s e n t s  
a t r a n s i t i o n a l  l a y e r  in  w h i c h  t h e  a d j u s t m e n t  is m a d e  
b e t w e e n  the  k ine t i c s  of t he  o x i d e / s o l u t i o n  i n t e r f a c e  
and  those  of t he  e l e c t r i c a l l y  n e u t r a l  o x i d e  in  t he  i n -  
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t e r i o r  of the  film. H o w e v e r ,  t he  effect cou ld  be  due  
to some m o r e  t r i v i a l  cause,  such  as t h e  a d s o r p t i o n  of 
SO, -2 b y  the  o u t e r  l a y e r s  of oxide .  I t  is w o r t h  n o t i n g  
t ha t  to account  for  a c c u r a t e  r e f l ec t iv i ty  m e a s u r e -  
m e n t s  i t  has  u s u a l l y  been  r e q u i r e d  to i n t r o d u c e  the  
idea  of t r a n s i t i o n a l  l a y e r s  in which ,  for  e x a m p l e ,  t he  
r e f r a c t i v e  i n d e x  va r i e s '  t h r o u g h  the  o u t e r  f e w  a n g -  
s t roms  of the  re f lec t ing  m a t e r i a l .  
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The Volatilization of Chromium Oxide 
D. Caplan and M. Cohen 

Division o~ Applied Chemistry, National Research Council, Ottawa, Canada 

ABSTRACT 

The phenomenon of evapora t ion  of chromium oxide f rom chromium alloys 
oxidized at high t empera tu re s  was inves t iga ted  by  observing the loss in weight  
when Cr~O3 pel lets  were  hea ted  at 1000~176 in var ious  atmospheres .  Ap-  
prec iable  volat i l iza t ion occurred in oxygen,  more  in wet  oxygen,  but  none in 
argon or wet  argon. Fe~O~ specimens showed vola t i l iza t ion in none of these 
atmospheres .  The resul ts  indicate  tha t  evapora t ion  occurs by  oxidat ion  of Cr~O;~ 
to gaseous CrO3 which  dissociates to Cr~O~ on redeposi t ion.  The mechanism by 
which mois ture  promotes  vola t i l iza t ion was not established. 

W h e n  Cr a l loys  a r e  ox id i zed  a t  h igh  t e m p e r a t u r e s ,  phase .  This  is s u r p r i s i n g  in  t h a t  the  b a r r i e r  f i lm of 
it  has  s o m e t i m e s  been  o b s e r v e d  t h a t  Cr20~ c r y s t a l s  r e f r a c t o r y  ox ide  cove r ing  the  spec imen  w o u l d  be  
depos i t  a t  cooler  p a r t s  of the  a p p a r a t u s  (1 -4 ) ,  i n d i -  e x p e c t e d  to p r e v e n t  such an effect. I n t e r p r e t a t i o n  
ca t ing  t ha t  Cr  or  i ts  ox ide  s o m e h o w  evo lves  f r o m  of t he  k ine t i c s  of ox ide  f i lm t h i c k e n i n g  f r o m  w e i g h t  
the  s p e c i m e n  and  is t r a n s p o r t e d  t h r o u g h  the  gas  g a i n / t i m e  m e a s u r e m e n t s  is t hus  c o m p l i c a t e d  s ince  
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a weight  loss is supe r imposed  on the weigh t  ga in  of 
oxygen  which  supposedly  is be ing  measured .  In  
addi t ion,  it  is l ike ly  tha t  the charac ter is t ics  of the  
film as a diffusion ba r r i e r  are affected. 

Ne i the r  the  vapor  p ressure  of Cr~O~ nor  its dis-  
sociat ion p ressure  is h igh  enough  to account  for  
the quan t i t i e s  of deposit  observed.  Because of the  
k n o w n  high vapor  p ressure  of Cr it was  at first con-  
s idered tha t  the  me ta l  i tself  escaped in  some m a n -  
ner .  The au thors  proposed (1) tha t  Cr~O~ was r e -  
duced to Cr at the ou te r  surface by  the ca rbon  of 
the alloy. W h e n  vo la t i l i za t ion  was  observed wi th  
essen t ia l ly  c a r b o n - f r e e  al loys it seemed necessa ry  
to invoke  a m e c h a n i s m  w h e r e b y  Cr evapora t ion  
takes place because  the oxide film fails to act as a 
p roper  b a r r i e r  layer ,  pe rhaps  by  rap id  diffusion of 
Cr a long oxide g ra in  bounda r i e s  or escape at rea l  
d i scon t inu i t i e s  in  the  film (5) .  Bu t  w h e n  it  was  
l e a rned  tha t  Cr:O~, in  the  absence  of metal ,  lost 
we igh t  w h e n  hea ted  in oxygen  (6) it became ev i -  
den t  tha t  a vola t i le  oxide was be ing  formed.  

To inves t iga te  the  effect, Cr~O~ was hea ted  in  
f lowing oxygen  and  a rgon  and  the  we igh t  loss 
measured .  Pa ra l l e l  e x p e r i m e n t s  were  pe r fo rmed  
wi th  FelOn. The  loss in  weight  was  d e t e r m i n e d  also 
in  moist  oxygen  and  a rgon  since mois tu re  had  p re -  
v ious ly  been  shown to affect the  ox ida t ion  ra te  of 
Cr alloys (1, 7). In  addi t ion,  Cr~O~ was fo rmed  f rom 
me ta l  in  the same a tmospheres  and  e x a m i n e d  by  
x - r a y  diffract ion and  i n f r a r ed  absorp t ion  spec-  
t roscopy to see if mo i s tu re  modified the  oxide 
s t ruc ture .  

Experimental  
Pel le ts  1.2 cm in  d i ame te r  and  1.2 cm h igh  

were  pressed f rom r eagen t  g rade  Cr~O~ and  Fe~O~ 
and  s in te red  at  1400 ~ in air  or oxygen  to about  98% 
of theore t ica l  densi ty .  C h r o m i u m  meta l  was  U.S. 
B u r e a u  of Mines  0.015-in. sheet. 

The spec imens  were  suspended  in  a ver t ica l  t ube  
furnace ,  2.9 cm ID, up  t h rough  which  purif ied oxy -  
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gen or a rgon  at 1 a t m  flowed at ra tes  r egu la t ed  
b e t w e e n  10 and  200 m l / m i n .  The gases we re  used  
d r y  or s a tu ra t ed  w i th  w a t e r  at  25 ~ at which  t e m -  
p e r a t u r e  the vapor  p ressure  of wa te r  is 24 mm.  
Runs  were  at 1100 ~ and  1200 ~ except  for one at  
1000 ~ in  st i l l  air. Tab le  I summar i zes  most  of the  
r u n s  car r ied  out. The  oxide pel le ts  were  held  in  a 
h i g h - p u r i t y  a l u m i n a  cruc ib le  cut  in  an  openwork  
p a t t e r n  to expose t hem to the  f lowing gas. Runs  
were  s ta r ted  by  lower ing  the  spec imen  in to  the  hot  
zone s lowly to avoid loss of we igh t  by  spal l ing.  A l -  
t hough  weigh t  loss vs. t ime  curves  were  ob ta ined  
wi th  a record ing  au tomat i c  ba lance  on ly  the  final, 
to ta l  we igh t  changes  are r epor ted  s ince up  to 40% 
of the evolved p r oduc t  condensed  back  on to the  
suspens ion  system. 

The  Cr sheet  samples  were  oxidized in  s imi la r  
fashion  for such t imes,  5-100 hr, as to give oxide 
films 1-10~ thick.  (The weigh t  g a i n / t i m e  curves  
recorded by  the au tomat i c  ba l ance  wi l l  be  repor ted  
s u b s e q u e n t l y  in  connec t ion  w i th  the scal ing of Cr 
al loys.)  In  this  r ange  of th ickness  the  Cr~O~ ab -  
sorbed i n f r a r ed  r ad ia t ion  in  the p rope r  a m o u n t  to 
y ie ld  an  absorp t ion  spec t rum w h e n  a me thod  of 
ref lect ion at 90 ~ inc idence  was  used. Spec t ra  were  
also ob ta ined  by  t r ansmis s ion  t h r ough  m u l l  samples  
p r epa red  f rom finely g round  separa ted  oxide. 

In  an  add i t iona l  e x p e r i m e n t  ~ an  oxy-gas  torch 
was  d i rec ted  at the surface  of s in te red  Cr~O. and  
the  smal l  a m o u n t  of smoke evolved caugh t  on a 
cold support .  The surface  t e m p e r a t u r e  of the  Cr~O, 
was a p p r o x i m a t e l y  2000~ The  p roduc t  was  ex -  
a m i n e d  by  reflect ion e lec t ron  diffraction.  

Results 

Figu re  1 shows the  effect of a tmosphere  on the  
vo la t i l i za t ion  of Cr.~O~ at 1100 ~ and  1200 ~ a nd  a gas 
flow ra te  of 200 m l / m i n .  At  this  flow ra te  moi s tu re  

S u g g e s t e d  by  d i scuss ion  w i t h  JR. M. F o w l e r  o f  U n i o n  Ca rb ide  
Meta l s  Corp.  w h e n  th i s  w o r k  was  p r e s e n t e d  a t  t he  ECS  H o u s t o n  
mee t ing ,  Oc tober  1960. 

Table I. Weight loss on heating Cr203 and Fe20~ in various atmospheres 

Gas  f low 

R u n  S p e c i m e n  Temp,  ~ Gas  Time,  h r  m l / m i n  1 

W e i g h t  loss 

m g  m d d  #g/1 

1 Cr~O~ 1000 still air 72 - -  - -  
2 Cr~O3 1100 oxygen, dry 65 10 39 
3 Cr~O3 1100 oxygen, dry 19 200 230 
4 Cr~O3 1100 oxygen, dry 20 200 240 
5 Cr~Oa 1100 oxygen, wet 20 200 240 
6 Cr~O8 1200 argon, dry 66 200 792 
7 Cr~O8 1200 argon, dry 115 192 1300 
8 Cr20~ 1200 argon, wet 20 192 230 
9 Cr~O~ 1200 oxygen, dry 20 10 12 

10 Cr~O, 1200 oxygen, dry 20 10 12 
11 Cr~O~ 1200 oxygen, dry 20 20 24 
12 Cr~O3 1200 oxygen, dry 20 200 240 
13 Cr~O, 1200 oxygen, dry 20 200 240 
14 Cr~O~ 1200 oxygen, dry 42 200 504 
15 Cr~O~ 1200 oxygen, wet 20 10.2 12.2 
16 Cr~O3 1200 oxygen, wet 20 63 76 
17 Cr~O3 1200 oxygen, wet 20 200 240 
18 Cr20~ 1200 oxygen, wet 20 200 240 
19 Fe~O~ 1200 oxygen, dry 20 200 240 
20 Fe~O~ 1200 oxygen, wet 20 200 240 
21 Fe~O~ 1200 oxygen, wet  65 200 240 

0.3 1.5 - -  
0.9 5 23 
0.8 15" 3.5 
0.6 11 2.7 
2.1 38* 8.9 
0 0 0 
0 0 0 
0 0 0 
2.1 37 173 
1.3 24 111 
1.8 33 77 
2.3 41 10 
2.6 45 11 
8.0 68* 16 
1.9 33 152 
3.3 58 43 
5.6 99 23 
6.0 106" 25 
0 0 0 
0 0 0 
0 0 0 

* P lo t t ed  in  Fig.  1. 
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Fig. l .  Weight loss of Cr=O~ in wet and dry oxygen and 
argon at 1100 ~ and 1200~ Flow rate 200 rn l /min.  

condensa te  to be CrO,. Sufficient ma te r i a l  could no t  
be p roduced  to confirm this  by  x - r a y  diffraction.  

Discussion 
The obse rva t ion  that  no loss of Cr~O~ occurs in  

a rgon  confirms the  fact tha t  vo la t i l i za t ion  is not  by  
dissociat ion of the  oxide nor  as Cr~O. vapor .  Since 
weigh t  loss does occur in  oxygen,  the  vola t i le  spe-  
cies mus t  be a h igher  oxide of ch romium.  Fe~O, 
shows no vola t i l iza t ion ,  p r e s u m a b l y  because  no 
oxide of apprec iab le  vapor  p ressure  forms,  and  
n o n e  is known .  CrO~ is a k n o w n  vola t i le  oxide of 
Cr, bu t  it exists  n o r m a l l y  on ly  at lower  t e m p e r a -  
tu res  so that ,  at the Cempera tures  and  oxygen  p res -  
sures of the p re sen t  work,  ox ida t ion  of Cr20. to 
CrO~ is t h e r m o d y n a m i c a l l y  un favo rab l e .  However ,  
the  reac t ion  to fo rm gaseous CrO, 

a p p r o x i m a t e l y  doubles  the  ra te  of we igh t  loss m 
oxygen.  No loss occurs in  argon,  e i ther  wet  or dry.  
Wi th  FelOn, (Tab le  I) no loss occurs in  wet  or d ry  
oxygen.  

The va r i a t i on  in  evapora t ion  ra te  w i th  oxygen  
flow ra te  is shown by  the resul ts  in  Tab le  I, which  
inc ludes  the  data  of Fig. 1. Express ing  the  weigh t  
loss in  mic rog rams  per  l i te r  of gas flowed ( last  
c o l u m n ) ,  it is seen tha t  as the flow ra te  is decreased 
the  n u m b e r s  increase  hs they  should (e.g., r u n s  9- 
14, 15-18, or 2-4)  b u t  tha t  a cons t an t  va lue  is no t  
obta ined ,  as should be the  case if the  s a tu ra t ion  
p ressure  of the vola t i le  species were  to be de te r -  
m i n e d  (8, 9). F u r t h e r m o r e ,  nonsys t ema t i c  v a r i a -  
t ions appear  e.g., the loss in  r u n  9 is grea ter  t h a n  
in  r u n  10. This occurred because  r u n  9 i m m e d i a t e l y  
fol lowed four  1200 ~ r u n s  w i th  Fe~O~ in  oxygen  d u r -  
ing wh ich  the  Cr..,O3 which  had been  condensed  in 
the appa ra tu s  f rom prev ious  r u n s  was  evapora ted  
away.  In  r u n  9, therefore ,  on ly  the  spec imen itself 
was c o n t r i b u t i n g  the vola t i le  m a t e r i a l  to the flow- 
ing gas and  a h igher  ( and  more  n e a r l y  correct)  
weight  change  was  observed.  This  applies  also to 
r u n s  14, 15, and  18. Otherwise  some evapora t ion  
occurs f rom Cr_~O3 deposits  as wel l  as f rom the  pel -  
let, bu t  is no t  recorded as par t  of the weigh t  loss. 
I t  follows tha t  the e x p e r i m e n t a l  des ign is not  sat is-  
fac tory  for the accura te  d e t e r m i n a t i o n  of vapor  
p ressure  or tha t  the t r a n s p o r t a t i o n  method  is no t  
appl icab le  to the  Cr,~O~-O~-H,O system. 

I n f r a r e d  absorp t ion  spectra  of adequa te  qua l i t y  
were  ob ta ined  f rom the t h in  oxide films on Cr sheet  
by  the  n o r m a l  incidence,  s ingle reflect ion method,  
as wel l  as wi th  the  more  conven t iona l  m u l l  sam-  
ples. Abso rp t ion  m a x i m a  were  observed  at 680, 850, 
930, 980, 1100, and  1160 em -1. No differences in  the 
spect ra  could be detected b e t w e e n  Cr~O. fo rmed  in 
dry  oxygen,  wet  oxygen,  or a rgon  con ta in ing  20 
ppm oxygen.  

X - r a y  diffract ion of these same three  Cr.,O.~ s am-  
ples and  also of CrfO~ condensed  on the  suspens ion  
sys tem f rom Cr~O~ hea ted  at 1200 ~ in  wet  oxygen  
( r u n  17) disclosed no s ignif icant  difference in  the 
i n t e r p l a n a r  spacings;  the va r i a t i on  was no more  
t h a n  1 pa r t  in  10,000. 

E lec t ron  diffract ion of the smoke developed by  
d i rec t ing  an oxy-gas  torch  onto Cr.O~ showed this  

Cr~O3(s) + 3/2 Of(g) = 2CrO,(~) [1] 

would  have  in  its favor  the increase  in  en t ropy  as-  
sociated wi th  the ex t ra  hal f  mole  of gaseous p rod -  
uct,  and  therefore  a less u n f a v o r a b l e  free ene rgy  
change.  F u r t h e r m o r e ,  in  a d y n a m i c  sys tem wi th  a 
cons iderab le  flow of gas, apprec iab le  m a t e r i a l  
t r anspor t  can occur even  f rom a r a the r  smal l  equ i -  
l i b r i u m  pa r t i a l  pressure .  

Tak ing  the la rges t  e x p e r i m e n t a l  va lue  of we igh t  
loss pe r  l i ter  of gas flowed, which  is to say the most  
n e a r l y  correct  va lue ,  r u n  9, a Cr~O, loss of 173 t,g/1 
corresponds  to a CrO. pa r t i a l  p ressure  of 5.1 x 10 -~ 
atm. If this r ep resen ted  sa tu ra t ion ,  the  e q u i l i b r i u m  
cons tan t  

(P~ro~) ~ 
/ ~  [2] 

(Poo) "/' 

becomes 2.6 x 10-", e q u i v a l e n t  to AF~ = + 29 kcal.  
In  fact, s a tu r a t i on  has not  been  d e m o n s t r a t e d  so tha t  
K;, is too smal l  and  • ~ too large  by  an  u n k n o w n  
amount ,  a l though  the e r ror  m a y  no t  be v e r y  large. 
But  the m a i n  po in t  of the foregoing is tha t  CrO, 
m a y  be r ea sonab ly  cons idered  as the  vola t i le  species 
despi te  its ins tab i l i ty .  This  obse rva t ion  of hexa -  
va l en t  Cr oxide is cons is ten t  wi th  an e x p l a n a t i o n  
offered in a p rev ious  pub l i ca t i on  (10) to account  for 
an  anomalous  sharp  m i n i m u m  in the cathodic re -  
duc t ion  curves  of oxide films on Cr alloys. The p ro -  
posal  was made  tha t  Cr,O, films fo rmed  u n d e r  
s t rong ly  oxidiz ing condi t ions  were  defect  oxides con-  
r a in ing  apprec iab le  Cr "+ ion and  wou ld  be p rope r ly  
descr ibed as Cr,_.o~ "§ Cr~ ~§ ~ O. w he r e  D~ represen t s  
the concen t ra t ion  of ca t ion  vacancies .  The  la t te r  
wou ld  be la rger  the  h igher  the oxygen  pressure  and  
the  lower  the t empe ra tu r e .  

The  Cr smoke e x p e r i m e n t  lends  s t rong  suppor t  to 
the CrO. hypothesis .  Tha t  CrO, ac tua l ly  was  con-  
densed mus t  be ascr ibed to the  gas q u e n c h i n g  tha t  
the  vola t i l ized Cr oxide receives as it is swept  out 
of the  oxy-gas  flame. In  all  o ther  cases the  CrO.~ 
vapor  decomposes to Cr~O~ and  oxygen  by  the re -  
verse  of equa t ion  [1] .  Hence,  in  the flow e x p e r i m e n t s  
on ly  Cr_~O~ is detected by  x - r a y  diffract ion in  the  
sub l ima te  on the  fu rnace  tube  and  suspens ion  sys-  
tem. [ In  some work  which  had  not  appea red  in  p r i n t  
at the t ime  tha t  this  paper  received its final revis ion,  
CrO~ had  been  detected mass  spec t romet r i ca l ly  as a 
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gaseous species w h e n  Cr~O~ was hea ted  u n d e r  oxi-  
dizing condi t ions  (26) . ]  

The acce lera t ing  effect of mo i s tu re  canno t  be  
e luc ida ted  f rom these exper iments .  The a t t empts  
by  x - r a y  diffract ion and  i n f r a r ed  spectroscopy to 
demons t r a t e  the presence  of h y d r o g e n  in  Cr~O~ 
hea ted  or fo rmed  in  mois t  gas were  not  successful;  
one can  say tha t  la rge  quan t i t i e s  do not  incorpora te  
themse lves  in  the  solid oxide lattice.  The vapor i za -  
t ion of some nonvo la t i l e  oxides in  the presence  of 
mois tu re  has been  shown to be due to the fo rma t ion  
of gaseous hydrates .  This  is so w i th  LioO (11, 12), 
B~O~ (13),  BeO (14-17) ,  and  perhaps  AI~O.~ (17),  
WO~, W~Ol~, WO~, MoO~ (18) and  some others  (19).  
But  the Cr.~O~ case is d i f ferent  in tha t  the wet  a rgon  
e x p e r i m e n t  in  which  no vola t i l i za t ion  occurred 
showed tha t  a hyd ra t e  of Cr~O~ does no t  form. I t  
may  be tha t  vo la t i l i za t ion  is e n h a n c e d  by  fo rma t ion  
of a gaseous CrO~ hydra te ,  b u t  t he re  is as yet  no 
evidence  in  suppor t  of this. Where  a vola t i le  hyd r a t e  
forms and  no vola t i le  oxide exists  the  s i tua t ion  ap-  
pears  qui te  s t ra igh t fo rward .  But  where  vola t i le  
oxides are  present ,  U, Mo, Cr, Si, Pt,  the func t i on  of 
wa te r  has no t  been  d e m o n s t r a t e d  unequ ivoca l ly .  

A l t e rna t i ve ly ,  mo i s tu re  m a y  increase  vo la t i l i ty  by  
s tabi l iz ing  gaseous polymers .  Mass spec t romet r ic  ob-  
serva t ions  have  shown r a the r  su rp r i s i ng ly  tha t  the  
h i g h - t e m p e r a t u r e  vola t i le  species over  such oxides 
as WO~, NIoO~, BeO, and  GeO are po lymers  as high 
as p e n t a m e r s  (20, 21). 

Third ,  mois tu re  may,  by  chang ing  the ac t iva t ion  
energy,  act as a p romote r  for the  surface ox ida t ion  
react ion,  pe rhaps  fac i l i t a t ing  r emova l  of the oxi-  
dized p roduc t  f rom the surface.  The resul t s  at the  
s lowest  flow ra te  suggest  such a ca ta ly t ic  effect: the 
we igh t  loss in  wet  oxygen  was  not  g rea te r  t h a n  in  
dry  oxygen  ( r u n  15 vs. r u n  9). If the gaseous h y -  
dra te  or po lymer  idea were  valid,  the  weigh t  loss 
should be grea te r  wi th  mois tu re  at  the slow flow 
ra te  also. Bu t  because  of the a f o r e m e n t i o n e d  inade -  
quacies  of the  t r a n s p o r t a t i o n  me thod  for the Cr._,O~- 
O~-H~O system, the da ta  at low flow rates  are v a r i -  
able  and  a definite conclus ion  canno t  be d rawn .  

H a v i n g  es tab l i shed  the  condi t ions  u n d e r  which  
Cr~O3 evapora tes  one can recognize ins tances  where  
the effect of such evapora t ion  should be considered.  
The spur ious  k ine t ic  resul t s  tha t  can arise in  s tudies  
of oxide film growth  on Cr al loys at h igh t e m p e r a -  
tu res  were  m e n t i o n e d  at  the beg inn ing .  A corol la ry  
is tha t  mois tu re  migh t  appear  to inh ib i t  or p romote  
h i g h - t e m p e r a t u r e  ox ida t ion  depend ing  on w h e t h e r  
the  m e a s u r e m e n t s  we re  of gain  in  we igh t  of oxygen  
or loss in  we igh t  af ter  r emova l  of oxide. For  ex-  
ample,  the weight  g a i n / t i m e  curves  of the Cr pane ls  
used to fo rm Cr~O~ films show smal l e r  parabol ic  ra te  
cons tan ts  in  moist  oxygen  t h a n  in d ry  oxygen,  in  
an a m o u n t  t ha t  could be accounted  for by  the  more  
rap id  vo la t i l i za t ion  in  wet  oxygen  r a the r  t h a n  by  
a change  in  film g rowth  kinetics.  In  alloys, where  
oxides of more  t h a n  one me ta l  occur,  the  composi -  
t ion  of the ou te rmos t  l ayer  especia l ly  wou ld  be de-  
p le ted  in Cr oxide by  the evapora t ion .  

Spur ious  resul t s  can occur also in  chemical  a n -  
alysis whe re  ma te r i a l s  con t a in ing  Cr are ign i ted  in  
air. In  the  chemical  analys is  of pass ive  films separ -  
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ated f rom s ta inless  steel, mo i s tu re  con ten t s  up to 
30% were  deduced  (22) on the basis of the  decrease 
in  we igh t  tha t  occurred  w h e n  100 ~g or smal le r  
samples  we re  ign i ted  at 1000 ~ A possible a l t e rna t i ve  
e xp l a na t i on  is tha t  Cr~O~, no t  H.~O, was  d r i v e n  off in 
the igni t ion.  If so, the sugges t ion  tha t  passive films 
have  ge l - l ike  charac ter is t ics  loses support .  A t t emp t s  
in  this  l abo ra to ry  to confirm the  presence  of wa te r  
in  passive films p r epa red  s imi la r ly  have  not  suc-  
ceeded. The repor ted  p e r m e a b i l i t y  of CroO~ films for 
Cr (5) migh t  also be exp la ined  as oxide vo la t i l i za -  
tion. 

In  the mixed  oxides tha t  fo rm pro tec t ive ly  on heat  
r e s i s t an t  al loys con ta in ing  Cr, t he  vo la t i l i ty  of Cr 
oxide m a y  be less t h a n  f rom Cr~O~, e i ther  because  of 
a c rys ta l lographic  difference (sp ine l  ins tead  of 
r h o m b o h e d r a l ) ,  d i lu t ion,  or the  va lence  compensa -  
t ion  effect (23) by  which,  for example ,  the  evapo ra -  
t ion  of uranium oxide is depressed by inhibiting the 
oxidation of UO~ to UO~. If this is so, a mixed oxide 
in some atmospheres and temperatures could be 
preferable to pure Cr~O~ in spite of a less ideal defect 
structure which may permit more rapid diffusion. 
There is some literature evidence in this direction 
(24), but the situation is not yet clear. 
To summarize, Cr~O~ is shown to volatilize but only 

in an oxidizing atmosphere. Moisture increases the 
rate of evaporation in some way not yet understood. 
Fe~O~ does not volatilize. CrO~ is thermodynamically 
reasonable as the gaseous species, can be gas- 
quenched out of hot Cr oxide smoke, and is believed 
to account satisfactorily for the evaporation of Cr 
oxide. Normally it dissociates to Cr~O~ on redeposi- 
tion. Identification of CrO~ in the vapor phase and 
an explanation of the moisture effect requires addi- 
tional information: application of the Knudsen 
effusion method in which the high-temperature 
gaseous product is viewed with a mass spectrometer 
(13, 23) seems ideally suited to this purpose. In- 
correct interpretation may be attached to high-tem- 
perature processes involving Cr oxide if its volatility 
is not recognized. 

Manuscript received Nov. 14, 1960; revised manu- 
script received Jan. 13, 1961. This paper was prepared 
for delivery before the Houston Meeting, Oct. 9-13, 
1960. 

Any discussion of this paper will appear in a Dis- 
cussion Section to be published in the December 1961 
JOURNAL. 
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Electrolytic Etching of Dense Tantalum 
A. L. Jenny and R. A. Ruscetta 

Capacitor Department, General Electric Company, Irmo, South Carolina 

ABSTRACT 

A practical method of etching dense t an ta lum for the purpose of mag- 
n i fying its effective surface area is described. The degree of surface area mag-  
nification is related to such parameters  as electrolyte composition, anodic cur-  
rent  density, temperature,  and characteristics of metal  specimens to be treated. 
The decrease in  surface area magnification as a funct ion of postetch anodizing 
voltage apparent ly  signifies the filling in of certain etch pits with t an ta lum 
oxide and gives a clue to the size of these pits. 

T a n t a l u m  me ta l  of capaci tor  qua l i t y  is a powder  
m e t a l l u r g y  p roduc t  of r e l a t i ve ly  h igh  pur i ty .  The 
me ta l  in  a va r i e t y  of forms such as porous  s in te red  
compacts,  wire,  sheet, and  foil is be ing  used in  sub -  
s t an t i a l  quan t i t i e s  in  the  m a n u f a c t u r e  of h i g h - q u a l -  
i ty  t a n t a l u m  elect rolyt ic  capacitors.  

The p resen t  i nves t iga t ion  is concerned  wi th  the  
magni f ica t ion  of the  capaci tance  va lue  of p la in  t a n -  
t a l u m  foil to the  grea tes t  ex ten t  possible  by  a p r a c -  
t ical  and  economica l  e tch ing  t r e a t m e n t .  

Magnification o5 capacitance.---The equa t ion  which  
character izes  the e lect r ical  capac i tance  of a pa ra l l e l  
p la te  capaci tor  is equa l ly  va l id  for an  e lect rolyt ic  
capacitor .  

C =  ( K A ) / T  [1] 

w h e r e i n  C is capaci ty;  K a d imens iona l  cons tan t  
which  inc ludes  e, the  specific i nduc t ive  capaci tance ;  
A area  of electrodes;  T d is tance  b e t w e e n  plates.  

In  an  e lect rolyt ic  capacitor,  T is the  th ickness  of 
the  anodic  oxide film which  is d i rec t ly  p ropor t iona l  
to the fo rma t ion  vol tage  and  to the  abso lu te  t e m -  
pe ra tu re .  Hence,  we m a y  now wr i t e  

C = ( K ' A ) / E  [2] 

In  Eq. [2] K '  is a t e m p e r a t u r e - d e p e n d e n t  f u n c -  
t ion  h a v i n g  the un i t s  of vol t  mic ro fa rads  per  cubic 
cen t ime te r  w h e n  C is expressed in  mic rofa rads  and  
the  cgs sys tem is used d imens iona l ly .  The expe r i -  
m e n t a l  va lues  of K' for u n e t c h e d  t a n t a l u m  foil  are  
a p p r o x i m a t e l y  25 and  21, respect ively ,  for f o r m a -  
t ion  t e m p e r a t u r e s  of 25 ~ and  95~ 

As pred ic ted  by  Eq. [2] w h e n  p l a in  and  e tched 
spec imens  of foil a re  anodized  ( fo rmed)  to the  same 
vol tage  and  at  the same t e m p e r a t u r e ,  the increase  
in  surface area  achieved by  e tch ing  wi l l  be m a n i -  

rested by  a p ropor t iona l  increase  in the  m e a s u r e d  
capaci tance.  

The rat io of the capac i tance  per  un i t  of p ro jec ted  
area  of an  etched spec imen  to tha t  of a p l a in  speci-  
m e n  is t e r m e d  the  capac i tance  ra t io  or etch ratio.  To 
define the etch ra t io  complete ly ,  both  the  anodiz ing  
vol tage  and t e m p e r a t u r e  m u s t  be specified. In  this 
paper  the  vol tage  is 75 • 1 v d.c. and  the  t e m p e r -  
a t u r e  is 25 ~ • 2~ unless  o therwise  specified. 

Etching process-general.--Several U. S. pa t en t s  
have  been  issued r e l a t ing  to e tch ing  processes to 
increase  the effective area  ( and  there fore  the  capac-  
i tance)  of t a n t a l u m  specifically for e lect rolyt ic  ca-  
paci tor  purposes.  K a h a n  (1) uses aqueous  solut ions  
of concen t ra t ed  HF  and  HC1 in  an  e lect rolyt ic  sys-  
tem, Houtz  (2) reacts  t a n t a l u m  wi th  ch lor ine  at 
350~176 J e n n y  (3) etches e lec t ro ly t ica l ly  in  a 
subs t a n t i a l l y  n o n a q u e o u s  sys tem con t a in ing  f luoride 
salts, and  Rusce t ta  and  J e n n y  (4) use an  essen t ia l ly  
n o n a q u e o u s  e lec t ro ly te  con t a in ing  a v a r i e t y  of salts. 

The i n h e r e n t  p roper t ies  of t a n t a l u m  r e n d e r  it 
gene ra l l y  u n r e s p o n s i v e  to the  usua l  chemical  and  
e lec t rochemical  e tch ing  techniques .  For  example ,  
the  rap id  e m b r i t t l e m e n t  of t a n t a l u m  by  h y d r o g e n  
even  at room t e m p e r a t u r e  prec ludes  the  use of 
chemical  e tchants  which  l ibe ra te  hyd rogen  such as 
hydrof luor ic  acid a lone  or m i xe d  wi th  o ther  acids 
or solut ions  of a m m o n i u m  bifluoride.  This  is p a r -  
t i cu la r ly  t rue  w h e n  t r e a t i n g  t h in  gauge foils which  
m u s t  be w o u n d  s u b s e q u e n t l y  on smal l  d i a m e t e r  a r -  
bors, the  so-cal led  w i n d i n g  process in  the  m a n u f a c -  
t u r e  of e lect rolyt ic  capacitors.  F u r t h e r m o r e ,  the  ease 
wi th  which  t a n t a l u m  acqui res  an  i n s u l a t i n g  film 
w h e n  polar ized anod ica l ly  in  most  aqueous  solut ions  
represen t s  a d i s t inc t  d e p a r t u r e  f rom n o r m a l  e lec t ro-  
lyt ic  e tching procedures .  


