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Equivalent Electrical Network for the Transversely 
Vibrating Uniform Bar 

MASASHI KONNO AND HISASHI NAKAMURA 

Department of Electrical Engineering, Faculty of Engineering, Yamagata University, Yonezawa, Japan 

The equivalent network for the transversely vibrating uniform bars under various end conditions are given, 
the value of each element of the networks is determined, and graphs showing the frequency characteristics 
of each element in the matrices for the bars are given. Some considerations such as the effect of the neglect 
of the distributed mass are given. The analysis by the method of normalized functions is briefly explained 
by citing a few examples. 

INTRODUCTION 

A TREATMENT by network theory of the linear ß mechanical-vibrating system is very useful for 
not only the analysis but also the synthesis of electro- 
mechanical and electroacoustical instruments. 

Recently, many papers on analyses and treatments of 
vibration bars by the analogy of impedance or mobility 
have been reported. •-8 Especially, Bishop has published 
the results of his excellent work in collected form. • 

This paper deals with the equivalent networks for 
the transversely vibrating bars under various end 
conditions. The value of each element of the networks 

is determined so as to be convenient for practical use. 
Then, the equivalent circuits for the bars of which the 
distributed mass is neglected are shown; and, by 
employing the equivalent circuits, the possibility of 

• R. E. D. Bishop and D.C. Johnson, The Mechanics of Vibration 
(Cambridge University Press, New York, 1960). 

2M. Konno, "Network Analysis of Mechanically-Vibrating 
System," J. Inst. Elec. Commun. Engrs. Japan 39, pp. 651-654 
(1956); 42, pp. 603-607 (1959). 

3 M. Konno and H. Nakamura, "Driving Point Immittance of 
the Transverse Vibrating Uniform Rods," J. Acoust. Soc. Japan 
17, No. 3, 183-193 (Sept. 1961). 

4 M. Konno, H. Nakamura, C. Kusakabe, and Y. Tomikawa, 
"Electrical Analogy for the Analysis of Linear Mechanically- 
Vibrating Systems," J. Japan Soc. Mech. Engrs. 66, No. 531, 
496-508 (Apr. 1963). 

5 yon M. B6rnel, "Biegeschwingungen in mechanischen Filtern 
(I), (II)," Telefunken Zeitung, 31, Nos. 120, 121 (1958). 

0 T. Hayasaka, "Theory of Acoustical Vibration," Corona Co. 
(1948). 

7 T. Yasuda, "Multi-Terminal-Network Treatment of Linear, 
Mechanically-Vibrating Systems," J. Inst. Elec. Commun. Engrs. 
Japan 37, 3742, 109-113 (1954). 

8 M. Yonekawa, "The Analysis of Frame Vibrating Systems," 
Elec. Commun. Lab. Tech. J. 9, No. 6, 653-680 (1960). 

easily analyzing some problems in the strength of 
materials is pointed out. 

The paper, moreover, explains how resonating bars 
can be easily analyzed by simple circuits, using the 
normalized function for vibration modes. 

These results are very useful for analyzing not only 
a unit mechanical system but also a composite one 
combined with unit systems. Furthermore, graphs 
showing the frequency characteristics of each element 
in the impedance or admittance matrix on the bar are 
given. 

In this paper, the method of impedance analogy is 
adopted for analysis. 

I. EXPRESSION BY MATRICES B, •), AND r 

A. Open-Circuit Impedance Matrix • 

In this section, the relation between each element of 
the matrix 8 and the short-circuit admittance matrix • 
is explained by means of the new function F. 

The equivalent network of the transversely vibrating 
bar shown in Fig. 1 (a) is that in Fig. 1 (b), and can be 

½) (b) (½) 

Fro. 1. (a) Uniform bar vibrating transversely. (b) Equivalent 
four-terminal-pair network. (c) Equivalent two-terminal-pair 
network. 
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more simply represented as in Fig. 1 (c) and by Eqs. 1. 
Pl 

vl I = 

P2 

v2 
(1) 

where P, M, v(= jw•), and 0(• Ov/Ox) are the impressed 
force, the impressed bending moment, the velocity of 

displacement, and the velocity of angular displacement, 
respectively; r• is the displacement and 0 is the angular 
displacement; Q is the general impressed force, O is the 
general terminal force, and • is the general terminal 
velocity. 

The fundamental equation is written with the aid of 
network theory as Eq. 2, and each element of the matrix 
8 is concisely and systematically expressed in Eq. 3 
by employing the functions F defined in Eqs. 4 and 5 
following cf., Appendix A: 

where 

Q1 

P• 

M• 

P2 

11 812 

z• Z• z•2 Z•2 Vl F•/1 Fb Fo/1 --Fd 

Fb --Fe'l Fd Ff'l 

Fo/1 Fa F•/1 --Fb 

--Fa Ff.1 --Fb --Fe.1 

a(S.c+C.s) 

(C.c-- 1) 

Fb • 
S-s H• 

(C. c-- 1) Ha' 

Fo --- 
-•(s+S) -•7 

(C.c-- 1) Ha 

Fd • 
(c-C) H•o 

(C.c- 1) Ha 

Fe • 
(S.c-C.s) H• 

a(C' c-- 1) alia' 

Ff• 
- (s- S) -H, 

a(C' c-- 1) alia 

S'sinha, C'cosha, s'sina, 

'H•= sinha. sina= S.s, 

H2 = cosha ß cosa = C- c, 

Ha = cosha ß cosa-- 1--: C- c-- 1, 

H4-- cosha. cosa+ 1 = C. cd- 1, 

Hs= sinha. cosa-- cosha- sina 

. =S-c--C's, 

Vl 

v2 

(2) 

(3) 

C: COSO•. 

//• = sinha. cosa+ cosha. sina 

-S.c+C.s, 

H7--' sina-+- sinha• s-{- S, 

Hs= sina-- sinha---- s-- S, 

H9= cosa-{-cosha---- cd- C, 

H•0 = cosa--cosha---- c-- C. 

O• 4= (oS/K) 00214, (go•2)/(joJ/2): (psg)«/j. (6) 

(s) 

In Eqs. 6, K= E1 expresses the bending strength, E is Young's modulus, and I is the second moment of area of 
the cross section about the neutral axis, and p, S, and 1 indicate the density, the sectional area, and the length of 
the bar, respectively. 
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B. Short-Circuit Admittance Matrix 

Fundamental equations by the matrix •) are shown in Eqs. 7 and 8 due to the network theory; that is, 

Vl yll 

Yll 

Yll y12 Y12 

Yll Y12 Y12 

Y21 Y22 Y22 

P1 

=[j(pXK)13 -1 

Fe.l Fb Ff.l --Fd 

Fb --F•/l Fd F•/l 

Fi.l Fd Fe.1 

--Fd F•/1 --Fb --F•/1 

P1 

C. Transfer Matrix r 

Fundamental equations by the matrix r are shown in Eqs. 9 and 10 as mentioned in Appendix A; that is, 

A B 

D 

2 

Pl A1 A2 B1 B2 

Aa A4 Ba B4 

C1 C2 D1 D2 

C3 C4 D3 D4 

a Ka 3 Ka 2 
H0 --H8- --H?-- --H10-- 

l jwP jwl 2 

l Ka 2 Ka 
H7- H9 H10-- --H8 .... 

a jwl 2 jwl 

jwl 3 jwl 2 1 
Hs'-- Hlo'-- H9 --H7- 

jcoP jcol a 
--H1o'-- H7--- Hs- 

Ka 2 Ka l 
H9 

P2 

(7) 

(8) 

(9) 

(10) 

II. BAR WITH END CONDITIONS 

As to the one end of the bar, four ideal end conditions are to be considered--that is, the free end (P--M-0), 
the simple support (v= 0), the sliding support (0= 0), and the fixed end (v= 0= 0). 

In Table I are shown the equivalent networks of the bars under various end conditions and the value of each 
element is given. 

III. PURE STIFFNESS BAR 

The fundamental equations for a stiffness bar, such as its distributed mass is neglected, are simply shown from 
Eqs. 3 and 10 as follows' 

P1 12/t 3 6/l 2 -- 12/l 3 6/i 2 '01 

M1 K 6//2 4/l --6/[ 2 2/l 
=-- , 

30 - -6/1 

M2 6/t 2 2/l --6/12 4/1 02 
or 

Mlfl K 

] P•. jool • M•/l 

12 6 --12 6 Vl] 
6 4 --6 2 O•.Z I 

--12 --6 12 --6 v•. ] 6 2 --6 4 &.l 

(12) 
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TAB•.v.I. Equivalent networks of the bars with end 
conditions. 

•Ri•rht I Simple Sliding support Fixed end End support 

z)=•t•( •-Fe+•f). g•}•(Fb + Fd-Fe). 

M, 

M, • '•M• e, 

Noge, : 
• o 

• , + • • • •:0 • •z:O 

, .... 
= K=EI, • • C-c- • , a a E: Yoangk mod•]•s, •.- -•_ -• s-S _. 

-•wA, j•-• •o•J/••(-a):-•; 9: de•ity, •: length, 

Vl 

1 

1 

jwl 2 

2K 

0 0 0 

1 o o 

2K 

jwl 

K 

1 --1 

0 1 

I 

(13) 

In Table II are shown the equivalent circuits for the stiffness bars with end conditions. It is found that some 
problems on the beam treated in the strength of materials can be considered as a problem of the network theory. 

Like Table I, this Table will be also useful for the design of the composite mechanical filter. 

IV. EQUIVALENT NETWORKS BY THE NORMALIZED FUNCTION 

A. Bar Impressed with Forces and Bending Moments 

If the forces (Px•,PxO and the bending moments (Mx•,MxO are impressed at any points (X•,X2) of the trans- 
versely vibrating uniform bar as shown in Fig. 2, then the following equations are given' 

v (z {) 

O(x•) 

V(pj) 

i 

yx;x• Yx•x• 

Yx•x• 

i 

Yx•xi 

yxixi Yxixi 

Yx•x• rx•x• 

(14) 
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R•lght] Simple support Sliding support Fixed end end 

=0 x 

Mi -2 •o M2 

-- ; 

I • 

TABLV. II. Equivalent networks of the stiffness 
bars with end conditions. 

yx•xi Yx•x• 

Yxix• 

1 

• '•'m(Xi)"•'m(Xj), -- • '•'m(Xi)"•'ra(Xj) t 
m 1 m 

1 1 

7 • '•'m(Xi) (Xj), 1 • m 'n(Xi) (Xj) m 

(•5) 

where 

• x= x/t, z0m-' = jo•/E (•d-• •) (pst) ], 
LOOm-- (Olra2/12) (g/ps) «, ,•.ra(X)t-- EO,•.ra<X)]/OX. (16) 

And '•'ra(X)is the normalized function of the ruth 
mode of the vibrating bar, and m=0, 1, 2, 3,-.., 

The sum of the short admittance matrices •ra•ra 
means that m networks are to be connected in parallel 

ß 
x-0 x=1 

t•,.8 •'•s 

Fia. 2. Uniform bar impressed 
with forces and bending moments at 
any two points. 

to one another, and therefore the resultant equivalent 
network is shown as Fig. 3. 

In Fig. 4 is shown the equivalent network only for 
the mth vibration mode of the bar. And this simple 
equivalent circuit is very convenient for practical use, 
because the vibrating bars are frequently used in such 
a certain vibration mode as the mth. Another example 
is shown in Fig. 5. 

B. Bar with Loaded zxi and 

In the case of the bar with load impedances, the 
shearing-force load zxj and the bending-moment load 
Zxj are to be put as follows: Px•=--zxi.v(xi), and 
Mxi = -Zxi. O(xj). 

A few examples are shown in Figs. 6 and 7. 
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Z,t"(xl) 1' Era(xO ,'F-,n4,xz)' I 'b'"(x2) 

Xi - o 2 

! 

Fzo. 3. General expression by the equivalent four-terminal-pair 
network on the bar shown in Fig. 2. 

)41 • 

X t o 

X t ½ • 

Xt o 

,..., i 
1 : ,-,m.(xi), '•En,..(x•,): 1 

o X2 

• oX 2 

o X2 

Fro. 4. Equivalent network of only the ruth mode of vibration 
on the bar shown in Fig. 2. 

(a) 

Xt Xz 

X'i o o 

(b) •' l -Ivl x a 
X2 o X2. 

I I 

Px,,t 
X.n. o 

Fzo. 5. (a) Bar impressed with forces and bending moments at 
any points Xy(j= 1, 2..., n). (b) Equivalent 2Xn terminal-pair 
network of only the ruth mode of vibration. 

Fro. 6. (a) Bar impressed with a force Pxi and loaded with zx i 
and Zx i. (b) Equivalent one-terminal-pair network. 

-n.0d. al. poi rob coupler 

P2 es0•tor 
({}exar•l vibr&t•0n 

(b) 

Fro. 7. (a) Example of the composite mechanical filter consisting 
of resonators and couplers. (b) Equivalent network. 

v. CONCLUSION 

In this paper, the fundamental equations on the 
transversely vibrating uniform bar are systematically 
presented and the equivalent networks of the bar 
under various end conditions are given, and then the 
value of each element of the networks is decided. Some 
considerations on the bar of which the distributed mass 

is neglected are also shown. 
Moreover, an outline on the analysis by the method 

of normalized function is described by citing a few 
examples. 

General considerations in the first half of this paper 
are available for an analysis of a composite mechanical 
system, while the method of normalized function in 
the second is very convenient for design of a resonator 
and the like. 

Although considerations only on a unit mechanical 
system are explained in this paper, these results are 
developed to analysis and synthesis of a composite 
system combined with unit ones. 
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Appendix A. Analysis by Matrices 

This section describes a proof of the expression by matrix r. And matrices 8 and • are deduced from the 
matrix r. 
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The general terminal force O and the general terminal velocity • shown in Fig. 1 (c) are written as Eqs. A1 
K 03•(x) K 

jw Ox 3 jwl 3 
M 

jco Ox • jwF 

(A1) 

where X=x/l, O•O•/Ox, O=Oq/Ot; and the notations 
r/, 0, K, and so on, are indicated in Sec. I. 

When the displacement rt is considered as rt' ei•t, the 
differential equation of the transverse vibration of the 
bar is written as follows: 

or 

where 
EO49q ( X) /OX4• --0149q ( x) = O, 

(A2a) 

(A2b) 

a 4= (oS/K)wSl 4. (A3) 

Then, the solution of Eq. A2b is given as 

r/(x) = ax cosaX+ as sinaX+ aa coshaX+ a4 sinhaX 
----alCX -•- a2Sx -•-aaCx -•-a4gx, (A4) 

where a•, as, aa, and a4 are arbitrary constants. 
From Eqs. A1 and A4, the following equations are 

al 

, or 
Qx 

an I (AS) 

obtained' 

•)x 

Ox 

where 

aaSx --aacx aaSx aaCx 

aScx aSsx --aSCx -aSSx 

cx sx Cx Sx 

--ot•Sx ot•Cx ot•Sx ot•Cx 

, ({6) 

_a r•= (K/j•)(a/l)r5 a'=a/l. (A7) 

If the input terminal (X--0) and the output terminal 
(X= 1) are expressed with the suffices 1 and 2, respec- 
tively, then the following equations are deduced from 
Eqs. A5' 

Qx 

and, accordingly, 

(AS) 

(A9) 

(A•0) 

where 

(c+C) - (s-S).' - (s+S).• - (c-C).a 

(s+S)/_.' (c+C) .(c-C)• - (s-S)• 

(s- s)/• • (c- c)/_.• (c+ c) - ½+ s)/•' 

- (c- c)/_. •. (s + s)/_. (s- s)•' (c+C) 
_. 

Consequently, the matrices • and • are deduced from Eq. A12 and written as Eqs. 3 and 8 in Sec. I. 

(A12) 

Appendix B. Analysis by the Normalized Function •'m(X) 
An analysis by the normalized function on vibration 

mode of the transversely vibrating bar was already 
studied by T. Hayasaka 6 and amplified by T. Yasuda. 7 

Thereafter, the authors developed this analyzing 
method to a treatment for multiterminal networks. 

When the forces Pxi are impressed at any points 
X j(j=I, 2,...,n) of the uniform bar as shown in 
Fig. 2, the velocity of displacement vcx•) at the point X• 

is given as 

V(Xi) = '• •m(Xi)' • .•.m(Xi)'Px i 
ra ((Mm2__tM2)(pSl) •:• 

(g•) 
1 

• • --•m(Xg)' • •m(Xi)'Px i 
m Zom j=l 

= (yx,x•)'Pxi. (B2) 
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And then, the short admittances (yx•xi) and (yxixj) 
are defined as the coefficient of Px• in Eq. B1. 

For example, if only two forces Px• and Px•. are 
impressed, the short admittances are shown as 

1 

(Yxixi) = • "•'m(Xi)"•'m(Xi) • •(ymxiXi), 
m 

rn ZOrn (g3) 
1 

(Yxixi): • ----•m(Xi)'•m(Xi) • •(YmXiXi). 

By differentiating Eq. B1 with x, the velocity of 
an•lar displacement O(x•)(:Ov(x)/(OX.l)) is given as 

1 

O(Xi): • --••m(Xi)'' • •m 'Pxi• (Yxixi) Pxi, i=1 (xi) ' 
m ZOm'l (g4) 

where 

•m<X) •= O•m<X)/OX. (BS) 

And similarly, the short admittances (Yxgx•) and 
(Yx•xi) are defined as the coefficient of Pxi in Eq. B4. 

Next, the bending moment Mx i at the point X• of 
the bar is substituted for 

Mxi= lim Pxi' l. $X. (B6) 
$X•0 

Equation B6 means that the bending moment Mxi 
is equal to the impression of two forces having such op- 
posite signs as q-Pxi and -Px• at two points (X•q-«$X) 
and (X•-«$X), respectively. 

Accordingly, Eq. B7 is obtained. 

i• 1 •'•'m(Xi+«ax) ' Pxi--'•'m(Xi-«ax) ' Pxi• 

Consequently, when the bending moments Mx• are 
impressed, the velocities V(xg) and O(x•) are written as 
follows' 

1 n 

' v(xo= IC '•'rn(x•)' '•'rn(x;) 'Mx•---- (Yxix•)'Mx;, 
rn Zom'l 

(B8) 
1 

! ! 

(x•) = I: --- .•.rn(x•) ß I: '•'rn(xi) 'Mxi 
rn Zorn.l J=l 

-= (u9) 

The values of the normalized functions for various 

vibration bars are given by T. Hayasaka. • 

Appendix C. Frequency Characteristics of Functions F• 
Diagrams of the calculated values of F functions defined in Eqs. 4 for the frequency constant a are 

shown in the Figs. C-1/C-6. In these Figures, the solid lines show the positive values and the dotted lines show the 
negative values of the functions. 

F• Fb 

0 t 2 3 Z[ 5 6 7 8 9 10 11 12 

Fro. C-1. F•. 

0 1 2 3 4 5 6 7 S 9 10 11 12 

Fro. C-2. Fb. 

0 I 2 3 4- 5 6 7 $ 9 .tO 11 12 

FIO. C-3. F•.. 
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10 2 

0 1 2 3 4 5 6 7 8, 9 10 11 12 

FZG. C-5. Fe. 

0 1 2 3 4 5 6 7 8 9 10 it 12 

Fro. C-6. F:. 

Moreover, the physical meaning of F functions is given in Eqs. C1 or C2. 

Pl 

M1/l 

P• 

M•/1 

j(pSK)« 

F,• F•, Fo -- Fd 

F•, -- Fe Fd F f 

Fo Fd F• --F•, 

--Fd Ff --F•, --Fe 

Vl 

O•.l 

1 

j(pSK)« 

F• F•, Ff --Fd 

F•, --F• Fd Fo 

Ff Fd F• --F•, 

--Fd Fo --F•, --F• 

Pl 

M1/1 

P2 

M•/l 

(C1, cf. Eq. 3) 

(C2, cf. Eq. 8) 


