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Abstract

The elementary excitations of monolayer graphene, which behave as
massless Dirac particles, make it a fascinating venue in which to
study relativistic quantum phenomena. One notable example is Klein
tunneling, a phenomena in which electrons convert to holes to tunnel
through a potential barrier. However, the omnipresence of charged
impurities in substrate-supported samples keep the overall charge
distribution nonuniform, obscuring much of this “Dirac” point phys-
ics in large samples. Using local gates, one can create tunable
heterojunctions in graphene, isolating the contribution of small
regions of the samples to transport. In this review, we give an over-
view of quantum transport theory and experiment on locally gated
graphene heterostructures, with an emphasis on bipolar junctions.
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1. OVERVIEW

Over the past 20 years there has been a tremendous interest in the electronic properties of low-
dimensional condensed matter systems. The interest in these systems stems from the fact that
they can manifest novel quantum effects as device dimensions approach fundamental micro-
scopic length scales such as the electronic mean free path or phase coherence length. The
quantum properties of such systems are usually described by the nonrelativistic Schrodinger
equation, in which quasiparticles have a finite effective mass. Recently, some of that focus has
turned to another class of condensed matter systems: graphene, a single atomic layer of graph-
ite. In graphene, the transport properties are described by a relativistic Dirac equation in which
the quasiparticles have exactly zero effective mass (1). This relation to relativistic quantum
mechanics has provided an interesting theoretical playground for implementing tests of quan-
tum electrodynamics in a simple experimental situation (2).

In this review, we focus on the electronic transport in graphene devices in which the local
carrier concentration is controlled by one or more local gates. The nature of transport through
these devices depends on the relationship between the length scale on which density changes
and the length scale characterizing disorder scattering. In the cleanest devices, transport signatures
of the relativistic nature of the graphene quasiparticles are observed. The electronic charge allows
the particles to be manipulated by a magnetic field; we also discuss magnetotransport in graphene
heterojunctions in both the high and low field limits. Although experimentally unrealized, we
summarize theoretical results on multigated graphene superlattices, which can form a basis for a
new kind of electronic optics based on graphene as an electronic metamaterial.

Carbon atoms in graphene are arranged in a honeycomb lattice. This hexagonal arrange-
ment of carbon atoms can be decomposed into two interpenetrating triangular sublattices
related to each other by inversion symmetry. This unique configuration of the carbon atom
network leads to an unusual energy dispersion relation near the Brillouin zone corners. The
simplest tight-binding model calculation (3) captures the essence of the band structure of
graphene E(k), where k is located in the hexagonal first Brillouin zone reflecting the underlying
real lattice symmetry. The valence (E < 0) and conduction (E > 0) bands touch at the six
Brillouin zone corners, of which two sets of points are inequivalent. These two points in the
reciprocal lattice (K and K’), often termed Dirac points, represent a different linear superposi-
tion of Bloch wave functions on the two real space sublattices. Taking two atomic orbitals on
each sublattice site as basis, the tight-binding Hamiltonian can be simplified near K (or K’) as

H = +ihvpa -V, 1.

where & = (64, 6,) are the Pauli matrices, vr~ 10® m/s is the Fermi velocity in graphene, and
the +(—) sign corresponds to taking the approximation near the K(K’) point.

The structure of this Dirac equation is interesting for several reasons. First, the resulting
energy dispersion near the zone corners is linear in momentum, E(k) = +/vg|k|, where k is
defined relative to K(or K'). Consequently, the electrons near these two Dirac points always
move at a constant speed, given by the Fermi velocity vg= ¢/300 (rather than the real speed of
light ¢). The electron dynamics in graphene are thus effectively relativistic, with the the speed of
light substituted by v In a perfect graphene crystal, the Dirac points (K and K’) are coincident
with the overall charge neutrality point because there are two carbon atoms in the unit cell of
graphene and each carbon atom contributes one electron to the two bands, resulting in the
Fermi energy Er of neutral graphene lying precisely at the half-filled band. Consequently, either
positively or negatively charged carriers are easily induced by the electric field effect, allowing
ambipolar electronic transport (4).
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The linear energy dispersion relation also leads to a linearly vanishing two-dimensional (2D)
density of states near the charge neutrality point at E = 0, p,p o |ég|. This differs from that for
conventional parabolic 2D systems in which the density of states, at least in the single particle
picture, is constant, leading to a decrease in the ability of charge-neutral graphene to screen
electric fields (5). Finally, the sublattice symmetry endows the quasiparticles with a conserved
quantum number, chirality, corresponding to the the projection of the pseudospin on the
direction of motion (2). In the absence of scattering, which mixes the electrons in the graphene
valleys, pseudospin conservation forbids backscattering in graphene (6)—momentum reversal is
equivalent to the violation of pseudospin conservation. This absence of backscattering has been
advanced as an explanation for the higher electron mobility of metallic as compared with
semiconducting nanotubes (7), and it is partially responsible for a similar relative difference
between mono- and bilayer graphene.

A sudden burst of experimental and theoretical work on graphene followed the first demon-
stration of single- and multilayered graphene samples made by mechanical extraction (8-11)
and chemical synthesis (12). Since this discovery, numerous unique electrical, chemical, and
mechanical properties of graphene have been investigated. In particular, an unusual half-integer
quantum Hall (QH) effect and a nonzero Berry’s phase (4, 13) were discovered in graphene,
providing unambiguous evidence for the existence of Dirac fermions in graphene and
distinguishing graphene from conventional 2D electronic systems with a finite carrier mass.
Comprehensive graphene reviews, of varying degrees of generality, exist (14-22). In this review,
we focus on the electronic transport properties of graphene in the presence of gate-induced
static electrical potentials. As we discuss below, by varying the potential on scales smaller than
the electronic mean free path, experiments can probe graphene-specific effects that are obscured
in bulk transport, which is often dominated by inhomogeneity. In particular, sharp potential
modulations can produce sharp bipolar junctions. These p-n junctions merit study both because
they constitute a key ingredient for potential device applications built on electronic lensing (23)
and because they represent a critical component of the transport landscape of charge neutral
graphene (24, 25).

The observation of electron and hole puddles in charge-neutral, substrate-supported
graphene (25) confirmed theoretical expectations (24) that transport at charge neutrality is
dominated by charged impurity-induced inhomogeneity (26-28). The picture of transport at
the Dirac point results from conducting puddles separated by a network of p-n junctions.
Understanding the properties of graphene p-n junctions is thus crucial to quantitative under-
standing of the minimal conductivity, a problem that has intrigued experimentalists and theo-
rists alike (4, 24, 28-33). Describing transport in the inhomogeneous potential landscape of the
charge neutrality point requires introduction of a spatially varying electrical potential into
Equation 1; transport across a p-n junction corresponds to this potential crossing zero. Because
graphene carriers have no mass, graphene p-n junctions provide a condensed matter analog of
the so-called Klein tunneling problem in quantum electrodynamics. The first part of this review
is devoted to a theoretical understanding of ballistic and diffusive transport across such as
barrier.

In recent years, substantial effort was devoted to improving graphene sample quality by
eliminating unintentional inhomogeneity. Some progress in this direction has been made both
by suspending graphene samples (34, 35) and by transferring them to single-crystal hexagonal
boron nitride (hBN) substrates (36). These techniques have succeeded in lowering the residual
density present at charge neutrality, but even the cleanest samples are not ballistic on length
scales comparable to the sample size (typically 2 1 um). An alterative approach is to use local
gates to restrict the region of interest being studied.
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Graphene’s gapless spectrum allows the fabrication of adjacent regions of positive and
negative doping through the use of local electrostatic gates. Such heterojunctions offer a simple
arena in which to study the peculiar properties of graphene’s massless Dirac charge carriers,
including chirality (2, 37) and emergent lorentz invariance (38—40). Technologically, graphene
p-n junctions are relevant for various electronic devices, including applications in conventional
analog and digital circuits (41, 42), as well as novel ones based on electronic lensing (23, 43-45).
In the latter part of this review, we discuss current experimental progress toward such gate-
engineered coherent quantum graphene devices.

2. REVIEW OF KLEIN TUNNELING IN RELATIVISTIC
QUANTUM MECHANICS

One-dimensional (1D) scattering is one of the canonical problems of introductory quantum
mechanics. For massive, nonrelativistic particles, the scattering from a finite potential step helps
to elucidate fundamental concepts of quantum mechanics such as uncertainty and tunneling.
Within little more than a year of Dirac’s discovery of the equation for relativistic electrons (46),
now known as the Dirac equation, Oskar Klein calculated the barrier transmission problem
for relativistic electrons (47). Klein’s result was considered paradoxical at the time. In non-
relativistic quantum mechanics, the transmission probability of a particle with energy ¢ incident
on a potential barrier of height V > ¢ along the x direction is exponentially decaying with
distance, | T|* ~ exp(—kx), where k& > 0 is a kinetic factor depending on the incident particle’s
energy and barrier height. In contrast, for the relativistic case, Klein found that the transmission
probability does not decay with distance even for V> ¢, | T|* ~ (40/(1+x)*)* (as with «, here
a > 1 is a kinematic factor obtained from the Dirac equation).

The so-called Klein paradox has two parts. First, far past the barrier, the scattering states are
antiparticles or, in the context of condensed matter, holes—a theoretical consequence of the
Dirac equation not experimentally confirmed at the time of Klein’s calculation (48). Incident
particles do not tunnel in the sense of propagating a short distance as evanescent waves; rather,
they propagate as antiparticles whose inverted energy-momentum dispersion relation allows
them to move freely under the barrier. The second and more subtle part of the paradox is that,
even given the existence of holes, tunneling into the barrier should be accompanied by expo-
nential decay of the transmission probability due to the strong repulsive potential at the step.
This problem was clarified in 1931 by Sauter, who calculated the transmission of particles over
a step with a finite width, finding the expected exponential decay:

0 x<0 ke
Ux)={Fx 0<x<L |Tf~e ™, 2.
V. x>1L

where 1c = h/(mc) is the Compton wavelength and the electric field F = V/L. The Klein
result of |T|> ~ 1 obtains for barriers that are sharp compared with the Compton wave-
length. The origin of the exponential damping is the existence of regions in the center of the
barrier where e—m < V < e+m and which, as a result, cannot support either electron or hole-
propagating states (Figure 1). To leading exponential order, the transmission is then given by
T ~exp i[p(x)dx, where the momentum of the particle in the barrier p(x) = +4/(U(x) — e)? — m?
and the integral runs across this classically forbidden region.

Whereas the problem of particles tunneling through and being generated by sharp potential
barriers would continue to be applied to physical systems as varied as supercritical atoms and
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Figure 1

An electron of energy ¢ scattering off a Klein-Sauter step of height V > 2m. The electrons are shown with
solid arrowheads; the hole state has a hollow arrowhead. The particle continuum (fop) and the hole
continuum (bottom) overlap when m < & < V — m.

black holes (49), the Klein problem, in its simplest formulation, remained a thought experiment
and textbook problem for more than 70 years. The main obstacle in the experimental realiza-
tion is the creation of potentials varying on the scale of the Compton wavelength, a tall order
for bare electrons whose Compton wavelength is ~ 10~'* m. In the context of particle physics,
such a barrier—effectively achieved in high-energy collisions—quickly leads to physics domi-
nated by the creation of new particles. As discussed in the next section, however, graphene
offers a condensed matter realization of the original gedanken experiment in both the Klein and
Sauter limits through the study of relativistic single-particle tunneling through controllable
potential barriers (for a comprehensive and pedagogical review of the early history of the Klein
tunneling problem—from which much of the material in this section is distilled—see Reference 49).

3. KLEIN TUNNELING IN GRAPHENE P-N JUNCTIONS

The approach outlined in Section 2 requires only small modifications to apply to the case of
carrier transport across graphene heterojunctions. Although Katsnelson et al. (2) produced the
direct calculation for the case of graphene, a similar approach taking into account the chiral
nature of carriers had been discussed a decade prior in the context of electrical conduction in
metallic carbon nanotubes (6). In low-dimensional graphitic systems, the free particle states
described by Equation 1 are chiral, meaning that their pseudospin is parallel (antiparallel) to
their momentum for electrons (holes). This causes a suppression of backscattering in the
absence of pseudospin-flip nonconserving processes, leading to the higher conductances of
metallic over semiconducting carbon nanotubes (7). To understand the interplay between this
effect and Klein tunneling in graphene, we introduce external potentials A(7) and U(7) in the
Dirac Hamiltonian,

H = - (irﬁ —eA (?)) +U). 3.

In the case of a 1D barrier, U(7) = U(x), at zero magnetic field, the momentum component
parallel to the barrier, p,, is conserved. As a result, electrons normally incident to a graphene
p-n junction are forbidden from scattering obliquely by the symmetry of the potential, while
chirality forbids them from scattering directly backward: The result is perfect transmission as
holes (2), i.e., Klein tunneling in graphene (see Figure 2a). The rest of this review is concerned
with gate-induced p-n junctions in graphene. However, the necessarily transmissive nature of
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Potential landscape and angular dependence of quasiparticle transmission through (a) an atomically sharp pnp barrier and (b) an
electrostatically generated smooth pnp barrier in graphene, with their respective angle-dependent transmission probability. Red and
blue lines correspond to different densities in the locally gated region.
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graphene p-n junctions is crucial to understanding the minimal conductivity (33) and supercrit-
ical Coulomb impurity (50) problems in graphene. It also plays a role in efforts to confine
graphene quantum particles (51). Moreover, p-n junctions appear in the normal process of
contacting (52-56) and locally gating (41, 57) graphene, both of which are indispensable for
electronics applications.

Even in graphene, an atomically sharp potential cannot be created in a realistic sample.
Usually, the distance to the local gate, which is isolated from the graphene by a thin dielectric
layer determines the length scale on which the potential varies. Cheianov & Fal’ko (37) solved the
resulting transmission problem over a Sauter-like potential step in graphene. Substituting the
Fermi energy for the potential energy difference ¢ — U(x) = hvyks(x) and taking into account
the conservation of the momentum component p,, = hkg sin 0 parallel to the barrier, they obtained
a result, valid for 0 < /2, that is nearly identical to that obtained by Sauter (Figure 2b):
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—kp/z x <0
kp(x) = { Fx 0<x<L |TJ"~e
/21:/2 x>L

hvg .
727[2:—5511120
i )

As in the massive relativistic problem in 1D, the transmission is determined by evanescent
transport in classically forbidden regions where ky(x)* = kg(x)* — pi < 0 (Figure 2). The only

differences between the graphene case and the 1D, massive relativistic case are the replacement
of the speed of light by the graphene Fermi velocity, the replacement of the Compton wavelength
by the Fermi wavelength, and the scaling of the mass appearing in the transmission by the sine of
the incident angle. By considering different angles of transmission in the barrier problem in
2D graphene, then, one can access both the Klein and Sauter regimes of T~ 1 and T < 1.

The current state of the experimental art in graphene does not allow for injection of elec-
trons with definite p, (58-64). Instead, electrons impinging on a p-n junction have a random
distribution of incident angles due to scattering in the diffusive graphene leads. Equation 4
implies that in realistically sharp p-n junctions these randomly incident electrons emerge from
the p-n junction as a collimated beam, with most obliquely incident carriers scattering; trans-
mission through multiple p-n junctions leads to further collimation (65). Importantly, even in
clean graphene, taking into account the finite slope of the barrier yields qualitatively different
results for the transmission: Just as in the original Klein problem, the sharp potential step
(2, 66=71) introduces pathologies—in the case of graphene, high transmission at 0 # 0—which
disappear in the more realistic treatment (37, 65, 72).

In fact, the expressions in Equations 2 and 4 are exact for small angles—although the
semiclassical approximation used to obtain them is valid only to leading exponential order, the
prefactor of T'is constrained to a pure phase by the absence of backscattering (6, 7) mentioned
above. This allows a quantitative calculation of the ballistic conductance of a graphene p-n
junction via the Landauer formula (37)

4¢* [ Wkrd0
G= b 2n

2 262 F
TOF ~ =5 W) o 5.

For non-phase coherent transport, Equation 5 represents the principal consequence of
graphene Klein tunneling p-n junctions.

4. TRANSPORT IN NON-PHASE COHERENT
GRAPHENE HETEROSTRUCTURES

Producing clean locally gated samples is the principal experimental challenge that must be
overcome to observe Klein tunelling physics in graphene. In particular, if the electrons scatter
within the p-n junction, Equation 5 does not hold, as it relies on translational symmetry in the y
direction and ballistic electron motion. The condition for the validity of Equation 5 is then that
the mean free path £y should be larger than the p-n junction width L. Crucially, researchers
noticed from the first experiments that disordered graphene p-n junctions in general are less
resistive than ballistic ones (58, 73), providing a metric for experimental progress. To fulfill
Iyp > L, experimental designs have tried to maximize device mobility while minimizing
dielectric thickness, which controls the electric field of the p-n junction. Efforts to achieve
high-mobility locally gated structures have been manifold, encompassing a zoo of gate dielec-
trics including cross-linked polymethylmethacrylate (58, 63, 74), high-x oxides produced
by buffered (59, 64, 75) and direct (76) atomic layer deposition, evaporated SiO, (77, 78),
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vacuum (61, 62), and single-crystal hBN (79). These various techniques lead to mobilities
between 100 and 10,000 cm?/V-sec and effective dielectric thicknesses between 5 and 300 nm.

The typical experimental geometry for studying transport in graphene p-n junctions (shown
in Figure 3a,b) presents a challenge for quantitative study owing to the series resistance of the
graphene leads, which contribute to the total resistance even in four terminal measurement
schemes. As the voltages on the local top gate and global back gate are tuned, the densities
in the locally gated region under the top gate and the graphene leads—the region between
the top gate and metal contacts—can be independently tuned, approximately over a range
|]< 10" cm~2. Experimental results for non-phase coherent pnp structures junctions can be
summarized by the statement that resistance of the device is higher in the presence of p-n
junctions, i.e., Ry(_ju)p > Rp(u))p- Because even in diffusive devices the resistance of graphene

a C
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Figure 3

(a) Cross-sectional view of a locally gated device and (b) a simplified model for the electrochemical potential U of electrons
in graphene. The potential is shifted in region 2 by the top-gate voltage and shifted in both regions 1 and 2 by the back-gate voltage.
() Resistance map of the device and fixed back-gate-resistance traces. Resistance is higher in the presence of p-n junctions, upper left
and lower right quadrants. Colored lines in the left panel correspond to traces shown in the right panel. (d) Calculated R,44 for the
diffusive (left panel) and ballistic (right panel) models of a pnp heterojunction for a variety of density imbalances between the p and n
regions. Ballistic p-n junctions are more resistive. (¢) In cleaner devices, a ballistic theory that incorporates nonlinear screening (solid
lines) (5) provides a good fit to the experimental data (points), whereas diffusive theory (dashed lines) does not. Reproduced with
permission from References 58 and 63.
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increases with decreasing doping, the higher resistance of a p-n junction containing channel is
not in itself necessarily a consequence of Equation 5. Rather, quantitative analysis of the p-n
junction resistance is required.

Due to the electron-hole symmetry of the band structure, the resistance of graphene in most
experiments is roughly symmetric with respect to charge conjugation, R(|n|) &~ R(—|n|). This
fact can be used to extract the resistance of the p-n junction by constructing the “odd” resis-
tance, Roas = Rppupp — Rpupp (58), which measures the isolated resistance of the p-n
junctions for potential profiles not too different from those of a parallel plate capacitor. For
p-n junctions much shallower than the mean free path (¢, < L), charge carriers equilibrate
constantly along the channel via scattering. The resulting resistance can be explained by a
phenomenological model that takes into account the position dependence of the density and,
by extension, the resistivity, R = [p(x)dx, p(x) = (a% + (n(x)e,u)2>, where o is the fitting
parameter corresponding to the minimal conductivity (58). Early experiments were all firmly
in the diffusion-dominated limit (58-60, 80).

Subsequently, simultaneous attempts were made to study Klein phenomena by narrowing
the p-n junctions and pnp structures (63, 64) as well as by increasing the device mobility by
using air-bridge top gates (61, 62). In both approaches, the details of the potential profile—
which, given the inherent requirement that the dielectric thickness be comparable to the length
of the top-gated region, deviate strongly from the parallel plate capacitor model—are crucial in
analyzing the data in terms of Klein tunneling. This is due to the fundamental problem that in
the presence of any scattering, the ballistic and diffusive contributions to the conductance
cannot be reliably separated. Nevertheless, in the best samples, a good agreement with Equa-
tion 5 was found (see Figure 3) (62, 63). Notably, quantitatively accurate fits were not possible
without careful consideration of nonlinear screening within the p-n junction (35).

5. PHASE-COHERENT TRANSPORT IN BALLISTIC
FABRY-PEROT CAVITIES

Transport measurements across single p-n junctions, or a pnp junction in which transport is
not coherent, can, at best, provide only indirect evidence for Klein tunneling by comparison of
measured resistance of the p-n junction or junctions against Equation 5. Moreover, because
such experiments probe only incident-angle-averaged transmission, they cannot experimen-
tally probe the structure of T(0). Thus, although References 53 and 62 show that the resistance
of nearly ballistic p-n junctions are in agreement with the ballistic theory, to show that angular
collimation occurs, or that perfect transmission occurs at normal incidence, requires a differ-
ent experiment. In particular, there is no way to distinguish perfect transmission at 0 = 0 from
large transmission at all angles, begging the question of whether Klein tunneling has any
observable consequences outside the context of an angle-resolved measurement or its contri-
bution to bulk properties such as the minimal conductivity. In fact, as Shytov et al. (81) noted,
an experimental signature of this phenomenon should manifest as a sudden phase shift at finite
magnetic field in the transmission resonances in a ballistic, phase-coherent, graphene pnp
device.

Although graphene p-n junctions are transmissive when compared with p-n junctions in
gapfull materials (or gapless materials in which backscattering is allowed, such as bilayer
graphene), graphene p-n junctions are sufficiently reflective, particularly for obliquely incident
carriers, to cause transmission resonances due to Fabry-Perot (FP) interference. However, in
contrast to the canonical example from optics, or to 1D electronic analogs (82), the relative
phase of interfering paths in a ballistic, phase-coherent pnp (or npn) graphene heterojunction
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can be tuned by applying a magnetic field. For the case where the junction width is only
somewhat shorter than the mean free path in the locally gated region, L < ¢1Gr, the Landauer
formula for the oscillating part of the conductance can be derived from the ray-tracing diagrams in
Figure 4d,
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Figure 4

(a) Scanning-electron microscopy image of a typical graphene heterojunction device. Electrodes, graphene, and top gates are represented
by yellow, purple, and cyan, respectively. The samples sit on a 285-nm SiO, substrate. The top gate in this device is ~20 nm wide (white
arrows). (b) Differential transconductance map of the device as a function of densities n; and n, in the graphene lead and locally gated
region, respectively. Interference fringes appear in the presence of p-n junctions, which define the Fabry-Perot cavity. (c) (Inset) Conduc-
tance map of the device in the Vgg-V7¢ plane. The main panels show cuts through this color map in the regions indicated by the dotted
lines in the inset, showing the conductance as a function of V¢ at fixed Vpg. Traces are separated by a step in Vg of 1V, starting from
80 V with traces taken at integer multiples of 5 V in black. (d) Schematic diagram of trajectories contributing to quantum oscillations in
real and momentum space. The dominant modes at low magnetic field (blue) give way, with increasing B, to phase-shifted modes with
negative reflection amplitude due to the inclusion of the nontrivial Berry phase (orange), near k, = 0. The original finite k, modes are not
yet phase shifted at B, (green), but owing to collimation, they no longer contribute to the oscillatory conductance. (e) Magnetic-field and
density dependence of the transconductance. (f) Oscillating part of the conductance at Vg = 50 V for low fields. G, as extracted from
the experimental data over a wide range of densities and magnetic fields (left) matches the behavior predicted by a theory based on
realistic simulation of the heterojunction electrostatics including nonlinear screening (5). The phase shift due to Klein tunneling (81) is
responsible for the “kink” in the oscillations observed at a few hundred milliTesla (right). Reproduced from Reference 64.
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Gose = ¢ 2/ lar o > 2T P|T-* RyR_cos(Owkn), 6.
k

Y

where T and R are, respectively, the transmission and reflection amplitudes at x = +1./2, Oywgp
is the semiclassical phase difference accumulated between the junctions by interfering trajectories,
and /g is a fitting parameter that controls the amplitude of the oscillations.

At zero magnetic field, particles are incident at the same angle on both junctions, and the
Landauer sum (6) is dominated by the modes for which both transmission and reflection are
nonnegligible, so neither normal nor highly oblique modes contribute. Instead, the sum is
dominated by modes with finite k,, peaked at approximately ky, = 4+/FIn(3/2)nhve. As the
magnetic field increases, cyclotron bending favors the contribution of modes with k, = 0, which
are incident on the junctions at angles with the same magnitude but opposite sign (Figure 4c). If
perfect transmission at zero angle exists, then analyticity of the scattering amplitudes demands
that the reflection amplitude change sign as the sign of the incident angle changes (81), causing
a 7 shift in the reflection phase. This effect can also be described in terms of the Berry phase:
The closed momentum space trajectories of the modes dominating the sum at low field and
high k, do not enclose the origin, whereas those at intermediate magnetic fields and k, ~ 0 do.
As a consequence, the quantization condition leading to transmission resonances is different
owing to the inclusion of the Berry phase when the trajectories surround the topological
singularity at the origin, leading to a phase shift in the observed conductance oscillations as
the phase-shift-containing trajectories begin to dominate the Landauer sum (6).

Young & Kim (64) reported experimental realization of the coherent electron transport in pnp
(as well as npn) graphene heterojunctions. The key experimental innovations were to use an
extremely narrow (< 20 nm wide) top gate, creating a Fabry-Perot cavity between p-n junctions
smaller than the mean free path, which was ~ 100 nm in the samples studied. Figure 4a shows the
layout of a graphene heterojunction device controlled by both top-gate voltage (V) and back-
gate voltage (Vpg). The conductance map shows clear periodic features in the presence of p-n
junctions, which appear as oscillatory features in conductance as a function of V¢ at fixed Vg
(Figure 4b). For the electrostatics of the devices presented in this device, the magnetic field at which
this phase shift is expected to occur is in the range B* = 2hky /el ~ 250-500 mT, in agreement
with experimental data that show an abrupt phase shift in the oscillations at a few hundred
milliTesla (Figure 4d). Experiments can be matched quantitatively to the theory by calculation of
Equation 6 for the appropriate potential profile, providing confirmation of the Klein tunneling
phenomenon in graphene.” As the magnetic field increases further, the ballistic theory predicts the
disappearance of the FP conductance oscillations as the cyclotron radius shrinks below the
distance between p-n junctions, R, < L, or B ~ 2 T for the devices considered in Reference 64.

There is an apparent continuation of the low-magnetic-field FP oscillations to Shubnikov-de
Haas (SdH) at high magnetic fields. Generally, the FP oscillations tend to be suppressed at high
magnetic fields as the cyclotron orbits get smaller than the junction size. By contrast, disorder-
mediated SdH oscillations become stronger at high magnetic field owing to the large separation
between Landau levels. The observed smooth continuation between these two oscillations does
not occur by chance. FP oscillations at magnetic fields higher than the phase shift are dominated
by trajectories with k, = 0. Similarly, SdH oscillations, which can be envisioned as cyclotron
orbits beginning and ending on the same impurity, must also be dominated by k, = 0 trajectories
(83). The result is a seamless crossover from FP to SdH oscillations. This is strongly dependent

IStrictly speaking, although the phase shift is a consequence of Klein tunneling, the observation of the phase shift does not
imply identically zero reflection at @ = 0, only that the real part of the reflection amplitude becomes very small.
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on disorder concentration: For zero disorder, SdH oscillations do not occur, whereas for very
strong disorder SdH oscillations happen only at high fields and FP oscillations do not occur as a
result of scattering between the p-n junctions. For low values of disorder such that SdH
oscillations appear at fields much smaller than the phase-shift magnetic field, B,, the two types
of coherent oscillations could, in principle, coexist with different phases. The role of disorder in
the FP-SdH crossover has only begun to be addressed experimentally (64) and theoretically (39).

Several other groups (61, 62) conducted similar experiments on at least partially phase-
coherent graphene heterojunctions, although they did not observe the phase shift that is the
signature of Klein tunneling. Further theoretical considerations of quantum transport across
pnp junctions in the presence of disorder were discussed by Rossi et al. (84), who calculated the
resistance and the Fano factor in the presence of weak disorder, both of which show broad
resonance peaks due to the presence of quasibound states. As expected from the phenomeno-
logical model described in Equation 6, these features are washed out when the mean free path
becomes of the order of the distance between the two p-n interfaces.

Expanding the number of p-n-junction boundaries can be achieved simply by installing an
array of top gates on graphene, producing a superlattice electrostatic potential. Although this
has not been demonstrated experimentally owing to constraints on sample quality, multiple
theoretical studies of graphene p-n junction arrays exist (65-68, 71, 85-89). In the simple case
of 1D periodic Dirac delta function barriers of strength P whose potential is given by
V(x,y) = hvpPd(x), Barbier et al. (89) showed that the dispersion relation of this Kronig-
Penney model of a superlattice is a periodic function of P and causes collimation of an incident
electron beam for P = 27nn, where 7 is an integer. For a Kronig-Penney superlattice with an
alternating sign of the height of the barriers, the Dirac point in the 2D dispersion becomes a
Dirac line for P = n(n+41/2). The modification of the graphene spectrum remains an interesting
direction to pursue experimentally.

Superlattices can also have a supercollimating effect on ballistically propagating carriers,
creating an electron beam with virtually no spatial spreading or diffraction. The unit transmission
of normally incident carriers means that, in a sample with minimal scattering, a highly collimated
electron beam can be created without a waveguide or external magnetic fields (65). Such a perfect
collimation stems from the creation of a chiral quasi-1D metallic state originating in the collapse
of the intrinsic helical nature of the charge carriers in the superlattice potential.

In realistic graphene devices, however, disorder dominates, and any experimental
superlattice will need to be analyzed with this in mind. The conductance of disordered graphene
superlattices with short-range structural correlations has been studied theoretically (86, 88).
Ignoring intervalley scattering, these studies demonstrated that the transport and spectral prop-
erties of such structures are strongly anisotropic even in the presence of disorder. In the direc-
tion perpendicular to the barriers, the eigenstates in a disordered sample are delocalized
for all energies and provide a robust minimum nonzero conductivity. Along with extended
states, however, there exist discrete sets of angles and energies with exponentially localized
eigenfunctions, producing disorder-induced resonances. It is particularly interesting that the
disorder not only suppresses the transmission of carriers across the barriers but, counterintui-
tively, can also enhance transmission.

6. TRANSPORT AT HIGH MAGNETIC FIELDS: QUANTUM HALL
EFFECT IN GRAPHENE HETEROJUNCTIONS

In the limit of the well-separated graphene p-n junctions, electron density is relatively uniform
far away from the junctions. At sufficiently high magnetic fields, therefore, both graphene leads
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and the locally gated region can develop independent QH effects if the density and magnetic
field are tuned to filling factor v corresponding to an integer number of filled (possibly degen-
erate) Landau levels. At the interfaces between these regions, however, the edge states come into
contact with each other, leading to inter-edge state scattering and an anomalous two-terminal
conductance, which appears to be quantized at rational fractional values of ¢*/h. Owing to
the mismatch between the numbers of edge states in the different filling fraction regions, the
transport in such heterogeneous devices is governed by the mixing of the edge states at the
boundary and can be calculated using a simple scattering matrix approach for the finite chan-
nels carrying current in and out of the boundary region (90). Electronic transport through
regions with different filling factors was studied as GaAs heterostructures more than 20 years
ago (91). Graphene is distinct because researchers can observe the QH effect in both electrons
and holes. In addition, these regions are adjacent without a large depletion region separating
them at a graphene p-n junction. Edge-state conduction in a pnp or npn device provides a richer
physics than that of the unipolar two dimensional electron gas, leading to a new regime of total
edge-state mixing and equilibration.

We first consider QH physics for a single p-n junction in the QH regime, a subject that
has been studied both experimentally and theoretically (59, 90). In the unipolar regime,
the edge states circulate in the same direction at the interface between regions of different
filling and conductance is determined by the edge channels that exist in both regions: g,, =
(2e*/b)min(|v1],|v4|), where v, and v, are the filling fraction of each region. In the bipolar regime
(viv2 < 0), in contrast, the edge states propagate in opposite directions on opposite sides
of the p-n boundary, bringing electrons and holes from different reservoirs to the p-n inter-
face. This interface evinces complete mode mixing, so that the two-terminal conductance is
gpn = (2€%/h)|v1|[v2|/([v1| + |v2|). Note that in single-layer graphene, the filling fractions v; and
v, take integer values (+ 2, + 6, + 10,---), leading to fractional values of the quantum of conduc-
tance for g, in the bipolar regime (see Figure 5). The resulting fractionally quantized plateaus
have nothing to do with the interaction-driven fractional QH effect, but rather, they are the result
of nontrivial addition of a discrete set of current carrying modes in each arm of the device.

Further unusual QH conductance plateaus appear in conductance measurements of pnp
heterojunctions at high magnetic fields (60). Depending on the induced carrier densities, this
device can operate as either a pnp, npn, pp'p, or nn'n, where p(n) represents hole (electron)
majority carriers and the prime symbol indicates the same polarity of carrier but different
density in the locally gated region. As both the local-gate voltage (V) and back-gate voltage
(V) tune the density of the local (back) gate region 7, (11), a series of fractional QH con-
ductance plateaus appears (see Figure 5). Similar to the QH transport in a single p-n junction,
this double-junction QH transport can be understood by edge-state mixing at the boundary
of the different regions. In this system, the transport can be categorized into three different
regimes depending on the relative magnitude and sign of the carriers in each region of the lateral
heterojunctions: (a) edge-state transmission regime (|p|>|p’| or |n|>|#'|), (b) partial-equilibrium
regime (|p|>[p’| or |n|<|#'|), and (c) full-equilibration regime (pnp or npn). Similar to the anal-
ysis of a single p-n junction, the edge-state transmission and mixing results are g;,=(2¢*/h)|V'|
and ggi = (2¢*/b)|v||v'|/(2]v] + |V'|). Interestingly, in the partial-equilibration regime, where
there are more edge states in the locally gated region than in the graphene leads, the situation is
distinct from that occurring in the case of a single p-n junction. Here, the states circulating in
the locally gated region can produce partial equilibration among the different channels, because
they couple modes with different electrochemical potentials. A detailed analysis considering
both current conservation and partially equilibrated edge-state circulation (60) yields
gy = 2e*/b) |||/ (2|v| = |'|) for |p'|>|p| or [#'|>|n|. We note that this partial-equilibration
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Figure 5

(a) Color map of conductance G(V; g, V) at magnetic field B= 13 Tand T = 4.2 K. The black cross indicates the location of filling
factor zero in the locally gated region (LGR) and graphene leads (GLs). Inset: Conductance at zero B in the same V; - V3¢ range and
the same color scale as main figure (white denotes G>10e?/h). (b) G(V,¢) trace along the dashed red line in panel a showing
quantized fractional values of the conductance quantum. Numbers on the right indicate expected fractions for the various filling
factors. (¢) G(V. ) trace along the dashed orange line in panel . Numbers below the traces in panels b and ¢ indicate filling-factor
LGR and GLs, respectively. (d, e, ) Edge-state diagrams representing possible equilibration processes taking place as the density in the
LGR and GLs are tuned between positive (p or p’) and negative (n). The center blue region indicates the LGR. Left and right yellow
boxes indicate contact electrodes. (g) Simulated color map of the theoretical conductance plateaus expected from the mechanisms
shown in panels d, e, and f for different filling factors in the GLs and LGR. The numbers in the rhombi indicate the conductance at that
plateau. The color scale is identical to that of panel a. Reproduced from Reference 60.

regime can occur only in the presence of two nn' or pp’ interfaces and would not occur in a
single junction device (59). Similar results were obtained later in higher quality graphene
heterojunction devices employing a contactless air bridge for the top gate (61, 92).

More recently, Ki et al. (93) have investigated the dependence of longitudinal and diagonal
resistances of a graphene p-n interface using multiterminal measurement configurations. They
observed that the resistance of a p-n device in a four-terminal scheme is asymmetric with respect
to the v = 0 in the whole device. This resistance asymmetry is caused by the chiral direction—
dependent change in the equilibration position.

The presence of backscattering between opposite edges in the samples underneath bulk of
the locally gated regime or in the transitional regions at the p-n junctions short the QH edge

114  Young * Kim



Annu. Rev. Condens. Matter Phys. 2011.2:101-120. Downloaded from www.annualreviews.org
by Chinese Academy of Sciences - Library on 11/05/12. For personal use only

states and degrade sharp quantization. Long et al. (94) investigated the stability of the quan-
tized plateaus in the p-n junction in the presence of disorder using a Landauer-Buttiker formal-
ism combined with the nonequilibrium Green function method. They found that the lowest
plateau can survive for a very broad range of disorder strength, but the existence of plateaus
corresponding to higher fillings in the various regions depends on system parameters, in excel-
lent agreement with experimental data.

Park and collaborators (87) have theoretically discussed QH edge-state transport in
graphene pnpnpn. .. superlattices. As in the case of zero magnetic field, the 1D potential
modifies the graphene band structure, creating multiple band crossings at zero energy and so
additional 1D Dirac points. Interestingly, the number of 1D Dirac points for this type of
graphene supper lattice increases by two (without considering the spin and valley degrees of
freedom) whenever the potential amplitude exceeds a value of UY = 4nNhvg/L, where N is a
positive integer and L is the repeating length scale of the superlattice. New zero-energy
branches of massless fermions are generated with nearly the same electron-hole crossing
energy as that of the original Dirac point of graphene. Due to these new zero-energy
branches, the Landau levels at charge-neutral filling become 4(2N + 1)-fold degenerate (with
N = 0,1,2,..., tunable by the potential strength and periodicity) with the corresponding Hall
conductivity oy, showing a step at values 4(2N + 1)e?/b. Awaiting experimental observation,
these theoretical predictions are robust against variations in the details of the external poten-
tial and provide measurable signatures of the unusual electronic structure of graphene
superlattices.

7. INTERMEDIATE MAGNETIC FIELDS: LANDAU-LEVEL COLLAPSE

In the intermediate magnetic fields where the cyclotron orbit becomes smaller than the carrier
mean free path, Landau-level quantization is appreciable but the QH effect does not yet emerge.
In the presence of an inhomogenous potential profile such as exists in the presence of a local top
gate, this regime provides an interesting arena in which to investigate the interplay between
perpendicular magnetic and in-plane electric fields in graphene. In particular, Lukose and
collaborators (38) noticed that the emergent Lorentz symmetry of the single-particle graphene
Hamiltonian (Equation 1) allows for a transformation of magnetic into electric fields. They
identified two regimes for a 1D linear potential U(x) = —eEx, in analogy with relativistic
electromagnetism. For f = & < 1, the electric field can be eliminated by a “Lorentz boost”
which the speed of light parameter is equal to the Fermi velocity in graphene, vy The electronlc
spectrum in this regime is discrete and is described by Landau levels with a spectrum modified
by the in-plane electric field, & x vBn(1 — 2)*/*. As the magnetic field is lowered, or the
electric field increases, the Landau levels collapse, leading to a continuous spectrum for > 1.
In this regime, the magnetic field can be eliminated (39, 95), leading to the prediction of an
anomalous magnetoconductance of ballistic graphene p-n junctions, G(B) = (1—%)**. Unfor-
tunately, experimental evidence for this is complicated by the increased importance of impurity
scattering at intermediate and high magnetic fields (58).

This collapse of the Landau levels has other experimental consequences. In transport, SdH-
type resonances occur when closed orbits fulfill a Bohr-Sommerfeld quantization condition
f x)dx =n(n+1/2 —y), where x; and x, are the two classical turning points, 7 is an
1nteger and the Berry phase contribution y is 1/2 for the Dirac fermions in graphene. In the
presence of an inhomogenous potential, we can introduce the position-dependent Fermi
momentum, kp(x) = (¢ — U(x))/hvg. Thus, we obtain
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For linear U(x), this gives the Landau-level spectrum (2) for B > B.. As B approaches B, one of
the turning points moves to infinity, indicating a transformation of closed orbits into open
trajectories (40). The experimental consequence is that, in the presence of a potential barrier,
SdH resonance, rather than tracing lines toward zero field and zero density, should abruptly
terminate a finite magnetic field.

To realize the collapse of Landau levels in an electron system, several conditions must be
met. First, it must be possible to create a potential barrier that is steep on the scale of the
cyclotron orbit radius. Second, the system must be ballistic on this length scale to suppress the
broadening of Landau levels due to disorder. The experimental observation of the Landau-level
collapse in the intermediate magnetic field regime was reported (64) and explained (40) recently
in the same devices in which FP oscillations are observed. The effect occurs in the unipolar
regime, where the narrow potential barrier is repulsive and competes with magnetic confine-
ment. Landau-level collapse corresponds to a deconfinement transition as the field is lowered.
The observed transport measurements exhibit SAH oscillations, which, in the unipolar regime,
abruptly disappear when the strength of the magnetic field is reduced below a certain critical
value. This behavior is explained by the semiclassical analysis of the transformation of closed
cyclotron orbits into open, deconfined trajectories (Figure 6).

Another experimental consequence of Landau-level collapse in graphene is a modification
of cyclotron resonance in the presence of an in-plane electric field. Kohn’s theorem for cyclo-
tron resonance (96) states that for particles with a parabolic spectrum, in-plane fields—
including those due to Coulomb interactions between particles—do not affect the cyclotron

Px/Po x/e

Figure 6

(a) dG/d Vg as a function of B and V. Shubnikov-de Haas (SdH) oscillations are observed at high B. The fan-like SdH pattern is
altered by the barrier: In the pp’p region it curves, weakens, and is washed out at fields |B|<B,, whereas in the pnp region a crossover
to Fabry-Perot oscillations occurs. Data are taken at Vj,, = 70 V. (b) Closed orbits for the Thomas-Fermi potential obtained from the
density profile, with B = 9,7,5,3,1 T and p, = 0. Long trajectories, extending far outside the gated region, do not contribute to SdAH
oscillations as electrons scatter before completing an orbit. (c) Trajectories for the potential U(x) = —ax” and p, = 0. Three types of
trajectories are shown in momentum space (b) and position space (c): subcritical (red), critical (black), and supercritical (blue). The
saddle points in momentum space correspond to motion along straight lines x = 4-{yr, where the Lorentz force is balanced by the
electric field. Reproduced from Reference 40.
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resonance frequencies. This theorem rests on Galilean invariance of the single-particle con-
tinuum theory—a condition that is explicitly violated in graphene—and both theorists
and experimentalists have taken this as cause to use cyclotron resonance as a probe of many
body effects in graphene (97-99). The strong electric fields present in graphene p-n junctions,
however, offer another venue in which to observe violation of Kohn’s theorem.

The same Lorentz transformation used in Reference 38 to eliminate an in-plane electric field
can be used to remove the built-in p-n electric field. In the presence of a time-dependent
perturbation representing the electromagnetic radiation used to perform cyclotron resonance
experiments, the result is a spatial dependence of the perturbation, H' o e/ — ef@(t=Fx/ve),
Expressing the coordinate in terms of creation and annihilation operators in the space of
Landau levels, & and a', perturbation mixes all Landau levels, H' Zn’mcnm(&)"(&#)m, with a
suitable choice of the constants c,,,, (100). The conclusion is that a static electric field changes
the selection rules for cyclotron resonance, in addition to collapsing the spectrum. Although far-
field cyclotron resonance measurements (99, 101) cannot hope to detect a signal from the tiny
region of a p-n junction, there is some hope that newly available tip-assisted infrared spectros-
copy (102) might be applied to probe this emergent quasirelativistic Lorentz physics in
graphene.

8. CONCLUSIONS AND OUTLOOK

In this paper, we review the development and current status of electron transport in graphene
heterojunction structures. In these devices, the unique linear energy dispersion relation and
concomitant pseudospin symmetry are probed via the use of local electrostatic gates. Mimick-
ing relativistic quantum particle dynamics, electron waves passing between two regions of
graphene with different carrier densities will undergo strong refraction at the interface, produc-
ing an experimental realization of the century-old Klein tunneling problem of relativistic quan-
tum mechanics. Many theoretical and experimental discussions were presented here, including
peculiar graphene p-n and pnp junction conduction in the diffusive and ballistic regimes.
Because electrons are charged, a magnetic field couples to them and its effects can be studied.
We also discuss magnetotransport in graphene heterojunctions in various regimes, from the
weak field limit, in which coherent FP oscillations are modified by semiclassical cyclotron
bending, through the Landau-level collapse transition, and into the QH regime, in which edge-
state mixing between electron and hole regions can be realized.

Device applications based on unusual electron transport in graphene heterojunctions have
been discussed. In particular, in a ballistic graphene p-n junction, carrier trajectories experience
strong refraction at the interface, which can be approximated by ray optics with a negative
index of refraction. An interesting device configuration using this principle is the solid-state
analog of the Veselago lens, where the region of negative index of refraction can focus and
defocus electron waves propagating in the device (23). Still unexplored in the literature is the
possibility that bilayer graphene may provide a better platform for this particular device con-
cept. Whereas in single-layer graphene, absence of backscattering and exponential collimation
place a high upper bound for the off current of the simplest Veselago lens device, electrons
impinging on a bilayer graphene are perfectly reflected at normal incidence (2), leading to lower
off currents. Moreover, progress toward band gap engineering in bilayer graphene makes it an
even more promising venue to explore electronic optics.

In a coherent system, the electron waves can also interfere, producing quantum oscillations
in the electrical conductance, which can be controlled through the application of both electric
and magnetic fields. However, to integrate ballistic, phase-coherent quantum phenomena into a
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useful device concept, one needs these properties to be robust over large length scales and at
high temperatures. In typical graphene on SiO,, however, mean free path and phase coherence
length are usually limited to sub-100-nm length scales by long-range impurity scattering, and
they are further decreased by substrate optical phonon scattering at high temperatures. In this
regard, high-mobility, homogeneous graphene samples are extremely important for the realiza-
tion of coherent graphene heterojunction devices. The recent development of high-mobility
suspended samples (34, 35) as well as graphene on hexa-boron nitride (36, 79) has reignited
hope in the possibility of room-temperature quantum coherence, as the intrinsic electron pho-
non coupling in graphene is weak and hBN has no low-lying optical phonon branches. The
versatile platform of hBN dielectrics, in particular, allows for the long overdue realization of
supercollimation in a graphene super lattice and ballistic bilayer heterojunctions.

Several other related charge transport phenomena in graphene heterostructures are not
discussed in this review. These include the possibility of confinement via magnetic fields (103)
and strain-induced pseudomagnetic fields (104) as well as snake states in inhomogenous mag-
netic fields (105, 106) and along graphene p-n junctions at finite magnetic fields, where elemen-
tary experimental demonstration has been shown (107). In addition, several theoretical
proposals—such as valley filtering (108), guided plasmons (109), tunable Klein tunneling via
spin-orbit interaction (110), and bilayer quantum coherent pnp junctions (111)—await even
rudimentary experimental attacks. As device fabrication methods and sample quality improves,
many of these proposals should become more feasible.
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