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Theory of Resonance Optical Rotation* 

H. F. HAMEKAt 

Department of Chemistry and Laboratory for Research on the Structure of Matter, 
University of Pennsylvania, Philadelphia, Pennsylvania 

The theory of optical rotation has been derived by means of the quantum 
theory of the radiation field with special emphasis on the case where the fre- 
quency of the rotated light is in the vicinity of an absorption frequency of the 
sample that is being studied. It is concluded that for certain frequency ranges 
optical rotation is not a physically meaningful concept. 

I. IKTRODUCTION 

In a recently proposed theory of resonance fluorescence (1) we were forced to 
base our discussion on an application of the quantum theory of the radiation 
field (2) since it did not seem to be possible to derive the theory by means of 
semiclassical methods. A special case of this general situation, namely, optical 
and magnetic rotation spectra (3, 4), had been discussed previously using the 
same approach. We feel that it should also be possible to derive the Rosenfeld 
formula (5) describing ordinary optical rotat’ion, in a similar way; apparently 
this formula has only been derived by means of semiclassical arguments so far 
(6). This problem is not entirely trivial and we will discuss it in this paper. Apart 
from a purely academic significance, inherent in the rederivation of a well-known 
formula by means of a second method, the following discussion will also have 
some practical advantages. Our results will be valid also for the case where the 
frequency of the light that is rotated by a given sample is approximately equal 
to an absorption frequency of the sample’, in fact, our discussion will be mainly 
concerned with this particular situation. Therefore, we are able to determine the 
conditions under which optical rotation is a physically meaningful concept from 
a careful analysis of the process of measuring the optical rotation. 

The experimental situations that serve as bases for a theoretical discussion of 
either optical rotation spectra or resonance optical rotation are very similar but 
the questions that we seek to answer are quite different. It may be helpful to 
recall the comparison that was made in previous work (3). We consider a beam 
of linearly polarized light which passes through the sample which we are con- 
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certted with and then, on its way, meets a Xicol prism which pet-m.& only the 
passage of linearly polarized light with a direction of polarization perpendicular 
to that, of the incidcttt light. For a study of t,he optical rotat8ion spccttum \v(’ 
take the incident light as having a continuous freclucncy distSrihution, cotttaittit~g 
onr or motv of t,hr absorption frequencies vi, of thr sample, and we deteixtiitr t Iv, 
opt,ical lotat,ion spectrum by measuting the speckal intettait’y dist8tihution of tltt, 
rRiurttt light. The itttettsities that we measure at’r due t,o t#\\o diticrcttt rffcc-t s: 
first, t,hr tx)tatiott of the plane of polarizatiott and, second, t hr depolat-izatiotl or 
t&her thr rltatige from linear to elliptical polarixat,ioit, cart& by tllr sample. 
Ilo\\-r\.er, 11err wr aw riot pa&xlatIy itit8erestcd in thesr distinctions atttl 311 t Ir:tt. 
\vr srrk t#o tlrt~f~iniitie is the tot’al ititensity of the rfflhwitt light, siiw t I& is t 110 

on1.v cluantity that is measured. For a study of t)he optical mtation \vr taE;r t 11~1 
iticidrtit~ light, as tiionocltromatic or, more rsactly, as lia\4tig a spectml irttrtt5it~~ 
distt*it)utioii that) has a sharp maximum a~outid a ftqurit~y v,, wtiicIt is rloar to 
an absorpt,iott fwquency vA. of the sample. Kow we rot,atc the Nicol prism ttu~oltgli 
att angle I$ aitd we hope that, the intrnsity of the efflttent light, as a fuiirtiott of C$ 
has a minimum. The angle $,) for which this minimum is at,tSaittrd is thr optiral 
tx)tSntioii aiid t,lir niitiiti~ritti intensity of the light at +,, is a nirasure of tttr rt1311p~ 

iti polatizatioii of the light from litteat- to elliptical. Iti ttir ideal sitrtat.ioii tllis 
tiiiiiitnut~i intensity is cclual tjo zero or vrq- small; if it ~~cronirs compara~~tr n-it,li 
tltr ntasimtm~ intettsit,y of thr light,, it, is very difficult, to mrasut~ optiral tx)t:ttic,tr 
utid ttir latStrr is itot, any more a nicatiitigful physiral cltta,tttity. 

II. (ib:NEIiAL COYSIl)PX.~TIC)SS 

Wr consider a situat,ion Gtat has been estettsil-ely discttssed previously ( I, 
si, ,j )) namely, a system of particles that is described 1)~ a I~aniiltonian ;iC,,, , 
having a set, of rigenvalues tU , c,~ , with cotx~sponding t.igrttfmtct,ioits a+,,, , +,,, , 
attd a radiation field that is described by a Hamilt~onian TK’,, . We takr it tttat. 
hcfot-e a certain time t = 0, the system of particles is in it,s ground st,at,r, rot’t’r- 
spending to the eigen\-aluc tlI and the eigenfunction a,, ud t,hat, simrtltattc~ott~]?, 
thr t-adiat,ion firld is in a stationary state desctibrd t)y an rigen\alut t,,’ and :t 
stat’r \.rctor $,, AIt the time f = 0 the patkicks and the txdiation firId hepin to 

interact and the intei,action is described by a Hamiltonian .K~,,~ ~bvjottsly t]tr 
stat,ionat*y states of the combined syst,em of particlrs and tick1 (disrrgat-ding thr 
itttrractioit ) atr described by eigenvalues that, arc sttms of the eigeu\,a[ttra of 
!K,,, and .K.~ and by eigenfuttct~ions that, a1p products of thr rorrespottdittg rigrtt- 
frtnctiotts of K,,, and SC, . We are int,erested in ttlr .statrs (0, 0 1, CT,, x I :it1(1 

(0, hi I with the eigrttvalues attd rigenfunctions 
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Here the state vector I,$, describes the stationary state where a photon kx has 
been absorbed from the radiation field with respect to tiO ; its energy is 
CA’ = 

I 
EO - Jch. Similarly the state vector fix,, describes the situation where a 

photon & has been absorbed and a different photon k, has been emitted with 
respect to $0 ; the corresponding energy is E,& = co’ - kx + k, . For our purposes 
we may now represent the wave function of the total Hamiltonian 
X, -I- Xf -I- Xint at times t 1 0 as a linear combination of the functions of 
Eq. (1): 

The various physical properties related to the interaction between the particles 
and the radiation may now be expressed in terms of the coefficients b. The 
calculation of these coefficients b has been discussed elsewhere (I, 3, 4); we will 
comment on these calculations later in this section, but at this point we wish to 
mention (2) that always 

lim b,,i (t) = 0 (3) tern 

We may recall (2) that a photon X is characterized by a vector & , whose 
direction describes the direction of propagation and whose magnitude is equal 
to the energy of the photon, and by a unit vector ex , which denotes the direction 
of polarization of the photon. The quantum number nx represents the number 
of radiation oscillators X. Since we wish to study the situation where a beam 
of linearly polarized light interacts with a given sample, we may take it that the 
state vector $0 represents a stationary state that contains only photons that are 
polarized in one particular direction and that all have the same direction of 
propagation; we will choose the direction of polarization as the X axis and the 
direction of propagation as the Z axis. We will now distinguish between two 
classes of photons: (1) photons X, CL, or g with a direction of polarization along 
the X axis, and (2) photons X’, p’, or (7’ with a direction of polarization along 
the Y axis; we only consider photons with a direction of propagation along the Z 
axis. Apparently in the stationary state described by $Q all quantum numbers 

m’ , n,! and n,, are zero. 
The component of the radiation field in a particular direction in the XY 

plane, making an angle C#I with the Y-axis, is written as 

A,#, = sin+ C (qxAx + qx*Ax*) + cosd F (gx,Ax~ + &fAX*f) (4) 
x 

The total intensity of the light that is polarized in the 4 direction, which is the 
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inteusity that we would measure in the experiment described in Section I if KC 
ww to rotate the Kicol prism though an angle 4, is obtained as 

l($) = (\E(= ) 1 d$2 j \Ir(m)) 

iI@* = sirl” C#I C C (q~qrdkL4, + q,qF*AkX=lP* + qh*qr-4 h*d, 
A P 

where the function V?(t) is defined in Eq. (2). Because of I<:q. (3) and because 
of the‘ fact that the first double sum in Eq. (5) will only yield a nonzero rear& 
if x and p are equal, we may rewrite Ey. (5 1 as 

The coefficients bo,x,, represent situations where a photon X with it’s polarizat(ion 
in the 9 direction has been absorbed and a photon p’ wit’h its polarization in the 
Y direction has simultaneously been re-emitted. 

The theory of optical rotation will be developed by t,aking I<q. (6‘) as a basis 
and by substituting the results for bO,~,,t (x. j that were obtained previously (1 I. 
WC discussed the calculation of bo,~,,! for the situation where the system of par& 
cles, described in Section I by 3Ce, , consists of a large number N of identical 
molecules. We specifically considered the two cases where the molecules form a 
dilute gas and where they form a molecular cryst,al; since the former case is sonw 
what simpler we will restrict ourselves here to a discussion of the t,heory of 
optical rotation of dilut,e gases only. Before using our previous results for dilnt,cx 
gases (1) it is desirable to comment on them. 

For the sake of simplicity we will assume that the spectral intensity distribution 
of the incident light, that is, ALA as a function of I iA , has a sharp maximum for 
l< = X,,, so that ch Q = 1, ; the width of this maximum will be denoted by 6. 
90~2; we take it that one individual molecule at rest has a nondegenerate excit,rd 
stat,e with excitation energy Ii, = E,~ - t0 , which is close to I;,, , and that t,he 
cscitation energies of the other states of t,he molecule at, rest are so far removed 
from k,, that t,hey may be disregarded. Since the gas will be considered as an 
assembly of N noninteracting identical molecules, this particular nondrgrnrrate 
moleclllar st,ate will give rise to an N-fold degenerate excited statr of the gas \\-ith 
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excitation energy I?, because the excitation can be on either one of the N mole- 
cules. 

In previous work it was found that the calculation of &J, for the above situa- 
tion of an N-fold degenerate excited state involves the introduction of a damping 
matrix. It was shown (I) that the off -diagonal elements of this matrix are 
ordinarily not zero but that they become zero after we average over all possible 
molecular orientations. Even though this result in itself is correct it does not 
seem to agree with the theoretical and experimental work by Barrat (7) on 
multiple scattering. Barrat’s approach to the problem is somewhat different from 
ours, but his conclusion that the effective radiative lifetimes are increased by 
multiple scattering seems to indicate that the off-diagonal elements of the 
damping matrix are not necessarily zero. We believe that the discrepancy 
between Barrat’s work (7) and ours (1) may be explained by observing that in 
calculating bo,~,,? we should keep all molecular orientations fixed, so that the 
off-diagonal elements of the damping matrix are nonzero; it is only after the 
calculation has been performed in this way that we should average over the 
rotational motion of the molecules. Apparently our procedure, in which we first 
average the individual off-diagonal elements of the damping matrix over the 
rotational motion of the molecules and then calculate bO,hpf , is not quite correct. 
However if the gas is sufficiently dilute it is known that multiple scattering 
processes do not play a significant role in optical rotation so that our taking the 
off-diagonal matrix elements equal to zero may constitute a reasonable approxi- 
mation. At any rate, this approximation simplified the calculation of the ho,hp 
considerably so that we will assume that it is permissible in our theorv of ontical 
rotation. 

If we use the above approximation we obtain bo,h,,l as a sum of terms, each 
one of which refers to the excitation being on one of the N molecules. This sum 
is again evaluated by averaging over all molecular orientations but this procedure 
is not subject to the objection raised in the previous section, since now we 
average over the different orientations of all molecules at any one time and not 
over the orientations of one molecule at different times. 

In our previous work we did not consider the motion of the molecules SO that 
we neglected the Doppler effect and the collision broadening. We will show that 
the Doppler effect may be accounted for by introducing a suitable convolution 
integral. We will assume that the density of the gas is so small that the collision 
broadening is negligible. 

III. CALCULATIONS 

In order to evaluate Eq. (6) further it is profitable to write bo,h,,t (m ) as 

ba&’ (Q, ) = [/c&d - kx + ~@ir]-‘n:“Qx,~ (7) 



()hp’ = rL~1.“‘7~,,,~pf:ll,,, (&A,, 1 
(SJ 

r = :r?r (E,,,x,, 1 

The drfiuitions and calculations of the full&ions I . aud of the damping collstalrt, 
I’ have twen discussed previously (1, 3, 4). It is worth noting that Qx,S no longer 
depends on /LA and also that r is very small, not, only with respect to wlity. l)rlt 
alto wit,11 respecb to the damping constants y t,hat will 1~ illtrodrwtl later. Slit)- 
stit811tion of l<:(l. (‘7) into Eq. (C) yields 

T (4) = C rlh [sin’ C#J + sin 4 cos + C (X,, - 1;~ + I ?ifiI‘ ) ‘&, 

+ (k,, - kx - Igir)-‘(x,, - kA + Jpifir) ~*@J~~,~~ 1 
If WP introduce the real and imaginary parts, Rx,, and Shr, , respecti\.ely, of 
Q hp’ : 

Qw = Rx,,! + i&,~ (10 1 

WC obtain after straightforward integration of Eq. (9 j 
I (I$) = F nx[{sin+ + (&,.:‘fi.c) cosf$/’ + j (RhX, 7.~) cos+j”] ill 1 

It follows that t’he optical rotation mill generally be proportional t,o SAA, , whereat 
the depolarization, or rather the change from linear to elliptical polarization, is 
determined hy Rxh, . 

The calculation of the functions l7 ,I,~P~:U,U (&,,,A,,, 1, and consequently of the 
cluantities Qhp, , Rx,, and Sk,,, , has been discussed previously (1,3, .$ ) for dilute 
gases and molecular crystals. Our present calculation mill be concerned with 
dilute gases since here the results are somewhat simpler. We found (1, .3 I that, 

if WC neglect all off-diagonal elements of the damping matrix, as we discussed ill 
the previous section. Here the summation is to he performed over all molecules; 
t’he functions 4”’ and q&’ are the wave functions of the ground and excited states 
of molecule 7 and the operators are defined as 
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where the summations are to be performed over all electrons in molecule T 
and where the coordinates and momenta are defined with respect to a coordinate 
system that is fixed in space and has the same orientation for all molecules. The 
damping constants y were discussed in previous work. 

The sum of Eq. (12) may be evaluated by averaging over all possible molecular 
orientations and by simultaneously multiplying by the total number of molecules. 
For a cubic centimeter, containing N molecules, we found (3) 

&xxt = (47rkxN/3i) (k, - k, + >@iy)-‘U, 

u, = 9 ((40 I I’ I 62. (a I M I 40)) 
(14) 

where a means that we have to take the imaginary part. The operators are 
defined as the electric and magnetic moments 

p =e& 
3 

M = (el2m) c [ri X PA 
(15) 

The summations are again performed over all electrons in one molecule and the 
coordinates and momenta are now defined with respect to a coordinate system 
that is attached to the molecule. It follows after substitution into Eq. (11) 
that 

We will use this equation as a basis for our discussion of optical rotation. It 
seems that for a further evaluation it is necessary to know how sharp the maxi- 
mum is for nx as a function of kx , since we will obtain different results for the 
two cases that 6 < 3hfi-r and 6 Z- r’fi ,2 y, where 6 is the width of this maximum. 
However, it is pointless to consider the situation that 6 < $#-r since the Doppler 
effect, which we have disregarded so far, causes the lines to be always broader 
than y. The intensity distribution due to the Doppler effect is given by (2) 

I(k) dk = const. dk exp [- (k - ko)‘/ (6’)‘] 

6’ = (2k:/Mc2/3)“2 
(17) 

where (l//3) is the product of the Boltzmann constant and the absolute tem- 
perature and M is the mass of the molecule. Apparently we should amend Eq. 
(16) in order to include the Doppler effect; we may rewrite the equation then as 

exp [-(k, - kh)2/(6’)21 exp [- (kx - ko)2/S2]W+(kx) dkx dk, (18) 
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where, for the sake of brevity, we have denoted the expression between square 
brackets of Eq. (16) by W+(kh) and, for the sake of simplicity, we have taken 
the intensity distribution of nx to be Gaussian. In effect, we may replace l?q. 
(18) by 

I(o) @z s 
exp [--6>(kx - ke’J’]Ft’+(/~x) d/ix (ICI! 

where 6> is the larger of 6 and 6’ if 6 and 6’ are very different and 6> is of the 
order of magnitude of 6 and 6’ if they are about equal. In general, the line width 
6> is significantly larger than y. 

l+om the considerations in Section I it, follows that optical rotation is only a 
meaningful concept if the intensity as a function of the angle 4 has a measurable 
minimum. This is only the case if 

/ ko - li, j > 6> (xl I 

or, substit,uting l+:y. (17 j, 

j k, - k, [ > (21i02/M& I?, 6 (‘1 1 

Only if the Ooppler line breadth 6’ is very small do we t,hen have to impose the 
condition 

The ronsiderations in the previous sections are subject, to a serious rest.rictiolr : 
they are only valid for situations where the amplitude of the radiation field is 
approximately constant throughout the sample that we consider. This meatIs 
that they are only valid for samples where the rotation is rxt,remely small a11t1 
bhat they are not applicable to most sit,uat8ions where t,hr rotat,ions are mor(’ 
than a few degrees. However, we can remove this limitation by means of the 
following procedure: The sample that me wish to st,udy is subdivided into mat]! 
thin slices with their surfaces perpendicular to the beam of light, so that, in racll 
sliw t,hc rotation is very small and simultaneously each slice contains a larg(l 
numhc~r of molecules. For each slice separately the considrratiolls of the prc\-iolw 
sections are applicable and the total rotation of the sample may be obtained 
macroscopically by adding the successive rotatiolw due to each slice. WP fillet 
then from Kq. (16) that the total rot8ation & is given b! 

where 1 is thr t&al length of the sample through which the beam of light, travels 
and N is again t,he number of molecules ptr unit \-oh~mc. This rxpwssion ih 
equivalent to thr old Iiosenfeld formula (5, 6’ 1. 
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In previous work we also evaluated the quantity &Ax, for a molecular crystal 
(1). It was found that 1 Qxxr 1 for a crystal may be significant,ly larger than for a 
gas; however, it also followed that the analogue of U, for a molecular crystal 
then has a leading term which is imaginary instead of real. Apparently the 
relatively large intensities that may occur in the optical rotation spectra of 
molecular crystals are due to changes in polarization rather than to optical 
rotation. 

We may conclude that it is possible to describe resonance optical rotation by 
means of quantum field theory. If we neglect multiple scattering we find that 
our results agree with previous results (5,6), derived by means of semiclassical 
methods, if the conditions (21) and (22) are satisfied, otherwise optical rotation 
is not a physically meaningful concept. 
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