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Abstract

GaM and its alloys with InM and AlN are materials systems that have enabled the
revilution in solid-state lighting and high-powerhigh-frequancy elactronics. GaN-based
materials naturally farm in a hexagonal wurtzite structure and are naturally grown in 2
{0001 c-axis orientation. Bacause the wurizite structure is polar, GaM-based
haterastructures have large intemal electric fields due to discontinuities in sportanacus
and piezoelectric polarization. For optoslecironic devices, such as light-emitting diodes
and lazer dindes, the internal electric field is generally deletericus as it causes a spatial
separation of electron and hole wave functions in the guantum wells, which, in um,
likaly decreases efficiency. Growth of GaN-based heterostructures in alternative
orientations, which have reduced (semipolar orientations) or no polarization (nonpolar)
in the growth direction, has been a major area of research in recent years. This issue
highlights many of the key developments in nonpaolar and semipolar nitride materials

and devicas.

Background

The Croup [T nitrides are a remarkable
materials systermn. With direct bandgaps
ranging from 0.7 eV (InN) through 3.4 eV
(Gal) to 6.0 eV (AIN), this materials sys-
tern has enabled deep ultraviolet (4 < ~300
nm or photon energy > ~4.1 eV based on
high Al content Al Ga) N quanturm wells
[OWs]), ultravialet (& < ~400 nm or photon
energy > ~3.1 eV ), blue (A= 455 nm
or photon energy = 2.7 eV based on
In Ga, N OWs), and green (A =525 nm or
photon energy = 2.4 V) emitbers based on
In,Ga, N QWs, and longer wavelength
light-emitting diodes (LEDs) and violet
and blue laser diodes (LDs). No other
materials system offers this range of direct
bandgaps. Prior to the development of the
nitrides as optoelectronic materials, there
were no efficient ultraviolet or blue LEDs,
and green LEDs based on [I-V1 materials
had poor lifetimes due to the ease of dislo-
cation generation in the active regions of
the I-¥ls. Devices based on Group III
nitrides perform well despite threading
dislocation densities typically in excess of

a4

108 em? (but poorly when the dislocation
density exceeds 10 cm 2, thus pushing the
drive for bulk GaN substrates as described
by Fujito et al’s article in this issue) in
comparison to conventional I1-Y materi-
als such as GaAs, where the dislocation
densities are typically 10* cm™? or less,
However, when the nitrides are rermark-
ably robust against oxidation (and etch-
ing), they are mechanically hard and show
no evidence for extended defect motion at
standard operating temperatures. Gal-
based LEDs feature prominently in col-
ored lighting applications, such as green
traffic lights. When blue LEDs are com-
bined with a yellow-emitting phosphaor,
white light is produced; thus, GalN has
been the material that enabled the field of
solid-state liphting, Violet GalN-based LDs
operating at a wavelength of 405 nm are
already in broad use in high definition
optical data storage.

The articles in this issue describe recent
progress in materials and device develop-
ments for Group [-based materials. The

use of new crystallographic orientations
for GaM and AIN may enable major per-
formance improvements over/in existing
device technologies and new device func-
Honalities (see, for instance, the introduc-
tion to the article by Suda and Horita on
the potential for high-efficiency deep ultra-
violet emitters based on nonpolar AIN).

Starting with the pioneering work of
Maruska et al. on GaM in the late 196s
and early 1970s with hydride vapor-phase
epitaxial (HVPE) growth®® and continu-
ing with the subsequent major break-
throughs by Amano et al. in the 1980s on
two-step growth and p-type GaN activa-
tion* and then by Nakarmura et al. in the
early to mid 19905, nearly all work on
GaM-based materials and devices has
been on c-plane (0001 }-oriented layers.
Due to the inability to fabricate bulk GalM
erystals (due to its high melting point and
vapor pressure) at the time of carly GaMN
pioneering waork, an area that still remains
a major challenge for nitride research,
GaN-based technology, has been devel-
oped on non-native, or foreign, substrates.
The highest quality GaM has been grown
in the (0001) orientation on either (0001)-
oriented sapphire or (0001 )-oriented 4H-
or AH-5C,

Through the mid-to-late 1990s, there
was a broadening realization of the impor-
tance of pieroelectricity and polarization
in Group [I nitrides.”™ Since the
wurkzite structure {hexagonal; space
group Po,me; point group amm-—see
Figure 1} is noncentrosymmetric {absence
of inversion symmetry), it is polar, with
spontaneous polarization occurring paral-
lel to the —c-axis. Polarization-related
effects are a dominant feature in common
c-axis GaM-based heterostructures and a
major differentiating feature of the
wurtzite Group Il nitrides from other
well-developed semiconductors, such as
silicon or gallium arsenide.

Polarization in the Group Il
Nitrides

At the same time that Nakamura was
making major breakthroughs in GaN-
based materials and devices, Resta'? and
Vanderbilt and Kingsmith!'*!* were devel-
oping the quantum theory of polarization.
In their landmark work, Vanderbilt and
Kingsmith showed that polarization in a
solid is a bulk property and can be deter-
mined quantum mechanically with
knowledge of the phase of the valence
electron wave functions (for a review of
these developments, see References 17
and 18). Subsequently, Bernardini et al.™
calculated the spontaneous polarization
and piezoelectric constants for GalN, AN,
and InN; this work is the standard used
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teday for these important physical prop-
erties in Group [ nitrides,

The spontaneous polarization P, values
for nitrides are as high as ~30% of the
values for classical proper ferroelectrics
such as BaTiQ, (P, = 0.26 C/m?) (ie., P, =
0081 C/m?, -0.029 C/m?, -0.032 C/m?
for AN, GaN, and InN, respectively).
Within the Group Il nitrides, they have
piezoelectric coefficients with similar
magnitudes and the same sign. Note in
Figure 1 that the sense of the spontaneous
polarization is parallel 1o the [000T] direc-
tion for GaMN and similarly for AIN and
InM; this means that the metal-terminated
(0001} surface has a negative fixed polar-
ization sheet charge. The discontinuity in
total polarization in {0001}-oriented
nitride-based interfaces in heterostruc-
tures results in significant fived charges at
the interfaces that may be beneficial or
deleterious depending on the final device
technology.
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Figure 1. Ball-and-stick model of the
wurtzite Gai crystal structure (top
schematic). The gallium atoms are
represented as large darker spheres,
and tha nitrogen atoms are small lighter
spheras, The top crystal face (0001)
also is referred 1o as the gallium face.
Thiz is the onentation for naarly all
commercial GaM-baszed devices, The
bottomn schematic depicts a slab of
GaM with the (D001) surface at the top
showing negative fixed polarization
charges, and the bottorn is showing a
(0007 ) nitrogen face with positive fixed
parization charge.

For example, the alloving of GaN can be
taken with the wider bandgap semicon-
ductor AIN to form Al Ga N, which has
a smaller relaxed lattice constant than
GaMN, and coherently grow the Al Ga N
alloy on a (0001 }oriented GaN layer. Since
the underlying GaN structure is nomi-
nally relaxed and the Al,_Ga N layer is
under an equibiaxial tensile stress, there
will be additional piezoclectric polariza-
tion in the Al Ga N layer. The sense and
magnitude of the spontaneous polariza-
Hon discontinuity between GaM and
Al GaN are similar to the piezoelectric
polarization in the coherent Al Ga N
layer. Thus, the polarization discontinuity
at the Al Ga N/GaN interface gives
rise to a significant positive fixed sheet
charge that may be balanced by free
electrons in a two-dimensional electron
gas (2DECG) when the AlGaN laver has
a suitable thickness, as shown schemati-
cally in Figure 2. The 2DEG has a very
narrow width, on the order of 2-3 nm, in
the direction perpendicular to the inter-
face and holds a high density of mobile
free electrons. For commonly emploved
Aly3Gay N /GaN high electron mobility
transistor structures, the electron concen-
tration in the 2DEG is on the order of 1013
em, For electronic devices, polarization
is largely seen as beneficial as it gives rise
to 2DEG sheet concentrations nearly an
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order of magnitude larger than those in
conventional [I-V systems. The ZDEG
high electron concentration, combined
with high saturation velocity and high
breakdown field, has made the nitrides
the preferred materials for high-power
and high-frequency electronics applica-
tions (see References 20 and 21 for a brief
and more detailed overview of GaN-
based electronics),

For LEDs (e.g., based on GaM barriers
and In,Ga,_ N QWs), the fixed sheet
charges at the heterointerfaces cause large
electric fields normal to the QW plane
(fields on the order of 1 to 2 MV/cm
depending on the InMN molar fraction x)
that are in the opposite sense to the
polarization-related electric fields in the
Al Ga N/GaN example shown in Figure
2, The difference in spontaneous polariza-
tion between [n,Ga, N and GaN is small,
but the InGa, N layers are coherently
strained (i.e., under equibiaxial compres-
sive stress to the GalN buffer and barriers),
and large internal electric fields result in
c-plane InGa, N OQWs, as shown in the
band profiles in Figure 3a, which were
produced by self-consistent solutions to
the Schridinger and Poisson equations. In
optoclectronic devices such as LEDs,
the InGa, N OWs are placed in the
depletion region of a p-n diode such that
injected electrons and holes are captured
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Figure 2. Schematic band diagram for an Al Ga, MNGaM heterostructure used o form the
two-dimanzional electron gas (2DEG) for GaMN-based transistors. (8) Band profile for a thin
Al Ga, M layer on GaM. The electric field in the AlGaM layer (slope of bands) is due to
discontinuities in spontanecus polarization. (b) Band profile for & thicker AL Ga,_MN layer an
GaM, where surface donors are responsible for charge transfer from the surface to the back
Al Ga,  MiGaM interface to form the 2DEG. (¢} Predicted 2DEG sheat charge density from
the surface donor model, (For more details, see Reference 43.) In the figures, E: is the
Fermi leval; AE. is the conduction band offset; £ is the surface donor energy level; g is the
fundamental charge; n, is the 2DEG sheet charge density, o, is the fixed polarization
charge; tis the AlLGa, N layer thickness; and t. is the critical layer thickness to form the

2DEG.
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Figure 3. Self-consistent Schridingar-Poizson solutions for the band profile (conduction
band [CE] and valence band [VB]) for GaMin, , Ga,, . M(25ANGaN quantuem well (QW) for
tha conventional polar (0001) Ga-tace orientation. (a) This is typically used in violet GaN-
based light-emitting diodes (LEDs) and laser diodes and for (b) a nonpotar arientation
corresponding to either a-plane or m-plane orientation, Mote the large electric field in the
comnventional polar orientation, which results in & large spatial separation of the electron and
hole wave tunctions. In contrast, the ground-state electron and hole wave functions directly

owverlap in the nonpolar InGaM OW.

by the QW without recombination in the
surrounding material. These internal
polarization-related  electric fields cause
spatial separation of electron and hole
wave functions. When the electron and
hole wave functions are spatially sepa-
rated due to the internal polarization-
related  electric  field in  the QW
{quantum-confined Stark effect [QCSE]),
the likelihood of a radiative recombina-
tion event, which yields the desired pho-
ton, is reduced, and thus, there is
increased likelihood of the injected elec-
troms or holes to nonradiatively recombine
and the energy is squandered as heat.
Thus, the polarization-related electric
fields are seen to reduce efficiency in
nitride LEDs and LDs. To avoid the elec-
tric field-induced electron-hole wave
tunction separation, the thickness of
In,Ga, N QWs is limited to ~25 A as a bal-
ance between tolerable confinement of
injected carriers and the separation of
electron and hole wave functions in nearly
all commercial GaMN-based LEDs or LDk,
Other key features of c-plane GaN-based
LED)s include a significant blueshift in the
electroluminescence (EL) and an effi-
ciency droop with increasing drive cur-
rent. The EL blueshift is caused by the
combined effects of Coulomb screening of
the internal electric field mentioned earlier
and band filling of the tail states by the
increase in carrier concentration in the
QWs1l Because the growth of perfectly
homogeneous In,Ga, N alloys is difficult
due to the thermodynamic mismatch
between GalN and InN, In Ga,_ N alloys
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have pronounced tail states in their band
edge. The difficulty in growing atomically
flat In,Ga, N QWs at low growth temper-
ature also gives rise to the energy tail
states because of a thickness fluctuation in
the QWs. With respect to decreased device
efficiency with increasing drive current,
referred to as “efficiency droop,” thin
QWs lead to reduced barrier heights for
the QW states and reduced total states in
the OW, thus increasing the likelihood of
electron overflow. In other waords, at high
current injection and a higher total carrier
density, reduced barrier height and avail-
able states can cause an efficiency droop
through the decreased injection efficiency
{ie., injected carriers overflowing from the
OW) and an increase in nonradiative
processes such as Auger recombinabion
isee Reference 22 for more on the evidence
for Auger processes in InGaM).

MNonpolar Orientations

The challenges associated with polar het-
erostructures in the nitrides could be
avoided entirely by growth in nonpolar ori-
entations (e, with the c-axis of the wurtzite
structure parallel to any heterojunction).
Due to the crystal symmetry, there would
be no polarization discontinuity at the het-
erointerface. The low index a-plane {1120}
and m-plane {1700} are candidate orienta-
tions for fabricating nonpolar heterostruc-
tures. Through the 1990s, there were
scattered reports of nonpolar GaN growth,
but the films typically had rough three-
dimensional morphologies which con-
sisted of exposed semipolar [10T1] and

M-face (000T) facets, and in the context of
polarization, there were few, if any, reports
of wurtzite GaN growth in nonbasal plane
orientations to avoid polarization-related
electric fields ™ By 2000, there was grow-
ing recognition that nonpolar orientations
and alternative orientations, with reduced
polarization discontinuities at heterointer-
taces, could yield devices with higher opti-
cal transition probabilities due to the
increased overlap of the electron and hole
wave functions, as shown in Figure 3b for
nonpolar In Ga, N QWws Y

In 2000, Waltereit et al, in Klaus Ploog's
group at the Paul Drude Institute in
Berlin reported on the first planar nonpo-
lar {1100) m-plane films on (100)-oriented
P=LiAl(y, substrates® In their break-
through article, Waltereit et al. demon-
strated the absence of internal electric
fields in m-plane GalN QWs with AlGaN
barriers.? Waltereit's work motivated a
worldwide research effort in nonpolar
and semipolar nitrides.

FLiAlDY, is an interesting material and
can be produced in relatively large boules.
For epitaxial growth by metalorganic
chemical vapor deposition (MOCWVD), it is
a problematic substrate because it has a
high sublimation rate at typical GalN
MOCVD  growth temperatures (e.g.,
1100°C). yLiAlO, readily reacts with
moisture in the air, and this has presented
practical problems in its use as a substrate.
In 20012002, researchers at the University
of California, Santa Barbara (UCSE) and
elsewhere learned that Group 1 nitride
growth on r-plane (1012} sapphire yields
a-plane {1120} films with only one film ori-
entation; however, previous growth
efforts always yielded rough films with
faceted  three-dimensional morpholo-
gies. 3 Craven et al®® discovered
by MOCVD growth and Ng2 realized by
molecular beam epitaxy planar a-plane
films on r-plane sapphire (a schematic of
the typical x-ray diffraction results and
film orientation are shown in Figure 4).
Uintil recently, the r-plane was the most
common orientation for sapphire sub-
strates, and thus Craven's and Ng's
results provided a pathway to large-area
low-cost nonpdlar films.

The absence of the polarization field
effects in nonpolar QWs was confirmed
by the distinctly short radiative lifetime of
m-plane AlGaN/GaN QWs compared
with the c-plane radiative lifetime
because in the nonpolar OWs, the elec-
tron and hole wave functions have strong
overlap, whereas in the c-plane QWs, the
wave functions are spatially separated ®
At the same time, the cathodolumines-
cence peak energy of m-plane QW was
higher than that of c-plane QW, which
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was explained purely by the gquantum
size effect. After the finding, a similar
absence of the QCSE has been reported
for a-plane AlGaN/GaN QWs in a-plane
Galy 335

Semipolar Orientations
A significant effort in the same time-
frame was focused on discovering a large-
area low-cost foreign substrate that would
yield m-plane Gal films, as a collective
body of evidence has shown that the
m-plane is the more stable plane in com-
arison to the a-plane. An important result
m this search was the development of
films with an orientation between nonpo-
lar planes and polar c-planes. These film
orienfations were coined “semipolar” (ie.,
semipolar planes are those with a nonzero
k. or i index and a nonzero ! index in the
[ikil] Miller-Bravais indexing conven-
tion}.* Some common semipaolar orienta-
tions are shown in Figure 5. Although
polarization discontinuities in semipolar
heterostructures are not entirely elimi-
nated, they are significantly reduced, as
first shown by Takewchi et al.'* and more
recently by Romanov et al¥ Figure 6
shows the total polarization discontinuity
AP, for InGa, N layers coherently
strained to GaMN for crystallographic ori-
entations B ranging from the polar c-plane
ifl = 07 to nonpolar (8 = %) for indium
contents x typically used in violet to blue
LED. There is a zero crossing in the total
polarization discontinuity at ~45° orienta-
Hon and significantly reduced polariza-
fion discontinuity at inclination angles of
=60, which are close to two low-index
semipolar orientations, (1011) and {1122)
6= ~62" and B = ~38°, respectively), and
can be achieved as inclined sidewalls in
selective area growth (see the articles in
this issue by Funato and Kawakami and
by Scholz et al.).

Early Monpolar Devices

At the inital stage of the nompolar/
semipolar nitride research, most of the
epitaxial films and QWs were grown on
heteroepitaxial substrates such as a-plane
GaN on r-plane sapphire, as described
earlier, m-plane GaM on (100} yLiAlO, or
m-plane SiC, and semipolar GaN on
m-plane sapphire or other substrates, With
few or no exceptions, nonpaolar or semipo-
lar Group 111 nitride films grown on non-
native substrates have a high density of
basal plane stacking faults {BI'SFs), with a
typical density in the range 10° cm to 106
om! in addition to a high density of
threading dislocations (TDs}—typically in
excess of 10 cm-2* The 5Fs in nonpolar
GaN films have been shown to emit char-
acteristic photoluminescence peaks at 3.42
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Figure 4. {1702) r-plane sapphire is a widaly available large-area high-guality substrate.
Growth of wurtzite Group |1l nitrides on ~plane sapphire results in phase pure a-plane
material, as shown in the example of the high-resolution x-ray diffrection of a-plane Gahl.
(&) High-resoluticn x-ray diffraction showing phase pure a-plane (1120) GaM on rplane
(1702} sapphire. (b) Matching of the a-plana GaM lattice mesh with the ~plane sapphire
lattice mesh. (c) Relationship betwaen the crystal orentation of a-plane GaM and F~plane

sapphire. (See Referance 33 for more details,)
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Figure 5. Common low-index
afantations of wurtzite GaN (four-index
notation) and cubic GaM (hree-indax
notation). The figure shows the polar
(0001) or c-plansg; the nonpolar a-plane
(1120) and m-plane (1070); the
semipolar planas (1071), (1013}, and
(1122); and the nonpolar (001) plane
for cubic GaM.

and 3.29 eV.*® which reduce the emission
efficiency of the real band-edge related
luminescence. Also, TDs and BPSFs may
generate nonradiative recombination cen-
ters and thus reduce room temperature
emission intensity. Figure 7a summarizes
the dependence of the external quantum
efficiencies (EQEs, which is the fraction
of injected electron-hole pairs that form
a photon that can escape from the
semiconductor —the highest possible EQE
is 100%) of nonpolar/semipolar QW
LEDs on emission wavelength. For com-
parison, EQEs of state-of-the-art c-plane
LEDs are also shown in Figure 7. The
EQEs of defective nonpolar LEDs grown
on foreign substrates (blue triangles) were
far lower than c-plane devices and longer
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Figura 6. Dapandence of the total
polarization discontinuity on crystal
arentation for a In,Ga, M coheranily
strained to a thick GaM layer for In
contents in InGaM from 5 to 20%.

f# = 0° corresponds to the conventional
c-plane arentation, and 6 = 80°
coresponds 1o nonpolar cramations,
The total polarization discontinuity for
InGak on GakM is mosthy due 1o strain-
induced polarization (piezoelectric) in
the comprassivaly strained InGaM layer,
Mote the zero crossing in polarization
dizcontinuity at -45°. (See Refarence
37 for more details.)

wavelength LEDs based in the AllnGaP
svstem.

Polarized Light Emission

In 205, using defective m-plane GalMN-
based LEDs grown on m-plane SicC,
Gardner et al. demonstrated another inter-
esting feature of nonpolar structures—
polarized light emission.® For GaM, the
valence band (VB) has the character of
nitrogen p-orbitals, and thus the three Vs
have x, ¥ z symmetry corresponding to
the nonpolar @ and m directions and to the
¢ direction, respectively. As shown in
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Figure 7. {a) Dependence of external
quantum efficiency (EQE) on wavelength
for conventional c-plane Gak light-
emitling diodes (LEDs) (opan squaras);
early nonpolar LEDs on Mitsubishi
Chemical Cooperation (MCC) m-plane
substrates (red circles); nonpolar LEDs
growen on foreign substrates (blue
rianghes); and LEDs at longer
wavelengths in the AllnGaP system.
{Based on information from References
44-51; guidelines from References 52
and 53.) (b} Dependence of bast
reported threshold current density on
lasing wawelength for nitide-based
lasers, J;, threshold current density;
CW, continuous wave, (Based on
information from Beferences 54-61.)

Figure 8, the top two VBs (i.e., heavy hole
and light hole VBs, respectively) have
symmetry | X+Y} and [ X-iY}, and the
split-off band has symmetry |Z}. For
c-plane structures, the dipole allowed tran-
siions from the conducton band {which
is primarily composed of Ga s-like states
and is thus isotropic) to the top two VBs,
which gives isotropic polarized direct
light emission due to the six-fold symme-
try of the c-axis orientation. The reduced
symmetry (in comparison with c-plane
oriented OWs) within the compressively
stressed nonpolar Iny_ Ga, N QW results in
the possibility of direct emission of polar-
ized light—primarily due to transitions
from the conduction band to the top VB.
The potential for engineering In,_ /Ga,N
OWs in nonpolar orientations for polar-
ized light emission and detection has been
an active area of research (see the articles
by Funato and Kawakami and by Grahn
in this issue, and see Reference 400).
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Figure B, Schemafic valence band structure for wurtzite GaM. The top twe valence bands
are nearly degenerate at the I point and have |X2/Y } symmetry, which comesponds 1o the
in-plang & or m directions. The lower valence band hag predominantty |2} symmetry, which
comresponds o the [0001] orentation, Excitonic transitions far the conduction band 1o the
three valence bands often are referred 1o as A, B, and C excitons. (Figure courtesy of

P Rinke and C.G. Van de Walle, University of California, Santa Barbara.) See Reference G2

for more information.

High-Performance Devices on
High-Guality Substrates

During 2005-2006, there was a transfor-
mation in nonpolar and semipolar GaMN
research. Researchers  at Furukawa
Company and at Mitsubishi Chemical
Corporation developed several millimeter
thick c-plane GaN boules by HVPE (see
the articles by Fujito et al. and by Funato
and Kawakami in this issue, and see
Reference 41). Subsequently, low defect
density nonpolar and semipolar GalN sub-
strates can be prepared by wafering these
boules in a suitable orientation. Referring
back to Figure 7a, the BEQE values of
m-plane devices (red circles) already rival
those of the highlv developed conven-
tional c-plane devices. Also, the threshold
current density of m-plane InGaN /GaM
LDs grown on the m-plane GaN substrates
{red circles) became comparable to that of
c-plane LDs {open squares), especially for
bluish green color regions, as shown in
Figure 7b. The groups at Rohm and at
UCSB have produced nonpolar and semi-
polar LEDs that rival the performance of
state-of-the-art c-plane devices (see the
articles by Funato and Kawakami and by
Feezell et al. in this issue). The Rohm and
UCSE groups demonstrated the first non-
polar LDs and the first AlGalN clad-free
LD as described in the article by Ohta and
Okamoto and Reference 42, The promise
of nonpolar light emitters has now been
realized. In the coming vears, we will learn
whether nonpolar structures will be the
ultimate solution for realizing nitride emit-
ters at many different wavelengths and for
a variety of electron devices.
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