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Colloidal Quantum-Dot Photodetectors
Exploiting Multiexciton Generation

Vlad Sukhovatkin, Sean Hinds, Lukasz Brzozowski, Edward H. Sargent*

Multiexciton generation (MEG) has been indirectly observed in colloidal quantum dots, both in solution
and the solid state, but has not yet been shown to enhance photocurrent in an optoelectronic device.
Here, we report a class of solution-processed photoconductive detectors, sensitive in the ultraviolet,
visible, and the infrared, in which the internal gain is dramatically enhanced for photon energies Eghoton
greater than 2.7 times the quantum-confined bandgap Epanqgap- Three thin-film devices with different
quantum-confined bandgaps (set by the size of their constituent lead sulfide nanoparticles) show
enhancement determined by the bandgap-normalized photon energy, Ephoton/Ebandgap: Which is a clear
signature of MEG. The findings point to a valuable role for MEG in enhancing the photocurrent

in a solid-state optoelectronic device. We compare the conditions on carrier excitation,
recombination, and transport for photoconductive versus photovoltaic devices to benefit from MEG.

ultiexciton generation (MEG) refers to
Mthe creation of two or more electron-

hole pairs per absorbed photon in a
semiconductor (/). Colloidal quantum-dot mate-
rials in which MEG has been reported experi-
mentally include PbS and PbSe (2), PbTe (3),
CdSe (4), and Si (5). In bulk semiconductors,
carrier multiplication has been observed repeat-
edly over the past five decades, both in elemental
semiconductors such as germanium (6) and sili-
con (7) and also in lead chalcogenides (8), includ-
ing the infrared-bandgap bulk semiconductor PbS
(9). In the past year, experiments that carefully
account for processes such as photoionization of
nanoparticles during spectroscopic studies have
evidenced the production of more than one ex-
citon per photon (/0) in colloidal quantum dots,
with yields ranging from 1.1 to 2.4 excitons per
photon (/0) when the photon energy exceeds the
MEG threshold near ~Eypoion/Evandgap > 2-7 (1),
where Eppoton 18 the photon energy and Epandgap 1
the quantum-confined bandgap.

MEQG has been reported, based on all-optical
spectroscopic data, not only in solution but also
in thin solid films; however, in spite of numerous
attempts with materials systems and photon en-
ergies reported to manifest MEG, neither the ex-
ternal quantum efficiency (EQE) nor the internal
quantum efficiency (IQE) of the photocurrent in a
device has been shown to exceed 100% (12-20).
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In particular, one careful and systematic study
(21) recently explored whether a key signature of
MEG—an IQE of greater than unity—was ob-
servable in the photocurrent of a low-bandgap
PbSe colloidal quantum-dot photovoltaic device.
Once reflection and absorption were carefully taken
into account, IQEs approaching, but not exceed-
ing, 100% were reported.

Recent reports (22) suggest that in some of the
earlier spectroscopic studies, the apparent quantum
yield of MEG was enhanced by photoionization in
the presence of multiple excitons. The sequence
of steps is depicted in Fig. 1. The generation of
two excitons within one quantum dot (Fig. 1B)
produces efficient Auger recombination; one exci-
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ton recombines, and one carrier associated with the
other exciton is excited high within its band (Fig.
1C). Photoionization, in this instance known as
Auger-assisted ionization (AAI), may occur when
this excited charge carrier becomes trapped at or
near the quantum dot’s surface, resulting in a nano-
particle that possesses a long-lived net charge (Fig.
1D). The energetic Auger electron has a higher
probability of being captured to a trap than does
an already-thermalized electron (23) because it
can more easily surmount the energetic barrier
(such as a thin oxide on the nanoparticle surface),
restricting access to a surface trap state.

Subsequent photogeneration of even a single
exciton then results in the presence of a trion (an
exciton plus a charge) that recombines rapidly,
masquerading as MEG in recombination dynamics—
based studies. Thus, MEG’s time-resolved spectro-
scopic signatures are enhanced by photoionization.
It should be emphasized that, at the low intensities
of interest in MEG investigations, photoionization
alone cannot masquerade as MEG and serves only
to amplify the apparent quantum yield if MEG is
already present.

Unfortunately, MEG combined with photo-
ionization provides no advantages over MEG
alone in the harvest of photovoltaic energy. Indeed,
because trions resulting from photoionization ac-
celerate recombination, they render even more
challenging the extraction of MEG photocurrent
from a photovoltaic device. To observe the bene-
fits of MEG in the current extracted from a photo-
voltaic device, charge separation must occur before

D Auger-assisted trapping

Fig. 1. MEG accompanied by photoionization. (A) Bands and trap levels for the quantum dots that were
used. E. is the quantum-confined conduction band edge, E; is the trap energy, Eqqq is the quantum-
confined bandgap, and Egp is the constituent semiconductor’s bulk bandgap. (B) Generation of a pair of
excitons via photon absorption followed by carrier multiplication. (C) Auger-induced excitation of an
electron to a higher-lying level concomitant with recombination of the other exciton. (D) Efficient
trapping of the excited electron.
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Auger-accelerated multiexciton recombination. In
PbS, for example, the biexciton lifetime is 50 ps and
the triexciton lifetime is 30 ps (24). For a PbS pho-
tovoltaic device (/2) with a typical built-in voltage
of 0.35 V over a 100-nm-thick depletion region
and for an electron and hole mobility of 1 x 10~
em?/Vs measured in colloidal quantum-dot photo-
voltaic devices (13), the time for carriers to separate
over ~5 nm (the interdot lengthscale) is on the order
of 100 ps. Given the rapid rate of Auger recombi-
nation and the difficulty in dissociating excitons
into distinct quantum dots, it is not surprising that
the combination of materials parameters leading to
greater-than-unity EQE or IQE in a photovoltaic
device has yet to be conclusively observed.

We sought to identify a class of devices of ap-
plied interest in which telltale MEG signatures

(such as electrons) and flow of the other (such as
holes). If the flowing carrier can be recirculated
(withdrawn from one contact and reinjected from
the other) multiple times during the lifetime of the
trapped carrier, then photoconductive gain results:
Many charge carriers may be collected for every
exciton generated.

In sum, photoconductors benefit from the cap-
ture of charge carriers to sensitizing centers, or
traps, on the nanoparticle surface. We reasoned
that they could therefore enjoy considerably en-
hanced electrical photocurrents when MEG and
photoionization worked in concert. Thus, for
Ephoton > ~2.7 Evandgap» W€ expected that
photoionization-enhanced MEG could consider-
ably aid the trapping of charge carriers to sensitiz-
ing centers, leading to an improved signal-to-noise

REPORTS I

Figure 1A depicts the bands of a typical set of
PbS colloidal quantum dots that were used (26).
PbS has a bulk bandgap of 0.4 eV; the effective
bandgap rises to 1.4 eV through quantum con-
finement in the 2-nm-diameter dots investigated
here. A shallow trap, resulting from PbSO; formed
by surface oxidation of PbS (27), lies just below
the first confined electron state. The use of devices
(28) with a single trap-state lifetime facilitated the
interpretation of the results presented.

The responsivity spectra are shown in Fig.
2B. By combining these data with careful mea-
surements of the absorbance spectrum of the same
film (Fig. 2A), we were able to determine the
internal photoconductive gain of the device, which
is plotted in Fig. 2C (26). Error analysis is presented
in the figure caption.

could be observed in the devices’ photocurrents and  ratio that would be valuable in the sensitive de- Figure 2C reveals that the internal photocon- !
in which photoionization would further improve, tection of light. Because we worked with PbS  ductive gain is, as a function of wavelength, con- 8
rather than detract from, performance. In photocon-  nanoparticles that have quantum-confined band-  stant (spectrally flat) until 340 nm, a wavelength N
ductive detectors (25), electron-hole pair generation ~ gaps in the 750- to 1000-nm range, MEG en-  corresponding to a photon energy that is equal to Q
is followed by the trapping of one type of carrier —hancements were possible in the ultraviolet (UV). 2.7 times the bandgap energy. At higher photon 5
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Fig. 3. Internal photoconductive gain spectra of three devices having different
quantum-confined bandgaps. The left spectra (A) are plotted in absolute wave-
length, whereas the right spectra (B) are plotted in (unitless) Epnoton/Ebandgap- It is

energies, the internal gain rises sharply into the
UV spectral range. The internal gain reaches a
value of 100 + 10 at 220-nm wavelength (~4.1
times the bandgap energy) as compared with its
value of 25 * 3 in the spectrally flat region below
2.7 times the bandgap energy.

Motivated by the fact that these results were
consistent with, and even suggestive of, a role for
MEQG, we sought an experiment that could reveal
MEG’s unambiguous spectral signature: a uni-
versal quantum-yield curve dependent only on
Ephoton/Evandgap- We built three devices using
differently sized colloidal quantum dots having
correspondingly different bandgaps (26). The de-
vices’ internal gain spectra, obtained exactly as in
Fig. 2, are reported in Fig. 3.

We now discuss additional sets of controls
that address potential artifactual explanations of
these findings. One hypothesis is that trap states
could be nonuniformly distributed throughout the
film and perhaps clustered closer to the air-film
interface; shorter-wavelength light would then be
substantially absorbed in these denser and deeper
trap regions. However, we compared internal-gain
spectra for devices illuminated from the top versus
the bottom and found no dependence in the curves
of Figs. 2 and 3 on the side of optical incidence
(fig. S3). A second hypothesis is that, in the case
of short-wavelength illumination, excited carriers
could be captured directly to traps during the sub-
picosecond time frame before relaxation to the
quantum-confined band edge without need of
MEG and AAI This direct-ionization picture is
incompatible with the observed universal nor-
malized Ephoton/Epandeap SPeCtral dependence in
Fig. 3; instead, it predicts that trapping efficiency
should depend on Epyotn, the barrier to electron
escape, and the set of trap states available. To
vary the trap states, we aged a series of devices in
air to alter their trap-state densities and depths.
We confirmed that the trap distribution had changed,

observing an increase in dark current and the
emergence of additional longer—time scale temporal
components in the photoresponse that was con-
sistent with the introduction of new and deeper
traps. Despite these major changes in trap-state
populations, we found that the spectral gain—
dependence of Figs. 2 and 3 was preserved.
Taken together, these observations suggest that
carrier multiplication occurs more rapidly than
either intersubband relaxation or the capture of
excited carriers to traps.

We conclude with a brief discussion of the
relevance to short-wavelength imaging of the de-
vices we report here. A light sensor suited for
imaging must simultaneously provide high re-
sponsivity combined with rapid temporal response
(<1/15 s). Reports of UV-sensing elements based
on solution-processed materials have, however,
provided either promising sensitivity (61 A/W)
but hundreds-of-seconds temporal response (29)
or else fast response but few-milliamperes-per-
Watt UV responsivity (30). The devices we report
here are UV photodetectors with high responsiv-
ities of 18 A/W that at the same time offer an
imaging-compatible 20-ms response time. The
devices provide a 1000-fold improvement in gain-
bandwidth product in solution-processed UV pho-
todetection relative to previous reports. Compared
with digital-imaging chips based on silicon photo-
diodes limited to at most one photoelectron per
photon (thereby necessitating use of an extremely
low-noise readout scheme), the devices we report
here offer large gains that facilitate high-sensitivity
low-light imaging.
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