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Equivalent Electrical Network for the Transversely
Vibrating Uniform Bar

Masasar Konno AND Hisasal NAKAMURA

Department of Elecirical Engineering, Faculty of Engineering, Yamagata University, Y onezawa, Japan

The equivalent network for the transversely vibrating uniform bars under various end conditions are given,
the value of each element of the networks is determined, and graphs showing the frequency characteristics
of each element in the matrices for the bars are given. Some considerations such as the effect of the neglect
of the distributed mass are given. The analysis by the method of normalized functions is briefly explained

by citing a few examples.

INTRODUCTION

TREATMENT by network theory of the linear
mechanical-vibrating system is very useful for
not only the analysis but also the synthesis of electro-
mechanical and electroacoustical instruments.
Recently, many papers on analyses and treatments of
vibration bars by the analogy of impedance or mobility
have been reported.'~% Especially, Bishop has published
the results of his excellent work in collected form.!
This paper deals with the equivalent networks for
the transversely vibrating bars under various end
conditions. The value of each element of the networks
is determined so as to be convenient for practical use.
Then, the equivalent circuits for the bars of which the
distributed mass is neglected are shown; and, by
employing the equivalent circuits, the possibility of
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easily analyzing some problems in the strength of
materials is pointed out.

The paper, moreover, explains how resonating bars
can be easily analyzed by simple circuits, using the
normalized function for vibration modes.

These results are very useful for analyzing not only
a unit mechanical system but also a composite one
combined with unit systems. Furthermore, graphs
showing the frequency characteristics of each element
in the impedance or admittance matrix on the bar are
given.

In this paper, the method of impedance analogy is
adopted for analysis.

I. EXPRESSION BY MATRICES 3, 9, AND I

A. Open-Circuit Impedance Matrix 8

In this section, the relation between each element of
the matrix 8 and the short-circuit admittance matrix ¥)
is explained by means of the new function F.

The equivalent network of the transversely vibrating
bar shown in Fig. 1 (a) is that in Fig. 1 (b), and can be
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FiG. 1. (a) Uniform bar vibrating transversely. (b) Equivalent
four-terminal-pair network. (c) Equivalent two-terminal-pair
network.
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more simply represented as in Fig. 1 (c) and by Egs. 1.
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where P, M, v(= jwn), and 6(= dv/dx) are the impressed
force, the impressed bending moment, the velocity of

displacement, and the velocity of angular displacement,
respectively ; n is the displacement and § is the angular
displacement ; Q is the general impressed force, @ is the
general terminal force, and ¢ is the general terminal
velocity.

The fundamental equation is written with the aid of
network theory as Eq. 2, and each element of the matrix
8 is concisely and systematically expressed in Eq. 3
by employing the functions F defined in Egs. 4 and 5
following cf., Appendix A:

O: Bu Byl |G @
Q. Ba B (jz,
P, zu Ly oz Zy| |u F,/l Fy, F./l —Fq4 o
My \Zu Zu Ly Zw| |6 | B, —Fel Fa  Frll |6
- = j(pSK)? , (3)
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where
[ a(S-c+C-s) aHj
(C-c—1) Hj;
S-s H1
Fhb=——=—,
(C-c—1) H,
F —a(s+S) —al;
“ (Coe=1) Hy
(c=C) Hy )
T (Coe=1) Hy
(S-c—C-s) Hs
Fe:-—iz*—’
a(CC—l) aH;
—(s—S) —Hs
T a(Coc—1) ofH;
L S:sinha, C:cosha, s:sine, c:cosa.
(H;=sinha-sina=S-s, H=sinha- cosa+ coshe- sina
H = cosha cosa=C-c, =S-c4C:s,
Hi;=cosha'cosa—1=C-c—1, H;=sina+}sinha=s-+S,
5
Hi=cosha'cosa+1=C-c+1, Hz=sina—sinha=s—S§, ®)
Hy=sinha- cosa—cosha-sine  Hy= cosa+cosha=c-+C,
L =S-c—C-s, Hyg=cosa—cosha=c—C.
o= (pS/K)olt, (Ka?)/(jul?)= (oSK)?/j. (6)

In Eqgs. 6, K= EI expresses the bending strength, E is Young’s modulus, and 7 is the second moment of area of
the cross section about the neutral axis, and p, S, and / indicate the density, the sectional area, and the length of

the bar, respectively.
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B. Short-Circuit Admittance Matrix 9)

Fundamental equations by the matrix 9 are shown in Eqgs. 7 and 8 due to the network theory; that is,
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C. Transfer Matrix I"
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—F, —=FJl| |M,

Fundamental equations by the matrix I" are shown in Egs. 9 and 10 as mentioned in Appendix A ; that is,

Q: 4 B‘
@l lc D
P, A, A,
Ml A3 A4
U C1 Cz
61 Cy Cy

Q:

ge

B,

B;

D,

D;

Bs| | P H,y
_ !
B,| |M, Hr
a
-3
Jwl
D, V2 §
Ko
. jol?
D, 02 —Hy—
Ko?

a Kao? Ko?| | _
—Hg —Hr— —Hy—| | P
l Jowl® Jool?
Ko? Ko _
H, Hyw— —H o M,
Jwl? Jool
Jol? !
10— H, —Hr- V2
Ko? a
jool a )
T Hg—‘ Hg 02
Ka !

II. BAR WITH END CONDITIONS

Q)

)

9

(10)

As to the one end of the bar, four ideal end conditions are to be considered—that is, the free end (P=M= 0),
the simple support (v=0), the sliding support (6=0), and the fixed end (v=6§=0).
In Table I are shown the equivalent networks of the bars under various end conditions and the value of each

element is given.

III. PURE STIFFNESS BAR

The fundamental equations for a stiffness bar, such as its distributed mass is neglected, are simply shown from

Egs. 3 and 10 as follows:

or
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TaBLE I. Equivalent networks of the bars with end

conditions.
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In Table II are shown the equivalent circuits for the stiffness bars with end conditions. It is found that some
problems on the beam treated in the strength of materials can be considered as a problem of the network theory.
Like Table I, this Table will be also useful for the design of the composite mechanical filter.

IV. EQUIVALENT NETWORKS BY THE NORMALIZED FUNCTION
A. Bar Impressed with Forces and Bending Moments

If the forces (Px,,Px,) and the bending moments (M x,,M x,) are impressed at any points (X,X,) of the trans-
versely vibrating uniform bar as shown in Fig. 2, then the following equations are given:

V(x;)

Oxi

V(P

O(Xi)

VX x5
Yxx;
Vx;x;

Yx X

YXiXi
YX;X.'
YX,'X;

Vx X3

Vx:x; Y_X iX; Px;
YX iX; I/X X M. X;
Vx;X; ?X,'Xi PX,'
YX,'X,' YX,‘X,- MX,‘
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TaBLE II. Equivalent networks of the stiffness
bars with end conditions.

Jliding support

= E Emx Bmx,
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m

where
X=x/l, Zom '= jo/[(wn*—w?) (oS1) ],
{wm= (@n?/B)(K/pS)Y, Bmxy'=[08nx1/0X. (16)

And B, (x) is the normalized function of the mth
mode of the vibrating bar, and m=0, 1, 2, 3, ---,
.,

The sum of the short admittance matrices X, 9n
means that m networks are to be connected in parallel

Mx.'é"”"m 9 Mx;ﬁm

Fic. 2. Uniform bar impressed
() () with forces and bending moments at
*=0 ) X=1 any two points.
iF\'{,'EWt 1sz 8;0:

1
; f Bnxy Bmxp),

o~ | =

= E'M(Xi)'E'm(Xj)’
m

=

Ui

/ !’
m(Xy) Bm(X,)

R o=

(15)

to one another, and therefore the resultant equivalent
network is shown as Fig. 3.

In Fig. 4 is shown the equivalent network only for
the mth vibration mode of the bar. And this simple
equivalent circuit is very convenient for practical use,
because the vibrating bars are frequently used in such
a certain vibration mode as the mth. Another example
is shown in Fig. 5.

B. Bar with Loaded zx; and Zx;

In the case of the bar with load impedances, the
shearing-force load zx; and the bending-moment load
Zx; are to be put as follows: Px,=—zx, vx;, and
Mx;=—Zx; 0x,.

A few examples are shown in Figs. 6 and 7.
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SmXa)

] !

Fi6. 3. General expression by the equivalent four-terminal-pair
network on the bar shown in Fig. 2.

13 Zmoy R

Sm(xa/ 1

Fi1G. 4. Equivalent network of only the mth mode of vibration
on the bar shown in Fig. 2.
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F16. 5. (a) Bar impressed With forces and bending moments at
any points X;(j=1,2...,#). (b) Equivalent 2X# terminal-pair
network of only the mth mode of vibration,
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F16. 6. (a) Bar impressed with a force Px; and loaded with zx;
and Zx;. (b) Equivalent one-terminal-pair network.
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F16. 7. (a) Example of the composite mechanical filter consisting
of resonators and couplers. (b) Equivalent network.
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V. CONCLUSION

In this paper, the fundamental equations on the
transversely vibrating uniform bar are systematically
presented and the equivalent networks of the bar
under various end conditions are given, and then the
value of each element of the networks is decided. Some
considerations on the bar of which the distributed mass
is neglected are also shown.

Moreover, an outline on the analysis by the method
of normalized function is described by citing a few
examples.

General considerations in the first half of this paper
are available for an analysis of a composite mechanical
system, while the method of normalized function in
the second is very convenient for design of a resonator
and the like.

Although considerations only on a unit mechanical
system are explained in this paper, these results are
developed to analysis and synthesis of a composite
system combined with unit ones.
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Appendix A. Analysis by Matrices

This section describes a proof of the expression by matrix I'. And matrices 8 and @) are deduced from the

matrix I.
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The general terminal force @ and the general terminal velocity ¢ shown in Fig. 1(c) are written as Egs. Al

A
Il =,

i
1 a-[7)-

, |Q|={_
M

where X=ux/l, §==09n/0x, §=09q/9t; and the notations
7, 0, K, and so on, are indicated in Sec. I.

When the displacement 7 is considered as 5- e/¢, the
differential equation of the transverse vibration of the
bar is written as follows:

K K ¥,
Jo  04® JewlB 08X
A ) (A1)
K azﬂ(z) K 62ﬁ(X)
jw 0 jol2 3X
where
a’sx  —acx o*Sx o’Cx
o oz —a’Cx —a®Sy|
!HX|= a’Cx a’sSx gCX gsx , (A6)
cx Sx Cx Sx
K[ 0*n(2)/0%* ]+ pS[8%1(2)/ 8£]=0, (A2a) —o'sx  dex oSy oCx
or ar=(K/jw)(e/D)*, o'=all. A7
[o*x)/dX*]—an(x)=0, (A2b) - - (A7)
where
at= (pS/K)uw?lt. (A3)

Then, the solution of Eq. A2b is given as

If the input terminal (X=0) and the output terminal
(X=1) are expressed with the suffices 1 and 2, respec-
tively, then the following equations are deduced from
Eqgs. AS:

n(xy= a1 cosa X+ as sina X+ a3 cosha X+ a4 sinhaX (A%) QOx Q.
=aicx +asx +aCx  +adSrx, ix =|H,||H,|™ y (A8)
1
where a1, a3, @3, and a, are arbitrary constants. .
From Egs. Al and A4, the following equations are ~and, accordingly,
obtained: Q. o}
_ =|T,. , A9
P X ax q-2 | 2 1| q.l ( )
—X 2 X [ 2% Ql Q2
=|Hx|| |, or |  |=[Hx|| |, (AS) =T |, (A10)
vx as gx an ¢ g2
0x ay where
|Tio|=[Hi| [He|7=]| |Ho| |Hi|7 |71=|Ta|™, (A1)
(c+0O) — (=S}’ — (s+S)® —(c— C)a?
| . (s+8S)/d (c+C) (c—=C)e? —(s—S)a
=% . A12
-9/ (O (©+C) — @+ (A12)
—(=C)/a*  (s+95)/a (s—8)a’ (c+0)
Consequently, the matrices 8 and 9 are deduced from Eq. A12 and written as Eqgs. 3 and 8 in Sec. I.
Appendix B. Analysis by the Normalized Function E.x)
An analysis by the normalized function on vibration is given as
mode of the transversely vibrating bar was already Jo "
studied by T. Hayasaka® and amplified by T. Yasuda.” Vxp= f m—ﬁm(x;) : 1EIEm(Xf) -Px;
Thereafter, the authors developed this analyzing wn®—a?) (aS1) (B1)
method to a treatment for multiterminal networks. 1 .
When the forces Px; are impressed at any points =X —Eauxy Z-'-IEMX,-)-PX,.
Xi(j=1,2,---,n) of the uniform bar as shown in om =
Fig. 2, the velocity of displacement v(x;, at the point X; = (vx;x;) Px;. (B2)
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And then, the short admittances (yx;x;) and (yx,x,) Equation B6 means that the bending moment Mx;
are defined as the coefficient of Px, in Eq. B1.

is equal to the impression of two forces having such op-
For example, if only two forces Px, and Px, are posite signs as + Px; and — Px; at two points (X ,+38X)
impressed, the short admittances are shown as

and (X;—%8X), respectively.
1 Accordingly, Eq. B7 is obtained.

[()’X{Xﬁ)= E Z_E‘m(xi)'Em(Xi)Ez(J’mXiXi); »
om (B3) ,'21 [Bnx,46x) Px;—Bmx;—bx)  Px;]
1 =

(yX.'X')zz*Em(xi)'am(Xj)Ez(me,'X-)- n n MX‘
\l ! ™ Lom m ! = _ZI(PX,-‘(SX)'Em(X,'),: 'EI_Z—JEM(Xi)I' (B7)
7= j=
By differentiating Eq. B1 with x, the velocity of

angular displacement 6 x,,(=0vx)/(dX 1)) is given as

Consequently, when the bending moments Mx; are
1 . impressed, the velocities v(x,) and #x,) are written as
bxp=2 7 lEm(Xn" Z Bnx Px=Yxx,;) Px;, follows:
m om* =
(B4) 1 =

where varp=E——Buaxy' X Ry Mx;= (Yxx,) Mx,,

Em(x)/=35m(x)/aX. (BS) Om (BS)
And similarly, the short admittances (Yx,x,) and 1 i

p=E—Bnxy TE
(Yx,x;) are defined as the coefficient of Px,in Eq. B4. an=Z o’ X

LAY =1 mxp' - Mx;
Next, the bending moment Mx; at the point X; of " =Vx,x;) Mx.. (B9
the bar is substituted for ’ ’ (Foxox,) M. (B9)
Mx,;=lim Px,-1-5X. (B6) The values of the normalized functions for various

x>0 vibration bars are given by T. Hayasaka.$

Appendix C. Frequency Characteristics of Functions F, ~ F;

Diagrams of the calculated values of F functions defined in Egs. 4 for the frequency constant a are
shown in the Figs. C-1/C-6. In these Figures, the solid lines show the positive values and the dotted lines show the
negative values of the functions.
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Moreover, the physical meaning of F functions is given in Egs. C1 or C2.
Fa F, F, —Fq | u
Fi| | 61-1

P,
Ml/l ](pSK)% Fb —Fc Fd

Py ! F, Fqa F. —F| | »
M/l —Fs Ft —F, —F. |6s1
v F. F, F¢ —F4 | P
by-1 ! F, —F. F4 F.| My

v | jGSK)| F Fq F. —Fy | P
éz'l —Fy F, —F, —F, Mg/l

Fic. C-6. F;.

(C1, cf. Eq. 3)

(C2, cf. Eq. 8)



