Al

b

Duffing system converges to the desired periodic
g orbit T in the sense that

|t — & =0.
OQ

lim

|lz—Z|=0 and  lim
t1<t—00 t1<t—

A nonlinear controller can be designed relatively
easily. For example, if one picks

h(t; z, ) = K(z — ©) + 33%(z — Z) + 3%(z — £)°,

_ then, using this particular nonlinear control law, the
- system reduces to

X=Y-mX
. n s (38)
Y =—(K+p)X - X°,.
and one can easily verify that the Lyapunov
- function
1
vx,v)=% ;”’2)(2 + 'z1IX4 +5Y7 (39)

{ #=—-Kpzr+ (1 — Ky + (KuZ+ Kia),
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satisfies U < 0, where equality holds if and only if
X =0 and Y = 0. This means that the controlled
Duffing equation, Eq. (38) is asymptotically stable,
so that X — 0 and Y — 0 as t — oo, or the goal

|z —2 —0 and |[¢—Z|—0 (t — o0)

is achieved.

It has been observed that, in general, a linear
feedback controller is much harder to design for the
same purpose. Nevertheless, a successful design of
linear feedback controllers for the Duffing system
has been developed by the present authors [Dong
& Chen 1992b|, where the target orbit can even
be multiperiodic ones. The conventional feedback
controller used has the form
)= el [555)
v] | Ku Kel|ly-7]’
which yields the following controlled Duffing
equations:

(40)

(41)

y=—(Ka +po)z - 2° — (Koo +p1)y + (K% + K2off) + 9 cos(wt) .

Before determining a suitable controller de-
scribed by Eq. (40), in the sense of determining
the feedback gain matrix K = [Ky], i, 7 = 1, 2,
it is clear that one should first guarantee the con-
trolled system itself be stable. Otherwise, insta-
bility (or perhaps new chaotic phenomena) may be
introduced into the original system. Now, consider
the Jacobian of the controlled Duffing equation and
observe that a sufficient condition for the stability
is that all the roots of its characteristic equation are
located on the open left-half plane, which leads to
the following conditions:

p1+ Kin+K >0,
Kii(py + K2) + (1 — K12)(Ka1 + p2 + 38%) > 0.
(42)
Since this system of two inequalities has four un-
knowns, it usually has non-unique solutions. For
simplicity, consider the case where K3 = K22 = 0.

Since p; > 0, the first condition is satisfied and the
second becomes

(1— Ky2)(Ka1 +p2 +32°) > 0.

Letting, furthermore, Ki2 = 0 gives the simple

condition

- Kz > —pp — 33%, (43)

and reduces the controlled Duffing equation to

E=y,
{ § = —pez — 2° — pry + q cos(wt) — Kn(z - Z) .
(44)

Proposition 3. [Dong & Chen, 1992b] A sufficient
condition for a stable linear feedback control of the
Duffing system in the form of Eq. (35) is given in
(48), namely:

Ko1 > —po — 352 .

To this end, a few remarks are in order.

First, the choice of K13 = K12 = Ky =0
makes sense if one examines the Jacobian .JJ in which
he will find that 7 is not explicitly involved. This
implies that it is not necessary to control the y-
component directly (to track the §). It will be seen
that y — 7 (¢t — oo) while controlling only the z-
component such that ¢ — Z (¢ — oc), due to the
implicit relations between z and y.
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Fig. 21. Implementation of the controlled Duffing system. (Figure from Dong & Chen [1992b], courtesy of IEEE; (T) 1999

IEEE.)

Second, with the choice of K11 = K19 = Koy =
0, the corresponding controlled linearized Duffing
equation

][ 2ae ]G]

i 0
N [mﬂ + (p2 +3ﬁ2):i} + [1] v
is completely controllable, so that the controlled
Duffing equation Eq. (41) is locally controllable, by
a conventional feedback of the canonical form (40},
namely :

[‘j] v=— [‘j] Kafi(t) — 5(2)] .

Simulation results have convinced one that such
a simple choice of K33 = Kij3 = Kog = 0 can
achieve the control purpose very efficiently. Dif-
ferent choices for the Kj;, ¢, j = 1, 2, are of course
possible to yield similar results, which in fact may
provide more capabilities for other purposes.

Third, using linear feedback controls, one can
only guarantee |[z—&| — 0 but not [t—%| — 0ast —
00 (compared with the result given in Theorem 1
above).

Finally, it can be observed that for a (very)
large value of Ky, called a “high gain,” the con-
trolled Duffing Eq. (44) becomes approximately

=y,
{ 0= —Koq(z—2), (45)

which has a particular solution (z, y) = (Z, z). This
suggests that for (very) large values of the control
gain Ko, the feedback controller designed above
should have (much) better control effect in achiev-
ing the goal: z(t) — &(t) (t — o0). For small values

of Kz;, however, the oscillatory term g cos(wt) ex-
isting originally in the second equation of Eq. (41)
may dominate the feedback control input, so that
the controlled trajectory appears to be oscillating in
some way. This observation has been verified to be
true by computer simulations. Hence, in the simu-
lation results to be shown below, a relatively large
value for the feedback control gain Ko; was used.
Using different, yet large, values of Ky; have shown
similar results in the simulations. The controlled
Dufling equation can be implemented as shown n
Fig. 21.

The following are the simulation results of con-
trolling a chaotic trajectory of the Duffing system to
its period-1 and period-2 orbits using the feedback-
controlled system [Eq. (44)] implemented as in
Fig. 21. The control to multiperiodic orbits turns
out to be graphically messy and hence will not be
further discussed here.

(I) Controlling the chaotic trajectory to a
period-1 orbit.

Recall from Fig. 20 that the Duffing equation has
multi-periodic orbits. With the parameters py =
04, p =-11, g=0.21, and w = 1.8, the solution
trajectory of the equation is chaotic, and with the
parameters p1 = 0.4, po = —1.1, ¢ = 0.62, and
w = 1.8, the equation has a period-1 solution. The
goal here is to control the chaotic trajectory of the
system to the period-1 orbit.

Figures 22(a) and 22(b) show how the contral
affects the trajectory of the Duffing system, with
p1 =04 po=-11,¢9 =21, and w = 1.8. Simr
ulations show that the originally chaoctic orbits can
actually be changed to become nonchaotic and be
eventually driven to the target trajectory. In these
simulations, the control gain is chosen to be rela-
tively large (K21 = 50.0), as explained above, in
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Fig. 22.  Controlling Duffing system to a period-1 orbit. {Figure from Dong & Chen [1992b], courtesy of IEEE; (© 1992 IEEE.)

order to dominate the oscillating term g cos(wt)
in the original equation and to obtain better con-
trol effect. To show more clearly what happens
after applying the control, the region of the target
trajectory is enlarged and displayed in Fig. 22(c).
The trajectory is plotted after most transients have
decayed.

(II) Controlling the chaotic trajectory to a
period-2 orbit.

The feedback controller designed above can also
drive the chaotic trajectory of the Duffing equation
to its period-2 orbit. Recall that with the parame-

ters py = 0.4, pp = —1.1, ¢g= 2.1, and w = 1.8, the
solution trajectory of the equation is chaotic, and
with the parameters py = 04, p; = —1.1, ¢ = 1.498,
and w = 1.8, the equation has a period-2 solution.
For this control purpose, a high gain Ky = 50.0 is
used. The simulation results are shown in Fig. 23.

4.3. Controlling Chua’s circuit

Chua’s circuit is a simple, yet, interesting, electronic
system which displays very rich and typical bifurca-
tion and chaotic phenomena such as double scroll,
dual double scroll, and double hook [Matsumoto,
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Fig. 23. Controlling Duffing system to a period-2 orbit. (Figure from Dong & Chen [1992b], courtesy of IEEE; (© 1992 IEEE.)

1984; Matsumoto ef ol., 1985; Chua et al, 1986;
Wu, 1987; Chua, 1992; Kennedy 1992]. The circuit
consists of only one inductor (L), two capacitors
(C1, C3), one linear resistor (G) and one piecewise-
linear resistor (g), with the dynamics described by

Croc, = Glvg, —ve,) — 9(vey )
021."6'2 = G-(UG:[ - UC’z) + iL ’
Lif_, = =V 4

(46)

where vg, and vg, are the voltages across C and
C; respectively, ¢y the current through the induc-
tor L, and the v-i characteristic of the nonlinear

resistor is
g(vol) :g(UCh; mp, ml)

1
+ = (ma —mg)(|vg, +1] - |vg, — 1)

2

with mg < 0 and m; < 0 being some appropriately
chosen constants [Matsumoto et al., 1985].
Reformulate the circuit equation in the follow-

ing form:

=mpvey

T =pl—z +y— f(z)],
y=z-y+z,
= —qy,

(1)




PEE

i'where p = (C2/Cy) > 0 and g = (C2/LG?) > 0,
' and corresponding to the g(ve,) given in the above,

! f(z) is represented by

f(z) = g(=z; mp, my)

1
= mha + 5(mi —mp)(jz + 1] = | = 1D,

" where mj = mo/G < 0 and m} = my /G <0.

Since its first introduction, Chua’s circuit and
- Chua’s circuit family have been under considerable
 jnvestigation as to its dynamical, analytical, ex-
- perimental or implemental aspects. The nonlinear
- resistor has now been integrated as an IC chip. Re-
- cently, the problem of controlling chaos in Chua’s
circuit has attracted much attention. - We briefly
discuss in the following some of the control meth-
' ods developed for Chua’s circuit, and it should be
" interesting to see how this same problem is studied
" from different angles by various researchers.

4.3.1. Linear state feedback control

The following controllability result, using only lin-
ear feedback, has been established by the present
authors [Chen & Dong, 1993a:

Theorem 2. Let (%, 7, Z) be the unstoble limit
cycle of Chua’s circuit described by Eq. (47) above.
Then, the chaotic trajectory (z, y, 2) of the circust
can be driven to reach the limit cycle by a simple
canonical linear feedback control of the form

I
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with

Ki3 > —-pmy, Kx2>0, and Kz 20,
where the control can be applied to the trajectory at

any time.

The following result was obtained later [Chen
& Dong, 1993b]:

Theorem 3. Let (F, 7, Z) be the unstable limit cy-
ele of Chua’s circuit described by Eq. (47). Then,
the chaotic trajectory (z, y, z) of the circuit can be
driven to reach the limit cycle by a linear feedback
control of the form

U1 r—Zz 0 0 0 T—F
u|=—K|y-y|=—|(0 Ko O} y=¥},
u3 z2—Z 0 0 0]lLz2—=%
(49)
provided that
0< € Kog < ——2
my+1 7~ 2= mi+1

These two theorems only provide sufficient con-
ditions, where, for example, the condition on Kz,
is not always necessary to be so restrictive. The
control input of the form equation (49) is among
the simplest linear feedback controllers that one can
use in Chua’s circuit. This simple implementation
translates into adding a linear resistor and an ap-

U1 o __j Ku 0 0 ‘T_ﬁf propriate periodic signal generator to the original
ug |=—K | y=§ |=- 0 K» 0 |{y-¥ circuit as shown in Fig. 24.
u3 -z 0 0 Ksllz—2 It is illuminating to examine the performance
(48)  of the linear feedback controller designed based on
]
G’ X G
e
]
+ Pt L +
o1 l_
Vg (+ e Ca2 L va_ _ C1 GrL
- . _‘
. -
- 1
1
1
: 1

Fig. 24. Implementation of the controlled Chua’s circuit.

( Figure from Chen & Dong [1993a].)
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Fig. 25. A solution trajectory of the controlled Chua’s cir-
cuit. {Figure from Chen & Dong [1993a].)

the above theorems and the control process shown
in Fig. 25. Under the influence of control, the tra-
jectory is “dragged” out of the double scroll strange
attractor and is then directed to gradually approach
and eventually reach the intended target, an inher-
ent saddle-type limit cycle of Chua’s circuit.

4.3.2. Targeting unstable steady states

" and coupling of systems

Essentially following the parametric variation
paradigm, Kapitaniak [1993] made the transforma-
tion p — p + p*(¢) for Chua’s circuit, where p*(t) is
regarded as a control function. Let x = [z y 2] .
To direct a given chaotic trajectory fo one of the
stationary points or equilibria {xg = [m 0 — m)7,
[000]T, [=m0m]" where m = (mg—m1)/(my+1))
of Chua’s circuit in a finite time T, he considered
solving the minimization problem of the regularized
cost functional

* ]‘ * € *
Jo(p*) = 5 1 x(T, p") — xakllf + 5 1P"l[p (50)

2
where k = 1, 2, 3, ¢ is a small constant, | - fig de-
notes a norm in R® and | - ||p & norm in a class P.

With the control input assumed to be a quasiperi-
odic function of the form

() = éc sin G?) ; (51)

where C;’s are constants, he was able to show that g
trajectory on the chaotic attractor of Chua’s circyjt
can be steered to the vicinity of a desired stationary
state in finite time.

From another perspective, Kapitaniak, Kocarey
and Chua demonstrated a method of controlling
chaos by coupling a simple, low-dimensional, usu-
ally linear, asymptotically stable, autonomous sys-
tem (controller) to the chaotic system [Kapitaniak
et al., 1993]. That is, coupling a chaotic system
% = F(x, u) with controller y = Gy, v) (p isa
system parameter) to form the augmented system

5{=F(x: ”)+MYY:
y:G(yr U)+Mxx!

where My and My are some constant matrices and
u and v are controller parameters. In their exper-
iment, by coupling the Chua’s circuit to a second-
order linear circuit they modified the circuit into
(Fig. 26)

[ Ciic, = Glvg, —vay) — 9(vey ),

Covg, = Glug, —vg,) +ir + G,,-('Ug) — Ve,
4 L%L = —vg, .

L(l)«igl) = —'Ug) ,

| 005 = —GWY +iD + Galvg, —v5).
(52)

with notation as defined in the figure. From this
augmented system, new stable periodic orbits can
be obtained in the neighborhood of the original at-
tractor. In other words, rather than stabilizing the
original attractor, the method stabilizes a desired
periodic orbit close to that attractor.

L :J:m _l,cz Ng L
i pe

Fig. 26. Chua’s circuit coupled with a two-dimensional lin-
ear circuit. {Figure from Kapitaniak, Kocarev & Chua [1993 )
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Fig. 27. (&) Root locus for the y-output case; (b) Root locus for the y,-output case with a lead compensator. (Figure from

Hartley & Mossayebi [1995].)

4.3.3. Classical regulators and
state space technigues

Using standard control theory methods, Hartley &
Mossayebi [1992, 1993] demonstrated the control of
Lorenz and Chua’s circuit systems.

In particular, they considered controlling a
polynomial variant of the Chua’s circuit where the
piecewise linear nonlinearity is replaced with a cu-
bic nonlinearity. When a voltage source is added
in series with the inductor L, the dynamics of the
controlled system is described by

N 1
& =ply—n(z) =p [y + 5@ - 23:3)] ,

Z.} =T—Yy +z, (53)

. 100

Z=—qutu= -yt
where p and q are system parameters and w« repre-
sents the control signal. Its equilibrium points are
found to be x4 = (v0.5, 0, —v/0.5), (0,0,0), and
{(—+/0.5, 0, +/0.5). The linearized system near the
two nonzero equilibria is

2

o1 |77 P %z o
m|l=] 1 -1 1| |w|+|0]w, (54)
2 100 21 1
- 0
0 7

where 2;, 1, and z; are the small perturbations from
equilibria. When y; is assumed to be the system
output, the small perturbation transfer function is
found to be

_Y(s) s+2
65 200 *
3 2
3 e Wt
S 4357+ st

Hy(s) (65)

=56 =

while the transfer functions for z; or 2; as the out-
puts can be found similarly. The corresponding root
locus can be plotted [Fig. 27(a)] where it can be ob-
served that the stability margin is small. In order
to improve the closed-loop performance, a lead com-
pensator Gi.(s) = K(s+1)/(s + 10) may be used,
which results in more robustness in sensitivity due
to a larger phase gain [Fig. 27(b)]. When the y-
variable is used for feedback, the transfer function
is most easily compensated and Fig. 28 shows that
the output y approaches the steady state as soon as
the control signal u(t) is activated at ¢ = 40.

Hartley and Mossayebi also demonstrated how
to design a controller for tracking the variable z of
the system based on the input-output and
state-space techniques. Using state space design
approach, the system considered is

qusesyEs (56)
z——@ +

- Ty ’

wW=r—u,

where r is the reference input. To determine the
optimal state feedback gain K for the controller
u=—Kx=—[ks ky k. kul]fz v = w]', a perfor-
mance index J = [f°(x'Qx + u' Ru)dt is used.
K = [1.61 0.92 1.68 — 1.0] can be calculated for
@ = I, R =1 and the steady state Zsieady = +0.5.
Figure 29 demonstrates the successful tracking.
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(a)

{b)

Fig. 28. (a) Control input u(t); (b) Output y(t). (For the case of lead compensation, K = 20, p = 10.) (Figure from Hartley

& Mossayebi [1995].)

(a}

Ounprn
-]

Fig. 29. Tracking achieved by optimal state feedback (reference input r = 0.5): (a) Control signal u(t); (b) Output x{t).

(Figure from Hartley & Mossayebi [1993].)

4.3.4. Occasional proportional
feedback control

As mentioned earlier (Sec. 2.2.3), the occasional
proportional feedback (OPF) method also belongs
to the category of engineering control approaches.
The OPF method can be used to control and track
periodic orbits as well as the non-oscillatory unsta-
ble state of Chua’s circuit.

In Johnson et al. {1993], this method was ap-
plied to Chua’s circuit. They chose to perturb the
magnitude of the negative resistance since “it does
not alter the natural frequency of the system in a
first order approximation.” The overall negative
resistance is obtained by letting a fixed nonlinear
resistance be in parallel with a voltage-variable re-
sistance (VVR) which is provided by a field-effect
transistor. The control of the system is achieved
by modulating this VVR. Since the system is

autonomous, an external synchronizing signal (with
frequency fsync) is used and is supplied by a sepa-
rate signal generator. The circuit implementation
is shown in Fig. 30. Similar to the diode resonator
case, the voltage Vx is sampled and fed back to
the window comparator where it is compared to
the offset control voltage Vie,. When the voltage
peak falls within the comparator, the gate switches
a signal proportional to {Vg peak — Vset), Which is
then amplified to become the feedback control volt-
age signal Viyyr. In the experiment, the circuit os-
cillates chaotically until it visits the neighborhood
of the fixed point (ie., inside the window), then
the proper feedback control signal ensures that on
the next cycle, the circuit solution trajectory ap-
proaches the fixed point. To control the circuit
so that the two basins of attractions of the double
scroll are visited, two separate controllers are used
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Fig. 30. Implementation of OPF control of Chua’s circuit.
(Figure from Johnson, Tigner & Hunt {1993].)

and a window comparator is set in each of the two
basins. By summing up the outputs of the two con-
trollers, corrections can be applied during visits to
both basins during one stabilized orbit.

Johnson & Hunt [1993] described how to con-
trol the unstable fixed point of Chua’s circuit by
using the OPF technique together with the contin-
uation method discussed in Carrol et al. [1993]. For
this purpose, the negative resistance is set such that
there is a dc voltage across the negative resistance.
A stable fixed point will become unstable or even
chaotic as one reduces the negative resistance. They
set foync near the frequency of the period-1 limit
cycle and adjusted approximately the set-point volt-
age Vet to the voltage of the steady-state solu-
tion. During the control process, Viet and feync are
adjusted again to stabilize the equilibrium point
with a minimum correction control signal, and the
oscillations are reduced to a level comparable to the
noise. As the negative resistance is decreased fur-
ther, the dc voltage level increases, and so does Vet
to ensure the minimum control energy. Repeated
adjustment of the negative resistance and Vet will
allow the fixed point to be tracked well into the
chaotic regime.

4.3.5. Distortion control

Genesio and Tesi have recently proven the possibil-
ity of using the frequency harmonic balance (HB)
technique for investigating complex behavior of non-
linear systems (prediction of chaos). They proposed
some simple structural (non-numerical) conditions
to recognize approximately the chaos onset, and
employed nonlinear feedback to suppress certain
chaotic phenomena [Genesio & Tesi, 1992, 1993].
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L{s} ¥(t)

n()

Fig. 31. A dynamical system in Lur'e form. (Figure from
Genesio & Tesi [1993).)

Their research has led to a design procedure which
can yield “qualitatively correct, though not exact,
results in a quite simple way” [Genesio & Tesi,
1993].

As for many unforced systems, a feedback struc-
ture (Lur'e system) like the one shown in Fig. 31
can be derived from the state equations of Chua’s
circuit, where L(s) denotes the transfer function of
the linear part and n(-) represents a single valued
nonlinear function of the system. Here, assuming
glve,) = —mave, + mavy, and letting y = ve,, it
follows that '

L(s) = p(s* +s+4q)
34 (1+p)s?+gs+pg’ 57)
m ™m;
)= —gu+ gt

where p and g are system parameters. After the
chaotic behavior of the system has been recognized
by means of HB analysis [Genesio & Tesi, 1993],
in order to control the chaos onset and to drive
the system to the fundamental periodic solution
yo(t) = A+ B sin(@t) (with constants A4, B, & > 0},
they considered using the structure shown in Fig. 32

chaotic system

{) L(s)

i - (0

conlroier

Lin) w() = Dhnlr

Fig. 32. Structure of the system for distortion control. (Fig-
ure from Genesio & Tesi [1993].)
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where the nonlinear feedback controller contains a
memoryless nonlinearity of the form

h
n(y)=> wmy' =mny+ oy + a1,
1

h = 3 for Chua's circuit)
(

cascaded with a linear filter L.(3) = s/(s+X). Then
the design problem reduces to determining A and
v, i = 1,2,3. Note that the term “distortion”
refers to the relative amount of the neglected higher
harmonics and is expressed by

_ lgoft) — wo(®)l2
A= el

where §g(t) is the steady state periodic output of
the open-loop path of the system in response to
yo(t). The so-called “distortion control” is to reduce
the system distortion for the same predicted limit
cycle, an approximate system solution derived by
the describing function method. This controller
design procedure preserves a number of systems
characteristics (equilibrium points, stability prop-
erties, etc.) and the control energy used is quite
low. Along this procedure, some of the structural
conditions for recognizing nonlinear behavior are re-
moved from the nonlinear feedback control system,
and this results in the synthesization of the desired
distortion control [Genesio & Tesi, 1993].

4.3.6. Non-autonomous version of
Chua’s circuit and its control

In addition to the study of the original Chua’s cir-
cuit, there have been some research activities on the
dynamics of the non-autonomous version of the cir-
cuit and its control [Murali & Lakshmanan, 1993].
Murali and Lakshmanan have been able to show
that their non-autonomous version of Chua’s circuit
(an external periodic signal generator is connected
in series to the inductor L) can also exhibit a rich
variety of bifurcation routes to chaos. They have
demonstrated the control of chaos in this forced
Chua’s circuit by adding a second periodic signal
generator in series with the previous one such that
the circuit becomes a quasiperiodically driven sys-
tem. The addition of the second signal source and
its proper adjustment seems quite effective in sup-
pressing chaotic oscillations in the circuit [Murali &
Lakshmanan, 1993].

4.4. A stochastic control approach

With their sensitive dependence on initial condi-
tions and on system parameters, the trajectories
of chaotic systems starting from any pair of ar.
bitrarily close positions will diverge exponentially
and become more and more uncorrelated with time,
This characteristic is reminiscent of the “noise-
corrupted” systems, where uncertainty or noisy
measurement in the system cause progressive loss of
information about the system states. This suggests
that the uncertainty associated with the chaotic sys-
tem state may be treated by a noise covariance ma-
trix, and that the control of chaotic systems may
be established in a manner akin to that of linear
nendeterministic systems.

In 1989, Fowler [1989] constructed a system, as
shown in Fig. 33, to bring out the “uncertainty”
associated with a chaotic system of the form

x = F(x, u), (58)
where the uncertainty on the state of the system is
represented by a covariance matrix

P=cov{x}=E{(x—E{x})(x—E{x})T}. (59)

The states x() of the chaotic system are sam-
pled at fixed time intervals ¢y, and these sample
values x(#;) are input to an estimation machanism,
which yields the state estimate X(¢x). The deter-
ministic optimal control block will then use this es-
timate to develop an optimal control u*(f) (tx < <
tr11). The assumptions made here are that there
is no plant noise {i.e., no noise within x = F(x, u]]
and the measurement noise or uncertainty associ-
ated with the system has Gaussian statistics. This
uncertainty is further assumed to be related to the
system dynamics through a second-order Fokker—
Planck equation

of(x,t) 0
Lo = 3 Rl w1

0 f(x, t)

1
Z i it B4 0

where f(x, t) is the joint probability density func-
tion of the state variables z;, and the diffusion
coefficients Qy; are obtained from P(tf) at the
beginning of a propagation cycle. The solution of
the above equation is used to calculate the covari-
ance matrix P(t;). Then, the covariance P(ty).
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" Fig. 33. Block diagram for the stochastic control system with a Kalman filter. (This figure is based on o picture in Fowler

[1989].)

the measurement noise covariance R, the first
moment E{x}(¢} ), and the propagated mean x(th)
will be input to the second-order estimator based on
a Kalman filter. The control technique was
applied to the Hénon-Heiles system, which, when
being controlled, takes the form

j':l =13,
Tz = T4
. ’ (61)
I3 = —x1 — 21122 + 10,
#q= 73—zt a5+ uz.
Regqulator Performance of System
Second Order Extimator, RE=0.01
o3
£
HPHmm_TiL
°n ] w0 12 Fo =0

Time (yec}

Fig. 34. System performance in terms of [|P||oo- (Figure
from Fowler [1989), courtesy of IEEE; (01989 IEEE.)

With the goal to minimize the cost function
J = J}? (z1u? + zoud)dt for some terminal time
tg > to, Fowler carried out some regulator and con-
trol problem-related experiments on the system of
Fig. 33. He reported that the system is not com-
pletely controllable, and the uncontrolled system
becomes unstable for values of total energy greater
than 1/6, which may cause the failure of the con-
trol algorithm. Nevertheless, his simulation results
show that employment of the Kalman filter does
improve stability of the system and significantly
reduce the uncertainty encountered in the system,
as depicted in Fig. 34, where the uncertainty is
quantified by the Lo-norm of the covariance ma-
trix P, || Plloo-

4.5. A two-degree-of-fmedom
robust controller

In 1991, Kameda, Aihara and Hori designed a two-
degree-of-freedom (TDOF') robust controller for the
purpose of reducing chaos of a control system
[Kameda et al., 1991]. The objective was actually
two-fold: to reject chaotic disturbance and to con-
trol a chaotic plant.

The configuration of this TDOF robust con-
troller is illustrated in Fig. 25(a), where 7, d,
and n are the reference input, disturbance, and
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Fig. 35. Configuration of the TDOF robust controller. (This figure is based on a picture in Kameda, Aihara & Hori [1991])

observation noise respectively, and

Q)
Cale) = B - 00)
Cals) = Gry(s) 1

1-Gry(s) Pu(s)(1-Q(s))’

in which P,(s) is the nominal model (system) of the
plant P, Gry(s) is the reference model of the com-
mard input response, and QJ(s) is a strictly proper
low-pass filter.

An equivalent block diagram of Fig. 35(a) is
shown in Fig. 35(b), where the part inside the
dashed boundary is to perform the nominalization
of the plant P.

To study the suppression of chaotic noise, the
disturbance d was produced by the well-known
Lorenz equations

&= 0-('_9" + y) 1
y=-zzt+7-Y, (62)
i=zxy— bz,

with o = 10, v = 28 and b = 8/3. In their first
simulation, z in the above equations was considered
as the chaotic disturbance to the system. It was
further assumed that

1 1 1
—  e——— P= =
v 1 T. ™ @

1475’

where T, T,,, and 7 are time constants. The numer-
ical results [Fig. 36(a) and 36(b)| indicate that the
TDOF robust controller so designed can nominalize
the plant and reject the chaotic disturbance.

In their second simulation, the effect of the same
TDOF controller on the chaotic plant represented
by the Lorenz equations has also been tested. The
results of Fig. 37(a) and 37(b) are for the case where
the output w is chosen to be the state z of the
equations, and the control input u is added to £ =
o(—z + y) to give £ = o(—z + y) + u. Apparently,
the chaotic plant is nominalized to some extent.

If w=y and v is added to §y = —xz + vz~
y, results similar to Fig. 37(a) and 37(b) can be
obtained. However, failure occurs if z is chosen a3
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Fig. 36. Response characteristics with chaotic disturbances (T = 1, Tn = 1). (Figure from Kameda, Aihara & Hori [1991],

courtesy of IEE of Japan.)

»
L4

¥

o e = a = - a n = = g
1 3

. b
l-

L)

=01
(a)

7 =0.001
(b)

Fig. 37. Waveforms of the input «' and the output w = ¢ under the influence of the TDOF robust controller (u is added to
i = a(—z +y)). (Figure from Kameda, Aikara & Hori {1991]), courtesy of IEE of Japan.)

the output and u is added to 2 = zy — bz of the
Lorenz equations, as reported in Kameda et al.
[1991].

5. Other Approaches and
Applications

Novel ideas and successful approaches to the control
of chaos and other related topics, as well as their
preliminary applications, are actually too many to
describe in a survey paper of modest size, although
most of them have just come out within the past
few years. For this reason, we select, probably with
personal biased preference, some of them to discuss
in this last section of the paper.

5.1. Controlling chaos in
distributed systems

A distributed artificial intelligence (DAI) system is
usually composed of a very large number of inter-
acting agents, and these many autonomous agents
are expected to complete a variety of tasks coop-
eratively. To successfully complete one task, the
individual agents have to make some important de-
cisions, such as: Which problem-solving strategy
to use? Or, with which other agents to interact?
These decisions may also have to be changed in
order to accommodate the new information that
keeps arriving. Such information is usually about
the state of the system and/or possibly about the
decisions made by the other agents. However, com-
plication arises if the information received by the
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agent is conflicting, ambiguous, incomplete, or
delayed. This “ill-conceived” information or mis-
information will lead the agent to “make poor de-
cisions when judged from a global perspective even
though they appear locally reasonable,” and chaos
may then take place, therefore hampering the
successful completion of the task.

There are a number of possible approaches in
the control of DAI systems. Many of them are oper-
ational only for systems of a few agents, which deal
with simple problems; they simply cannot cope with
the complexity and/or nonlinearity in more realistic
situations. Hogg & Huberman [1991] studied a sim-
ple yet representative DAI system, a computational
ecosystem, and proposed an effective procedure for
controlling the chaos in such a DAI system. The
procedure uses a reward policy which increases the
portion of agents that perform well, resulting in a
robust control effect for the overall performance of
the system,

5.1.1. Chaos in DAI systems

Assuming that the agents are of different types with
different performance characteristics, and therefore,
while making decisions they extrapolate informa-
tion in different ways to estimate the state of the
system. For purpose of exposition, let f,;(t) be the
fraction of type-s agents using resource 7 at the time
instant £. The total fraction of agents using resource
r is defined to be f©* =3, frs, and the total frac-
tion of agents of type-s is f¥P¢ =3 frs. Denote by
prs(t) the probability of that type-s agents will pre-
fer resource v while making the choice. Let, more-
over, G,(t} be the resource payoff for using resource
r, which depends on the number of agents using the
resource r. Note that only instantaneous resource
payoffs are considered here. Now the dynamics of
the computational ecosystem can be described by

Jéra = a(fstypeprs — frs), (63)

where o denotes the rate at which agents reevaluate
their resource choice. Usually, prs(t) is a function
of frs(t) through the payoffs G,(t). For the dis-
tributed system in which agents choose among two
resources with cooperative payoffs, the dynamics of
the fraction of agents using resource 1 is sufficient
to describe the whole system:

Jéls = a(Pls - fls) . (64)

In terms of the payoffs and uncertainty, the prob.
ability of that an agent will prefer resource 1 aver
2is

G1{f1s) -—G2(f13))] -

1
s — & 1
£l 2[+erf( %

where o is the uncertainty, which is taken as the dif-
ference between the perceived payoffs and the actua]
ones. This representation indicates that an agent is
more likely to prefer a resource when its payoff is
relatively large in a cooperative environment.

Information delay makes obsolete agents’
knowledge of the state of the system, and it can be
modeled by supposing that the payoffs in Eq. (64)
at time ¢ are those at time ¢ — 7, where T is the
time-delay:

p1s(t)=% [1—|-erf (Gl(fls(t_q-))?f2(fla(t_7)))] .

(66)

Incomplete or conflicting information leads to de-
viation of the agents’ perceived payoffs from the
actual ones, which becomes larger when the infor-
mation becomes less certain. In this kind of ill-
informed environment, as mentioned earlier, the
agents will tend to make poor decisions, which may
result in chaos in the global dynamics of the system.
Note that for simplicity, all agents are assumed to
have the same effective time-delay, uncertainty, and
resource preference. Figure 38 shows that with suc-
cessively increasing 7, the fraction fi,(f) undergoes
a series of behaviors of (a) converging to a sta-
ble equilibrium, (b) converging to a limit cycle, or
(c) being chaotic. The payoffs used in this exper-
iment are G,(t) = 4 + Tfis(t) — 5.333f2(t) and
Gas{t) = 4+ 3f15(t). Note that the initial value
f15(0) = 0 implies that all agents start with using
resource 2.

5.1.2. Using reward policy to control

chaos in DAI systems

To overcome the chaotic behavior like the one shown
in Fig. 38(c), Hogg & Huberman [1991] proposed to
introduce to a computational ecosystem a reward
mechanism that rewards agents according to their
actual performance. Regardless of its implementa-
tion, the reward mechanism is supposed to increase
the proportion of highly-performing agents and at
the same time decrease the number of those who
did not work well.




From Chaos to Order 13897

Iroh.

o 10
efy _ _Opiwat .
'65) : 0st
W | fu® oot
uaj '
518 024
IS'
e t
4) (a)
e
J YT
fla(t)
ARRRR ARR
.J e 10 % % 9 A
t
(b)
AL A ARk AR kARt
fls(t) 041 ’
AR B PR S h:
o 10 20 30 *~~0 so
t
; (c)

Fig. 38. Behaviors of fis(t) for successively longer delays 7, with o = 0.25. (Figure from Hogg & Hubermen [1991], courtesy
of IEEE; ©1991 IEEE.)
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Fig. 39. Behavior of f1,(t) with adjustment from actual payoff. ¢ = 0.25, r = 10. (Figure from Hogg & Huberman [1971],

courtesy of IEEE; (© 1991 IEEE.)

Note that the actual payoff received by type-
s agents is Gactuals = Dy freGr, whereas the total
payoff for all agents is Giotal = 3, fF=Gr, both nor-
malized to the total number of agents in the system.
Then the relative payoff or the probability of that
new agents will be of type s is

e = Gactual,s — Z:r fT‘BGr
¢ Gtotal Er :%GT,

which is proportional to the actual payoff. Taking
into account the reward policy, system dynamics
become

f-rs = a(f:ypep” - frs) + 7(f:esns - ff‘s) y (67)

in which the second item corresponds to the reward
mechanism, and v is the rate at which the actual
performance is rewarded. The physical meaning of
~ depends on what kind of reward mechanism is
used.

Now, it is easy to see that

f;eﬁ = (Z S0 — f:es) (68)

describes the dynamics of the overall resource use,
and

FPe = y(p, — fI¥Pe) (69)

represents the distribution of agent types, where
the number of those agent types who receive pay-
off greater than the average (i.e., agents with n, >

Pe) will increase and that of poorly performing
agents will decrease.

Sufficient diversity of agents is needed to make
the system stable. Hogg and Huberman took the
diversity to correspond to the different extra delays
used by the agents to estimate the current state of
the system. Namely, different types (of agents) cor-
respond to different assumed periods: type-s agents
will use effective delays of 7+ s when their decisions
are evaluated. They then ran the same experiment
as that of Fig. 38(c) but, this time, rewarded the
actual performance or actual payoff of the agents.
When the extra delay is within the range from 0 to
40 (time units), the dynamics generated by Eq. (66)
is shown in Fig. 39: fi1,(t) first goes through a
chaotic transient, then gradually settles down to
the equilibrium point which is unreachable in the
absence of a reward mechanism. It can be observed
that the introduction of perturbation does not af-
fect the eventual stability of the system.

The essence of Hogg and Huberman’s approach
is that rewarding well-performing agents in a large
collection of agents engaging in resource choices gen-
erates a high degree of diversity of agents, and this
diversity will eventually stabilize the system by elim-
inating chaotic behavior through a sequence of
dynamical bifurcations. Although many open prob-
lems remain, the concept of rewards does shed some
significant insight into the understanding and
design of complex distributed artificial intelligence
systems. '

5.2. Intelligent control of chaos

Intelligent machines are envisioned to be adaptive,
robust, and fault-tolerant. They are considered to
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‘pe good candidates for satisfactory operations of
:ponlinear systems embedded with a great deal of
“ancertainties.

: For industrial processes and power plants, where
“the processes to be controlled are usually distributed
‘and nonlinear due to their very nature with ex-

“tensive process and disturbance uncertainties, one

would desire a real-time intelligent control in place.
Artificial intelligent systems, expert systems,

“fuzzy systems, and neural network systems are
" among the most important intelligent machine tech-

nologies that have emerged. For an intelligent con-
trol configuration, expert systems may be used
as adaptive elements, fuzzy systems as decision-

' making components, whereas neural networks may
: be implemented as compensation elements. Neu-

ral networks are attractive for the control purpose

_ mainly due to their easy implementation, relatively

simple structure, robustness, and especially their

" ability to accommodate defective and/or changing

components in the overall system. Because neu-
ral networks are taught by examples, they usually
have fast adaptation rate, allow the processes to

_ be remodeled quickly, and can deal effectively with
- interacting parameters.

Frison [1992] studied the possibility of employ-

' ing neural networks to control the Duffing system

F+ p1& + pox + £° = g sin wt. A feedforward neu-
ral network is used to dampen the chaoticity in this
oscillator. The configuration of his simulation is
shown in Fig. 40.

There are various ways of constructing the de-
sired neural network. The number of the hidden
layer and the sizes of the input, output, and each
hidden layer all determine the performance of the
designed network. The input to the network is a
concatenated recent time history of the acceleration
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term: # in the chaotic Duffing equation. Noise is
injected into the system as this will make the system
more realistic.

The difference between the network’s prediction
of the acceleration and the acceleration calculated
through numerical integration is taken as the sys-
tem error. This error is passed back to the network
to be used for the backward propagation learning
(training). For the network controller to continu-
ously control the oscillator, the network is trained
after each sampling period.

In this simulation model, neural network and
scaling mechanism constitute the control device in
the system. An automatic gain control scheme
scales the oscillator acceleration to the values ac-
ceptable to the network. Since the range of the
network output is fixed, this output also needs to
be scaled to the largest acceleration term that may
be encountered. This scaled output value is then
being added to the Duffing oscillator, providing a
term that counters the displacement .

The performance of this neural-network
controlled system is measured by the average deci-
bels of suppression (of the error) observed after
learning enters the asymptotic region which is typ-
ical in backward propagation.

Frison identified three distinct stages of learn-
ing experienced by the control device. When the
system first starts, the network-response reflects
how the initialization of the network has been done.
As the network begins to learn the overall system
dynamics, its response begins to reflect this dy-
namics. In fact, at this second stage, the network
is learning to suppress higher-frequency oscillation
components. Finally, the network is able to sup-
press the last non-fundamental frequency compo-
nent, and it shifts to direct opposition of the

Build and
Initialize
network
, ' Generate Scale
atoe with network vilue
Taaln Shit Bror | gl Adjust scale
natwork Toput arrey acesk: G ’>

Fig. 40. Simulation of using neural network to control Duffing system. (This figure is based on a picture in Frison [1992].)
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underlying forcing function ¢ sin wt. Now the con-
troller’s output replicates the forcing term in the
Duffing equation, and the acceleration Z and dis-
placement z are also reduced to sine waves as shown
in Fig. 41.

It seems worth mentioning that there remain
some difficulties associated with using or designing
a neural network to control chaos. For example,
there is no general way of deciding what kind of
network topology to use for performing a particu-
lar control task, and the convergence of many of
the popular learning algorithms used by neural net-
works is not yet guaranteed. Also, Frison’s simula-
tion model seems to be far from being failure-proof,
and many other problems still remain. However,
using neural networks or other types of intelligent
machines to control chaos nevertheless have great
potential, and hence deserves further exploitation.

5.3. Signal encoding in a
chaotic environment

In early 1980s, Rapp, Mees and Sparrow argued
that frequency-regulated control systems may be
immune to chaos in the same way as they are im-
mune to noise; this proposition came out as a result
of their research on biological systems [Rapp et al.,
1981).

They first noted that many engineering systems
use A/D and D/A control devices to encode infor-
mation in the frequency. The practical benefit of
this encoding process is the increased resistance of

Signal trace as the network learns to control the overall system. {Figure from Frison {1992].)

the system to noise corruption and the enhanced
precision of the control. Rapp et ol referred to
this process as “oscillatory regulation (or control).”
They further contended that many of the biological
oscillations in physiological systems (e.g., cardiac
pacemaker, oscillations in secretary cells, and neu-
ral oscillations) represent some kind of biochemical
implementation of the A/D or D/A strategy used
for engineering systems, and that is how the sta-
ble and precise regulation of the biological system
is achieved.

To be more concrete, Rapp et al. proposed the
following protocol (shown in Fig. 42) for the general
biological oscillation, where the process has three
stages:

(i) the external analog demand signal is received
by the cell (e.g., the concentration of hormone
stimulating secretive cells);

(i) this input signal activates a mechanism which
generates a cellular oscillation, and the magni-
tude of this signal determines the frequency of
this oscillation (e.g., the membrane potential
oscillation); and -

(iii) this oscillation then drives a frequency-
dependent response mechanism, which in turn
produces the resulting output response, a cellu-
lar response (e.g., the neurotransmitter release
rates in neurons).

It was argued by Rapp et al., [1981] that this
protocol provides an efficient and noise-resistant
mechanism. The conjectures made therein, which
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Fig. 43. Block diagram of a feedback system modeling the biochemical process of calcium-cyclic nucleotide interactions. { This

figure is based on a picture in Rapp, Mees & Sparrow [1981].)

are of interest to this survey, are the following: the
conversion of the input signal to a cellular frequency
signal is stable against the corruption by the
input noise and, more significantly, even if the mech-
anism that generates the above signal conversion
is involved in certain internal chaotic motion, the
cellular frequency is “likely to be fairly stable and
to be an accurate reflection of the magnitude of the
input signal.” They stated that it can be shown
that this is typical for many metabolic control
systems.

In particular, Rapp et al used a simplified
model (Fig. 43) to describe the complex biochemni-
cal process of an oscillator circuit in Celliphora sali-
vary gland. In this model, the nonlinear component
Gni (') receives the hormone signal and the calcium
feedback signal, and is determined by the kinetic
properties of the adenylate cyclase. The linear part,
G(), represents the intermediate reactions between
the cyclic AMP synthesis by the adenylate cyclase
and the control of the cytosol calcium. An analysis
of this model using describing function method led
to the following two statements: (1) The oscillation
frequency is determined by G(-) and not by Gyr(-);
(2) If subject to noise input, the model (Fig. 43) is
approximately equivalent to a corresponding noise-
free system which has a different nonlinear compo-
nent but the same linear part. Based on the above
arguments, they declared that frequency encoding
in physiological oscillator is insensitive to noise and

that the information of the demand signal is likely
to be preserved even if this oscillation is of chaotic
type.

As an example, consider G(s) = 1/[1 + (s/n)]”
and Gyp{z) = zre~®. Also assume that n = 50 and
r = 22. The corresponding state-space description
is

{ i1 = [Gyir(zn) — 1R,

& = (Tim1 — TN, (i=2,3, ..., 50(=mn))

(70)

and the chaotic behavior of z1(t) is shown in Fig. 44.
It can be observed that with two different initial
conditions, while the two amplitudes become more
and more unrelated, their frequencies are almost the
same. Similar properties have also been observed
in other chaotic systems. Rapp et al. suggested
that “the principal feature of chaotic motion is fre-
quently a pronounced irregularity in amplitude” and
that the period of motion in many cases “does not
significantly vary from some average value’ even
though it does display seemingly random variations.
In other words, the underlying frequency is com-
paratively stable. Thus, they concluded that “fre-
quency encoded control networks need not suffer
a disastrous loss of control if the system enters a
chaotic regime while amplitude dependent control
systems would almost certainly do so” {Rapp et al,,
1981].
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Fig. 44. Chaotic behavior of the state z:1(t). (Figure from Rapp, Mees & Sparrow [1981], courtesy of Academic Press.)

The implication of their arguments is: if one
knows that chaotic behavior (whether it is desired
or not) is bound to occur in the system, he may pur-
posely encode the control signal in frequency (rather
than in amplitude) — in much the same way as that
biclogical oscillations encode demand signals in cel-
lular frequencies — to avoid possible destruction to
the signal by the chaos.

5.4. Using chaotic signals to
synchronize dynamical
systems

As contrasted with the usual approaches where con-
stant or periodic forces are used to control dynam-
ical systems, the concept of using aperiodic or even
chaotic signals as driving force is quite novel. The
research activity motivated by this new concept is a
perfect example that researchers have begun to look
for applications of the intrinsic properties of chaotic
systems. Plapp & Hiibler [1990] showed that small-
amplitude aperiodic signal can transform the rf-
biased Josephson junction from a stationary state
to the rotating state and result in nonchaotic dy-
namics. Pecora and Carroll, on the other hand, also
pointed out that there are other occasions “when a
chaotic signal would be preferable to a periodic sig-
nal as a drive or timing signal,” and they developed

a relatively more complete theory on synchronizing
dynamical systems with chaotic signals [Pecora &
Carroll, 1990, 1991; Carrol & Pecora, 1991].

5.4.1. Concepts of drive and

response subsystems

Pecora and Carroll suggested to first decouple an
n-dimensional autonomous system, x = F(x) into
two subsystems where the k-dimensional response
subsystem xp = Fr(Xp, Xg) (k < n) depends on
variables of the (n—k)-dimensional drive subsystem
%Xp = Fp(xp). One can move one step further
to classify the variables xp of the drive subsys-
tem into a subset of m driving variables that ac-
tually “drive” the response subsystem and a subset
of n—k—m variables that do not. This results in an
m-dimensional X4 = Fy(x4, Xnq) and an (n—k—m)-
dimensional X,4 = Fr4(X4, Xng). Correspondingly,
the responding variables x, form the response sub-
system %, = F.(x4, X,). The above decomposition
process is best illustrated as follows:

. F
:‘c:F(x)=>{ J-CD p{xp)
xr=Fr(xp, xr)
{ %g=Fy(Xq, Xnd), (1)
=>1{ | Zna=Fna(xe, Xnd),
%, = Fo(xq4, X},




