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We present results for the electronic structure of plutonium by using
a recently developed quasiparticle self-consistent GW method (QSGW).
We consider a paramagnetic solution without spin-orbit interaction as
a function of volume for the face-centred cubic (fcc) unit cell. We span
unit-cell volumes ranging from 10% greater than the equilibrium volume
of the � phase to 90% of the equivalent for the � phase of Pu. The self-
consistent GW quasiparticle energies are compared to those obtained
within the Local Density Approximation (LDA). The goal of the
calculations is to understand systematic trends in the effects of electronic
correlations on the quasiparticle energy bands of Pu as a function of the
localisation of the f orbitals. We show that correlation effects narrow the
f bands in two significantly different ways. Besides the expected
narrowing of individual f bands (flatter dispersion), we find that an
even more significant effect on the f bands is a decrease in the crystal-
field splitting of the different bands.

Keywords: plutonium; electron correlations; GW approximation; first-
principles electronic structure

1. Introduction

Much of our modern understanding of electronic correlations in narrow-band
systems has derived from many-body treatments of model Hamiltonian systems
such as the Hubbard model and the Anderson model. For example, with respect
to plutonium in particular, dynamical mean-field theory (DMFT) approaches
have been very useful in elucidating the physics of the very strong correlations in
this material (see, for example, [1,2] and references therein). Nonetheless, these
calculations are not first principles, and most of the physics comes from the
model part of the Hamiltonian rather than the band-structure part of the
calculations. Thus, it is important to better understand the multi-orbital and
hybridisation effects in more realistic electronic-structure approaches that are less
model dependent. The GW method is our best modern tool for examining these
effects, because it includes correlation effects beyond those of conventional

*Corresponding author. Email: achantis@lanl.gov

ISSN 1478–6435 print/ISSN 1478–6443 online

� 2009 Taylor & Francis

DOI: 10.1080/14786430902720960

http://www.informaworld.com

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
A
S
 
C
h
i
n
e
s
e
 
A
c
a
d
e
m
y
 
o
f
 
S
c
i
e
n
c
e
s
]
 
A
t
:
 
0
1
:
3
2
 
8
 
D
e
c
e
m
b
e
r
 
2
0
0
9



local-density approximation (LDA) band-structure techniques, and yet is still first-

principles.
In this paper, we study correlation effects of fcc Pu as a function of volume.

Our goal is not to specifically elucidate the correlation physics of Pu itself, since the

GW approach is a low-order approximation and cannot treat the very strong

correlations of the � phase of Pu. Rather, we wish to use the volume dependence to

tune the material from high atomic density (high pressure), where correlations can be

greatly reduced due to the large hybridisation between the Pu f orbitals, to low

atomic densities (where the pressure would actually be negative), where the

correlations effects are very strong. By following this procedure, we can understand

how correlations modify the properties of a material within the GW approximation.

When the correlations become strong, it is certainly the case that higher-order

approximations like DMFT are necessary to accurately describe the material.

Nonetheless, since GW is probably the correct starting point for such types of more

sophisticated approaches, it is useful to understand what happens to the electronic

structure of the material within the GW approximation as a function of the strength

of the correlation effects, and, in particular, their effects on shifts in quasiparticle

energies, which is what GW is best at representing.
In order to focus more specifically on the effects of correlations, we ignore

one significant aspect of the electronic structure, viz., the spin-orbit coupling, even

though this is important for a detailed comparison with experiment. Spin-orbit

coupling mainly shifts f states around in energy, but at the same time adds to the

complexity of the individual f bands, hence tending to hide some of the

correlation physics in a bewildering array of bands. Spin-orbit effects can easily

be added in when a more accurate comparison with experiment is desired (as was

done for an earlier paper on less correlated �-uranium [3]).
For the same reasons, we also ignore well-known large changes in crystal

structure of Pu metal with volume, and present calculations only for the simple fcc

crystal structure as a function of volume. We study a range of Pu atomic volumes,

extending from well below that pertinent to the ground state � phase to well above

that of the high-temperature � phase. The actual crystal structure of �-Pu is

a complicated monoclinic structure with 16 atoms per unit cell, while �-Pu has the fcc

structure. Since �-Pu is well known to be a strongly correlated-electron metal, while

�-Pu appears to be reasonably well treated by conventional band-structure methods,

we believe that our range of volumes corresponds to tuning the correlation effects

between weak to moderate (small volumes) to strongly correlated (large volumes).
In the calculations to be presented in the following, we mainly focus on changes

in the effective bandwidth of the f states in Pu. We will show that crystal-field effects

are actually a more important factor in determining this bandwidth than the

expected change in dispersion (flattening of the bands).

2. Method

The GW approximation can be viewed as the first term in the expansion of the non-

local energy-dependent self-energy �ðr, r0,!Þ in the screened Coulomb interaction W.

From a more physical point of view, it can be interpreted as a dynamically screened
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Hartree–Fock approximation plus a Coulomb-hole contribution [4]. It is also
a prescription for mapping the non-interacting Green function onto the dressed
Green’s function: G 0 ! G. This prescription can be described as follows: from the
Hamiltonian,

H0 ¼ �5
2 þ Veffðr, r

0Þ; ð1Þ

(we use atomic Rydberg units: �h ¼ 2m ¼ e2=2 ¼ 1, where m and e are the mass
and charge of the electron) G0 ¼ ð!�H0Þ

�1 may be constructed. Often G0 is
calculated from the LDA eigenvalues and eigenfunctions; however, there is no
formal restriction for how to choose the initial starting point G0. Then, using the
Random Phase Approximation (RPA) [4], we can construct the polarisation function
D and screened Coulomb interaction W as

D ¼ �iG0 � G0 ð2Þ

and

W ¼ u�
1

1� uD
, ð3Þ

where u is the bare Coulomb interaction. The new Green’s function is defined as

G ¼
1

!� ð�52 þ Vext þ VH þ�Þ
, ð4Þ

where Vext is the potential due to ions (Madelung) and VH is the Hartree potential

VHðrÞ ¼ 2

Z
dr0

nðr0Þ

jr� r0j
: ð5Þ

The single-particle density nðrÞ is calculated as nðrÞ �
R1
�1

d!G0ðr, r,!Þei!�.
In addition to this mapping of G0! G, one can also generate an excellent

effective potential from G that makes it possible to approximately do the inverse
mapping of G! G0 [6]. QSGW is a method of specifing this (nearly) optimal
mapping of G! G0, so that G0! G! G0! . . . can be iterated to self-consistency
[6,8]. At self-consistency, the quasiparticle energies of G0 coincide with those of G.
The QSGW method is a self-consistent perturbation theory, where the self-
consistency condition is constructed to minimise the size of the perturbation.
The QSGW method is parameter-free, and independent of basis set as well as the
LDA starting point [5,6,8]. We have previously shown that QSGW reliably describes
a wide range of spd [6,7,9–11], and rare-earth [12] systems. We have also applied the
method to calculate the electronic structure of �-uranium [3].

Our version of the QSGWmethod is based upon the Full Potential Linear Muffin
Tin Orbital (FP-LMTO) method [13], which makes no approximation for the shape
of the crystal potential. The smoothed LMTO basis [5] includes orbitals with
l � lmax ¼ 6; both 7p and 6p as well as both 5f and 6f are included in the basis. The 6f
orbitals are added as a local orbital [5], which is confined to the augmentation sphere
and has no envelope function. The 7p orbital is added as a kind of extended ‘local
orbital’, the ‘head’ of which is evaluated at an energy far above Fermi level [5] and
instead of making the orbital vanish at the augmentation radius a smooth Hankel
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‘tail’ is attached to the orbital. The 7p and 6f orbitals are necessary to obtain an

accurate description of high-lying bands, which are important for the accuracy of the

polarisation function in Equation (2). For our calculations we use the fcc Pu lattice

with the following lattice constants: a¼ 4.11 Å (which corresponds to 90% of the �-
Pu equilibrium volume), 4.26 Å (at the �-Pu equilibrium volume), 4.64 Å (at the �-Pu
equilibrium volume) and 4.79 Å (at 110% of the �-Pu equilibrium volume).

3. Results

In Figure 1, we compare the QSGW one-particle electronic structure of �-Pu with

the LDA band-structure results. The spin-orbit interaction is not included in this

calculation. The Mulliken weights of the f orbitals are presented in red (dark

grey), of the s orbitals in black and of the d orbitals in blue (light grey). In both

cases, the narrow bands located between �2 and 2 eV are predominantly due to

seven 5f orbitals. At the � point, they are split by the cubic crystal field into one
non-degenerate and two three-fold degenerate states. This degeneracy is reduced

at general k-points in the Brillouin zone. The lowest dispersive band centred

around �4 eV has primarily s character and the unoccupied bands above 2 eV are

mainly due to d orbitals. At the � point, the five d states are split by the cubic

crystal field into one two-fold degenerate and one three-fold degenerate state.

The sdf hybridisation along the symmetry directions presented in Figure 1, is
generally very weak except for near the X point along the �� X direction, where

there is very strong sd and df hybridisation for some of the d and f branches.

The degree of the hybridisation is very similar in both the LDA and QSGW

calculations, as is the centre of all of the bands. The largest visible change is

a significant narrowing of the 5f-band complex. This effect has two components:
first, the crystal-field splitting of the f bands is significantly reduced in QSGW;

second, the bandwidth of each individual f branch (band) is also reduced in

QSGW. The total effect appears as an overall narrowing of the total density of

states (DOS) around the Fermi level (see Figure 1c). In addition, since the area

under the curve is proportional to the number of 5f states, which remains

constant, the amplitude of the quasiparticle peaks is also higher in QSGW. For
example, the total DOS at the Fermi level in QSGW is 23 states/eV while in LDA

it is 9 states/eV.
The partial DOS is presented in Figure 2. In both calculations the partial 5f DOS

is concentrated in a narrow energy interval around EF. The partial s DOS is mainly

located in the occupied energy spectrum between �5 eV and EF, and the d bands are

spread in a wide energy interval in both the unoccupied and occupied part of the
spectrum with a few pronounced peaks at various energies. Overall, the QSGW and

LDA s and d peaks are located at the same energies, with the exception of the narrow

peaks around EF, in which case the QSGW are visibly shifted closer to EF. In this

region, these bands can be highly hybridised with the f states, and thus these shifts

reflect the band narrowing of the f states. The bottom of the s and d bands relative to

the position of f band is approximately at the same energy location in QSGW and
LDA. The f occupation changes in QSGW from its LDA value of 5.06 to 4.85 states.

A similar reduction was observed in our calculations for �-uranium [3].

1804 A.N. Chantis et al.
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In Figure 3, we present the band structures side by side for two different fcc
volumes. On the left side is the band structure and partial s and d DOS for the �
volume (weakly correlated) and on the right side is the band structure and partial s
and d DOS for the � volume (strongly correlated). In all cases, the red solid lines
(colour online only) represent the QSGW results and the dashed blue lines (colour
online only) show the LDA results. Two major effects are seen in this plot: (1) the f
bands narrow considerably with expanded volume, and (2) there is a similar effect
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Figure 1. (Colour online). (a) The QSGW energy bands (or quasiparticle energies) for �-Pu
along two symmetry directions (left panel), compared to (b) the LDA energy bands (right
panel); the Mulliken weights of the f orbitals are presented in red (dark grey), for s orbitals in
black and for d orbitals in blue (light grey). (c) Comparison of the total density of states (DOS)
for QSGW, red (dark grey) solid line, and LDA, blue (light grey) dashed line. The Fermi
energy is set at zero.
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on the d bands (notice the downward shift of the bands at the highest energy as one
goes from the � to the � volume).

To examine band narrowing effects in more detail, in Figure 4, we expand the
view of the 5f bands. Also, in Figure 5, we show the self-energy and spectral function
for one of the QSGW 5f states. Despite the complicated energy dependence of the
real and imaginary parts it appears that the state is described perfectly well by
Landau’s Fermi liquid theory. The imaginary part of the self-energy goes through
zero at EF and the spectral function has a single well-defined peak centred at the
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Figure 4. (Colour online). Comparison of QSGW, red (dark grey) solid line, and LDA, blue
(light grey) dashed line, energy bands along two symmetry directions. The magnitudes of
crystal field splittings �1, �2 are 1.02, 1.37 eV in LDA and 0.73, 0.57 eV in QSGW. �2 is
reduced significantly in the QSGW calculation. For the 5f state at the � point, marked with
a large dot, in Figure 5, we present the energy dependence of the self-energy and calculated
spectral function Að!Þ.
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Figure 5. The energy dependence of the real and imaginary part of the self-energy together
with the spectral function for the quasiparticle at k ¼ ð0, 0, 0Þ and E0 ¼ �0:917 eV.
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QSGW eigenvalue. There are no other pronounced features in the energy dependence
of the spectral function. This is representative of all 5f states. So the 5f states within
the QSGW theory are well-defined quasiparticles with very large lifetime around EF;
the QSGW eigenvalues coincide with the quasiparticle energy. Therefore, our
discussion is focused on the effects of electron correlations on the QSGW
eigenvalues. At the � point, the f orbitals are split by the cubic crystal field into
a non-degenerate state A2 and two three-fold degenerate states, T1 and T2.
The splitting, �1, between the non-degenerate state and the lowest of the three-fold
degenerate states is 1.02 eV in LDA and 0.73 eV in QSGW. The splitting, �2,
between the two three-fold degenerate states is equal to 1.37 eV in LDA, but only
0.57 eV in QSGW. This significant reduction of the crystal field splitting in QSGW is
the major part of the band narrowing observed in the DOS in Figure 1. Another
important aspect is the reduction of the width of each individual f band. In Table 1,
we present the values of the bandwidth of Pu 5f bands along L� � and �� X
symmetry directions. The bandwidth is defined as the difference between the
maximum and the minimum energy of a particular band along the direction. In all
cases, the bandwidth is reduced significantly in QSGW. The A2 band along �� X is
a striking exception from this rule. As we show in Figure 6, this band strongly
hybridises with the d states. At the � point it is 100% f but at the X point, it is
predominately d. All the other bands shown in Figure 4 remain 80–100% f
throughout the symmetry directions shown in the figure. This explains the
anomalous change in the width of this band for this particular direction. From
Figure 3, it is evident that, while in QSGW the width of the f bands are significantly
reduced, the width of d bands are practically the same as for LDA. The A2 band at
the � point has mainly f character and therefore moves upward from its LDA
position due to the significant reduction of the f crystal field in QSGW, but at the X
point it mainly has d character and therefore remains approximately at its LDA
position (only slightly lower due to the slight downward shift of the centre of d band
in QSGW). The cumulative effect is that in QSGW this band is stretched. In Tables 2
and 3, we show the values for the crystal field splitting of 5f bands and f bandwidths
along L� � for several volumes of the unit cell. The bandwidth and crystal field
splitting of all bands is reduced as we move from the lower to higher volume case.

Table 1. The bandwidth of Pu 5f bands along L�� and ��X symmetry
directions. The bandwidth is defined as the difference between the maximum and
the minimum energy of a particular band along the direction. The width is given
in eV.

L�� ��X

A2 LDA 0.48 0.64
A2 QSGW 0.43 1.21

T1 LDA 0.71 0.83
T1 QSGW 0.38 0.44

T2 LDA 0.77 1.02
T2 QSGW 0.32 0.45

1808 A.N. Chantis et al.
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Figure 6. (Colour online). QSGW, red (dark grey) solid line, and LDA, blue (light grey) solid
line f-orbital weight of the A2 band along �� X direction. Also shown is the QSGW, red (dark
grey) dashed line, and LDA, blue (light grey) dashed line d-orbital weight of the A2 band along
the same direction.

Table 3. The bandwidth of Pu 5f bands along L�� symmetry directions for different
volumes of the unit cell. The bandwidth is defined as the difference between the maximum and
the minimum energy of a particular band along the direction. We also provide the full width at
half maximum (FWHM) of the broadened f-partial DOS shown in Figure 7. The width is
given in eV.

0.9 V� V� V� 1.1 V�

A2 LDA 1.42 1.0 0.48 0.37
A2 QSGW 1.23 0.94 0.43 0.30
T1 LDA 1.38 1.15 0.71 0.6
T1 QSGW 1.17 0.86 0.38 0.28
T2 LDA 1.62 1.29 0.77 0.63
T2 QSGW 1.30 0.84 0.32 0.23
FWHM LDA 1.28 1.09 0.78 0.72
FWHM QSGW 0.79 0.63 0.39 0.34

Table 2. The crystal field splitting �1 and �2 of Pu 5f states at the � point. The QSGW values
for the splitting are significantly smaller than those of the LDA calculation. The energy
splitting is given in eV.

0.9 V� V� V� 1.1 V�

�LDA
1 2.14 1.75 1.02 0.84

�QSGW
1 2.09 1.67 0.73 0.51

�LDA
2 2.86 2.33 1.37 1.11

�QSGW
2 1.96 1.36 0.57 0.41
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This is a result of the reduction of the f band relative to the extension in the crystal.
It is also seen that the QSGW crystal field splittings and bandwidths for f orbitals are
always smaller than in LDA. We have also considered the bandwidth of the entire 5f
band complex. To do this, we have applied a Gaussian broadening on the partial-f
DOS (Figure 7). In this case, the 5f band complex appears like a single large peak.
We can define the width of this band as the full width at half maximum (FWHM) of
the peak. This is also presented in Table 3. It is evident that in both calculations the
width is reduced as the volume increases. The rate of reduction is the same in both
calculations. But the QSGW FWHM is always significantly smaller than the LDA.
Therefore, we conclude that, in QSGW, the f orbitals contract due to the more
accurate treatment of correlations. On the other hand, the s and d bands are very
itinerant and are therefore already described accurately at the level of the LDA
treatment of correlations.

4. Conclusions

In conclusion, we have applied QSGW theory to �-plutonium as a function of
volume in order to systematically understand the effects of electronic correlation
on the band narrowing of the f bands. Unlike the conventional Hamiltonian
model treatment of strongly correlated systems, our approach is first principles
and independent of any choice of model parameters, and hence provides a unique
opportunity to examine the effect of electron correlations on the quasiparticle
band structure as a function of f-orbital localisation. In this way, we have
demonstrated that QSGW and LDA predictions for the s and d electron
subsystems are quite similar. This is because these electrons are very itinerant and
therefore their description lies within the validity of LDA. However, the QSGW
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Figure 7. (Colour online). The QSGW and LDA f-partial DOS for four different volumes.
The panels on the right side show the corresponding DOS on the left panel broadened with
a Gauss function.
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5f bands are much narrower than their LDA counterpart. We believe that our
results show for the first time, significant details of the band narrowing due to
electron correlations that have not been previously studied. In particular, the
QSGW calculations show that the major contribution to band narrowing is
actually the reduction of the crystal-field splitting of 5f states as compared to
effects from a reduction in dispersion (flattening of the individual bands). This is
a significant change in the character of the 5f states and suggests the importance
of using GW approaches as input to more sophisticated correlation approaches
such as dynamical mean-field theories (DMFT).
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