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Controlling (or ordering) chaos is a new concept, which has recently drawn much attention from
the communities of engineering, physics, chemistry, biomedical sciences and mathematics. This
paper offers an overview of the different interpretations and approaches in the investigation of
controlling chaos for various nonlinear dynamical systems. Relevant historical background is
provided, several successful techniques are described and analyzed with necessary verifications,
and some realistic yet instructive examples are included. The paper also aims at promoting
more efforts to be devoted to this challenging and promising new direction of research, as well
as its potential applications in nonlinear systems science and engineering.

LR e e e T e Tt R R R 1364
Parametric Variation Methods .......eeniiirii e 1366
2.1. An earlier AtEEIMPt ...\ v vttt e 1366
2.2. Parameter perturbation methods............oiiiiiiiiiiiiiiiii e 1367
2.2.1. The original approach ............ooiiiiiiiiiiiiiiiii 1367
2.9.9. An extension to the original approach...............ooooiiiiiii 1370
223, A diOdE TESONALOT vt v euee et eeanane et ean e nses 1371
Entrainment and Migration Controls .............. F TR 1373
3.1. Entrainment-goal control ............oooiiiiiiiiiiiiiiiienn e 1373
3.2. Migration-goal COmETOL ... ... eeeeunn ettt 1376
3.3. Entrainment and migration of the Ikeda map...........coooovieiiiinrenenenes 1377
Engineering Control APProaches . ..............oooiiiiiiieiinriaaiineneee 1377
4.1. TO feedback OF TIOb « oo v vttt et a e e e 1378
4.2. Controlling discrete-time and continuous-time chaotic systems via feedback ...... 1378
4.2.1. Controlling the Lozi SyStem. . ... .oouiieiiii e 1378
4.2.2. Controlling the Hénon system ..............cooenveenn. P 1381
4.2.3. Controlling continuous-time chaotic systems via feedback ................. 1381
Controlling Chua’s CITCUIL ... vvvvvnneeereeii e 1385
4.3.1. Linear state feedback control ........ ..ot 1387
4.3.2. Targeting unstable steady states and coupling of systems ................. 1388
4.3.3. Classical regulators and state space techniques .................ooooeeene. 1389
4.3.4. Occasional proportional feedback control..............coiviiiiiiiinenne. 1390

1363




1364 G. Chen & X. Dong

4.3.5. Distortion control ...... ... .. . e 1391

4.3.6. Non-autonomous version of Chua’s circuit and its control................. 1399

4.4. A stochastic control approach......... ... .. .. . i i 1399
4.5. A two-degree-of-freedom robust controller ................. ...l 1393

5. Other Approaches and Applications ............... ... ..., 1305
5.1. Controlling chaos in distributed systems .............coiiiiiiiiiiiiiiiiiiaan... 1395
5.1.1. Chaos in DAT Systems ...... ..ot e 1396

5.1.2. Using reward policy to control chaos in DAI systems ..................... 1396

5.2. Intelligent control of Chaos .........oouiin i e 1398
5.3. Signal encoding in a chaotic environment............ ... ... ... oo, 1400
5.4. Using chaotic signals to synchronize dynamical systems.......................... 1402
5.4.1. Concepts of drive and response subsystems................cooiiiiiine... 1402

5.4.2. Synchronizing dynamical systems ............ .. ..o it 1403

6. Summary and DiSCUSSIOMS. « . vttt ittt 1404
B.1. SUIMIMATY ...ttt ettt et e e e 1404
5.2, DISCUSSIOMS . « o e ettt t ettt et et e et e e e e e e e e 1405
Acknowledgment ......... ...t e 1405
R OTOIICES . . ottt e e 1405

1. Introduction

It has long been realized that most nonlinear dy-
namical systems do not follow simple, regular, and
predictable trajectories, but swirl around in a ran-
domlike and seemingly irregular, yet well-defined,
fashion. As long as the process involved is non-
linear, even a very simple deterministic model may
develop such complex behavior, which has now been
understood and well accepted as chaos and has led
to the dramatic development in nonlinear dynami-
cal systems theory and engineering,.

In the research areas of nonlinear dynamics, the
topic that is concerned with controlling or ordering
chaos has received ever increasing attention in the
last few years. This is perhaps no surprise — it
has always been human beings’ aim and motivation
to capture the laws which govern the abundance
of such natural phenomena and to introduce order
into it.

There certainly are good practical reasons for
controlling or ordering chaos. First of all, “oscil-
lations with little information content, or sudden
unpredictable excursions of physical variables, are
seldom likely to be desirable” [Mees, 1986]. Sec-
ondly, some chaos could lead systems to troubled
or even catastrophic situations. For example, the

chaoticity of particle dynamics is the cause of an
enhanced diffusion across the confining magnetic
field [Moon, 1987]. For a distributed artificial in-
telligence system, which is usually characterized by
a massive collection of decision-making agents, the
fact that an agent’s decision also depends on those
made by other agents leads to extreme complexity
and nonlinearity of the overall system. More often
than not, the information received by the agents
about the “state” of the system may be “tainted,”
in the sense of being deterministic but unpre-
dictable. When the system is loaded with imper-
fect information, agents of the system tend to make
poor decisions concerning the choice of an optimal
problem-solving strategy or cooperation with other
agents. This would result in certain chaotic behav-
ior of the agents and hence downgrade the perfor-
mance of the entire system [Hogg & Huberman,
1991]. The reader is referred to Moon [1987] for
more examples where chaos may have harmful con-
sequences. Naturally, chaos should be reduced zs
much as possible, or totally eliminated, in these sit-
uations. Many engineering designs seek to avoid or
eliminate the nonlinearity of the system and there-
fore the chaos, but usually at the expense of
radically modifying the original system. If a physi-
cal system can be satisfactorily described by a




nlinear mathematical model, then by exploring
model’s parameter space, analytically or nu-
rically, it is possible to know how chaos can be
oided by adjusting only a few key parameters, and
e system can be designed accordingly. However,
he system is required to operate in a particular
ion of the parameter space, in which chaos is in-
itable, or if it is very difficult, if not impossible,
access the system’s internal parameters (e.g., in
SI circuits), then one has to find some other ways
freeze out chaotic responses. Many possibilities
ve been suggested to achieve this.

Ironically, recent research shows that chaos may
tually be useful under certain circumstances,
d there has been a growing interest in mean-
gful utilization of the richness of chaos [Carrol
Pecora, 1991; Corcoran 1991; Freeman 1991,
Pecora & Carroll, 1991]. Ott, Grebogi & Yorke
[1990], for example, made an important observa-
tion that a chaotic attractor is actually composed
6f an extremely dense set of unstable limit cycles. If
any of these limit cycles can be stabilized, one may
desire to stabilize the one that characterizes certain
aximal system performance. The key is that, in
the situation where the system is meant for multiple
purposes, one may only need to switch among differ-
ent limit cycles in order for the operation of the sys-
tem to achieve these different goals. If, on the other
hand, the attractor is not chaotic, then changing
the original system configuration may be necessary
fto accommodate different purposes. Thus, declared
Ott et al., “when designing a system intended for
‘multiple uses, purposely building chaotic dynamics
into the system may allow for the desired flexibili-
ties” [Ott et al., 1990].

.Controlling chaos can sometimes be understood
as a process of stabilizing unstable periodic orbits
(limit cycles) in a chaotic system. Could the con-
trolled biological chaos have anything to do with the
way a human brain executes its task? For years, sci-
entists have been trying to unravel why our brains
“endow us with inference, thought, recollection, rea-
“soning and, most fascinating of all, laughter and
tears. It has been discovered that the interactions
among billions of nerve cells (neurons) and support
cells in our brains are in fact chemically stimulated
and controlled — chemicals called neurotransmit-
ters travel across the synapse to trigger chemical ac-
tivity of the neuron on the other side. Not enough of
one neurotransmitter or too much of another could
change our thinking, our mood, and even our muscle
strength. Still, the mysteries about our brains are
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not fully disclosed. Yet, from another perspective,
there are suggestions that “the controlled chaos of
the brain is more than an accidental by-product
of the brain complexity, including its myriad con-
nections” and that “it may be the chief property
that makes the brain different from an artificial-
intelligence machine” [Freeman, 1991].

Whether the purpose is to reduce “bad” chaos
or to induce the “good” variety, researchers in aca-
demic and scientific as well as industrial commu-
nities have felt strongly the necessity for system-
atic research on the topic of controlling chaos, and
hence have proposed and experimented with vari-
ous control schemes and applications, which may
have indicated that the study of nonlinear systems
dynamics and control has moved into a new era.
It is just remarkable to see that, at long last, re-
searchers from such diverse scientific and engineer-
ing backgrounds are joining together and aiming at
one central theme — bringing order to chaos. The
time has come to take an overview of the many dif-
ferent approaches and techniques developed in the
last few years for controlling (or ordering) chaos.

While trying to avoid being an indifferent com-
pilation of all the results available to the present
authors, this paper attempts to provide the reader
with pertinent arid objective points of view on con-
trolling chaos in an open and impartial manner. We
have taken the liberty to comment on the intentions
behind certain efforts, to evaluate the implications
of the methods and results, and to speculate about
generalizations or applications, if not to predict out-
right possible ongoing or future developments in
this new research direction of nonlinear dynamics
and control.

The presentations given in the following sec-
tions are not intended to be exhaustive, consider-
ing the ubiquity of chaos in nonlinear dynamical
systems and considering the large, yet still grow-
ing, volume of related literature available on the
topics under survey. The paper is essentially con-
cerned with various perspectives and methodolo-
gies, namely: basic ideas, methods, techniques, and
possible applications. We only include those ap-
proaches which allow us to illustrate what we be-
lieve to be their most telling features. Among the
presentations that follow, some are fairly detailed
accounts of every relevant aspect of the materials
involved; some are merely “snapshots,” where em-
phasis is placed upon the idea. and the procedure of
the control methods rather than their quantitative
analysis. In addition, many of the discussions in
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this article will be carried out within the context
of a particular practical system or mathematical
model. In order to gain a better understanding of
the particular methods that interest the individual
reader most, references to the original papers and
many of the others cited therein should often be
helpful. ‘

Our survey begins with parametric variation
methods in the next section, which have attracted
much attention from a number of research groups.
Section 3 is devoted to another successful method,
the entrainment-migration controls, which may ac-
tually be considered as an open-loop control ap-
proach. In Sec. 4, the problem of controlling chaos
is approached by virtue of conventional engineer-
ing controls. Section 5 presents several interesting
related topics: the control of chaos in distributed
artificial intelligence systems, a neural network ap-
proach, and a signal encoding method in a chaotic
environment. Some researchers are already well
on their way to utilizing the unique properties of
chaos; one such example in using chaotic signals
to synchronize dynamical systems is also reviewed
in Sec. 5. The last section summarizes the control
methods reviewed, serving the purpose of motivat-
ing and stimulating new efforts devoted to this chal-
lenging and promising direction of research.

2. Parametric Variation Methods

2.1. An earlier attempt

The idea of varying certain system parameter(s) to

control chaos may be traced back to Pettini’s pa-
per of 1988 [Pettini, 1988], where he pointed out
that a suitable relative variation of parameter may
be able to reduce or suppress chaos. His suggestion
was based on two observations: (i) parametric ex-
citation can stabilize unstable fixed points of linear
or linearized systems, and vice versa; (ii) the Jacobi
equation for geodesic variations is a linear equation
whose stable and unstable solutions correspond to
regular and chaotic motions. The relative param-
eter variation he used was time-dependent, in the
form p — p[1 + 7f,(t)], where 7 is a constant and
fo(t) = fp(t + T) for some T > 0. Pettini pro-
vided an example to show that chaos can indeed
be reduced or eliminated in a dissipative system by
means of parametric variation, where he considered
the Duffing-Holmes oscillator modeled by

&+ p1 — x + pzd = q cos wt, (1)

in which p1, p, q, and w are certain constants. This
equation is a special case of the more general fo,_
mulation of the Duffing equation

&+ p1% + pox + p® = q cos wt, (2)

named after the mathematician who first studied
[Duffing, 1918]. This equation can be used to de.
scribe the hardening spring effect observed in many
mechanical systems. Since its inception more thap
seven decades ago, it has emerged as one of the
most important paradigms for the study of chaos,
like the well-known van del Pol and Lorenz systemg,
The Duffing—Holmes equation can be used to de.
scribe the dynamics of a buckled beam, which is set
in a nonuniform field of two fixed permanent mag-
nets (when only one mode of vibration was consid-
ered). Pettini reformulated Eq. (1) in the form of
x = Fy(x) + €Fi(x, t) for some € > 0, namely:

B 0
Ty _ Y
[?J] B [w“p$3] +6[—%y+—gcos wt} ()

and remarked that if a forcing term together with
a dissipative term are added to x = Fj(x), then
the stable and unstable manifolds may have a
homoclinic intersection, and hence an infinitv of
subsequent intersections, which causes the chaotic
behavior of the oscillator to take place. In order
to achieve parametrically excited oscillations, he let
the parameter p — p(1 + n cos Qpt), where (1, is
a modulation or variation frequency. Taking into
account the perturbation, Eq. (3) becomes

[Z] - L: —p(1+ nycos th):c3]

0
. (4
+6{—%y+gcoswtj| )
€

In general, stronger perturbations are necessary
to produce measurable control effects. For exam-
ple, for a set of parameters (p, ¢, p1), 7 has to be
greater than some critical value, 7epitical, in order for
the homoclinic intersection between the stable and
unstable manifolds to be suppressed. For the set
of parameters ¢ = 0.088, p; = 0.154, w = 1.1 and
p = 4, he used n = 0.03. The interesting con-
sequence of varying p to p(1 + n cos Qpt) can be
observed from the ,~\ characteristics, where A is
the maximal Lyapunov exponent which indicates
the presence and strength of the chaos of the sys-
tem. When some “resonance” condition is satisfied,
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ig. 1. Maximal Lyapunov exponent (\) vs. parameter vari-
ation frequency (Qp). (Figure from Pettini [1 988], courtesy
of Springer-Verlag.)

a small relative variation of p is effective in reduc-
ing the chaos in the Duffing oscillator. As shown
in Fig. 1, the suppression of chaos occurs (A = 0)
when the perturbation on p is introduced with a
suitable frequency. For all the principal resonance
cases, i.e., at the first, second, and third harmon-
ics of Qg and so on, set ), = Qg, 292, 392,...,
where Qg = w = 1.1 for this particular set of pa-
rameters. As for the other cases of subharmon-
ics of OO, like Q, = 100 = 0.55 or Q, = 200+
%Qg = 2.75, the chaos is substantially reduced,
although not completely eliminated. Pettini con-
cluded that a 3% modulation of a parameter is able
 to make the chaotic dynamics regular, when the
- modulation frequency €2, is resonant with the forc-
- ing frequency w.

2.2. Parameter perturbation
methods

In 1990, Ott, Grebogi & Yorke [1990] developed
a more general method to control a nonlinear sys-
tem by stabilizing one of the unstable periodic or-
bits embedded in its chaotic attractor, via small
time-dependent perturbations of a variable system
parameter.

Their idea comes from the observation that a
chaotic attractor typically has embedded within it
a dense set of unstable periodic orbits. A heuris-
tic reasoning led them to the attempt of bringing
any of these orbits to a periodic one by continu-
ously applying small forces that would do the job.
Their general control technique has prompted some
more research work on this topic. In the following,
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we first describe the general approach of Ott et al,,
and then its variants and modifications suggested
by other researchers.

2.2.1. The original approach

To facilitate the presentation, denote the con-
tinuous-time autonomous system by

x(t) = F(x(t), p), (5)

where p is a system parameter accessible for ex-
ternal adjustment within a small range, say p* —
Apmax < P < p* + ApPmax With Appax being the
maximal allowable perturbation. Suppose that
when p = p* the system is chaotic.

Let £ be the coordinates of the Poincaré map
(surface of section), namely:

=P(£TL7 p))

€n+1

= P(f’m Pn) (6)

with p, = p* + Apy, |Apn| < Apmax if p is assumed
to be adjustable at every iteration of the mapping.
For simplicity, assume that the continuous-time sys-
tem described by Eq. (5) is three-dimensional, so
that the corresponding surface of section is two-
dimensional. One may then determine from the
map many distinct unstable periodic orbits within
the chaotic attractor and may select the periodic
orbit that maximizes certain system performance
which is defined according to the dynamic behavior
of the system. For example, one may choose to pick
a higher-order orbit as the desired one since it visits
more regions of the attractor, and this can be ad-
vantageous because different regions correspond to
different physical states of the system. In addition,
one may like to pick as many of them as possible.
Assume that £}, = P(£F, p*) is selected as the
desired unstable fixed point of the map P, corre-
sponding to the desired unstable periodic orbit of
the system F'. Then the iterations of the map near
the desired orbit are observed and the local proper-
ties of this chosen periodic orbit are obtained. To

§n+1

- do this, one needs to fit the iterations of the map

(near the desired orbit) to a local linear approxima-
tion of the map. A first-order approximation of P
near {1 and p* is given by

~&p + L(&n — &) + W(pn — P7), (7)

g'n.—i—l

or

A€n+1 ~ LA&, + wAp,, (8)
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where Aé, = & — &Fy Ap, = pn —p*, L
(8/0¢€,)P(£x, p*), and the partial derivative of the
orbit (w.r.t. p) is w = (8/0pn)P(£}, p*). The sta-
ble and unstable eigenvalues, A\; and A, satisfying
[As| <1 < |\, can be extracted from the approx-
imate local linear map L. The stable and unsta-
ble manifolds, denoted M, and M, are defined as
those trajectories which converge asymptotically to
the fixed point in a forward and backward time
propagation process respectively, namely: M, for
t —» 400 and M, for ¢t — —oo. The directions
of the local stable and unstable manifolds of the
fixed point are given by the eigenvectors e; and
e, corresponding to A\; and A, respectively. If f;
and f, are the contravariant basis vectors defined
by fs-e; =1f,-e,=1and f; e, =1£,-e; =0, one
can write L = )\ueuf,]— + )\SesfsT.

The dominant theme of the method of Ott
et al. is to monitor the system until its trajectory
comes near the desired orbit, i.e., till &, falls close
enough to £}, and then to change the nominal value
p* of the parameter p by a small amount Ap, thereby
changing the location of the orbit and its stable
manifold such that the next iteration (represented
by &n+1 in the surface of section) is forced back to
the local stable direction (manifold) of the origi-
nal fixed point £}. For the case of a saddle-type
fixed point, a figure given in Ditto, Rauseo & Spano
[1990] is very illustrative and is redrawn here (Fig. 2)
with only minor changes.

Now, assume that &, has come sufficiently close
to & so that Eq. (8) holds. For the next iteration
&n+1 to fall onto the local stable manifold of {7, the
parameter p, = p*+Ap, has to be chosen such that
the requirement £, - Aé, 1 = £, - (€nt1 — &) =0is
satisfied. Taking the inner product of Eq. (8) with
f, gives

f, - A&,
Apn = a1 o (9)
ée(p™)
a

(a)

(b)

where it is assumed that £, -w # 0. It shoulg
be noted that this calculated Ap, is used to pep.
turb the parameter p only if Ap, < Apmax. Whey
Ap, > Apmax, however, the perturbation shoyly
be set to zero. Also, when &,41 falls on the stabje
manifold of £}, the perturbation Ap, could be get
to zero. The orbit for the subsequent time instantg
(i-e., &nt2, Ents,...) is then supposed to approach
&y with a geometrical rate As. However, due to the
errors or inaccuracies incurred in the above calcy.
lation and linearization, the subsequent iterationg
may tend to fall off the stable manifold instead.
Therefore, a new Ap, has to be calculated for ey.
ery iteration to make sure that the subsequent £, is
approaching £. The above conjecture was tested
on a popular dynamical model, the Hénon system,
as shown in Ott, Grebogi & Yorke [1990].

In practice, exact mathematical formulation is
often impossible because of the complex and uncer-
tain nature of the processes and disturbances. For
the previously described method of Ott et al., the
most important feature overall is that it does not
require any model equation for the nonlinear sys-
tem. As a matter of fact, all the values needed
to calculate the control law can be obtained from
experimental data by the so-called embedding tech-
nique. To be more specific, suppose that the global
dynamical equations of the system, i.e., Egs. (5),
are unknown, but the experimental time series z(%)
can be measured. Then a delay-coordinate vector,
called an embedding vector, can be formed as

Zx(t)=[2(t), 2(t=7),..., 2(t—(d—1)7)]", (10)

where 7 is the time-delay and d the embedding di-
mension. The embedding vector provides enough
information to characterize the essence of the
system and can be used to obtain an experimen-
tal Poincaré map, hopefully a faithful one. For

&r(p)

fn+1

(©)

Fig. 2. The schematic of the parameter variation algorithm. (This figure is redrawn based on a picture in Ditto, Rauses &

Spano [1990].)




ample, one may let the map be the equation of the
rst component of Zx(t) being equal to a constant:
t,) = constant. This procedure yields the succes-
ve points &, = [2(tn — 7),- -+, 2(tn —(d —1)7)]T
the map, where £, denotes the coordinates in the
ap at the nth piercing of the map by the orbit [or,
e vector Zx(t)] and t, is the time instant at the
th piercing. It is then a straightforward process
, Jocate the periodic orbits from the experimental
ata. And the stable and unstable eigenvalues and
anifolds of the surface of section, at the chosen
xed point of the map, may all be experimentally
etermined. Varying p slightly and observing how
he desired fixed point changes its position, one can
so estimate the partial derivative of the map with
spect to p. In so doing, all the necessary values
eeded for calculating the perturbation value App
ave been obtained.

; The advantage that no dynamical equations are
‘needed seems to allow for the control of any chaotic
‘system, provided that a faithful nonlinear map
(Poincaré map) can be constructed for the system
ynamics. This method has attracted the atten-
tion of many physicists studying nonlinear dynam-
ics. Ditto, Rauseo & Spano [1990], for example,
demonstrated the first successful process for the
control of chaos in a real physical system, using the
control mechanism introduced by Ott et al. They
have been working with the so-called “smart mate-
rials,” which often have nonlinear reactions to ap-
plied forces. Their experimental system consists of
a gravitationally buckled, amorphous magnetoelas-
tic ribbon placed within three mutually orthogo-
nal pairs of Helmholtz coils. The ribbon changes
its stiffness in the presence of the varying magnetic
field of the coils, giving rise to nonlinear oscillations.
They first created a map of the ribbon’s chaotic at-
tractor by tracking its changing posture. A periodic
orbit was then picked from this attractor. When
the ribbon came close enough to that particularly
chosen orbit, they applied a small adjustment to
the parameter Hy. of the vertical magnetic field,
H = Hy + Hge cos(2rft). They have been able
to control the chaotic oscillations of the ribbon, ob-
serving stable period-1 and period-2 orbits in the
chaotic regime. These are illustrated in Fig. 3.
Peng, Petrov & Showalter [1991] later studied
an application of the same control method within
the context of chemical chaos. The underlying non-
linear system is a three-dimensional chemical model,
which has six reaction steps of rates given by law-of-
mass-action kinetics. The results of their simulation

Pt
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Fig. 3. Behavior of x(n) as the system is switched from no
control to control about the fixed point, then to control about
periodic orbit, and finally back to control about the fixed
point. (Figure from Ditto, Rauseo & Spano [1990], courtesy
of The American Physical Society.)

may have some implication (of controlling chaos) to
chemical or biological systems.

It is worth mentioning that Shinbrot, Ott,
Grebogi, and Yorke have further studied how pa-
rameter variation procedure can speed up the travel
of the system state from one position to another
[say, from xs to x; for the system described by
Eq. (5)], and a quantitative analysis is given to .
calculate the time needed for achieving the con-
trol [Shinbrot et al., 1990]. Note that this proce-
dure takes advantage of the extreme sensitivity of
a chaotic system to small changes of the system
parameter(s).

Consider the Poincaré map represented by
Eq. (6). On this map, a point &, is obtained by fol-
lowing the trajectory of Eq. (5) from x; forward in
time until the trajectory first intersects the surface
of section, and let & be the first intersection point
in the surface when the trajectory moves through
x; backward in time. Let & denote a very small
region (of linear size ¢;) around the target point &
(Fig. 4).

Without any adjustment on the parameter p,
the amount of time needed for traveling on the sur-
face of section from &, to the vicinity of & is 7 ~
(1/u(g7)), where p is the natural probability of the

chaotic set, or
1 D
~ | = , 11
’ (Et) ( )

if the probability scales with Lyapunov information
dimension D, indicating that T increases according

to a power law as the size &; decreases.
The procedure of Shinbrot et al. assumes that

the parameter p is allowed to be varied; it involves
forward-backward iterations. Let Ay and A_ be the
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Fig. 4. Obtaining £, and & on the Poincaré map.

positive and negative Lyapunov exponents obtained
for typical initial conditions on the attractor for the
map P, and assume that the size of the ergodic
region of the mapping [Eq. (6)] is of order 1. After
the first iteration of the map P, we have

~ aP(fS) p)

Ag
! Op  |p=pr

Apl y (12)

which is the length of a small line segment, de-
noted A&, through the point P({s, p*). One may
then iterate AE, forward (with Ap, = 0) until A&,
stretches to a length of order 1 (i.e., the same order
as that of the ergodic region), which occurs when
Aé,em* ~ 1, where n; is the number of forward
iterates used, and the time for the forward iteration
is 71 ~ ny ~ (1/A4+)In(1/AE&,). Similarly, we iter-
ate the region #; backward for ng times until this
iteration first intersects the above forward iteration
of Ay, and the time is 75 ~ ng ~ (1/|A-]) In(1/e¢).
Finally, iterating a point in the middle of this inter-
section backward for n; times will lead to a point
on A¢;, which is mapped to Z; in ny + ng iterations.
This allows us to find Ap; through Eq. (12).

Once Ap; is determined, and Ap, = 0 for n =
2,3, 4,..., the time for mapping from & to Z; is

1 1 1 1
7‘/:7' +T9 ~ —1n (———)-l————ln (—') , 13
I W vy R ek U R

as compared to the power law, Eq. (11). Note that
for very small A¢, and &, nq ~ 71 and ng ~ 7.

Note that this algorithm is also effective in the
presence of small noise or small modeling error,
as long as the variation Ap, is applied at each
iteration.

2.2.2. An extension to the original
approach

In a more recent paper Nitsche & Dressler [1992] ex.
tended the general control approach of Ott et ol t,
accommodate the situation where the time-delay
coordinates are used to reconstruct the attractoy
from a time series. For the application to experi.
mental systems, they proposed some modified ver.
sions of the original control algorithm, where thejy
argument is that, during the control process, the
parameter p is varied from p,_1 to p, at instant ¢,
and if the time-delay coordinates are used to ob-
tain the experimental surface of section, the map
P, then this map will depend not only on the cur-
rent parameter value p, but also on the previous
one, pn_1, namely,

n+1 = P(&ny Pn-1, Pn), (14)
with the assumption that t,11 —t, > (d—1)7, ie,,
the time distance between any two successive in-
tersections of the surface of section is bigger than
the time-lag window. In the case that only 2(%, —
tn—1) > (d — 1)7 is satisfied, the experimental sur-
face of section should take the form

€n+1 = P(g'm Pn-2, Pn—1, pn) . (15)
Linearization of Eq. (14) results in
) A§n+1 =~ LAgn + VApn—l + UApna (16)

where

3] 0
L= P& * % — * I
85” (§F7pap)a v apn_1P(£F’p7?)
and
u= o P(Eh, 7', )
_apn F,p’p .

The requirement that f, - A&,+1 = 0 then leads to
the following formula for perturbation:

which is a straightforward extension of the one given
by Ott, Grebogi & Yorke [1990]. Note here that for
simplicity, Eq. (6) is assumed to be two-dimensional
as it was in Sec. 2.2.1. As a remedy for possible
instability in the case that |(f, - v)/(f, - u)| = 1



hich causes the growing of Ap,, Nitsche and
ressler suggested the requirements
f,-A =0,
w " Adnt2 (18)
Appy1 =0.
hat is, at the time step t, the control algorithm
ould stabilize the step only at t,.2 but not at
+1. Moreover, the next control parameter change
jould be zero. The perturbation formula then

ecomes
£, AL
A _ 2 U n
o= N Gt v
£, - 19
‘”/\uApn- uw ¥ ( )

lz\ufu-u-%fufy
()\ufu'u+fu'v#0)-

Note that for the same reason which was stated in
Sec. 2.2.1., this perturbation has to be calculated
foreveryn=1,2,....

The modified algorithms, Eqgs. (17) and (19),
were tested on a simulation model of the Duffing
equation &+ p1&+x+23 = q cos wt. When written
as

d:lza:Z)
fg = —p1T2 — T1 — T3 + ¢ COS W3,
T3 =1,

z(t—T)

Fig. 5. A two-dimensional projection [z(t—7), 2(t)]" of the
chaotic attractor in the three-dimensional embedding space.
Poincaré map is picked at z(tn) = 1. (Figure from Nitsche &
Dressler [1992], courtesy of Elsevier Science Publishers.)
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ERE
z(tn - 27) -6
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-1.24
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~3.4-3.2 -3.0 -2.8 -2.6 -2.¢4 -2.2 2.0 -1.B -1§ -4

2(tn = 7)

Fig. 6. The chaotic attractor in the two-dimensional
Poincaré map & = [2(tn — 7), 2(tn — 27)]7 and the three
unstable fixed points £p, , £my, £5, embedded in the atiractor.
(Figure from Nitsche & Dressler [1992), couriesy of Blsevier
Science Publishers.)

the equation was numerically integrated and its dis-
placements x1 = z were taken as experimental time
series, while the attractor was reconstructed using
delay coordinates. In the simulation, the control
parameter was chosen to be p = ¢. The original
and modified control algorithms were then used to
stabilize the fixed point determined from the recon-
structed surface of section. When the influence of
the preceding variation App,_; is small, the effec-
tiveness of the original algorithm [Eq. (9)] and the
two modified ones [Egs. (17) and (19)] turn out to
be about the same. Otherwise, the modified ver-
sions work remarkably better (Figs. 5-8).

2.2.3. A diode resonator

Realizing a (large) N-periodic orbit in a chaotic sys-
tem usually involves more than one correction in
the long period. Multiple corrections are often nec-
essary, unless the N-period cycle is itself stable or
nearly stable.

In 1991, Hunt [1991] studied the parametric
variation method on a physical system, a driven
diode resonator. In this investigation, he has been
able to convert the chaotic dynamics of the sys-
tem into stable orbits with periods up to 23-driving
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5.0

2.5

2t go-

-2.51

-5.0 T T T
-5.0 -2.5 0.0 2.5 S.0

z(t—1T1)

Fig. 7. A two-dimensional projection [2(t —T), 2(t)]" of the
periodic orbit plotted in the three-dimensional embedding
space (The periodic orbit corresponds to the £r, in Fig. 6.)
(Figure from Nitsche & Dressler [1992], courtesy of Elsevier
Science Publishers.)

cycles. The system under investigation has a p-n
junction rectifier diode cascaded with an inductor.
When driven by an appropriate sinusoidal voltage,
the system exhibits chaotic phenomena. The block
diagram of this system is reproduced in Fig. 9.
Within -a specified window, the difference be-
tween the chaotic variable and a set point is used
to perturb the controlling drive. The system tra-
jectory may tend to stable orbits by itself. To find
these different orbits, one only needs to vary the
window, the set point, and the amplitude of the

amplifier. What makes his approach different from
that of Ott, Grebogi & Yorke [1990] is thy; |
relatively large perturbations are allowed in thi, |
method, so that high-period orbits can be handleg
Essentially a one-dimensional version of the algqg.
rithm by Ott et al., this approach has some cop.
ventional control engineering flavor since it employs
occasional proportional feedback (OPF).

~ As shown in Fig. 10, the peak current through
the diode is sampled as I,,. If I, is out of the
range of the window, no modulation signal is
applied. When I,, falls within the preset window,
however, the drive voltage is amplitude-modulated
with a signal proportional to the difference between
I, and the center of the window, thereby achiev-
ing the control of the chaotic signal. The difference
between I,, and the center of the window is passed
through an amplifier and so becomes the drive volt-
age signal which then amplitude-modulates the sig-
nal generator, achieving the control purpose. Yet
for low-period orbits, their approach seems to be
more experimental than systematic. It is not guar-
anteed that some particular periodic orbits (e.g.,
those with period-13, 14, 15 and 17, as mentioned
in Hunt [1991]) can be stabilized. It is worth men-
tioning that recently the OPF method or similar
approaches were employed to control chaos in a
globally-coupled, multimode, autonomous laser sys-
tem and in fiber lasers [Roy et al., 1992; Glorieux
et al., 1992].

)
2.5 .

-3.0 - e et e ~‘<.;'~.~,.... - ) . ‘.f.:

-3.5-
0.50

0.25 :

-0.25 A

~0.50

T T
o] S0 100

n

Fig. 8. The process of stabilizing £, is shown by the behavior of the first component (§»)1 of the points in the map. Three
control laws are initiated successively: Eq. (9) for n =0, ..., 200; Eq. (17) for n = 201,..., 400; Eq. (19) for n = 401,..., 600
(Figure from Nitsche & Dressler [1992], courtesy of Elsevier Science Publishers.)
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Fig. 9. Block diagram of the diode resonator system. (Fig-
ure from Hunt [1991), courtesy of the American Physical
Society.)

I

(2)

time (ms)

(b)
Fig. 10. (a) Double exposure showing the first return map

(Int1 vs. I,), in which the five overexposured dots represent

onator. Lower trace — control signal C. (Figure from Hunt
[1991], courtesy of The American Physical Society.)

the period-5 orbit. (b) Upper trace — current through res- -
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3. Entrainment and Migration
Controls

Another representative approach for the control of
chaos is referred to as the so-called entrainment and
migration control methods, proposed by Jackson
[1990, 1991a], Hiibler [1987, 1989], and their col-
leagues, Hiibler & Liischer [1989], Plapp & Hiibler
[1990], Jackson & Hiibler [1990], and Jackson
& Kodogeorgiou [1991]. This general approach
has been successfully applied to many complex
dynamic systems such as multi-attractor systems
[Jackson, 1991a], multi-periodic forcing control of
the one-dimensional logistic map [Jackson, 1990,
a Gaussian-related map [Jackson, 1991a], and the
two-dimensional Hénon and Ikeda maps [Jackson &
Kodogeorgiou, 1991].

Complex dynamic systems are frequently as-
sociated with multi-attractors, possibly of differ-
ent topological types, and many other complicated
dynamical responses to the environment, which can
be found in fluid and heat processes [Coles, 1965;
Fenstermacher et al., 1979; Glass et al., 1986]
optics [Lugiato, 1984], adaptive control processes
[Mareels & Bitmead 1986, 1988; Hiibler & Liischer
1990; Sinha et al.; 1990], neural networks [Grass-
berger & Procaccia, 1984], and biological systems
[Nicolis, 1987]. The entrainment and migration
control strategy allows one to impose a variety
of dynamic motions onto such complex systems.
Unlike the parametric variation methods discussed
in the previous section, this approach requires that
the dynamics of the system can be accurately
described either by a map or by an ordinary dif-
ferential equation.

3.1. Entrainment-goal control

The entrainment control method was first intro-
duced by Hiibler [1987] and used by Hiibler and
Liischer in the investigation of logistic maps and
nonlinear damped oscillations [Hiibler & Liischer,
1989]. Based on Hiibler’s method and the results
of Jackson & Hiibler [1990], Jackson [1991a] de-
scribed a generalized formulation of the approach
and addressed the following issues: (1) To what
kind of systems can this control method be applied?
(2) Given a nonlinear dynamical system of a
certain type, what kind of controls can be used?
(3) What are the limitations in initializing such a
control? (4) How to use this control method to
transfer the trajectory of a multi-attractor system
from one attractor to another?
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The generalized formulation described by Jack-
son [1991a] was based on the existence of certain
convergent regions in the phase space of a multi-
attractor system. In each of these convergent re-
gions, all the nearby orbits converge locally toward
each other. An important observation is that
although many of these attractors have positive
Lyapunov exponents, they nevertheless have such
regions in their basins of attraction where nearby
orbits generally converge, meaning that the Lya-
punov exponents are merely an average measure
of their dynamics. Based on this observation and
many well-studied examples, Jackson conjectured
that every multi-attractor system has at least one
convergent region within each basin of attrac-
tion. Moreover, in Jackson [1991b], he described a
method for determining such convergent regions
analytically by using the Routh-Hurwitz theorem,
yet without explicitly finding the roots of the cor-
responding characteristic determinant, where the
technique was successfully applied to both the
Lorenz and the Rossler systems.

Presumably, these convergent regions exist. It
is then possible to employ the system’s intrinsic
(local) dynamics to lead the orbits, say {z(n)} in
the discrete case, to approach (a limited set of) the
desired dynamics {g(n)} in the sense that

Jim [2(n) — g(n)] =0 (20)

In so doing, the system is said to be “entrained” to
this goal dynamics {g(n)}. The continuous version
of entrainment is defined in a similar manner. The
significance is that this goal dynamics can have any
topological characteristic such as equilibrium, peri-
odic, knotted, chaotic, etc., provided that the target
orbit {g(n)} is located in some goal region {Gn}
satisfying G, N C,, # ¢, where C,, (n = 1,2,...)
are the aforementioned convergent regions which
are system-dicated (a property of autonomous sys-
tems). For simplicity, assume that G, C C, with
the goal orbit g(n) € G, C Cp (n=1,2,...). Let
C = U2,C, and denote the basin of entrainment
for the goal by

B={o(0): lim |o(n) - g(n)| = o}. (21)

The entrainment is reliable even if the initial state
of the system (when the control is initialized) is only
known to lie in a prescribed “macroscopic” basin B,
and no information other than the initial states is
needed. Once a near-entrainment is obtained in the
sense that |z(n) — g(n)| < € for some small ¢ > 0,

another form of control can be applied to use the
migration-goal dynamics between different conver.
gent regions. This allows the system trajectory to
be transferred from one attractor to another. More-
over, the-method is stable against certain degree of
dynamical modeling error and noise disturbance.

To describe the method more precisely, consider
a two-dimensional map of the form

Xnt1 = F(xn), %o € R?. (22)

Let the goal dynamics be {g,} and S, be a switch
indicator defined by S, =0, n <0and 0 < S, <1
for n > 0. The controlled dynamic system was then
proposed to be the following:

Xnt1 = F(Xn) + Snlgn+1 — F(8n)], (23)

in which the control is initiated, with S, = 1, if
the system state has entered the basin B, i.e., x,, =
Xn, € B. Observe that the control u, := Sp[gn41 —
F(gy)] is of open-loop type, which is directly added
to the original system. Hence, it is neither any

- of the aforementioned parametric variation meth-

ods nor the closed-loop feedback control method to
be introduced in the next section. Moreover, since
S, = 1, the above controlled system has actually
reduced to

gnt1—F(gn) =Xp41—F(%Xn)=0, n=nc, nctl,. ..,

which implies that the desired goal orbit {g,} has
to satisfy the given system for n > nc.

An important particular example of entrain-
ment control is the one with the goal g, = go, an
equilibrium point of the system. In this case, the
basin of entrainment, B, is a convex region in the
phase space and is given by

B ={xq¢: |x0—go| <r(g0)},

where
r(go) =max {r : |xo—go| <r— lim |x,—go| =0} ,
T k—o00 )

In order for the system trajectory to be entrained to
the given equilibrium point go, however, the equi-
librium point must lie in a particular subset C of
the convergent region C. For one-dimensional sys-
tems, a general necessary and sufficient condition
for such “entrainability” (not restricted to equilib-
rium points) was provided by Jackson [1991a]: Let




C’={xn: a < xp<b, max
a<zn<b
here
M= - F
phax <b[F (zn) — F(ze)],
nd denote

G={gn: gn€ER, a+M < gn<b—M,n20}.
zo € C and
Zni1 = F(2n) + gnp1— Flgn), n=0,1,..,

then |z, — gn| — 0 as n — oo. Here, it is usually
difficult to determine the subsets C and G since
the conditions offered are “often over-conservative”

‘[Jackson, 1991a].
For the so-called uniform entrainment, which is

defined globally in the mean-value sense, Jackson
[1991a] also provided an estimate for the maximum
basin for the equilibrium point go: Assume that
F(-) is piecewise differentiable and go is in the con-
vergent region C. Suppose also that there exist two
real numbers —oo < a < b < oo such that

|F (o) — F(go)| < |o—go| for all a<zo <b, ZoF# 90,
and such that for finite values of a and b,
b—go=|F(b)—F(g0)| and go—a=|F(a)—F(g0)|-
Then, denoting by {a*, b*} the set of the roots of

{F(a*)—F(90)=bfgo, a* < go,
F(b*) — F(go) =a—go, 9o<?b",

the maximum basin of the uniform entrainment to
go is estimated by

Buax = {0 : max(a, {a*}) < zo < min(b, {H}-

Jackson & Hiibler [1990] studied the one-
dimensional logistic map

Tpp1 = cZn(l — Tn)

and found the basin of entrainment to its equilib-
rium point go to be

B={zg: 1—90—”6——1<£E0<go+0—1}.
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and b be two real numbers such that a < z(0), o < b, define

oF

ox

<1,M<£b—;¥'flnzo},

—

Outside the basin B, the solutions of the system
tend to the attractor _c. This basin is shown in
Fig. 11.

Jackson & Hiibler [1990] also investigated the
basin for a more complicated case where the goal

dynamics is of period-two, {gn} = {90, 91, 90,
g1,.--}. The basin in this case turns out to contain

a few disjoint portions, as shown in Fig. 12. As

boundory of B

G{temma 2)

(c-tl/2c (cetl2c %
Fig. 11. Basin of entrainment of the one-dimensional logis-
tic map. (Figure from Jackson [1991a], courtesy of Elsevier

Science Publishers.)
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Fig. 12. Basin of entrainment of the logistic map with a

period-2 goal. (Figure from Jackson & Hiibler [1990], cour-
tesy of Elsevier Science Publishers.)
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Fig. 13. Entrainment of the logistic niap. (Figure from Jackson [1991a), courtesy of Elsevier Science Publishers.)

can be seen from the figure, the disjoint portions of
the basin of entrainment constitute three arms from
the convergent region, and the other basins which
intersperse this basin of entrainment may be some
bounded or unbounded periodic orbits. It is inter-
esting to see that in the fourth arm of the figure,
corresponding to go ~ 0.5 and g1 — 1, the basin of
entrainment is not disjoint from the stable region.
Instead, it becomes vanishingly small.

The logistic map was used to illustrate the
topological generality of the system’s complex
dynamics [Jackson, 1991a], as shown in Fig. 13,
where all the goal dynamics {g,} are in the con-
vergent region. The controls were initiated (with
So = 1) at the first and the third vertical lines and
terminated (with S, = 0) at the second line. The
four figures (a)—(c) illustrate the system’s transi-
tions: (a) order — order, (b) chaos — order,
(c) chaos — chaos, and (d) order — chaos.

3.2. Migration-goal control

The purpose of the so-called migration-goal control
is to transfer the system dynamics from one conver-
gent region, say C;, to another, C; (i # j). There
are many reasons for such a state transfer. For
example, among the many attractors of a complex
system, some may have very different types of
dynamics (periodic, intermitric, chaotic, etc.) and
one of them may be most beneficial to a particular
behavior of the system. Thus, chaos may lead the

A S A (b)

-----

system to self-destruction, so that periodic dynam-
ics may be relatively “healthy.” Conversely, regu-
lar (non-chaotic) dynamics may be “unhealthy” in
the sense that they do not show sensitive response
to a changing environment and hence do not pro-
vide enough information about the system behavior
under certain circumstances.

In the migration-goal control, the strategy is
again ‘

— F(gn)],
n=0,1,..., N

Xn+l = F(xn) + [8n+1

where N is the switching time-index. Jackson
[1991a] studied a Gaussian-related map described
by

1/2 —2z2

1
==-re’/‘Tpe T,

Tp+r1=G(zn; T) 5

which is similar to the logistic map in the region
0 < z, < 1/2. This system has two attractors, 4
(chaotic) and Ay (periodic), and two bounded con-
vergent region, C; and Cs, in the basin of attraction
(which consists of two subregions By and Bz), and
two infinite convergent regions Coo(1) and Coo(2),
as shown in Fig. 14. For example, if the system tra-
jectory is in Bj (attracted to A;), one can choose
the equilibrium point go € C; as the goal and then
turn on the control, so that the trajectory z, — g0
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Fig. 14. Migration of the Gaussian-related map. (Fig-
ure from Jackson [1991a), courtesy of Elsevier Science
Publishers.) .

|

where ¢n = ¢ — (d/1+ g2, + g5)- If the goal is
taken to be the origin, g8 = (92,0, 9y,0) = (0,0),
and if |b| < 1, then it can be easily verified that
the basin is the entire phase space RZ2. Hence, the
control can be initialized at any time. But if not,
say when go = (1,0), the basin of entrainment is
very small and highly irregular, as shown in Fig. 15.
A migration-goal control of the Ikeda system from
a (strange) attractor A; to its equilibrium attractor
A is illustrated in Fig. 16.

Fig. 15. Basin of entrainment of the Ikeda map. (Figure
from Jackson & Kodogeorgiou [1991].)

Tpi1 = b(zn €08 On — Yn sin 0n) + gnt1 — b(gzn €OS Gn — Gy sin ¢r),
Y1 = b(Tn S0 On — Yn €08 On) + gnt1 — b(gz,n SID G — Gyn COS Pn)
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3.3. Entrainment and migration
of the Ikeda map

In addition to the one-dimensional maps discussed
above, Jackson & Kodogeorgiou [1992] have also
studied the entrainment and migration control for
an interesting two-dimensional map: the Tkeda map
described by
{ Tnt1 = b(zn c.os O, — Yn Sin O) , (26)
Ynt1 = b(zn sin O — yn cos On),

where 0, = ¢ — (d/1 + 2 + y2) with some con-

stant parameters b, ¢ and d. The corresponding
controlled Ikeda system is

(27)

—

¢+~ Control Ended

Fig. 16. Migration of the Tkeda map. (Figure from Jackson
& Kodogeorgiou [1992].)

4. Engineering Control Approaches

Most of the control methods discussed in the
previous sections were originally proposed by ex-
perimental and/or theoretical physicists and math-
ematicians, and none of them intentionally employs
the conventional engineering control strategies. One
may wonder whether there might be a more efficient




1378 G. Chen & X. Dong

solution to controlling chaos, which makes use some
of the well-developed control engineering method-
ologies. The answer is a qualified Yes, and there
actually has been a number of publications in the
literature which reported some success in this di-
rection of research [Fowler, 1989; Vincent & Yu,
1991; Chen & Dong, 1992, 1993a; Dong & Chen,
1992a, 1992b]. This approach is important in that
it not only offers a control engineering perspective
to the control of chaos but may have also laid some
ground work for a more systematic and comprehen-
sive study of the subject. This section is to discuss
such a control engineering approach, which, as will
be seen, is in principle quite different from the afore-
mentioned methods.

4.1. To feedback or not

Generally speaking, feedback controls, linear or not,
have been recognized to be very useful for stabiliz-
ing an unstable system while tracking a reference
input and/or rejecting uncertain disturbances, etc.,
see for example, Chui & Chen [1989, 1992] and
deFigueiredo & Chen [1993].

Conventional feedback controllers are designed
for nonchaotic systems. In particular linear feed-
back controllers are often designed for linear
systems. That a self-adapting feedback system is
resistant to chaotic signals is perhaps a statement
that requires no justification to a dynamics analyst,
but deriving a control algorithm that ensures the
chaotic system trajectory stay at its unstable equi-
libria may not be trivial at all. A chaotic system’s
sensitivity to initial conditions may lead to the im-
pression that in chaotic systems their sensitivity to
small errors makes them very difficult, and probably
impossible, to control using conventional feedback
methods over all of their phase space. Such an im-
pression may lead to the argument that once the
control is initiated there is no need to further mon-
itor the system’s dynamics, nor to feedback this in-
formation in order to sustain the control. Indeed,
it turns out that conventional feedback controls of
chaotic systems are generally difficult, but not im-
possible, as will be seen shortly.

The motivations for using conventional feed-
back systems to control chaos include that feedback
controllers are easy to implement, can perform the
jobs automatically after being designed and imple-
mented, can stabilize the overall control system
efficiently, and usually have significant physical
meanings.

The present authors have recently developeg
some new ideas and formalized some successfy]
techniques for controlling (or ordering) chaotic
discrete-time and continuous-time systems using
conventional engineering feedback controls, based
essentially on the rigorous Lyapunov argumentg
[Chen & Dong, 1992, 1993a; Dong & Chen,
1992a; 1992b, 1993b; Chen, 1993]. What have
been achieved include: (1) controlling chaotic
trajectories of some typical systems such as the
discrete-time Lozi and Hénon systems and the
continuous-time Duffing system and Chua’s circuit;
(2) controlling chaotic trajectories of such systemsg
to their unstable equilibria and/or unstable limit
cycles (even multi-periodic orbits); and (3) the feed-
back controller can be either nonlinear or linear,
This section is devoted to a description of these
basic ideas, design methods, and mathematica]
principles employed in the research, along with dis-
cussion on other engineering control approaches
taken by other researchers.

4.2. Controlling discrete-time and
continuous-time chaotic
systems via feedback

The feedback control techniques are discussed in
this section. Two representative examples, namely
the Hénon and Lozi systems, are first studied, which
are among the simplest second-order discrete-time
nonlinear models. The control of a continuous-time
system, the Duffing oscillator, is then discussed.

4.2.1. Controlling the Lozi system

The Lozi system is described by the following dif-
ference equations

z1(n+1) = filz1(n), z2(n)]
= —p|z1(n)| + z2(n) + 1, (28)
22(n+1) = fa[21(n), 22(n)] = gz1(n),

where p and ¢ are two real parameters.

As simple as it is, Lozi system is rife with
chaotic phenomena. Its two equilibrium points,
when the system parameters p and q are restricted
to be varied within certain range, are

_ 1
R

PR pFa-1£0),
To=t—uii——

PF(g-1)’




From Chaos to Order 1379

ey(n+1)
> za(n+1)

g
h

%] delay

(10] |

tg(ﬂ)

Consider, as usual, the first (unstable) equilibrium
point

_ o 1 q -
(CL']_,IL'2) (p_(q__l)ap_(q_:l)’ (29)
and observe that the determinant of the Jacobian
J|z, 2, at this equilibrium point (%1, Z2) of the sys-
tem is given by det[J|z, z,] = —¢, which shows that
the behavior of the Lozi system depends sensitively
on the parameter ¢g. By varying the value of ¢, var-
ious patterns of a “strange attractor” can be ob-
served [Chen & Dong, 1992]. For all such values
of p and g, the system equilibrium point [Eq. (29)]
is not a stable one since all the trajectories of the
~ system are wandering near but never approach this
equilibrium point.

Now consider the problem of designing a feed-
back controller to control the chaotic Lozi system
and drive its trajectory to the equilibrium point
(%1, Z2) shown above. To do so, as usually do in
feedback systems design, one may input a control

in the “canonical form” [g]u(n) with a linear feed-
back controller u(n) = —Kwv(n) for some constant
feedback gain K and some executive input v(n).
The following result has been established in Chen

& Dong [1992]:

Proposition 1. A mnecessary condition for the
local controllability of the chaotic Lozi system to its
equilibrium point (Z1, Tz) given by Eq. (29) is
v(n) >0 as n— o0,

where u(n) = —Kwv(n) is the feedback controller
applied to the system.

Note that if the control is applied when the tra-
jectory is within the basin, this condition is also
sufficient [Chen & Dong, 1992].

f Ed

Fig. 17. Block diagram of the controlled Lozi system [f1 and f2 are defined in Eq. (28)]. (Figure from Chen & Dong [1992].)

Conceivably, one may choose the (perhaps sim-
plest) control law

v(n) = z1(n) — 1.

Adding this control input to the original system
yields the-following “controlled Lozi system,”

{ z1(n+ 1) = —plei(n)] + z2(n) +1,
za(n + 1) = gz1(n) — K[z1(n) — 7).

This feedback configuration is shown in Fig. 17.
Clearly, it is necessary to ensure that the con-
trolled Lozi system be itself stable (otherwise, con-
trol cannot be performed and unexpected chaos may
occur) and to achieve the goal of driving the chaotic
trajectory of the system to the target. To deter-
mine the feedback control gain K the following suf-
ficient condition has been obtained [Chen & Dong,

1992]:

Proposition 2. A sufficient condition for a stable
feedback control of the chaotic Lozi system in the
form u(n) = —K[z1(n) — T], where (Z1, Z2) is the
same targeting equilibrium point, is that

max{q—1—p-sgn(Z1), g— 1 +p-sgn(Z1)}

<K< i(p2[sgn(§31)]2 +4q),

-2<p<2.

With this condition, the following computer
simulations have been carried out in Chen & Dong
[1992]: In Figs. 18(a)-18(d), p = 1.8 is fixed and
g = —1.0, 0.4, 0.997, and 1.0 respectively. To con-
trol the chaotic trajectories to the targeting equilib-
rium point, we have, by Proposition 2, the following
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Fig. 18. Lozi system trajectory before and after feedback control is applied. (a) A Lozi system with (p = 1.8, ¢ = —1), initial
position (—5000, 5000), N = 3000, Nc = 500, K = —0.195. (b) A Lozi system with (p = 1.8, ¢ = 0.4), initial position (0, (),
N = 2500, Nc = 500, K = 1.205. (c} A Lozi system with (p = 1.8, ¢ = 0.997), initial position (0, 0), N = 2500, Ne = 500,
K =1.802. (d) A Lozi system with (p = 1.8, ¢ = 1), initial position (0.4, —0.8), N = 400, Nc = 200, K = 1.805. (Figure from

Chen & Dong [1992].)

bounds for the gain K:
—02<K<-019 (K =—0.195is used in Fig. 18{(a)),
12<K< 121 (K= 1205is used in Fig. 18(b)),
1.797 < K < 1.807 (K = 1.802 is used in Fig. 18(c)),
18<K< 181 (K= 1.805is usedin Fig. 18(d)),

In these figures, NV is the total number of points ~ and Ne is the number of points which have been
(iterations) plotted before the control is applied, affected by the corresponding control input.
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- Fig. 19. Trajectory of the controlled Hénon system. p = 1.3, ¢ = 0.3, K = 0.9977. (Figure from Dong & Chen [1992a],
- courtesy of IEEFE; (©1992 IEEE.)

4.2.2. Controlling the Hénon system

Another interesting discrete-time chaotic system is
the Hénon system:

{zﬂn+n=émﬂm+mﬂm+1,

ra(n +1) = goa(m), (30)

two equilibrium points of the system is

(g—1)*+4p
2p

]

((q—1)+ q(q—1)+\/(q—1)9+4p)
2p ’

(31)

with real parameters p and g¢. It is known that the

most significant (and unstable) one, (Z;, £2), of the

Through the same procedure, one can verify

that the range for the feedback gain K is given by
the following:

max{q—1-2pd, ¢—1+2p21} <K <p*(Z1)’+¢,

—-l<pz; <1,
(32)

After numerous simulations, it was noticed
[Dong & Chen, 1992a] that, for certain values of
p and g, a direct application of feedback control
using K calculated from Eq. (32) can drive the tra-
jectory to reach the equilibrium point without trou-
ble, provided that the control is applied after the
system trajectory has entered the “basin” (a numer-
ically determined region, defined by |z1(n) — Z1| <

Ap < oo for some constant Az > 0 and indicated
by the two vertical lines in Fig. 19). In the figure,
the control is applied after n = N > 2000 iterations
and after the trajectory has entered the indicated
region. In this particular figure, Nc is the number
of trajectory points under the influence of control,
with N + Ne = 2500. It can be seen from this figure
that the controlled trajectory seems to be wander-
ing for a short period of time right after the control
input is applied, but very quickly it is driven to
their target positions.

4.2.3. Controlling continuous-time
chaotic systems via feedback

The general feedback approach just proposed is now
applied to an example of continuous-time chaotic
systems.

Consider again Duffing’s equation {Eq. (2)] with
p=11in the form

T=Y,
) 33
{y=—mm—x3—p1y+q008(wt), (33)

where we recall that p;y, ps, ¢, and w are systems
parameters. Some typical periodic and chaotic so-
lutions of Duffing’s equation, when displayed in the
z-y phase plane, are shown in Fig. 20, where p; =
0.4, po = —1.1, w = 1.8, and (a) g = 0.620 (period
1), (b) ¢ = 1.498 (period 2}, (c) ¢ = 1.800 (chaotic),
(d) ¢ = 2.100 (chaotic).
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Fig. 20. Periodic and chaotic orbits of the Duffing system. (Figure from Dong & Chen [1 992h], courtesy of IEEE; © 1992

IEEE)

As shown in the figures, with parameters p; =
0.4, p» = —1.1, ¢ = 2.1, and w = 1.8, the Duffing
system has a chaofic response.

For this system, one is interested in controlling
the chaotic trajectories [e.g., those of Fig. 20(d)]
when they appear, to one of the inherent unsta-
ble periodic orbits (limit cycles) of the system [e.g.,
that of Fig. 20(a) or Fig. 20(b}} by designing a con-
ventional (preferably linear) feedback controller. In
the above equation, let (Z, §) = (&(t), 7(t)) be the
target, one of its periodic orbits. One wants to be
able to control the system trajectory, so that for
any given € > 0 there exists a T, > 0 such that

o(t) - a) <e and i) -90OI<e

forallt > 1.. )
For this purpose, consider the conventional nonlin-
ear feedback controller of the form u(t) = h(¢; z, %),
where h is a nonlinear function in general, which is
added to the second equation of the original system.
Then one obtains the following “controlled Duffing
equation”:

T=1Y,
{ ¥ = —pax — =% — p1y + g cos(wt) + h{t; =, T).
(35)

Observe that the periodic orbit (%, 7) is itself a solu-
tion of the original equation. Subtracting Eq. (33),
with (z, y) being replaced by (Z, %) therein, from
Eq. (35), and denoting X =z —-Z and Y = y - 3,
one arrives at

X=Y- mnX,
. 5 3 (36)
Y =-poX — (z° — ) + h(z).
The design of the (nonlinear) feedback controller
h(z) will then be based on this model.
The following sufficient condition has been es-
tablished by Chen [1993a:

Theorem 1. For any (stable or unstable) periodic
solution & of Duffing’s system, let the (feedback)
control law be

u(t) = —K[z(t) — 2(t)] + h(t; z, Z) (37)
with K > pa and h(t; =, T) satisfies

(i) h(t; z, 7) — 3zZ(z — %) € L1([t1, o0} x §) and
(11) uec Ll([tla 00)),

where 8§ is the domain on which the system is de-
fined. Then, starting from any point of the system
trajectory at t = {1 > to, the controlled trajectory of

the
orb




