dwhere F : R* — R", Fp : R** — R"*, Fp:
"R — R*, Fy: R"F = R™, Fp: RF —
. g*™ and F, : Rotm—k _, Rk

If the response subsystem is a stable one, its

trajectory X, (t) should be immune to small dis-

| placement of its initial conditions. That is, for a
i fixed set of drive signal from the drive subsystem, no
" matter where x.(tp) is, x,(¢) “will always converge
~ o the same trajectory and at each time always be
~ gt the same predictable place on that trajectory” as
- t — 0o. Mathematically speaking, if starting from
x-(to), the response subsystem X, = Fr(xq, X;) has
a trajectory x,(t), then starting from a nearby ini-
tial position x,(¢y), the same response subsystem
will follow the trajectory x.(tg), which obeys the
equation X. = Fy.(xg, X,). And the stability of the
response subsystem means Ax, (t) = X} —x,(t) — 0
ast—o00.

To probe the stability property of the response
subsystem, Pecora and Carroll started by first look-
ing at its variational equation

A.xr=5(:-_-xr=Ff(xd1 x;)_Fr(xd) xT) RJ"‘]I*?',-Ax‘r' y
(72)

where Jp, = (OF,/0%,)|x, is the Jacobian of the
X,-subsystem, assuming a very small Ax,.

The behavior of the x,-response subsystem de-
pends on the Lyapunov exponents of the above equa-
tion, which depend on the chaotic driving signals
x4 and are termed “conditional Lyapunov expo-
nents” in Pecora & Carroll [1991]. The negativity
of all these exponents will guarantee the asymptotic
stability of the response subsystem, which means
that the small displacement of adjacent trajectories
of this subsystem will eventually decay to zero as
time elapses. It is also assured by stability theory
that there exists a nonempty set of initial positions
x/.(tg) for the trajectory x;(t) to converge to *xr(t)
as t — o0.

5.4.2. Synchfomzing dynamical
systems

Pecora and Carrol defined x = F(x) (of Eq. 71) as
a heterogeneous driving system for the case when
the response subsystem differs from that part of the
drive subsystem, which does not offer any driving
variable, i.e., F. # Fpa. The system % = F(x) is
an homogeneous driving system if, after decompo-
sition, F, = Fpq. Homogeneous driving is closely
related to the concept of synchronizing chaotic sub-
systems. One way to construct a synchronizing
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chaotic system involves dividing a nonlinear sys-
tem into two parts: the xg4-subsystem, which will
be used for driving a response subsystem, and a
stable x,g-subsystem, which will not be used for
driving. Duplicating the x,4-subsystem results in a
third subsystem, the x/,;-subsystem, which will be
used as the response subsystem. This construction
process is

%= F(x) divide, { J:Cd=Fd(xd, Xnd)
Xna=Frna(Xd, Xna)
{ kq= Fy(Xa, Xnd) »
Xpnd=Fra(Xd, Xnd) s
g = Fna(Xd, Xng) -

(73)

duplicate
1

Then there is an open set of initial conditions
containing X,q(to) and x ,;(tp) for which the tra-
jectory x/ ,(t} will converge to xnq(t). That is, the
two subsystems X,,4 and x| ; are synchronized. Note
that the synchronization between the drive subsys-
tem (%4, Xnq) and the response subsystem (x.4) is
only possible when they are both driven by a proper
(chaotic) signal x4, which actually determines the
stability of x,4-subsystem. The above construction
process will ensure this stability.

As an example, one way of decomposition and
duplication of the well-known Lorenz system

:i?=0'(y—.'1:),
y=—xz+yr—Yy, (74)
z=uzy— Pz,

z(t)
2(t)

Fig. 45. Convergence of the z' component of the response
subsystem (¥, 2") to the z component of the (y, 2)-subsystem
in time series. (Figure from Pecora & Carroll [1991], courtesy
of The American Physical Society.)

w{
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Lorenz (yz) Drive

Lorenz {yz) Response

start H4

énd

Fig. 46. Convergence of the trajectory of the {3y, z’)}-response subsystem to the trajectory of the (y, z)-subsystem in phase
plane. (Figure from Pecora & Carvoll [1991], courtesy of The American Physicel Society.)

where o, 7, and F are system parameters, leads to
the following compound system,

[ =0y —z)

. drive subsystem,
y=-—-rz4+vyr—y Y

! i=zxy- 0z

V=—z+yr -y
2 =zy — B

} response subsystem,

(75)

where the subsystem (y, z) is indeed stable if one
checks its conditional Lyapunov exponents. Fig-
ures 45 and 46 clearly illustrate the gradual syn-
chronization of the (y', z')-response subsystem with
the (y, z)-subsystem in the drive subsystem, under
the driving signal z from the drive subsystem.

Pecora and Carroll also demonstrated a suc-
cessful synchronization on a set of electronic circuits
— the hysteretic circuit [Pecora & Carroll, 1991;
Carrol & Pecora, 1991].

6. Summary and Discussions

6.1. Summary

Controlling chaos is a scientific as well as engineer-
ing challenge. It is anticipated that with its promis-
ing initiation described in this survey, future
development of the subject will not only provide
satisfactory solutions to many old problems but also
bring novel ideas and techniques into the field of
nonlinear systerns dynamics and control.

We have described some existing efficient tech-
niques for ordering or controlling chaos, to offer
an overview of this challenging research direction.
In addition to describing the interesting parametric

variation method and entrainment-migration tech-
nique, we have also discussed how to design a
conventional linear or nonlinear feedback controller
to drive a chaotic trajectory of some well-known
continuous-time and discrete-time nonlinear dy-
namic systems to their (unstable) equilibria or
(multi-)periodic orbits, where the latter was recently
developed by the present authors. The parametric
variation approach is especially suitable for signal
processing and time series analysis since it does not
require a dynamic equation model for the chaotic
system, while the entrainment-migration and feed-
back control strategies are eflicient for physical dy-
namic systems described by conventional nonlinear
ordinary differential or difference equations. We
have also reviewed, albeit briefly, some other related
literature, including a stochastic control approach
for chaotic systems, a design of two-degree-of-
freedom robust controller for reduction of chaos,
ordering chaos of distributed artificial intelligence
systems with a reward policy, a neural network
strategy for intelligent control of chaos, a signal en-
coding method under a chaotic environment, and
some success in using chaotic signals to synchro-
nize nonlinear dynamic systems. Other related ref-
erences which we have known but not been able to
cover are collected in the bibliographic section of
this survey article for the reader’s information.
Although only second- or third-order systems
have been included in the above presentation, many
proposed approaches can be extended to large-scale
(higher-dimensional) systems. On the other hand,
many of the analyses developed for continuous-time
systems can be converted to the discrete-time set-
ting, and vice versa. All the techniques discussed
are valuable in their own rights, and many of them
have been verified theoretically and/or experimen-
tally. It should be pointed out, however, that the
achievements reached so far in developing the
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- methodologies of controlling chaos allow no single
~ approach to claim that it is all-embracing, or that

it is the only valid one. As a matter of fact, many of
the proposed approaches that we have discussed are
still in their early stage of development, and they
probably are only some pieces of the “puzzle.” In
light of this, when mentioning the virtues or draw-
backs of a particular approach, we have reserved
opinions and judgment regarding its overall com-
parative merit, and chosen instead to concentrate
on the idea, procedure, and possible application of
that approach.

6.2. Discussions

It is deemed that the general problém of control-
ling chaos in nonlinear dynamic systems deserves a
great deal of further research efforts. While pursu-
ing deeper understanding and further amelioration
of the existing control methods, we should be aware
of that new problems are still evolving, and we must
be willing to venture into any possible new avenue
that might lead us to better techniques for control-
ling chaos and its potential applications.

One can easily find many challenging open ques-
tions that need to be addressed. For example, the
reader may have observed that some of the pro-
posed control methods are based more or less on
intuition or experience rather than rigorous mathe-
matical arguments. The major shortcoming of this
is the lack of a universally operational theory for
a systematic analysis and synthesis of the control
methodologies. As may have been observed also,
many successful techniques are applicable only to
case studies and have to be further improved and re-
organized to establish a unified framework for gen-
eral settings. These challenges are therefore calling
for new endeavors in the theoretical and experimen-
tal investigation of the subjects and further devel-
opment of the control techniques.

There have been enough indications that engi-
neers and scientists have started tackling the
problem of using the very features of chaos. This
includes synchronizing systems with chaotic signals
(Sec. 5.4), performing chaotic signal processing
[Corcoran, 1991], database management based on
the science of chaos and fractal geometry {Cortese,
1992], using chaotic actions to control various kinds
of processes, and the attempt by the Prediction
Company in Santa Fe, New Mexico to understand
and predict financial market chaos [Berreby, 1993].
It will be exciting to see just how far we can go in
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this direction. Nevertheless, the realm, where the
developed, developing, or to-be-developed theories
on controlling (or ordering) chaos are applicable or
commercializable, seems to be beyond our wildest
imagination. For example, would it be possible for
the research on controlling chaos to benefit some as-
pects of current brain research? Can this research
help scientists discover methods for improving our
memory or creativity, and to develop better medi-
cine for mental disorders like depression, panic
attacks, and schizophrenia? Considering natural
disasters, would it be possible for us someday to
weaken or control a hurricane, once it has been de-
tected, and to direct it to some designated place, or
even more significantly, to generate electricity from
its otherwise disastrous power? These are some of
the pressing issues confronting us today. The im-
pact of successful answers to them would be enor-
mous and far-reaching.

If we have raised the awareness of the signifi-
cance of controlling chaos, and if we have generated
some excitement about what have been and can be
accomplished in this new direction of research, we
have then achieved the rest of our objectives which
motivated us to start the writing of this article.
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