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We analyze the low-energy tail of the exciton absorption spectra calculated
numerically on the standard model of exciton-phonon interaction. The empirical
Urbach rule is established in its exponential decay for several orders of magnitude
with a decay constant proportional to inverse temperature 7~ ! in two and three
dimesnions and to 7-%/3 in one dimension. A posteriori, the exponential tail is
unambiguously ascribed to the “momentarily localized” excitons by considering
the behaviour of the average oscillator strength per state. We introduce the steep-
ness index s which relates the steepness coefficient o and the exciton-phonon
coupling constant g through o=s/g. Our calculated values of 1.24 for square and
1.50 for simple cubic lattices enable us to correlate experimental observatlons on
Urbach behav1our and self- trappmg consistently.

§1. Introduction

After the discovery of Urbach? the optical
experiments of a variety of insulators?-*’ have
established that the low-energy tail of the
exciton absorption spectra depends exponen-
tially on the energy, with a decay constant
proportional to the reciprocal temperature at
high temperatures:

E,—E

F(E)=Aexp (—O’W>.

The converging point, E;, of the semi-
logarithmic plots of the absorption spectra
at various temperatures is usually situated near
the absorption peak at the lowest temperature.
The dimensionless “steepness coefficient” o
is a material constant of the order of unity.3-*
The universality and simplicity of this
empirical rule—now called the Urbach rule—
have evoked a number of theoretical*™ 143
and experimental'®~2%-3) studies to explain it
on a microscopic basis. A comprehensive
survey of these studies will be made elsewhere.
In this paper we neglect the internal degrees
of freedom of the exciton and demonstrate that
the Urbach tail can be explained as an effect
of the phonon field on the translational motion

(1.1)

* Permanent address: Institut fiir Physik, Univer-
sitdt Dortmund, D-4600 Dortmund 50, Germany.

of the exciton.

This sitvation was already 1nvest1gated in
parts I and II of the present series of papers,2®
which will be referred to as I and II hereafter.
With respect to the low-energy side of the
absorption peak, it was already mentioned in
I1 that the renormalized perturbation expansion
starting from free exciton states converges
extremely slowly and yields a sharp cut-off
of the exciton absorption spectra at any
tractable stage of approximation. It therefore
seemed to be an extremely roundabout picture
in describing the exponential tail. This led one
of the authors (Y. T.) to assume that the low-
energy tail originates from momentarily
localized exciton states formed below the free
exciton states in the random potential of lattice
vibrations.*

This notion of coexistent itinerant and
localized states was formulated by Cho and
Toyozawa,?”? with particular attention to
existence or non-existence of the low-energy
tail at absolute zero of temperature which was
correlated with the existence or non-existence
of self-trapped states. Sumi and Toyozawa!®
improved the formulation of the problem
within the adiabatic approximation by incorpo-
rating the localized states into the self-energy.
This average-f-matrix approximation (ATA)
was further improved by Sumi*® with the use
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of the coherent potential approximation (CPA).
Klafter and Jortner extended these studies so
as to include the effect of lattice disorder.2?

These investigations for finite temperatures
reproduced the empirical rule (eq. (1.1)) fairly
well, except that ‘log F-versus-E curves were
somewhat concave (positive curvature) bend-
ing upwards just below the absorption peak
especially at low temperatures, and that the
steepness coefficient ¢ slowly decreased towards
low temperature. The former discrepancy was
ascribed to the use of the one-site approxima-
tion; this was supposed to underestimate the
number of shallow localized states with giant
oscillator strengths, especially those states
which originate from coherent multi-site
shallow attractive potentials. An improvement
of ATA or CPA towards a multi-site approxi-
mation, though possible in principle, would
lead to complicated equations, which are
prohibitively difficult to solve.

Recapitulating, although several authors
showed the possibility of assigning the Urbach
rule to momentarily localized (ML) excitonic
states, the severe approximations neccessary
for the analytical treatment made these works
not ultimately convincing in favour of the
ML-model.

In the present paper, instead of invoking ad
hoc the ML model we present a numerical
calculation into which none of the mentioned
approximations enter. We employ the Hamil-
tonian which was introduced in I for the
standard situation specified by harmonic lattice
vibrations, linear on-site exciton-phonon inter-
action (—cg,) with the neglected intersite
correlation, and adiabatic treatment. It can be
written in the site representation as

H=H,+H, =YY Iny¥V{m| =Y, |ndcq,(nl,
n m n (12)

with the nearest neighbour exciton transfer v,
where the interaction modes g, follow the
thermal distribution

1
Pad=erp (~3ai7), (3
since the lattice potential energy is given by
1
U= ‘2%% 1.4

We will show in the following chapter that the
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low-energy side of the absorption-lineshape
function for the direct exciton edge

FE)= 3T HE-E)T e, (19)

calculated from the eigenvalues E; and cor-
responding eigenvectors e;=(e;;, " -, e;y) of
this Hamiltonian (eq. (1.2)) and averaged over
all possible configurations {g,, - -, gy} accord-
ing to the Gaussian distribution (eq. (1.3)), in
fact decays exponentially for any dimensionality
studied, with the temperature dependence as
described by eq. (1.1) except in one dimension.

With regard to the steepness coefficient o,
it was argued*!® throughout the theories
based on the ML-model that o should be
proportional to the reciprocal of the exciton-
phonon coupling constant g:

c=s/g. (1.6)

g is defined®®-3V as the ratio of the lattice
relaxation energy E; g, which after creation of
an exciton the lattice would gain for vanishing
transfer by relaxing to the mew position of
minimum energy (given by egs. (1.2) and (1.4)),
to the band halfwidth B which means the
maximum energy gain due to the transfer (given
by eq. (1.2))
Ex _c?f2
=B T
The relation (1.6) can also be deduced from
the following scaling argument: A transforma-
tion to the dimensionless energies £ =(E— Ej)/
2B and §,=¢,/2B= —cq,/2B shows (cp. egs.
(1.2) and (1.3)) that the lineshape function
(normalized in the new scale)

(1.7)

F(E)=2B-F(E), (1.8)

is uniquely determined by the parameter
2_ gkl 1.9
A’ - 2 B 2 ( . )

which means that g, T and B are not in-
dependent parameters for the lineshape problem
as discussed already in I. In order to obtain
the exponential energy dependence of the
Urbach rule, one has to put
2B-(—E
F(E)= 21—BA(/1) exp (—23%0(1))) , (1.10)

where 4(4) and (1) are arbitrary functions yet
to be determined. To achieve the temperature
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dependence of the Urbach rule, one has to
choose O(A)oci? (see eq. (1.3)), which in turn
leads to eq. (1.6). The existence of the con-
vergence point Eg requires that 4(1) is constant.
This argumentation shows that the propor-
tionality factor s depends only on the lattice
structure as far as transfer energies beyond
nearest neighbours can be neglected. The
factor s will hereafter be called steepness
index.

The size of the coupling constant g governs
the self-trapping of excitonic states, the
threshold being given by g.~1—(2v)7 139
except in the one-dimensional case where g,—
0> An exact determination of s would
therefore be important in order to correlate
the steepness coefficient ¢ with the self-trapping.
We shall determine values of s from the exact
numerical solution of the standard model
and compare them with the experimental
information about self-trapping in chapt. 3.

§2. Results and Discussion

We have calculated the exciton absorption
spectra for the direct exciton edge of one-,
two-, and three-dimensional crystals choosing,
respectively, a linear chain of 30 sites, a square
lattice with 13-12 sites, and a simple cubic
lattice with 10-9-8 sites. The details of the
computation of the lineshape function (eq. (1.5))
and related spectra like the density of states
and the average oscillator strength per state
(AOSPS) have already been commented upon
in I and II with particular emphasis in II on
the problematic statistics for the low-energy
side. For the analysis of the absorption tail on
this side we present the semilogarithmic plots
of the lineshape functions in Figs. 1 through 3
for the energy range of and below the absorp-
tion peak, which would coincide with E= — B
=—0.5¢V for the rigid lattice. (Note that in
view of eq. (1.9) we have chosen 2B=1 eV and
g=1 arbitrarily as in I and IL.) For all three
dimensionalities we find a linear relationship
of the logarithm of the absorption versus
energy over a range of three to five decades in
intensity for various temperatures. This agrees
with the energy dependence of the Urbach rule
(eq. (1.1)).

Moreover, the extensions of the straight lines
for different temperatures approximately lead
to a converging point with an energy E; near

Michael ScureBER and Yutaka Tovozawa

(Vol. 51,
-2,
d=1
1.

-
‘@l o.
=
@
=
=
B=d LN
=
S
w
-
B,
-2 T =800
9 400
o) 200
<
- 1

- 50

-4.
1.4 -10 I _os eV

Energy

Fig. 1. Urbach tails for 4 one dimensional lattice
(linear chain).

T
'
-

fog 1o ( Abserption Intensity )
o

T T -
-1.4 -1.0 -06 eV
Energy

Fig. 2. Urbach tails for a two dimensional lattice
(square).

the absorption peak E,=—B at vanishing
temperature. The existence of such converging
point was also experimentally established for
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Fig. 3. Urbach tails for a three dimensional lattice (simple cubic).

the Urbach rule,?® although the absorption
intensity at the observed converging point is
usually a few orders of magnitude larger than
that of the observed absorption peak, in
contrast to Figs. 1 through 3. This effect is
probably caused by the red shift of the exciton
line due to the thermal expansion of the lattice.
In addition to the dynamical effects considered
in this paper, the red shift would spread the
“bundle” of straight lines and thus raise the
absolute value of the absorption at which these
lines intersect. -

It has recently been shown that the Urbach
rule in band-to-band absorption of amorphous
semiconductors is essentially caused by the
exponential tailing of the density of states
(DOS).**" Turning to the semi-logarithmic
plots of our DOSs which are shown in Fig. 4,
we indeed observe such an exponential tailing,
i.e. Urbach-like dependence on the energy.
The range of the respective straight lines in
Fig. 4 is, however, rather limited and no con-
verging energy E{ can be found.

The DOS p(E) and the lineshape F(E) are
related by the average oscillator strength per
state f(E) as studied in II: F(E)-p(E). We
conclude from the above discussion that this
factor f(E) with its rather strong energy
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i— 3
T—800 K
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Fig. 4. Density of states for different dimensions d
and temperatures 7.

dependence plays an important role for the
validity of the Urbach rule over several orders
of magnitude in absorption intensity and with
the well-defined convergence point as described
phenomenologically by eq. (1.1).

For three dimensional samples, however,
we observe a deviation from the Urbach rule
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in the far tail (i.e. for lowest energies), concave
for low temperatures and tending towards
convex behaviour for high temperatures. We
ascribe this deviation to the finite number of
lattice sites which are used in the calculation;
in the three-dimensional samples this effect
should be most prominent as the linear size is
smallest. This assumption was born out for
one temperature (7'=400K) by computing
the absorption tail for samples with nearly
doubled linear size (i.e. eightfold volume),
namely 18-17-16=4896 sites. In the semi-
logarithmic plot the resulting tail showed the
same Urbach-like straight line but it extended
somewhat further towards lower energies.

In the above discussion we have shown that
the energy dependence of the Urbach tail is
well fulfilled by our data. To analyze the
temperature dependence, we show the steepness
coefficient in Fig. 5, calculated from the straight
lines in Figs. 1 through 3 by the Urbach for-
mula (eq. (1.1)). In two and three dimensions
it is indeed independent of temperature whereas
in one dimension the data can be adequately
approximated by T1/3 (see Fig. 5), which means
that the exponent of the Urbach rule follows
a T~ 2?3.law for the one-dimensional lattice.
Due to a lack of experimental investigations it
was not possible to confirm or contradict this
unexpected behaviour.

It is interesting to note, on the other hand,
that the “Urbach width” (defined as the
energy interval corresponding to the decay of
the zail to 1/2) and the linewidth (full width at
half value as discussed in I) have the same
temperature dependence for one (72/3) and two
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Fig. 5. Steepness coefficients of the Urbach tails in
Figs. 1, 2, 3. Broken lines are best fits by a T'/3-law
for one dimension and by constants for two and
three dimensions.
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(T) dimensions but not for three (T versus
T3/?) dimension. Why it is so, and whether it
has anything to do with the fact that renor-
malized perturbation theory gives right answer
for the temperature dependence of the total
width for one and two dimensions but not for
three dimension, is not clear at the moment.

§3. The Steepness Index

In the last chapter we have determined the:
energy- and temperature-dependence of the
low-energy tail of the exciton-absorption line-
shape function. We shall now investigate its
dependence on the exciton-phonon coupling
constant g. The constant behaviour of the
steepness coefficient ¢ on temperature for two
and three dimensions (see Fig. 5) readily
establishes the relation o=s/g as is seen from
the scaling argument in chapter 1 (compare
eq. (1.9)). Since g was put equal to unity in
our calculation we find immediately from Fig.
5 that the steepness index s equals 1.2440.06
for the square lattice and 1.50+0.06 for the
simple cubic lattice. These values are
significantly larger than the previously obtained
ones of 2/3Y or 0.6~1.0'" for three-
dimensional lattices. The knowledge of the
steepness index for a given lattice structure
allows to determine the exciton-phonon coupl-
ing constant g from the experimentally ac-
cessible steepness coefficient of the Urbach tail
and thus to determine whether the self-trapping
of the exciton takes place (g>g.=1—(2v)™!)
or not.*'1% .

In one of the recent experiments on the
Urbach tail of GeS?® the exciton self-trapping
could be established by showing that an Urbach
tail exists even at nearly zero temperature.'?->7
The corresponding steepness coefficient o=
1.45, however, seemed to preclude the self-
trapping, as the known values of s predicted a
coupling constant well below unity. GeS is a
layer-type compound; so we expect its prop-
erties to be somewhere between two and three

dimensions. The present calculation favours

the self-trapping since the estimated coupling
constant g=1.03 is slightly larger than g .~
0.92 according to the three-dimensional model
and g=0.86 about equal to g,~0.87 accord-
ing to the two-dimensional model. Thus, the
only “intriguing quantitative discrepancy”?*
between this experiment and the momentary-
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localization model is removed. The similar
discrepancy in PbL,'? with ¢=1.48 is also
removed.

The correlation between o-value and self-
trapping has been shown most clearly in the
recent studies on organic crystals by Matsui,?>
who found ¢=1.38 for pyrene and ¢=0.93
and 1.38, respectively, for a- and B-type
perylenes. The self-trapping which was directly
confirmed for all of these crystals through
luminescence study is well consistent with
the critical value of the steepness coefficient
0.=s/g. (1.64 for simple cubic lattice and 1.42
for square lattice) which represents the upper
bound of ¢ for the self-trapping. It is also of
interest to note the experimental evidence?

that the excitons self-trap much more shallowly

in pyrene and B-perylene than in a-perylene in
accordance with the observed steepness coe-
flicients o which are much closer to 0, in the
former materials.

The value s=1.50 is also consistent with the
observations on other well known materials.
For example, the observed ¢~0.8 gives g~ 1.87
in alkali halides®''® where the exciton is self-
trapped while the observed o~2.2 yields g~
0.68 in CdS where the exciton is not self-
trapped.3®

For the Urbach tail of the indirect absorption
edge we expect the steepness index to be
smaller than for the direct absorption edge
because of the absence of the giant-oscillator-
strength effect. This expectation agrees well
with experimental results on the indirect
Urbach tail of AgCI,Br, _, where a change of
¢ between 1.0 and 0.8 coincides with a change
from self-trapped to free behaviour.!® These
findings suggest an index s of value 0.9 for the
indirect edge. This value is also consistent with
experiments on the indirect edge of TIC]:35-36)
The observed o~ 1.16 gives g ~0.78 in accord-
ance with the absence of self-trapping.

Figure 5 shows a constant behaviour of the
steepness also for the lowest temperature. In
order to reproduce the well known and ex-
perimentally established decrease of ¢ for
vanishing temperature, usually obeying a coth-
law, one might think of replacing the classical
mechanical expression for the variance {g2>=
kgT of the distribution of the interaction modes
(eq. (1.3)) by the quantal one: {g2>=(h@[2)-
coth (hw/2kyT) (see I, Appendix). From the
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theoretical point of view this procedure is not
warranted since the existence of the low-
encrgy tail of finite steepness at T—0K is
related with the existence of a self-trapped
state below the nearly free exciton state?”
rather than with the zero-point vibrations.
This point will be discussed elsewhere.

For the one dimensional lattice Fig. 5 gives
a temperature-dependent steepness coefficient,
so that one cannot define a dimensionless
steepness index as in the two- and three-dimen-
sional cases. This behaviour might be related
with the vanishing critical coupling constant
g. in one dimension where all states are self-
trapped regardless of the coupling strength.

§4. Conclusion

We have shown the validity of the Urbach
rule (eq. (1.1)) for two- and. three-dimensional
lattices (and also for one-dimensional lattice
with the above mentioned modification of
temperature dependence) by simply solving
numerically the standard model of exciton-
phonon interaction without the ad hoc picture
of momentary localization during the course
of computation. However, the analysis of the
computed AOSPS spectra and degree of’
localization in II clearly demonstrates that the
exponential tail is due to the momentarily
localized states. In fact, the straight sections
of f~*versus-E curves in Fig. 3 of 1I exactly
correspond to the straight sections of the
log F-versus-E curves in Figs. 1, 2, and 3 of
the present paper for each temperature. More-
over, our exact calculation reproduces the
empirical Urbach rule better than the previous
theories which made approximate treatments
of the same standard model. Finally we have
demonstrated the advantage of the present
investigation to derive values of the exciton-
phonon coupling constant from experimental
steepness coefficients of the Urbach tail and
shown that these values allow reliable predic-
tions whether the self-trapping occurs or not.
These results altogether lend strong support to
the appropriateness of the standard model as
well as to the momentary localization picture
as the real origin of the Urbach tail.
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