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Theory of Resonance Optical Rotation™
H. F. HamEkAT

Department of Chemistry and Laboratory for Research on the Structure of Matler,
University of Pennsylvania, Philadelphia, Pennsylvania

The theory of optical rotation has been derived by means of the quantum
theory of the radiation field with special emphasis on the case where the fre-
queney of the rotated light is in the vicinity of an absorption frequency of the
sample that is being studied. It is concluded that for certain frequency ranges
optical rotation is not a physically meaningful concept.

I. INTRODUCTION

In a recently proposed theory of resonance fluorescence (1) we were forced to
base our discussion on an application of the quantum theory of the radiation
field (2) since it did not seem to be possible to derive the theory by means of
semiclassical methods. A special case of this general situation, namely, optical
and magnetic rotation spectra (3, 4), had been discussed previously using the
same approach. We feel that it should also be possible to derive the Rosenfeld
formula (5) describing ordinary optical rotation, in a similar way; apparently
this formula has only been derived by means of semiclassical arguments so far
(6). This problem is not entirely trivial and we will discuss it in this paper. Apart
from a purely academic significance, inherent in the rederivation of a well-known
formula by means of a second method, the following discussion will also have
some practical advantages. Our results will be valid also for the case where the
frequency of the light that is rotated by a given sample is approximately equal
to an absorption frequency of the sample!, in fact, our discussion will be mainly
concerned with this particular situation. Therefore, we are able to determine the
conditions under which optical rotation is a physically meaningful concept from
a careful analysis of the process of measuring the optical rotation.

The experimental situations that serve as bases for a theoretical discussion of
either optical rotation spectra or resonance optical rotation are very similar but
the questions that we seek to answer are quite different. It may be helpful to
recall the comparison that was made in previous work (3). We consider a beam
of linearly polarized light which passes through the sample which we are con-
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cerned with and then, on its way, meets a Nicol prism which permits only the
passage of linearly polarized light with a direction of polarization perpendicular
to that of the incident light. For a study of the optical rotation spectrum we
take the incident light as having a continuous frequency distribution, containing
one or more of the absorption frequencies »; of the sample, and we determine the
optical rotation spectrum by measuring the spectral intensity distribution of the
efluent light. The intensities that we measure are due to two different effects:
first, the rotation of the plane of polarization and, second, the depolarization or
rather the change from linear to elliptical polarization, caused by the sample.
However, here we are not particularly interested in these distinetions and all that
we seek to determine is the total intensity of the effluent light, since thix is the
only quantity that is measured. I'or a study of the optical rotation we take the
incident light as monochromatic or, more exactly, as having a spectral intensity
distribution that has a sharp maximum around a frequency v, which i+ close to
an absorption frequency »; of the sample. Now we rotate the Nicol prism through
an angle ¢ and we hope that the intensity of the effluent light as a function of ¢
has a minimum. The angle ¢, for which this minimum is attained is the optical
rotation and the minimum intensity of the light at ¢u is a measure of the change
in polarization of the light from linear to elliptical. In the ideal situation this
minimum intensity is equal to zero or very small; if it becomes comparable with
the maximum intensity of the light, it is very difficult to measure optical rotation
and the latter is not any more a meaningful physical quantity.

II. GENERAL CONSIDERATIONS

We consider a situation that has been extensively discussed previously (7,
3, 41, namely, a system of particles that is deseribed by a Hamiltonian i, .
having a set of eigenvalues e, ¢, with corresponding eigenfunctions &, , &, |
and a radiation field that is described by a Hamiltonian 3¢, . We take it that
before a certain time ¢ = 0, the system of particles is in its ground state, corre-
sponding to the eigenvalue e and the eigenfunction @, and that, simultaneously,
the radiation field is in a stationary state deseribed by an eigenvalue ¢ and a
state vector ¢, . At the time ¢ = 0 the particles and the radiation field begin to
interact and the interaction is described by a Hamiltonian 3, . Obviously the
stationary states of the combined system of particles and tield (disregarding the
interaction) are described by eigenvalues that are sums of the eigenvalues of
¥, and 3¢, and by eigenfunctions that are products of the corresponding eigen-
functions of ,, and 3C,. We are interested in the states (0,0), (n, A+ and
(0, A with the eigenvalues and eigenfunctions
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Here the state vector y» describes the stationary state where a photon ky has
be;en absorbed from the radiation field with respect to o ; its energy is
e = & — k. Similarly the state vector ¥ deseribes the situation where a
photon k, has been absorbed and a different photon k, has been emitted with
respect to ¥ ; the corresponding energy is en, = ¢ — kx + k, . For our purposes
we may now represent the wave function of the total Hamiltonian
I + H; + Hine at times ¢ = 0 as a linear combination of the functions of

Eq. (1):

V() = boo(t) %0 + ; D b )V + }; D boou () For @)

The various physical properties related to the interaction between the particles
and the radiation may now be expressed in terms of the coefficients b. The
calculation of these coefficients b has been discussed elsewhere (1, 3, 4); we will
comment on these calculations later in this section, but at this point we wish to
mention (2) that always

lim b, 2 (t) =0 3)

>0

We may recall (2) that a photon ) is characterized by a vector k,, whose
direction describes the direction of propagation and whose magnitude is equal
to the energy of the photon, and by a unit vector e, , which denotes the direction
of polarization of the photon. The quantum number n, represents the number
of radiation oscillators A. Since we wish to study the situation where a beam
of linearly polarized light interacts with a given sample, we may take it that the
state vector ¥, represents a stationary state that contains only photons that are
polarized in one particular direction and that all have the same direction of
propagation; we will choose the direction of polarization as the X axis and the
direction of propagation as the Z axis. We will now distinguish between two
classes of photons: (1) photons A, u, or ¢ with a direction of polarization along
the X axis, and (2) photons X, ', or o’ with a direction of polarization along
the Y axis; we only consider photons with a direction of propagation along the Z
axis. Apparently in the stationary state described by s all quantum numbers
M, N and n,. are zero.

The component, of the radiation field in a particular direction in the XY
plane, making an angle ¢ with the Y-axis, is written as

A, = sin¢ ; (pAr + @ 4*) + cos ¢ }; (vAv + g AY) (4)

The total intensity of the light that is polarized in the ¢ direction, which is the
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intensity that we would measure in the experiment described in Section I if we
were to rotate the Nicol prism though an angle ¢, is obtained as

(@) = (¥(x) |47 ¥(0))
A2 =sin* o > O (pgudad, + gl A" + N NN
A ®

+ (jx*(]#*,l)\*;lu*) + 2 sin¢ cos ¢ Z Z , {ngu A
Ao

+ pamhAl + ol AT AL + g A
+ 0092¢ Zx' Zu' (gvgudndyw + Qx'q:’AwA:'
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where the function ¥ (¢) is defined in Eq. (2). Because of Lq. (3) and because
of the fact that the first double sum in Eq. (5) will only yield a nonzero result
if A and u are equal, we may rewrite Eq. (3) as
1) = Z n [sin‘g + ny'* sin ¢ cos ¢ Z Yoo ()
A I’y
. G
+ b:,)\u' ( ® )} + n')Tl cos” ¢ Z Z b”,)\n’ (o ,)blTM'(OC )J
wooo’

The coeflicients bo . represent situations where a photon A with its polarization
in the X direction has been absorbed and a photon y’ with its polarization in the
Y direction has simultaneously been re-emitted.

The theory of optical rotation will be developed by taking Iig. (6) as a basis
and by substituting the results for by (=) that were obtained previously (7).
We discussed the calculation of by, for the situation where the system of parti-
cles, described in Section I by 3C,., consists of a large number N of identical
molecules. We specifically considered the two cases where the molecules form a
dilute gas and where they form a molecular crystal; since the former case is some-
what simpler we will restriet ourselves here to a discussion of the theory of
optical rotation of dilute gases only. Before using our previous results for dilute
gases (1) it is desirable to comment on them.

Por the sake of simplicity we will assume that the spectral intensity distribution
of the incident light, that is, ny as a function of /&, has a sharp maximum for
k = Iy so that 2 _xnma = Ip ; the width of this maximum will be denoted by é.
Now we take it that one individual molecule at rest has a nondegenerate excited
state with excitation energy k, = e, — e, which is close to &y, and that the
excitation energies of the other states of the molecule at rest are so far removed
from &y that they may be disregarded. Since the gas will be considered as an
assembly of N noninteracting identical molecules, this particular nondegenerate
molecular state will give rise to an N-fold degenerate excited state of the gas with
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excitation energy k, because the excitation can be on either one of the N mole-
cules.

In previous work it was found that the calculation of by, for the above situa-
tion of an N-fold degenerate excited state involves the introduction of a damping
matrix. It was shown (1) that the off-diagonal elements of this matrix are
ordinarily not zero but that they become zero after we average over all possible
molecular orientations. Even though this result in itself is correct it does not
seem to agree with the theoretical and experimental work by Barrat (?) on
multiple scattering. Barrat’s approach to the problem is somewhat different from
ours, but his conclusion that the effective radiative lifetimes are increased by
multiple scattering seems to indicate that the off-diagonal elements of the
damping matrix are not necessarily zero. We believe that the discrepancy
between Barrat’s work (7) and ours (/) may be explained by observing that in
calculating bo . we should keep all molecular orientations fixed, so that the
off-diagonal elements of the damping matrix are nonzero; it is only after the
calculation has been performed in this way that we should average over the
rotational motion of the molecules. Apparently our procedure, in which we first
average the individual off-diagonal elements of the damping matrix over the
rotational motion of the molecules and then calculate bo . , is not quite correct.
However if the gas is sufficiently dilute it is known that multiple scattering
processes do not play a significant role in optical rotation so that our taking the
off-diagonal matrix elements equal to zero may constitute a reasonable approxi-
mation. At any rate, this approximation simplified the calculation of the o,
considerably so that we will assume that it is permissible in our theory of optical
rotation.

If we use the above approximation we obtain by, as a sum of terms, each
one of which refers to the excitation being on one of the N molecules. This sum
is again evaluated by averaging over all molecular orientations but, this procedure
is not subject to the objection raised in the previous section, since now we
average over the different orientations of all molecules at any one time and not
over the orientations of one molecule at different times.

In our previous work we did not consider the motion of the molecules so that
we neglected the Doppler effect and the collision broadening. We will show that
the Doppler effect may be accounted for by introducing a suitable convolution
integral. We will assume that the density of the gas is so small that the collision
broadening is negligible.

III. CALCULATIONS
In order to evaluate Eq. (6) further it is profitable to write bo. (*) as
boag () = [k — b + Y40AT] 02" Qrwr )
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with

127y .
nxUaparoo (Boag)
ML (Eoau)

The definitions and calculations of the functions {7 and of the damping constant
I' have been discussed previously (7, 3, 4). It is worth noting that Q. no longer
depends on ny and also that T is very small, not only with respect to unity, but
also with respect to the damping constants v that will be introduced later. Sub-
stitution of Lq. (7) into Eq. (6) yields

T = > ny[sin® ¢ + sing cos ¢ S (hwr — by 4 Lot Ty 'Oryr
A

Qs
r

il

(8)

I

+ (hy — kn — L5hD) Q5
+ 15cos" ¢ 3, Z (hyr — by A 18080 ke — by — 10D 7 Qh Q-

'3 a’
F G = b= 19R0) 7 (ke — ka + 15T Quldrat]
It we introduce the real and imaginary parts, R, and S,.., respectively, of

qu' :

{9)

Q)\u’ = R)\u’ + Z'S)\u’ (1”)
we obtam after straightforward integration of Eq. (9)
1) = > mlfsing + (Sw/fic) cosd}” + | (R hie) cos ¢l (11)
By

It follows that the optical rotation will generally be proportional to Sy, whereas
the depolarization, or rather the change from linear to elliptical polarization, is
determined by Ry .

The caleulation of the functions Uy, (Foae), and consequently of the
quantities @y, , By, and S,,-, has been discussed previously (1, 3, .4) for dilute
gases and molecular crystals. Our present calculation will be concerned with
dilute gases since here the results are somewhat simpler. We found (7, 3) that

e’ ‘)"rﬁ (o | %" | b Yu |y * :
Oy = = Z— p 2o Fr T oy T (12
o = e T fr — Fn + lnfz—y

if we neglect all off-diagonal elements of the damping matrix, as we discussed in
the previous section. Here the summation is to be performed over all molecules;
the functions ¢,” and ¢,” are the wave functions of the ground and excited states
of molecule 7 and the operators are defined as

- Z Pic €xXp (thnzj/fic)
(13)
77* Zp]'! exp (— ik Fie)
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where the summations are to be performed over all electrons in molecule 7
and where the coordinates and momenta are defined with respect to a coordinate
system that is fixed in space and has the same orientation for all molecules. The
damping constants v were discussed in previous work.

The sum of Eq. (12) may be evaluated by averaging over all possible molecular
orientations and by simultaneously multiplying by the total number of molecules.
For a cubic centimeter, containing N molecules, we found (3)

Qu = (@ArkaN/38) (bn — kn + Y4ifiy) " Us
Un =90 | P|¢n) (dn | M| o))

where g means that we have to take the imaginary part. The operators are
defined as the electric and magnetic moments

p =¢€ er
M = (¢/2me) ;[rj X pj]

The summations are again performed over all electrons in one molecule and the
coordinates and momenta are now defined with respect to a coordinate system
that is attached to the molecule. It follows after substitution into Eq. (11)
that

B . 4raN (b — kU *
I(¢) = ; m [(Sln ¢ S b FV 4 cos ¢>

+ <47rwa %ﬁ;yUn eos ¢>2]
3¢ (ky — kn)” + WY

We will use this equation as a basis for our discussion of optical rotation. It
seems that for a further evaluation it is necessary to know how sharp the maxi-
mum is for n. as a function of ky , since we will obtain different results for the
two cases that § < 147y and § = 14%y, where § is the width of this maximum.
However, it is pointless to consider the situation that § < 4%y since the Doppler
effect, which we have disregarded so far, causes the lines to be always broader
than y. The intensity distribution due to the Doppler effect is given by (2)

I(k) dk = const. dk exp [— (b — ko)*/ (8')7]
& = @k'/McB)""

(14)

(15)

(16)

17)

where (1/8) is the product of the Boltzmann constant and the absolute tem-
perature and M is the mass of the molecule. Apparently we should amend Eq.
(16) in order to include the Doppler effect; we may rewrite the equation then as

I(¢) = ff exp [— (ke — ka)?/(8)] exp [— (kx — ko)*/8"IWs(kr) dken dku  (18)
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where, for the sake of brevity, we have denoted the expression between square
brackets of Eq. (16) by Wy (ky) and, for the sake of simplicity, we have taken
the intensity distribution of n, to be Gaussian. In effect, we may replace Fq.
(18) hy

I(d)) o fexp ['—5>(lx)\ _ ko‘)z”’Vd,(k)\) d/n)\ (»19)

where 85 is the larger of 6 and & if 6 and & are very different and & is of the
order of magnitude of & and 8" if they are about equal. In general, the line width
5 1s significantly larger than v.

I'rom the considerations in Section I it follows that optical rotation is only a
meaningful concept if the intensity as a function of the angle ¢ has a measurable
minimum. This is only the case if

ko — ko | > 6 (201
or, substituting Eq. (17),
ko — k| > ke /McB)'* 6 (21)

Ouly if the Doppler line breadth &' is very small do we then have to impose the
condition

| ko — kn | > Tohy (22)

IV, DISCTUSSION

The considerations in the previous sections are subject to a serious restriction:

they are only valid for situations where the amplhitude of the radiation field is
approximately constant throughout the sample that we consider. This means
that they are only valid for samples where the rotation is extremely small and
that they are not applicable to most situations where the rotations are more
than a few degrees. However, we can remove this limitation by means of the
following procedure: The sample that we wish to study is subdivided into many
thin slices with their surfaces perpendicular to the beam of light so that in each
slice the rotation is very small and simultaneously each slice contains a large
number of molecules. For each slice separately the considerations of the previous
sections are applicable and the total rotation of the sample may be obtained
macroscopically by adding the sucecessive rotations due to each slice. We find
then from Iiq. (16) that the total rotation ¢ is given by

_ -11rwu Nl ( ]\'Q — ]\',y, ) l'vn - %Zli(ﬁuj\f[[ V,, (-

3¢ (ko — ko )2 + 1{7?:7: h 36(/"0 - /‘u>

[
o

v

where [ is the total length of the sample through which the beam of light travels
and N is again the number of molecules per unit volume. This expression is
equivalent to the old Rosenfeld formula (5, 6).
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In previous work we also evaluated the quantity Q. for a molecular erystal
(1). It was found that | @y | for a crystal may be significantly larger than for a
gas; however, it also followed that the analogue of U, for a molecular crystal
then has a leading term which is imaginary instead of real. Apparently the
relatively large intensities that may occur in the optical rotation spectra of
molecular crystals are due to changes in polarization rather than to optical
rotation.

We may conclude that it is possible to describe resonance optical rotation by
means of quantum field theory. If we neglect multiple scattering we find that
our results agree with previous results (5, 6), derived by means of semiclassical
methods, if the conditions (21) and (22) are satisfied, otherwise optical rotation
is not a physically meaningful concept.
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