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A formalism has been developed, using Feynman’s space-time formulation of
nonrelativistic quantum mechanics whereby the behavior of a system of in-
terest, which is coupled to other external quantum systems, may be caleulated
in terms of its own variables only. It is shown that the effect of the external
systems in such a formalism can always be included in a general class of func-
tionals (influence functionals) of the eoordinates of the system only. The prop-
erties of influence functionals for general systems are examined. Then, specific
forms of influence functionals representing the effect of definite and random
classieal forces, linear dissipative systems at finite temperatures, and combina-
tions of these are analyzed in detail. The linear system analysis is first done for
perfectly linear systems composed of combinations of harmonic oscillators, loss
being introduced by econtinuous distributions of oscillators. Then approxi-
mately linear systems and restrictions necessary for the linear behavior are
considered. Influence functionals for all linear systems are shown to have the
same form in terms of their classical response functions. In addition, a flue-
tuation-dissipation theorem is derived relating temperature and dissipation of
the linear system to a fluctuating classical potential acting on the system of
interest which reduces to the Nyquist-Johnson relation for noise in the ease of
electric circuits. Sample calculations of transition probabilities for the spon-
taneous emission of an atom in free space and in a cavity are made. Finally, a
theorem is proved showing that within the requirements of linearity all sources
of noise or quantum fluctuation introduced by maser-type amplification devices
are accounted for by a classical calculation of the characteristics of the maser.

I. INTRODUCTION

Many situations occur in quantum mechanies in which several systems are
coupled together but one or more of them are not of primary interest. Problems
* This report is based on a portion of 2 thesis submitted by F. L. Vernon, Jr. in partial

fulfillment of the requirements for the degree of Doctor of Philosophy at the California
Institute of Technology, 1959.
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Fia. 1. General quantum systems @ and X coupled by 2 potential 1(Q, X, 1)

in the theory of measurement and in statistical mechanics present good examples
of such situations. Suppose, for instance, that the quantum hehavior of a system
15 to be mvestigated when 1t 1s coupled to one or more measuring instruments.
The instruments in themselves are not of primary interest. However, their
effects are those of perturbing the characteristics of the system heing observed.
A more concrete example is the case of an atoin in an exeited state which inter-
acts with the electromagnetic field in a lossy cavity resonator. Because of the
coupling there will be energy exchange between the field and the atom until
equilibrium is reached. If, however, the atom were not coupled to any external
disturbances, it would simply remain unperturbed in its original excited state.
The cavity field, although not of central interest to us, influences the hehavior
of the atom.

To make the discussion more definite, let us suppose there are two nonrela-
tivistic quantum systems whose coordinates are represented in a general way
by @ and X, as in Fig. 1, coupled together through some interaction potential
which is a function of the parameters of the two systems. It is desired to compute
the expectation value of an observable which is a funection of the ) variables
only. As is well known, the complete problem can be analyzed by taking the
Hamiltonian of the complete system, forming the wave equation as follows:

Q) + H(X) + T(Q, X)}9(Q, X) = —@ SVQ ).

and then finding its solution. In general, this is an extremely difficult problem.
In addition, when this approach is used, it is not easy to see how to eliminate the
coordinates of X and include its effect in an equivalent way when making com-
putations on Q. A satisfactory method of formulating such problems as this in a
general way was made available by the introduction of the Lagrangian tormula-
tion of quantum mechanics by Feynman. He applied the techniques afforded
by this method extensively to studies in quantum electrodynamics. Thus, in a
problem where several charged particles interact through the electromagnetic
field, he found that it was possible to eliminate the coordinates of the field and
recast the problem in terms of the coordinates of the particles alone. The effect of
the field was included as a delayed interaction between the particles (1, 2).

The central problem of this study is to develop a general formalism for finding
all of the quantum effects of an environmental system (the interaction system)
upon a system of interest (the test system), to investigate the properties of this
formalism, and to draw conclusions about the quantum effects of speeifie
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interaction systems on the test system. Cases where the interaction system is
composed of various combinations of linear systems and classical forces will be
considered in detail. For the case in which the interaction system is linear, it
will be found that parameters such as impedance, which characterize its classical
behavior, are also important in determining its quantum effect on the observed
system. Since this linear system may ineclude dissipation, the results have ap-
plication in a study of irreversible statistical mechanics.

In Section II, after a brief discussion of the Lagrangian formulation of quantum
mechanics, a general formulation of the problem is made and certain functionals,
calléd influence functionals, will be defined, which contain the effect of the in-
teraction system (such as system X in Fig. 1) on the test system in terms of the
coordinates of the test system only. General properties of these functionals will
be derived and their relationship to statistical mechanies will be discussed. To
obtain more specific information about the properties of the formalism, we then
specialize the discussion to cases where well-defined systems are involved. In
Section III, the special cases are considered in which the interaction system is a
definite classical force and a random eclassical force. In Section IV, the influence
functionals for exactly linear systems at zero temperatures are derived and then
extended to the case that the linear systems are driven by classical forces. In
addition, the effect of finite temperatures of linear systems is considered. Then,
in Section V, the unobserved systems are again agssumed to be general but weakly
coupled to the observed system. Within the approximation of weak coupling
these general systems also behave as if they were linear. Then finally in Section
VI, the results of the analysis are used to prove a general result concerning maser
noise.

It is to be emphasized that although we shall talk of general test and interac-
tion systems, the Lagrangian formulation is restricted to cases involving mo-
mentum or coordinate operators. Therefore, strictly speaking, systems in which
the spin is of importance are not covered by this analysis. However, this has no
bearing on the results since their nature is such that their extension to the case
where spins are important can be inferred.

An equivalent approach can be made to the problem using the Hamiltonian
formulation of quantum mechanics by making use of the ordered operator calcu-
lus developed by Feynman (3). This approach has been used to some extent by
Fano (4) and has been developed further by Hellwarth (5).! Some advantages
of this method are that many results may be obtained more simply than by the
Lagrangian method and nonclassical concepts such as spin enter the formalism
naturally. However, the physical significance of the functions being dealt with
are often clearer in the Lagrangian method.

1 Many of the results obtained in this work have also been obtained by him using ordered
operator techniques.
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I1. GENERAL FORMULATION—INFLUENCE FUNCTIONAL
A. LAGRANGIAN FORMULATION OF QUANTUM MECHANICS

We shall begin the discussion with a brief introduction to the Lagrangian or
space-time approach to quantum mechanies and the formal way in which one
may set up problems of many variables.” Let us suppose that we are considering
a single system which has coordinates that are denoted by @, and that for the
time being it is not acted on by any other quantum system. It can be acted on
by outside forces, however. The system may be very ecomplicated, in which case
@ represents all the coordinates in a very general way. If at a time ¢ the variable
() is denoted by @Q., then the amplitude for the system to go from position
Q- att = 7toQratt= T is given by

K(Qr,T;Q-, 7) = [ exp [(¢/7)S(Q)DQ(L) (2.1)

in integral which represents the sum over all possible paths Q(t) in coordinate
space from @, to Qr of the functional exp [(7/%)S(Q)].* S(Q) = [." L(Q, @, ) dt
is the action calculated classically from the Lagrangian for the trajectory (J(¢).
For the case that @ is a single linear coordinate of position, this is represented in
the diagram in Fig. 2. The magnitude of the amplitude for all paths is equal but
the phase for each path is given by the classical action along that path in units
of #. Thus, amplitudes for neighboring paths which have large phases tend to
cancel. The paths which contribute the greatest amount are those whose ampli-
tudes have stationary phases for small deviations around a certain path. This is
the path for which the classical action is at an extremum and is, therefore, the
classical path. Remarkably enough, for free particles and harmonic oscillators,
the result of the path integration is

K(Qr, @) = (Smooth Function) exp [(i/%)Su]

where S, 1s the action evaluated along the classical path between the two end
points Q. , @r . However, for more complicated systems this simple relation does
not hold. A discussion of the methods of doing integrals of this type is not in-
cluded here since methods appropriate for the purposes here are already con-
tained in the literature (1, 2).

Since K(Qr, Q.) is the amplitude to go from coordinate @, to Qr, it follows
that at ¢ = T the amplitude that the system is in a state designated by ¢,.(Qr)
when initially in a state ¢,(Q,) is given by

A'mn = f‘t’m*(QT)K(QT 3 Qf)d)n(.Qr.) dQT er
= [ ¢n"(Qr) exp [(¢/5)S(Q)1$.(Q.)DQ(t) dQr dQ.

2 For a more complete treatment, see ref. 1.
# In subsequent equations K(Qr , T'; Q¢ , ¢) will be written K (Qr , (),).
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Qft)—

F1a. 2. Space-time diagram showing possible paths for particle to proceed from @, to Qr

The probability of the transition from n — m is given by |4 ,..|* and from Eq.
(2.2) this can be written in the form of multiple integrals as follows:

Pon = [ ¢n (Q)dn(Q'2) exp { (¢/B)[S(Q) — S(Q)])
X 64(Q:)6:" (@) DQ(1)DQ(¢) dQ. dQ', dQ- dQ'»

As a example of a more complicated case let us consider two systems whose
coordinates are @ and X.* The systems are coupled by a potential which can be
designated as V(Q, X) and incorporated in the total Lagrangian. We assume
that when V = 0 the states of @ and X can be described by sets of wave fune-
tions ¢ (Q) and x,(X) respectively. If, initially, @ is in a state ¢,(Q.) and X is
in a state x.(X,), then the amplitude that @ goes from state n to m while X
goes from state 7 to f can be formed in a similar way to that of Eq. (2.2),

Angni = &n" (Qr)xs™ (Xz) exp [(4/5)8(Q, X)Jbn(Q:)x:(X-)
X DR()DX (1) dQ. dX, dQr dX 1

(2.3)

(2.4)

where S(Q, X) represents the classical action of the entire system including
both @ and X. The important property of separability afforded by writing the
amplitude in this way is now apparent.” For instance, if one wishes to know the
effect that X has on @ when X undergoes a transition from state ¢ to f, then all

4 Each system will be denoted by the coordinates that characterize it. Where @ or X
means specifically a coordinate, it will be so designated by a statement if it is not obvious.

b If system @ represents a harmonic oscillator and the interaction of @ with X were linear
and of the form —~ (¢, X)Q(#), then that part of Eq. (2.4) which involves the @ variables
corresponds to the function G, defined and used by Feynman to eliminate the electromag-
netic field oscillators. See ref. 2.
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of the integrals on the X variables may be done first. What is left is an expression
for A ., for Q and in terms of Q variables only but with the effect of X included.
The extension of writing transition amplitudes for large numbers of systems is
obvious. In principle the order in which the variables are eliminated is always
arbitrary.

B. DEFINITION OF INFLUENCE I'UNCTIONAL

A functional ean now be defined which can be used to deseribe mathematically
the effect of external quantum systems upon the behavior of a quantum system
of interest.®

The fundamental theorem for this work may be stated as follows: I'or any
system, (), acted on by external classical forces and quantum mechanical systems
as discussed above, the probability that it makes a transition from state ¥,(Q.)
att = 7 to ¢¥,(Qr) at t = T can be written

Pon = [ ¥ (Qe)Wn(Q'r) exp { (/7)) [Se(Q@) — So(Q@VF(Q, Q")
X (Q ) (Q)DQ(HDQ' (1) dQ. dQ', dQr dQ'~

where 5(Q, Q') contains all the effects of the external influences on @, and
So(Q) = [T L(Q, Q,t) dt, the action of Q withoutexternal disturbance. The proof
of this is straightforward. Let us examine two coupled systems characterized by
coordinates @ and X as represented diagrammatically in Iig. 1. @ will represent
the test system and X the quite general interaction system, (excepting only the
effects of spin) coupled by a general potential V(Q, X, ¢) to Q. Assume () to be
initially (¢ = 7) in state ¥,(Q.) and X to be in state x;(X,), a product state.
The probability that @ is found in state ¥.(Q,) while X is in state x.(X) at
t = T can be written in the manner discussed above and is

(2.5)

2

me,ni = iiimf,n[

T QW@ ) x (X o) xs (X 1)

X exp { (3/R)[So(@) — So(Q) + S(X) — S(X) + 8,(Q, X
— SHQ X))

(2.4)

X 0.5 (Q ) (Q)xS (X' Dxi( X7) dX,
- dQ DX () -+ DO

The primed variables were introduced when the integrals for each A, ,; were
combined. Now if all of Eq. (2.6) which involves coordinates other than @ or

§ Hereafter, the system of interest will be referred to 2s the test system. Conversely, the
system not of primary interest will be called the interaction or environmental svsten.
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@’ is separated out and designated as $(Q, Q'), then the following expression is
obtained

F(Q, Q) = fxf*(XT)Xf(X,T)
-exp { (i/B)[S(X) ~ S(X') + 8:(Q, X) — S«(Q, X"} (2.7)
X xi (X' Dxd X,) dX, dX X ()DX (1)

Incorporation of this expression into Eq. (2.6) yields the desired form of Eq.
(2.5). If the path integrals are written in terms of kernels, Eq. (2.7) becomes

5Q,Q) =[x/ (Xo)x/(X' 1)K o(Xr, X)K§ (X', X',)
X Xi*(X,‘r)Xi(Xr) er t dX’T

where the subscript @ means that the kernel includes the effect of a potential
V(Q, X) acting on X during the interval T > ¢ > 7. As can be seen, ¥ is a
functional whose form depends upon the physical system X, the initial and final
states of X, and the coupling between ¢ and X.

It is to be emphasized that the formulation of F is such that it includes all the
effects of the interaction system in influencing the behavior of the test system.
Thus, if there are two systems A and B which can act on @, and if

(2.8)

ngnQ=€FBonQ,

then the effects of A on @ are the same as those of B on Q. It follows that if
simplifying assumptions are necessary in finding F4 on ¢ a0d Fz on ¢ (due to the
complicated nature of A and B) and if the resulting functions are equal, then
within the approximations the effects of A and B on the test system are the same.
In the situation where the interaction system is composed of a linear system or
combinations of linear systems we shall see that the same form of F is always
appropriate. To adapt this general form of § to a particular linear system it is
only necessary to know such quantities as impedance and temperature which
determine its classical behavior. In still other situations, very weak coupling
between systems is involved. The approximate § which can be used in this case to
represent the effect of the interaction systems has a form which is independent
of the nature of the interaction system. This form is the same as for linear
systems. These cases will be considered in more detail in later sections.

C. GENERAL PROPERTIES OF INFLUENCE FUNCTIONALS

There are several general properties of influence functionals which are of
interest and which will be useful in subsequent arguments. The first three of
these (1, 2, 3) follow directly from the definition of F(Q, Q). The last two (4, 5)
will require more discussion.
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1. If the physical situation is unsure (as for instance if the type of interaction
system X, or the initial or final states are not known precisely) but if the prob-
ability of the pth situation is w, and the corresponding influence functional is
%, , then the effective F is given by

Fett = ZD WpFp = <3) (2.9)

Thus, in Eq. (2.6) if the initial state of X were not certain but the probability
of each initial state were w,, then P,, for system ¢ would be given by
> P i - Since the summation involves only the part of Eq. (2.6) involving
the X variables, it is a sum over the influence functions for each possible initial
state and results in an average influence functional of the type given above.

2. If a number of statistically and dynamically independent partial systems
act on () at the same time and if % is the influence of the kth system alone,
the total influence of all is given by the product of the individual *':

F= J[L ™ (2.10)

Again referring to Eq. (2.6), if there were & subsystems interacting with ¢,
then the probability that @ makes a transition from state n to m while each of
the subsystems makes a transition from its initial to its final state is given by
an expression of the same form as Eq. (2.6). The difference in this case being
that the term involving the X variables would be replaced by a product of N
similar terms-—one for each subsystem. Thus, when the term involving all the
X%* variables is separated out the complete influence functional is recognized
as a product of the functionals g® (Q, Q' ) for each subsystem.

DeriNiTioN: In many cases it will be convenient to write F in the
form exp [i®(Q, Q')]. ® is then called the influence phase. IFor independent dis-
turbances ax considered in 2, the influence phases add. In the event that (¢, ¢
is a real number we will continue to use the notation ®; the phase simply becomes
imaginary. It will frequently be more convenient to work with & rather than .

3. The influence functional has the property that

FQ, Q) = F(Q, Q) (2.11)

Referring to Eq. (2.7), the definition of the influence functional, this fact follows
immediately upon interchanging Q and ¢’

4. In the class of problems in which the final state of the interaction svstem
is arbitrary, which means the final states are to he summed over, then F((), ")
is independent of Q(¢) if Q(¢) = Q'(¢) for all . All of the problems we will he
concerned with here are of this type.

The validity of this statement can be ascertained by observing Eq. (2.7), the
general definition of the influence functional. In particular, for the case where the
initial and final states of the interaction system X are 7 and f respectively, as in
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Eq. (2.7), we denote the influence functional by ,F,(Q, Q). Let us assume we
have no interest in the final state of X which means that ;5.(Q, Q) must be
summed over all such states. The initial state 7 can be quite general. Thus, the
influence functional for the case of an arbitrary final state is

5:(Q,Q) = 245, Q)

For clarity in finding the result of letting Q(¢) = @' (¢) for all ¢ in F.(Q, Q), we
will write out the expression explicitly from Eq. (2.7). It is

5:(Q,Q) = [ 2 x (Xn)x(X'r)
-exp { (4/R)[S(X) — 8(X") + 8:(Q, X) — S:(Q, X))}
X x: (X DxidX,) dX, --- DX'(1)

Since @ appears in the interaction potentials acting on the X and X " variables
respectively, it loses its identity as the coordinate of a quantum system and
becomes just a number (which may be, of course, a function of time). Thus
S:(Q, X) may be interpreted as the action of an external potential which drives
the X system. The above expression then represents the probability that X,
which is in state < initially, is finally in any one of its possible states after being
acted on by an external potential (as, for instance, in Eq. (2.3) summed over the
final states, m). This result is unity. We have then that §(Q, Q) = 1 and is
independent of Q(¢).

5. A more restrictive statement of the property in the above paragraph (4)
can be made. In this same class of problems in which the final states are summed
over, if Q(t) = Q'(t) for all ¢ >  then F(Q, Q') is independent of Q(t) fort > r.
To see this we write down the influence functional from Eq. (2.8) breaking up
the time interval into two parts, before and after r. Setting @ = @' for ¢ > r and
utilizing the closure relation for the sum over final states we have,

5.(Q,Q) = [3(Xr — X'D)Ko(Xr, XK (X2, X))
X Ko(X,, X)Ke (X', X' )x (X' )xi(X:) dX, - dXy
Examining the parts of the above integral which contain the effects of ¢ > r:
[8(Xy — X' )Ko(Xr, X)K&(X'r, X)) dXrdX s
= [Ko(X',, X1)Ko(Xy, X,) dXy
= Ko(X'r, X,) = 8(X, — X))
The expression for 5,(Q, Q) becomes then
7.(Q,Q) = [8(X, — X')Ko(X,, X)Ko (X', X))
X ¥ (X' Dx(X,) dX, -+ dX',,
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which is independent of @(¢) for ¢ > r. As will be seen later in the specific case
of linear systems, this leads to a statement of causality.

D. STaTisTICAL MECHANICS

I'inally it is appropriate to point out explicitly the significance of the influence
funetional in a study of quantum statistical mechanics. In the class of problems
considered here we are only interested in making measurements on the test
system and not on the interacting system. Thus, when the expectation value of an
operator which acts only on the test system variables is taken, the final states of
the interaction system must be summed over. It is equivalent to taking the ex-
pectation value of the desired operator in the test system and simultaneously
the unit operator in the interaction system. Therefore, only the influence fune-
tional where the final states of the interaction system are summed over will be
of interest to us.

Starting with the coordinate representation of the density matrix (6) for the
test and interaction systems, p(Q, X; Q', X'), we will show the part played by
the influence functional in obtaining an expression for p(Qr , Q'2), that is, with
the X coordinates eliminated, in terms of its value at an earlier time 7, p(Q, , (', 1.
First, we recall that the definition of p is as follows:

p(Q,X;Q, X" = (W(Q, X )™ (), X' )uv (2.12)

where (), X') represents the wave function for one of the systems in an ensemble
of systems each representing one of the possible states of the @, X system (7).
The average, represented by ( )., , is taken over the ensemble. The trace of the
density matrix is

Tro(Q, X;Q, X)) = [[p(Q, X;Q X)dQdX (2.13)

and the expectation value of an operator A which operates on the @ variables
only 1s

(A= [1p(Q, X;Q, X)A(Q, Q) dQ dQ X (2.4

In the above

AQ, Q) = 204,67 (Q);(Q),
Ay = [¢5(Q)A¢:(Q) dQ,

and ¢;(€)) is one of a set of complete orthonormal eigenfunctions. I'rom Eq.
(2.14) then we see that the formal expression which we wish to derive is

[0(Qr,X7;Q' 7, Xr)dXr = p(Qr,Q'r) (2.16)

(2157
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in terms of p(Q., Q,). From the rules given in Section IT.A for propagation of
a wave function with time we can easily find pr in terms of p, . Thus

p(Qr, Xr; Q,T, XIT) = [exp {(4/R)[Se(Q) — SO(Q,)
+ S(X) — S(X) + 8:(Q,X) — S«(Q, X"} (2.17)
X p(Q.,X,;Q., X'N0Q(t) --- dX’,

Now, for simplicity let us assume that initially the two systems are independent
so that

p(Q,X,;Q., X)) =p(Q,Q)p(X., X)
Then eliminating the X r coordinate as indicated in Eq. (2.16) we have
p(Qr,Q'r) = [{[8(Xr — X'r) exp [(5/B)[S(X) — S(X')
+ 8:(Q, X) — 81(@, X)le(X, X')
X DX(1) -+ - dX' exp [(1/R)[So(Q) — So(Q)e(Q:, QDQ() - - dQ';

The expression inside the braces is identified as 5(Q, Q') for the case in which
the final state of X is summed over. Therefore, the following result is obtained:

P(QT ’ Q,T)
= [ 5(Q, @) exp [(i/)[S(Q) — Su(Q)Ip(Q- , Q)DQ(H) --- dQ',

Thus, if the density matrix of the test system @ is represented by p(Q-, Q)
at some initial instant r, the density matrix p(Qr, @ r) at some later time 7'
is given by Eq. (2.18). The entire influence of the interaction system is contained

in5(Q, Q).

E. Usk oF INFLUENCE FUNCTIONALS

(2.18)

At this point we need to consider how influence functionals can be used in
the analysis of a problem. For clarity the discussion will be specialized to a
particular problem but the principle is valid more generally. Suppose we wish to
know the probability that a test system ¢ makes a transition from an initial
state ¢.(Q,) exp [( — ¢/A)E,7] to a final state ¢,.(Qz) exp [(— ¢/A)E,.T] when
coupled to an interaction system. The formal expression for this probability is,
from Eq. (2.5),

Pum = [ $u*(Qr)ém(Q'r) exp {(i/B)[S6(@) ~ So(@)IF(Q, Q) o109
X 62" (Q)on(Q.) dQ. -+ dQ' ()

This is formally exact but except in special cases it cannot be evaluated exactly.
Furthermore, to obtain any specific answers to the problem the characteristics
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of @ must be known as well as knowing the influence functional. However, by
using perturbation theory we may find general expressions for transition prob-
abilities to as many orders as desired. For example, if the interaction system is a
linear system at zero temperature, we will find that F,(Q, Q") is of the
form exp[i®(Q, Q')]. The perturbation expansion is obtained by writing
explide(Q, Q)] in terms of a power series and evaluating the path integral
corresponding to each term in the expansion. In many cases the coupling between
() and the interaction system is small enough that only a few terms in the expan-
sion are necessary. In Appendix I the basic procedure for finding the perturbation
expansion is demonstrated by finding the specific expression up to second order
in the potentials involved for transition probability of a test system when acted
on by a linear interaction system at zero temperature. Calculation of transition
probabilities represent only one piece of information that one might desire to
know about a test system. FFor instance, it is more usually desired to find the
expectation value of an operator in the test system. To calculate this one needs
to know the deusity matrix describing the test system when it is coupled to an
interaction system. The exact expression for the required density matrix is
given in Section II,D. Again in the general case, one runs into the difficulty of
making an exact caleulation and is forced to make calculations using perturba-
tion theory. The same procedure of expanding the influence functional into a
power series and performing the required path integrations vields useful per-
turbation expressions.

I11. INFLUENCE FUNCTIONALS FOR CLASSICAL POTENTTALS

In this section we will derive specific forms and properties of influence func-
tionals for the effects of classical potentials on the test system. These represent
the simplest form of influence functionals and their properties follow directly
from the general properties obtained in the previous section. These forms will
then be extended to the case where the classical potential represents Brownian
noise.

A. PROPERTIES OF INFLUENCE FUNCTIONALS FOR CLASSICAL POTENTIALS

The first step is to find the influence functional for a definite classical potential
acting on the test system, . If the potential energy term in the Lagrangian is
of the form V (@, t), then it can be ascertained readily by referring to the funda-
mental definition of F(Q, Q) that

F(Q, Q) = exp{—(i/B) [,/ IV(Q, )= V(Q, O)] dt} (3.1
or equivalently the influence phase is

®(Q, Q) = — (/B[ IVQ, =V, )] dt (3.2)
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The next degree of complication is to have several potentials, > :V:(Q, )
acting on ¢ simultaneously. However, since the sum of all these potentials repre-
sents an equivalent potential, say V(Q, t) = > +V«(Q, t), then it is obvious that
the total influence functional F(Q, Q') is the product of the individual 5,(Q, Q).
More specifically,

5(Q, Q) = exp {—(G/B)[,"IV(Q, ©)—V(Q, 1)]dy
= exp 2 il ~ (/M) [T IVi(Q, O—Vi(Q, 0)]df (3.3)
= [I5:(Q, @),
or
®(Q, Q) = — (/R DUl IVe(Q, 1)=Vi(Q, 1)]dt

3.4
=2.8.(Q, Q) (34

The same result follows directly from Section II.C.3 which gives the total
influence functional for several statistically and dynamically independent systems
acting on Q. The total influence functional for all the systems (in this case po-
tentials) is the product of the functionals for the individual systems.

Another property of the classical influence functionals is obtained by inspec-
tion of Eq. (3.1). We notice that for any classical F(Q, Q') if conditions are such
that Q(¢) = Q'(¢), then F(Q, Q) = 1 and is independent of ¢ for all times that
the two variables are equal. It follows that the influence phase is zero for this
condition.

Finally, from Section IT.C.1 we find that if the potential is uncertain but the
probability of each V.(Q, t) is w, then the average functional is given by

F(Q, Q) = 2w, expl—G/B) [ IV(Q, t)=V.(Q, )]dy
= errﬁr(Q; QI>

In the following Sections we will assume a probability distribution w, appropriate
to Brownian noise and will be able to derive a specific form for the average
influence functional.

(3.5)

B. Speciric FuncrioNaLs FOR RaNDOM POTENTIALS

Let us now suppose that the potential has known form, V (@), but unknown
strength C(t) as a function of time so that the total potential is V (@, ¢) =
C()V(Q). The average influence functional for two cases involving this type of
potential will be particularly useful in the discussion contained in Sections IV
and V. These cases are: (1) when C(¢) is characterized by any coupling strength
(average magnitude of (') with a purely Gaussian distribution, and (2) when
C(t) is composed of large number of very weak potentials (acting on the test
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system simultaneously) whose distributions are stationary but not necessarily
Gaussian.

1. Gaussian Noise

Iirst, we consider the situation when ('(¢) is Gaussian noise with a power
spectrum @®(») and a correlation function R(7) = (2/7)[¢ ®(v) cos v v
then (F) is given by

(F) = (exp | (i R)[TCWIV(Q)—V(Q")] dt})

= expl =1 LRI — s)V(Q) = VIQOIVQ) = Vi@ dsay
FExpressed in Iourier transform notation this becomes
(F) = exp{— (=) [\"p(») [ V.Q)=V,(Q") " dy} (37
where
V(Q)=Vu(@Q) = V(@ —V(Q)le™at (3.8)

lixpressions of the type given in Eq. (3.6) are common for operations in which
it is required to find the characteristic function, F (i) = (') for /(T ) rvepre-
sented by integrals of the form f(T) = [207) A(T, t)a(t) dt where x(¢) is a
(taussian process. The result will not be worked out here as it may be found in
standard references (8)." The equivalent expression for F in terms of frequency
components, Eq. (3.7), is obtained from Eq. (3.6) in a direct manner using the
definitions for R(¢) and Eq. (3.8).

2. Brownian Noise

The Gaussian behavior of Brownian noise, characterized by the tvpical
(raussian probability distribution, may be the result of the cumulative effects
of many small statistically independent sources, none of which is truly Gaussian.
How that comes about can be seen as follows. The effect of these small sources
on a test system may be represented by an influence functional of the same form
as that of Eq. (3.6) where now C(¢) = Z’Ll (';(1), N is a very large number,
and the (",(¢) are independent random variables. Application of the central-limit
theorem to this situation shows that the probability distribution appropriate
to (’(¢) is asymptotically normal subject to the following conditions (9):

(a) The average values,

(Ci(t)) < oo
and
piz = ([ Ci(t) — (Ci(t)) w < =,

" See, for example, pp. 372-373 where it is shown that the characteristic function Fug)
appropriate to the integral given zbove for a Gaussian process r(f) is eXI)[~‘]»Q£2fj:“ ;:
AT, AT, 8)K,(t, s) ds dt] where the covariance K, (¢, 8) = (x.r,) is the correlation furetion
corresponding to R(t — s) in Eq. (3.6).
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(b) The absolute moments
piags = (| C(8) — (C:)) | *)

exist for some 6 > 0, and
(e) Making use of the definition

' N
M= Zz’:l Mi,1,

then

The condition of independence on the large number of variables and the finite
average values required by (a) and (b) above assures that no one component
dominates the total distribution. Condition (¢) is sufficient to ensure that all
higher order correction terms tending to deviate from a normal distribution
vanish in the limit of large N. It should be recognized that if the C; possesses
finite third moments u;3 the correction terms arising from these moments de-
crease as N~%. However, for the cases in which we are interested, the number of
the component forces C'; is essentially infinite and higher order terms are negligi-

ble.
IV. INFLUENCE FUNCTIONALS FOR LINEAR SYSTEMS

Linear systems are of considerable interest both because of the large number
of situations in which they are involved and because they are amenable to exact
ralculation. In this section the influence functional for arbitrary combinations
»f oscillators will be found by direct extension of the analysis of a single oscillator.
All linear systems which are lossless and those which eontain certain kinds of loss
can be represented by distributions of oscillators. Situations in which dissipa-
tion arises from sources other than distributions of perfect oscillators will be
covered in Section V. The same conclusions apply for all linear systems, however,
as will be discussed subsequently. For clarity, we will restrict our attention
initially to linear interaction systems at zero temperature and not acted on by
classical forces. The effects of finite temperature and forces can then be included
so that their significance is more apparent.

A. ZERO TEMPERATURE LINEAR SYSTEM

The result to be proven involves the assumption that the interaction system
(X) 1s linearly coupled to the test system (@). The total Lagrangian for the system
is

Liotst = Lo(Q, Q,t) + L(X, X, t) + Li(Q, X) (4.1)
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where L, = vyQX, and L(X, X, t) is the part of the Lagrangian involving the
X system above. The situation is the same as that shown in Iig. 1 except the
interaction potential is given by V(Q, X, t) = —+(X and the X svstem is
linear. Our fundamental theorem for linear systems is as follows:

The influence phase for the effect of X on Q can be written as Jollmws:

w Qly((z“v -— — | J (Jy 2;’ ‘
2rh b l:—-m """ + TSRy :'flv (4.2,

®(Q, Q) is Jound by studying the properties of X alone.” Q, is the Fourier trans-
Jorm of v(HQ(t) and Z, is a classical impedance [unction which relates the reaction
of X to an applied force. Z, ts found by ta,/f,in,(/ the classical system corresponding
to X (that is, whose Lagrangian s L(X, X, t)) and finding the 'I(\pt))h\(’ u/' the
coordinate N to a driving Jorce [(1) which is dmwul from the potential — (O X () -
F(¢) 13 considered 16 be applied al T = 0 subject to t/z-(f. inifral conditions that ‘\ (0
X071 = 0. Z, is defined by the erpression

Z, = [,/ (irX,) (43

Q) =

where
o= [ fe M dt oand X, = [ X0 dt
In the time domain, Iq. (4.2) can be expressed as
DQ, Q) = — (120, [y — Q)
JQEF*t— 51 — QF(t — )| ds dt

where Im F(¢), which we will call B(f) is, for t > 0, the classical response of X
to a foree f(#) = 6(t). Re F (), which for this zero temperature case we call
Ay(), 1s the correlation function for the zero point fluctuation of the variable .\,

a point discussed at more length below. The relations connecting these
quantities are then.

(4.4

[’1(‘{) = ;1()([) + Zlf(l’)

Blie (4.5a)
lVZV f

j‘; Im ( V/> cos vl dv
/0 Im <w7> sin vl dy

s More generally, the part of the interaction represented by € could be represented by
function of @ such as V(Q). In this ease () in the influence phase would be replaced by V., (),
the Fourier transform of 1V (Q(t)).

and the inverse relations

A()(t) = —

&

{4.5h1
B(t) = —

EIRE ™
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Ao(t) and B(t) are related as follows:
2 (” sB(s)
A = — -
o(t) Wfo o (4.5¢)

These relationships may be written in many forms. Two additional forms are

F(t) = 22[ <.1 )cos::tdy
T Jo 1VZ,,

J2. F([t]e ™dt

and

2i(ivZ,) ™! forv > 0

o 5 (4.5d)
26(—ivZ_,) forv < 0

i

All the poles of 1/4vZ, have positive imaginary parts and this impedance func-
tion has the additional property that

(1/3vZ,) = (1/—ivZ_)*

In the case of finite temperatures, the influence phase can be written in the same
form as Eq. (4.4) except that ReF(t) = A(¢), that is, without the subscript
0, and a more general relation exists connecting A(¢) and Im (1/ivZ,) (see
Section IV,C).

F(Q, Q") for Single Lossless Harmonic Oscillator

To prove the above theorem, we consider first a test system, @, which is
coupled to a simple harmonic oscillator whose mass is m, characteristic frequency
w, and displacement coordinate X. The complete Lagrangian for X and € can
be written

Lo = Lo(Q, Q, ) + 14mX" — Y4mo’X" 4+ QX (4.6)
and the total action is written similarly.’

Stotar = So(Q) + [T (LsmX® — Lymo’X® + QX) dt

If X is assumed to be initially in the ground state (corresponding to zero tem-
perature) then to within a normalizing constant x.,(X) = ¢ ™% The final
state of X is assumed to be arbitrary which means the final states are to be
summed over. Therefore, in Eq. (2.7), the definite state x,*(Xr)xs(X'r)
will be replaced by the sum Z"<I>n*(XT)<1>n(X'T) = 8(Xr — X'7). The ®,(X)
represent the energy eigenfunctions of the harmonic oscillator. With this in-

? The interaction Lagrangian QX could be written more transparently as vQX where @
and X are the coordinates of the system involved and v is & eoupling factor which may or
may not be a function of time. For simplicity in writing the lengthy expressions to follow,
v has been incorporated into an effective coordinate @ since no loss in generality results.
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formation available the influence functional is completely defined and from
Section IL1.B can he written

Fo(Q, Q) = [8(Xy — X' 2)Ko(Xr, X)K§(X'y, X',
X exp [—(mw/Zﬁ)(‘\',2—}—){;")](/X, S dX,

where the subseript @, @ refer to the interaction potentials —QX and —'x’
acting on the X and X systems respectively. The subseript 0 on Fo(Q, Q') in-
dicates zero temperature. I'or the harmonic oscillator

Ko Xr, Xo) = Nexp H(#/R)[S(X) — 800, X)erassion
= Nexp {liw/2hsin (T — (X7 + X coswl(T — 7)
— 22X X, + (2X/w) [." Qsin w(t — 7)dt + (2X,/w)
P Qusinet T — ) dt — (2/°) 7 [ QQusinw( T — 1) sinw(s — ) dsdl]
where N is a normalizing factor depending only on « and the time interval
T — 7." Thus, Eq. (4.7a) represents a Gaussian integral over the four X variables

since N is itself quadratic in the X variables. When the integrals are carried out
the following result is obtained for the influence phase:

(4.74

(4.7b)

i®o(Q, Q) = — (2hme) ' [ (Q0 — Q')

. ;s (4.8,

X AQue ™ — ™ ds dt
Thus, F(1 — s} in Eq. (4.4) corresponds in this case to c""‘“”“‘" mw and from
the definition given above B({ — s) = (1, mw) sin w(f — 5).'" Rewriting 1.
(4.8) in transform notation we have
! /
o L —0,) Q_,
®(Q, Q) = (2rh ’f £ )(QL—_.L - dv (1.9
ol Q. Q ) o m[(v — 1€)? — + —m[(u —I— Le)
where
_J * (21 - u//

The function | —m[(y — z'e)“ - w‘]} = (mw) 'J"ux sin wle "* dt corresponds

to 1/9vZ, of Eq. (4.2)."

b See ref. 2, Section 3.

" The finite time interval indicated by the limits 7" and 7 can be interpreted as turning
the coupling (between @ and X) on at ¢ = 7and off at ¢t = 7". However, since the interaction
system is to be considered in most cases as part of the steady-state environment of Q, it is
really mare 1 ne‘mingful to extend these limits over an infinite range of time (r — — =»,
T'— + = ). The possibility of allowing X to interact with @ over a finite range of time ean
he 1: J\en care of by giving the coupling factor (alreudy included in the variable Q) the
proper time dependence.

12 ¢ which occurs in 4vZ, is a convergence factor which was inserted in taking the Fourier
transform (1(¢)/mw) sin wt where 1(¢) is the unit step function and is kept to show the loca-
tion of the poles with respect to the » axis when doing integrations of the tvpe !U Hiv)
[IVZ.,J 1111
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Having obtained the expression for the influence phase we now turn to the
classical problem of finding the response of X (¢) to a driving force, f(¢), applied
at t = 0 with the initial conditions X(0) = X(0) = 0. Starting with the La-
grangian of the unperturbed oscillator from Eq. (4.6), we add to it a potential
term —f(¢)X(¢). This potential has the same form as the coupling potential
—@X used in the quantum calculation. However, it is to be emphasized that
the response of X to a force has nothing to do with the system @ outside of the
type of coupling involved; therefore, f(¢) will symbolize the force in the classical
problem. The complete Lagrangian is

L(X, X, t) = lymX® — lgmu’X® + fX (4.10)
and the equation of motion derived from it is,
mX + mo'X = f (4.11)
Tts solution under the initial conditions stated above is
X(t) = (mw) o' f(s) sin w(t — s) ds (4.12)
or alternatively, in terms of Fourier transforms, is
X, = pl—ml(y — ie)" — (4.13)

Therefore, B(t — s) in this case is a Green’s function which yields the response
of X(¢t) to an impulse force f(s) = 8(s) and its transform yields 1/4vZ, . Thus a
classical caleulation of the ratio X,/f, under quiescent initial conditions yields
the proper function for 1/4vZ, .

Distribution of Oscillators—Representation of Loss

The results of the preceding section are easily extended to the situation where
the interaction system is a distribution of oscillators. First, we consider the case
of independent oscillators coupled to the test system. It is assumed that there is a
distribution of oscillators such that G(Q) d2 is the weight of oscillators whose
natural frequency is in the range between © and @ + dQ. More specifically,
G{(©) d is the product of the number of oscillators and the square of their coupling
constants divided by the mass in d@2. Thus, we have a situation represented by
the diagram of I'ig. 3. Each oscillator is assumed to be initially in the ground
state and finally in an arbitrary state; the coupling is again assumed to be linear.
The total action is then given by

S[Q, X(@)] = Su(Q) + [." [o" G(2)[}6 X" — 13X°0" + QX)dedt  (4.14)

For the general properties of influence functionals already described we know
that when independent disturbances act on @ the influence functional is a product
of the ones for each individual disturbance. Since F,(Q, Q') = exp [i®(Q, Q)]
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QX(t,92})

Q rX{4,8)

Fia. 3. Test system @ coupled to a distribution of oscillators

for the case of a single oscillator, the total influence phase for the distribution is
the sum of the individual phases,

P(Q, Q) =[2G Qibogo(Q, Q) d (4151

More explieitly,

&, = <2wﬁ)"‘f G(Q) d0
0

L, , (+.16)
* [ Qe — QL) L0, — Q)
: T ot T T T o (Y
o L —[r =1 = @] —[(v + 1e)* — ] |
Tor this case then, the form of IEq. (4.2) is obtained if we put
(pZ,)" = lim [o° G(D[(v — 7&)° — @ " dQ (4.17)
e—>l)
14
or
(Z)7 = (7/2)G(v) — Q) — @) dQ (4,181

Thus the effeets of all the oscillators are included in the influence phase through
the expression for Z,, Eq. (4.17). Now, however, because of the continuous
distribution of cscillators, Z, has a finite real part. We will now show that this
real part represents dissipation by arriving at the same impedance function
classically.

As before, we take the part of the Lagrangian from kq. (4.14) having to do
with the oscillators, except that the coupling potential —Q(f) [\ G(Q)X(Q, 1) dQ
is replaced by — /(1) [,” G(Q)X(Q, t) dQ, a classical potential. X(Q, ¢) is the co-
ordinate of the oscillator in the distribution whose frequency is 2 while the total
coordinate of the complete linear system with whieh J({) is interacting is

13 Eq. (4.18) is obtained from (4.17) using the identity

lime o [(p — 1) — Q27 = (2 — Q)7 4+ ((x/2)6(v — Q) — 8(v + )]
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Joo G()X(Q, 1) d2 = X(¢). It is the relationship between f(f) and X(¢) in
which we are interested in this classical case:
LIX(2), X(2), 1] = [i* G(2) d2}5X(2)* — 152°X(2)’]
+ /() [o” G(2)X(Q) d
The equations of motion are the infinite set represented by

X@ + @°X(©Q) = j(t) (4.20)

(4.19)

They result from varying L with respect to the independent variables X(Q).
For quiescent initial conditions and for f(¢) applied at ¢ = 0, this solution is
expressed

X, )/f = =[(r —ie)* = QT = [1vZ,()]”
The relation of the total coordinate X, to f, is obtained simply,
XV/fv = Uﬁw X,(2)G(Q) dQ](j',)_l

) \ - _, (421)

Referring to Eq. (4.17) it is seen that the same expression for Z, is obtained in
the quantum and classical cases. In addition, since Z, is now identified with a
classical impedance, the real part represents resistance while the imaginary part
corresponds to reactance. Therefore, at least for the case that loss is represented
by distributions of oscillators, its effect ecan be included in the influence funec-
tional by using the appropriate impedance expression. The spontaneous emission
of a particle in free space represents a good example of such a loss mechanism.
A demonstration of this point is included in Appendix II where the oscillator
distribution is related to the probability of spontaneous emission starting from
the influence functional representing the effect of free space.
The relationship

(ivZ,)" = [¢°B(t)e "'dt

has already been established during the course of the derivation of the influence
phase for the single oscillator. Now the inverse relation between F(¢) and 1/7vZ,
can be written for the zero temperature case. In the time domain the influence
phase for the distribution of oscillators is

®(Q, Q) = —(28)7 " ()97 dQf% 1w (Qi—Q'1)
(Que T Q™) ds dt
Comparing this with Eq. (4.4) it is evident that
F(t) = [o° G(Q)Q ¢ da
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But from Eq. (4.18),
Im(ivZ) " = —xli(v)/2
Therefore, it can be immediately written that
Fity = —(2/m) [y Im(inZ,) '™ dv (4.22)

as was given in Eq. (4.5b).

The results above can now be extended by a simple argument to include all
linear systems composed entirely of distributions of oscillators. To do this it
need only be shown that the general system can be reduced to a distribution of
oscillators independently coupled to the test system, which was the situation
just considered. Explicitly, suppose there exists a test system @, coupled to an
assemblage of osecillators which are also interconnected with each other. IFor
instance, the situation might be as in Iig. 4, where each of the X, components
of the total interaction system could also represent a system of oscillators.
However, it is well known™ that such a linear system may be represented by an
equivalent set of oscillators (the normal modes of the total system) independently
coupled to Q. Or, stated another way, the classical representation of the La-
grangian in normal modes finds new linear combinations of the X, which makes
the total Lagrangian, except for the coupling, a sum of individual quadratic
forms with no cross terms. But, this same transformation of variables can be
made on the expression for §(Q, Q') (see Eq. (2.7)). The effect of this trans-
formation is to change the DX (¢) volume by a numerical factor, since the trans-
formation is linear."” Thus, in effect, we get the sum of independent systems in
the quantum mechanical case also. I'rom this argument it is concluded that the
results above regarding a distribution of independent oscillators coupled to a
test systen, apply to any linear interaction system. Therefore, it has been found
that the influence functional for all linear systems has exactly the same form
expli®,(Q, Q)] where d(Q, Q) is a quadratic functional of the  and
Q. ®.(Q, Q') is adapted to a particular linear system only through the classical
response of that linear system to a force. Thus, the procedure for finding the
influence funetional for a linear system has been reduced to a classical problem.
The fact that eliminating the coordinate of an oscillator always yields an in-

1 This point is eonsidered more fully in Section I'V,B on classical forces.

™ The fzet that one or more of the X, might represent continuous distributions of oseil
lators need not be bothersome since in prineiple they represent the hehavior of the total
system in terms of its infinite set of normal modes.

' The only result of such a numerical factor would be to change the normalization of
F(Q, Q). However, we already know that for the case that the final states of the interaction
system are summed over F(Q, Q') = 1. Therefore the normalization of F(Q, Q) is not chunged
by the transformation and thus is not dependent upon the coordinates chosen to represent
the interzetion system.
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I !
\ X3 Xn

Fi1c. 4. Test system coupled to an arbitrary assemblage of oscillators

fluence functional which is quadratie in the potential applied to that oscillator,
is a basic property of linear systems. For example, where the coupling Lagrangian
is linear between an oscillator of coordinate X and another system of coordinate
), the elimination of the X coordinate yields an influence phase which is quad-
ratic in @ as has already been shown. If @) were the coordinate of another oscillator
coupled to P, then elimination of the @ coordinates would yield an influence
phase quadratic in P, ete. This can be understood mathematically by observing
that the Lagrangian for all the oscillators with linear coupling is always quadratic.
Doing the path integral to eliminate a coordinate is basically a process of com-
pleting the square and performing Gaussian integrals. This process of completing
the square also yields quadratic terms. It is therefore not surprising that the
influence phase for any linear system should be always of the same quadratic
form.

It is to be emphasized that the analysis so far presented has been concerned
entirely with systems whose complete behavior can be deseribed by combinations
of lossless oscillators at zero temperature. The only example of such a system is
the electromagnetic field in free space. In all other physical situations linear
behavior is an approximation to the actual behavior. However, this approxima-
tion may be very good over a wide range of operating conditions. In Section V
the problem of approximately linear systems will be considered in detail. The
results will be found to be the same as for perfect oscillators to the extent that
linear behavior is realized.

Form of Influence Functionals for Linear Systems and Classical Forces as De-
duced from Properties of Influence Functionals

So far, we have found the influence phase for classical potentials, uncertain
classical potentials, and linear systems at zero temperature. By studying Eqs.
(3.1), (3.6), and (4.4), we see that the general form for the influence functional
in which all three of these were acting on @ is

5(Q, Q) = exp {[.7iC1(1)(Qu — Q) dt — [T [," Au(t — $)(Q — Q')

’ (4.23)
(Q, — Q) dsdt — [V ['iBi(t — 5)(Q — @)(Q + Q) dsatl
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The exponent is written solely in terms of @ for simplicity although when the
potentials are not linear in @ (as XV (Q)), the same general form exists, ex-
cept that it is written in terms of V(§). We now observe that there are other
possible combinations of the Q, Q" variables not represented here such as terms
Q. +0Q ), Q.+ Q) (Q, + Q',). To see if such terms are possible, let us form
a hypothetical functional containing all possible forms up to second order in ().

5(Q, Q) = exp { [ [LCL()(Q: — Q) + Di(t)(Q. + Q') dt
—f””At—ﬂ@—dﬂ@~00+mﬂ—ﬂ@-QM%+du
+ iDs(t — ) Q, + Q D(Qs — Q's) + Dyt — )(Q, + Q’,)(@ + (J'N)] dy dt)

(4.24)

That the coeflicients of the ¢’s inside the double integrals should be functions of
(t — s) 1s evident since the functional should not depend on the absolute time.
We now will try to eliminate terms in the exponent by using the general properties
of $(Q, Q') given in Section II. First, we know $(Q, Q') = F4Q, Q). This
implies that all the functions A, By, C1, Dy, D», and Dy are real. Next, we know
that 5(Q, Q) = 1if Q' (t) = Q(t). Hence, Dy, D are zero. This leaves ouly one
term which we did not have before, that of D:(f — s). Now we apply the property
of these functionals requiring that if Q, = Q' for ¢ > {, then F(Q, Q') is inde-
pendent of @ for ¢ > ¢ . This statement is obviously true for the (i)
and 4,(¢ — s) terms. Consider now the By(t — s) term. Fort > t,, Q, — (), = 0
and therefore this term is also legitimate. As for the Dy(¢ — ») term, let us con-
sider t > ¢y, but s < & . Then Q, — @', % 0. Furthermore, (), + ', = 20, = 0.
Therefore, D,(¢ — s) must also be zero. The fact that D-(¢ — s) = 0 is actually
a statement of causality, 1.e., that the effect due to an applied force cannot
precede the time the force was applied. To see this, let us change the limits of
integration on this term

LT Datt — 3(Q + Q')(Q, — Q) ds dt
= [ Dyls — 0DQ, — Q' )Q, + Q) dsdt

Now the integrand is of the same form as that of the B(¢{ — s) term. However,
for a fixed t the integration over s is over the range of s > {. This amounts to a
sum over the future rather than a sum over past histories of the variable ().
The conelusion to be drawn is that there are three possible types of terms up
to second order in Q and @ when definite classical forces, indefinite classical
forces, and linear systems act on Q. Terms of this type have already been derived
during the course of our analysis. Therefore, there are no major types of phenom-
eng which have not been noticed. In the light of the above discussion we would
expect the effects of additional phenomena, if they are described by terms of
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second order or less in Q and @', to be contained in one or more of the three
forms of exponents shown in Eq. (4.23). For instance, in the case of a linear
system at finite temperature, it will be found that the effect of temperature is to
change the effective value of A;(¢ — s) in the exponent of Eq. (4.23) from its
minimum value which oceurs at zero temperature. It should be pointed out that
although At — s) (see Eq. (4.5b)) oceurs in a term which has the form of an
uncertain classical potential acting on the test system, at zero temperature one
must be careful about this interpretation, for the existence of a random classical
potential implies a random fluctuation of the variables of the interaction system
which could induce transitions in the test system either upwards or downwards
in energy. However, if the interaction system is already in its lowest state it
can only induce downward transitions in the test system so that the term in
Ay(t — 8) by itself is not sufficient. Thus, as has already been found, the ex-
ponent of the zero temperature influence funetional contains two terms, one in
Aot — s) and the other in B(t — s), which are related through Eq. (4.5¢).
Together they give the whole picture, i.e., that there is a zero point, random
fluctuation of the variables of the interaction system but that this fluctua-
tion can induce only those transitions in the test system which, through spon-
taneous emission, give up energy to the interaction system.

B. INFLUENCE FUNCTIONALS FOR DRIVEN LINEAR SYSTEMS

It is to be expected that if a classical force is applied to a linear interaction
system which in turn is coupled to a test system, the effect of the interaction
system is to modify the character of the force applied to the test system. In this
section we will find the exact form for the influence functional of this effective
force. If a linear system is coupled to Q(t) through one of its coordinates X (t) and
if @ classical force C(t) is coupled to another coordinate Y (t), then ®(Q, Q') repre-
senting the effect of both the linear system and the force is

Cv(Q—v - Ql—r)

1wz,

5(0,Q") = 2(Q,@) + (2ei) ™ [ [
’ , (4.25)
C—v(Qv - Q v):, dV ?

— e,

+

where ¥, 1s the tnfluence phase of the linear system is the absence of a classical force
C(t), and 2, 7s a transfer impedance function which modifies the effect of C, on Q.
The tmpedance 2, is found by computing the classical response of the coordinate X
to the force C with all other potentials acting on the linear system (including those due
to coordinates of external systems such as Q) set equal to zero. The result of the
calculation yields ivz, = C,/X, . Alternatively, in the time domain,

2(Q,Q) =2(Q, Q) + 7 2% [1e (@ — @ Db(t — 5)Codsdt (4.26)
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where”
(ivz,)_l = J‘owb(t)e—m dt

The theorem can be stated in the form of a diagram as shown in Fig. 5. In this
figure f(t) = [, F(s)b(t — s) ds. It will be conveunient to work in the frequency
domain.

First we recall the influence phase for a classical force acting directly on .
From this expression we will be able to identify the character of the force acting
on () in more complicated expressions. If the potential is of the form —'(¢1Q(¢),
we have, from Section ITI,

BQ, Q) = 2em) T [T OAQ — QL) + C(Q, — Q' )] dv (427

Classical Potential and @ Coupled to the Same Coordinate

Before developing the general situation we consider the simpler situation where
@ 1s conpled to a linear system through the potential —QX, and a foree F(/) is
applied to the same system through the potential —FX. The Lagrangian for the
complete system is

Lsystem) = Lo(Q, Q) + (F+ Q)X + L(X, Y, --- X, Y, 1) (4.28)
where X, VY, - - represent all the coordinates of the linear system. If F = 0,

®(0, Q") = 0,00Q,0Q")

oy PR — QL) | 0L(Q, — Q) (4.20)
- i) | [ GZ) T (=eZl) ]"”

If 0 it is evident from Eq. (4.28) that the required influence phase can be
found by replacing Q by @ + F and Q' by Q" + F. Notice that F does not carry
the prime notation since it is not a coordinate. If this substitution is made in
Eq. (4.29) we have

®(Q,Q) = (2a)" f" [(Q . + Fz)(ZQ_ — QL)
0 vl

(Q—‘u + F—v)(Qv -
+ (—ivZ_)

© Fv , }p_y . ,
-l l:(iVZ) (Q — o) + (—in_,,> (@ —Q y):l dy

I The notation 2, , b(f — s) was chosen to avoid confusion with Z, and B(¢ — s} which
are the impedance and response function respectively of the linexar system as seen hy the
test system.

Q y)] dv = ®(Q, Q') +(2af) " (4.30)
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Qf

f(1)

Fic. 5. Equivalent influences of a linear system and a force, F(¢), acting on a test system,

Q.

As might be expected the total effect of the linear system and the driving force
consists of two separate terms, one describing the effect of the linear system
alone, and the other describing the effect of the driving force. Comparison of
Eqgs. (4.26) and (4.30) shows that the effective force applied to @ is, in transform
language, F,/ivZ, and, further, shows that F, is modified by 1/7»Z, , the classical
impedance function of the interaction system. In this special example where F
and @ are both coupled to the same coordinate, Z, is both the correct impedance
to be used in ®,(Q, @), i.e., that impedance seen by the test system, and is the
transfer impedance z, which modifies F, . This is not true generally as we shall
see in the next section. In addition, it is interesting to observe that no unexpected
quantum effects appear because of the addition of a force to the interaction
system. The only effect of the interaction system is to modify the characteristics
of F(t) in an entirely classical way.

Classical Forces Acting Through a General Linear System

Having obtained an idea of the type of results to expect in the above simplified
analysis we now proceed to the more general case. Let the N coordinates of the
interaction system be represented by X,,7 = 1 .- N. Its coupling to the test
system, Q(t), and to the driving force C(¢) is given by the potentials — X,Q and
—XC, respectively. Thus we are assuming, for simplification in writing, that @
is coupled only to the variable X, and the force C'(¢) is applied just to the variable
X . Again the interaction system is assumed to be composed entirely of harmonic
oscillators. The Lagrangian is

L (system) = L(Q, Q, 8) + D_i,; [%(T;X.X; — VX X;)]

(4.31)
+ X.Q + X.C

It is well known in the theory of linear systems that new coordinates may be
defined by means of a linear transformation of the X;. These new coordinates
will be chosen as the eigenvectors, ¥, of the interaction system (10). Thus,

X¢= ZLlaqu i=1,2,---n
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Assuming the a;; to be properly normalized, the Lagrangian may be rewritten
as follows

LQ,Q, Y., Y, t) = L(Q, Q1)
-+ Zl [L5( Y: — oY) + Yila..Q + a..('}]

Sinee these are now independent oscillators coupled to  the influence phase can
be written down immediately,

(4.32)

) = S ~ _u
®(Q, Q) = Z%(Q,Q) = ,Zm | [ (Q, — QL <M( >>
+ Q_.(Q, — Q) < —l—Z(—ﬂ dv + Z )Wﬁ (1.33)
| @ar i , At iy ,
'l [;ZI(V) (Q—v Q~v) + — 2 Z( ) Qv Q V)jl dv
where
1 Vi) Yiln)

_ = Lnr , (134
ZVZZ(V) [22%] Qu =0 ag €, w,=0

calculated classically.
This ean be written in the form of Eq. (4.25) if we make the correspondence

1 — a'nl
iVZ,, 1 LVZ1(V)

and

1 Qni i1 9=
=2 Zv/l( ) (4.35)
Using Eqgs. (4.34) and (4.35) we can now show that 1,7v»Z, and 1/i»z, are equiv-
alent to X, (»)/Q, and X, (»)/C, respectively. Thus

1 ani 2 (Vi)
Ty =2 ()

wZ, wZy(v) 7 @ Q) om0 .
Y0 Y {(4.36)
- @ Yilv) | _ Nuly)
Z Q. =0 Q. =0
and
1 _ Ay Ajy Y (V
v = o () = 2. G an O o= i
‘ (4.37)
_ Zlanl Yilv) _ A‘Xn(”)

Cv jQp=0 «, Q=0



146 FEYNMAN AND VERNON

Equation (4.36) is a mathematical expression of the argument used earlier to
find the appropriate impedance function to be used in the influence functional
for a linear system acting on @. The additional information obtained here in this
regard is that when other forces are present they are to be set equal to zero when
this computation is made. Equation (4.37) states the new result that the transfer
impedance which modifies C, in its effect on the test system is to be found by
computing the ratio of C, to the coordinate X,(v) to which the test system is
coupled. The total force acting on the test system when several forces are acting
on the interaction system is simply the sum of these forces each modified by the
appropriate transfer impedance determined in the above deseribed manner.

C. LINEAR SYSTEMS AT FINITE TEMPERATURES

The forms of influence functionals which are possible for linear systems have
been established by an argument which utilized the general properties discussed
in Section I1. Each of these forms has already occurred in the analyses of classi-
cal potentials, random potentials, and zero temperature linear systems. There-
fore, the results to be expected here are one or more of the forms already ob-
tained.

The discussion is begun again with a single oscillator as our linear system, for
simplicity. From this, the extension to distributions of oscillators is immediate,
as it was in Section IV.A. The complete problem is set up in the same way as for
zero temperature except that the initial state of the oscillator is not simply the
ground state or any definite eigenstate. The effect of temperature is to make the
initial state uncertain and it is properly represented by a sum over all states
weighted by the Boltzmann factor ¢ *** where 8 = 1/kT, T being the tem-
perature in this case. The final state is again arbitrary: therefore, a formal
expression for the influence functional is

F(Q,Q) =[6(Xr— X'1)Ko(Xr, X)Kg(X'r, X'})

, . (4.38)
N Zn Nkle_ﬂEn¢n(Xr)¢n*(X 'r) dX'r cre dX T

where N, the normalization constant, is > . e P The ¢, represent the energy
eigenfunctions of the oscillator unperturbed by external forces. The first problem
is to find a closed form for the expression Y, ¢.(X)é.(X )¢ ?*. This can be
done by noticing that its form is identical with the kernel which takes a wave
function from one time to another if we make the correspondence that 8 repre-
sents an imaginary time interval. If the times involved are ¢, and ¢, , this kernel
is

Ko( X5, X1) = 2 nda(Xo)en (X1) xp [— (¢/F)Ea(ts — )]
= exp [(4/h) Sa]

(4.39)
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for the harmonie oscillator, and where the subseript 0 indicates the absence of
external forces. For the harmonic oseillator the expression for S is easily obtained
in terms of the initial and final positions X; and X5 (2). Thus,

Sa = mw[2 sin w(ts — O] UXT + X)) cos wlts — 1) — 22X, X:] (4400

Utilizing Eqgs. (4.42) and (4.43) and making the correspondence 3 = 7(f. — £) 7,
X, =X, and X, = X, we find that

> 6 N9, (X',) exp (—BE,)

R ) , (441
= exp | —mw[2f sinh (Bfiw)] (X, + X7) cosh (Biw) — 2X, X1t

Using this closed expression for the average initial state of the oscillator and the
kernel for the driven harmonic oscillator (Eq. (4.7b)) the influence functional
can he evaluated by evaluation of a series of Gaussian integrations just as in the
zero temperature case. The result expressed in the frequency domain is,

D(Q, Q) = i@(Q, Q")

N . 1.42)
— (atH™ fo° rﬁ[?mw(cﬂhu — D%y — W)@ — Q[ dv

Thus, the influence phase is made up of two terms, the first of which is the effect
of the oxcillator at zero temperature. The second is recognized as having the
same form which was found for an uncertain classical potential with a Guassian
distribution. Therefore, the effect of finite temperature is to introduce a noisy
potential acting on @ at the frequency of the original oscillator. The power
spectrum of the noise produced by the finite temperature is

d(v) = ah[2mp(™ — )] 8(r — ) (443

To iridicate more clearly the relationship of ¢(») to the characteristics of the
linear system it is instructive to extend this expression to the case of a distri-
bution of oscillators (2) all at the same finite temperature. The resulting
influence phase is

0, Q) =4 [0 (Q, QNG(R) d
+ (o) A BG)2v( P = DT, — QLS dr

where n the distribution m has been set equal to unity. The first term is again
the influence phase for zero temperature, while the second term again has the
form of a noisy potential whose power spectrum

o(r) = (fr/2)G(») (™ — 1]

Recalling the analysis of the distribution of oscillators, it is found from Eq.
(4.18) that #(#(»)/2 = Re(1/Z,). Therefore, the power spectrum can he written

¢(v) = AiRe (1/Z,)[v(™ — 1] (445

(444
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In the time domain the influence phase is
i® = i — (ah) 7" [o° dvG () E[r (™ — 1)]
X [Ze Jlw (Qe ~ Q') (Q, — @) cos v(t — s)dsdt

Comparing this with Eq. (3.8) for random classical forces we see that the
correlation function of the noise due to the finite temperature is

R(t—3s) = [FHG) (™ — 1) cosv(t — s) dv
= —(2/x) [* HIm (vZ,) " (™ — 1)  cos »(t — s) dv

(4.46)

I

(4.47)

Finally, if we write Eq. (4.46) in terms of F(t — s) as, for instance, in Eq.
(4.4), we find that

F(t) = [ [G(»)/v] coth (BAr/2) cos vtdv + 2 [o* [G(v)/¥] sin »t dv
Thus,
A(t)

—(2/x) [o° Im (¢vZ,)" coth (8#hv/2) cos vt dv

~ : - (4.48)
—(2/7) [o° Im (¢vZ,) "1 + 2(e™ — 1) cos vt dv

and
B(t) = —(2/7) [¢° Im (4vZ,) " sin vt dv

which are the more general counterparts of Eq. (4.5b). Notice, however, that
only the relation for A (t) changes with temperature.

Thus, if a linear interaction system is initially at a finite temperature, the
resulting effect is the same, as far as the test system is concerned, as if the linear
system were at zero temperature and, in addition, a random classical potential
were connected independently to the test system. The power spectrum of the
random potential is given by Eq. (4.45) and is related both to the temperature
and to the dissipative part of the impedance of the linear system. The theorem
is stated in terms of a diagram in Fig. 6 where the power spectrum ¢(») of the
random force C, is defined by

o(v) = 4m(C,0_, )s(v+ ¥) (4.49)

This fluctuation dissipation theorem has a content which is different from those
stated by Callen and Welton (77), Kubo (12), and others. It represents still
another generalization of the Nyquist theorem which relates noise and resistance
in electrie cireuits (13). These previously stated fluetuation dissipation theorems
related the fluctuations of some variable in an isolated system, which is initially
at thermal equilibrium, to the dissipative part of the impedance of the isolated
system. This would be equivalent in our case to relating (Q*) when the test system
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TEMP=T TEMP =0
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Fiu. 6. Equivalent influences of a linear system 2t 2 finite temperature acting on « test
system.

QF

Fra. 7. Linear classical foree F acting on & test system

is at equilibrium (F = 0) to the dissipative part of F,/Q, where F is a classical
force acting on ¢ through a linear potential as shown in Fig. 7. However, we
have shown that the effect of an external quantum system at thermal equilibrium
on a test system can be separated into two effects, a zero point quantum term,
which eannot be classified as pure noise, and a random potential term. Using
this influence functional approach we can find (@ due not only to the internal
fluctuations of @ but also due to the effect of X.

The fact that all the derivations so far have been exact, which is a consequence
of dealing only with systems made up of distributions of oscillators, brings up
two interesting aspects of the theory. The first one is that Z, does not depend on
the temperature, only on the distribution of oscillators. Yet in any real finite
system, it is to be expected that the temperature of a system does affect its
impedance. The second aspect is that when a force j(¢), of any magnitude what-
ever, is applied to the linear system, its temperature does not change although
it is obvious that if 2, has a finite real part the linear system must absorb energy.
For example, we have shown that the effect on a test system of a linear system
at a finite temperature acted on by a force f(¢) is the same as the effect of a
linear system at zero temperature, a foree dependent only on the temperature of
the linear system, and the force j(¢) modified by the transfer characteristics of
the hinear system. IFigure 8 shows the situation where f, = F,/ivz, and C({) is
the random force with a power spectrum given in kq. (4.49). The influence phase
acting on Q 1s

i = i@ + 1(200) " [Z ([ /e ) (Q — QL) dy
— (w7 [T e(NDQ — 7 iy

As can be seen, the addition of the driving force j(#) (which is denoted in the
above expression by its Fourier transform f,) does not change either the imped-
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Qf £(1)
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F1c. 8. Equivalent influences of a linear system at a finite temperature and a force act-
ing on Q.

ance characteristics or the temperature of the interaction system (which would
be reflected as changes in ®(Q, Q'), z,, and ¢(»)).

The fact that the impedance characteristics of the interaction system are not
temperature dependent is a direct result of linearity. The incremental response
of a perfectly linear system due to a driving force is independent of its initial
state of motion or of that induced by other linearly coupled forces. Therefore,
the random motion of the coordinate of the interaction system implied by a
finite temperature does not affect its response to a driving force.

To see the reason that temperature of the linear interaction system has no
dependence on the applied force F(i), let us consider a linear system represented
by a very large box whose dimensions we will allow to become infinite. In addi-
tion, we assume that a test system is located in the box and is receiving portions
of a classical (very large amplitude) electromagnetic wave which is being trans-
mitted by an antenna also within the box. As long as the box is of finite size and
has lossless walls, any signal transmitted by the antenna will find its way either
to the test system or back to the antenna. Transmission of the signal will be
effected through the modes of the cavity which have a discrete frequency dis-
tribution. This system exhibits no loss since each mode represents a lossless
harmonic oscillator. For the rest of the discussion it is convenient to separate
the energy transmitted by the antenna into parts which reach the test system
directly or through reflection from the walls. As the dimensions of the box are
allowed to become infinite (i.e., the distribution of oscillators describing the
electromagnetic behavior of the box becomes continuous), the time required for
the energy to reach the test system by reflection from the walls also becomes
infinite. Therefore, since part of the energy is lost from the antenna and test
systems, the box has, in effect, dissipation. However, because of the volume of
the box is infinite, its temperature is not changed by this lost energy. In other
words, the box has an infinite specific heat. In addition, the energy transmitted
by the antenna will generally have different characteristics from that of the
Gaussian noise associated with temperature and even if the average background
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energy content of the box were changed it could not be properly described by a
temperature parameter.

All the results so far suggest that any linear system can be handled by the
same rules that have been developed for systems of oscillators. This will be
developed fully in the next section. However, we will assume this to be true now
and conclude this section by applying the theorem just derived to obtain
Nyquist’s result for noise from a resistor. Take as an example an arbitrary
circuit as the test system connected to a resistor R»(») at a temperature 7' as
shown in Fig. 9. The resistor comprises the interaction system. The interaction
between the test system and the resistor is characterized by a charge Qu!)
flowing through the test system and resistor and a voltage 17(¢) across the
terminals. Let us associate Q(t) with the coordinate of the test system and 17(¢)
with the coordinate of R(»). The interaction part of the Lagrangian is svmboli-
cally represented by —Q(¢)V (f) since the current voltage relationship in £(»)
is opposite to that of a generator. The quantity 7»Z, appearing in the imfluence
functional is given by

—1Q./V,] = —(i»R,)™ = ivZ,
Thus, 1t follows that
Re (Z,)"" = V'R,

Then the results of this section tell us that this situation, as shown in Ilig. 9,
may be replaced by a resistor at zero temperature (i.e., a resistor with thermal
fluctuations appropriate to zero temperature but with the same magnitude of
resistance it has at temperature 7') and a random classical voltage whose power
spectrum 18

é(v) = ivR, (™ — 1) (4.50)
as shown in Fig. 10.

Q) —

TEST SYSTEM Vi #RT(V)

Fic. 9. Test system acted on by 2 linear system represented by an electrical resistance I
at a finite temperature.

t
an—_ A
Y
TEST SYSTEM Vi) %RO(V)

Fia. 10. Equivalent interaction system of n resistor at finite temperature zeting on the
test system @.
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The mean value of this voltage is

(D)) = (2/7) [ ¢(») dv
fo° 2fvR,[r (™ — 1) dv

(4.51)

For high temperature 8 < 1, and we find that over the frequency range where
Bhiv <L 1, ¢(v) = kTR, . If R, is constant over the frequency range of interest
whose limits are » and », , then as a result of the noise power in this range

W*(8)) = 4kTR(f: — f1) (4.52)

where f is the circular frequency. This is the famous Nyquist result for noise
from a resistor. Notice that the noise voltage generator must be placed in series
with the resistor as a consequence of interacting directly with the coordinate of
the test system, which in this case is ¢(¢), the charge flowing in the circuit. Tf
the coordinates were chosen such that Q(¢) were the coordinate of the resistor
and V (¢) that of the test system, then the noise generator would become a current
source interacting with the voltage V(¢) so that the situation would be as shown
in Fig. 11, where (:*) = (4kT/R)(f: — f1) in the high temperature limit.

It is worth mentioning, but obvious from the derivation, that if there were
many sources of dissipation coupled to the test system, each at different tem-
peratures, then there would be a fluctuating potential associated with each
source of dissipation with a power spectrum characteristic to the temperature
involved. The case of different temperatures represents a nonequilibrium con-
dition in that the hot resistors are always giving up energy to the cold ones.
However, when the resistors are represented by continuous distributions of
oscillators as in the case of an infinite box (free space), the temperatures do not
change because of the infinite specific heat of the ensemble of oscillators.

V. WEAKLY COUPLED SYSTEMS

We are now faced with the problem of finding influence functionals whose
behavior is in some sense linear but whose total behavior is not representable by
systems of perfect oscillators. There are many examples of this. The concepts of
resistance, electric and magnetic polarizations, etc. are basic quantities which
characterize the classical electrical behavior of matter. However, for an accurate
description of this behavior, these quantities can be constant, independent of
the applied electromagnetic field only in the range of approximation that the

Q(t)—=

TEST SYSTEM Vit) @ i) #Ro(v)

Fic. 11. Equivalent interaction system of a resistor at finite temperature when the co-
ordinate associated with the resistor is the charge flowing through it.
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magnitude of this applied field does not become too large. We will consider here
the analysis of such systems and the approximations which make linear analysis
valid. Insofar as linear behavior is obtained, the results of this section are basi-
cally the same as those obtained in previous sections with regard to finding in-
fluence functionals. However, it is interesting to see the same principles come out
of the analysis another way. In addition, it will be found that expressions cor-
responding to Z, which appear in the influence functional are actually closed
forms which can be used to compute such quantities as the conductivity from a
knowledge of the unperturbed quantum characteristics of a system. These ex-
pressions have been derived before by several authors but it is interesting to
find that they also appear in the influence functional quite naturally. The results
will then be applied to the case of a beam of non-interacting particles passing near
a test system such as a cavity. This analysis naturally lends itself to a discussion
of noise in beam-type maser amplifiers. In Appendix III, the results of thix and
Section IV are used to compute the spontaneous emission of a particle in a
cavity.

A. INTERACTION SYSTEMS WITH COUPLING POTENTIALS OF THE I'ORM
= V(QUP)

The speeific result to be shown here can be stated as follows: If a general
interaction system, P, is coupled to a test system @ so that the interaction po-
tential is small and of the form — V(Q)U(P), then the effect of the test system
is that of a sum of oscillators whose frequencies correspond to the possible transi-
tions of the interaction system. Therefore, to the extent that second order per-
turbation theory yields sufficient accuracy, the effect of an interaction system
is that of a linear system.

To show this, we shall first assume the interaction system to be in an eigenstate
¢al{ P-) exp { — (¢/A) E.r} at the beginning of the interaction and in an arbitrary
state at the end of the interaction consistent with the usual procedure we have
followed. Also, for convenience in writing, the interaction potential will be
assumed — U'(P)Q. The influence functional is then

F(Q, Q) = [8(Pr— P'y) exp {(5/H)[S(P) — S(P")

+ [7(QU — QU dth¢* (P')¢u(P,) dP, --- DP' (1)
where in the above we have written U for U(P) and U’ for U(P"). Since the
magnitude of the interaction is assumed to be small, the perturbation approach

can be used to good advantage. Thus, expanding the interaction part of the
exponent and keeping terms to second order in @ only,

F(Q,Q) = [8(Pr— P'p)exp|(i/B)S(P) — S(P)]}
X1+ (i/R) [7(QU — QU ydt + Gi/i) [, [, (QU, — Q' .Uy (5.2)
X (QU, — Q. U) ds dt ¢ (P )a( P,) dP, - - - DP' (1)

(H.1)
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The evaluation of this is done in an entirely straightforward manner and the
following is obtained,”

F(Q,Q) =1+ (Uwn/f) [.7 (Q — Qs) dt — 2 |Un/Al*
X [0 (Q — Q){Qs exp [—twu(t — 8)] — @, exp [fwsa(t — )]} ds dt

where

(5.3)

Ui = [&a (P)Ugp(P)dP and wye = (Ey — E,) /%

All terms which involve U,, will be disregarded. This is because U, represents
the average value of the operator U(P) in an eigenstate of the interaction system
alone. Even if it is not zero, it will be noted from Eq. (5.2) that terms involving
U.e can be written

1+ (tUu/B) [T (Qe — Qo) dt + (1/2D)[(3Uw/B) [7 (Qr — Q') dt] + - --
= exp { (¢/%) [." Uw(Q: — Q1) di}

When F(Q, Q') is used to make a caleulation on the test system, this term has

the effect of adding a constant potential V(Q(¢)) = —U,Q(t) to the unper-
turbed test system. Disregarding U,, , the influence functional then becomes

f_'F(Q’ Q') =1 + [£ %) (5.4)
where

Qg = (%) ffw ft—ao 'Yt'Ys(Qt - Qlt)[QsFa*(t - 8) - leF‘l(t - S)] ds dt

and
Fo(t—s) = 2y (|Usd*/B) exp [iwns(t — )]
where the limits have been extended and the factors vy, inserted to allow finite

18 A typical term in Eq. (5.2) is as follows:
fo(Pr — P'r) exp{G/R)ISP) — SPH G/ [LQUQ.U. ds dt
X ¢a*(P'r)¢a(Pr) dPr --- DP (1)

Taking the time integrations outside the path integral and replacing the path integrations
by propagating kernels, this becomes

G/RHT [t QQ.ds dtfs(Pr — P'r)K*(P'y , P')K(Pyr , P))
UK(@P:, POUKP,, Pr)¢a*(P’r)¢a(Pr)dP; -+ dP'p

Remembering that K(Pr, Py) = 2 ¢a(Pr)¢.* (Pexp|—iE.(T — t)/h}, this expression
becomes simply,

— 0 | Uas/h I f7 JE QuQsexpl—iws(t — $)] ds dt
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coupling time if necessary. If the strength of coupling is sufficiently weak then
Eq. (5.4) can be rewritten
5~ exp (a) (3.5)

In this form we recognize $(Q, Q) as that describing the effect of a sum of
harmonic oscillators independently connected to the test system each of whose
“weights” is UsUaw/#’. The complete response function for the system of
oscillators is

Byt —s)=ImF,(t —s)= Z{; (2 Ual*/ ) sin wnalt — )

where the subseript a on B, refers to the initial eigenstate. According to previous
definition, the mass of each individual oscillator isidentified by m = #(2]|{ ] wpa)
and its characteristic frequency by wy, . Therefore, to the extent that second
order perturbation theory yields satisfactory accuracy, any system may be
considered as a sum of harmonic oscillators. This is equivalent in classical
mechanics to the theory of the motion of a particle having small displacements
around an equilibrium position. Its motion, to a first approximation, is also
that of a harmonic oscillator, if the first effective term in a power series expansion
of the potential around that equilibrium position is quadratic in the displace-
ment.

In this part of the discussion we should again point out the motivation for
writing the approximate influence function, Eq. (5.4), in terms of the approxi-
mate exponential of Eq. (5.5), apart from the obvious advantage of making the
form agree with that of exactly linear systems. Frequently, we deal with a test
system which is influenced by another system which is actually made up of a
large number of very small systems. Examples of such an interaction system
would be a beam of atoms or the electrons in a metal. Although the expression
for the influence functional for any one of the subsystems is only good to second
order, their individual effects are so small that this accuracy is very good and
Egs. (5.4) or (5.5) is equally valid. However, when the sum of the effects of the
subsystems is not small, then the two forms above do not describe the situation
equally insofar as the composite effect of the interaction system is concerned.
We know that when these subsystems are dynamically and statistically inde-
pendent, the total influence functional is simply a product of the individual ones.
In such a case the influence funetional obtained by using Eq. (5.5) as follows

5.(Q, Q) =~ exp {1 - 8:(Q, Q)]
yields much greater accuracy than that obtained from Eq. (5.4) where we would
find

F(Q Q)R 1+, 0,0
,(Q, Q") being the influence phase for the Ath subsystem (see Appendix V).
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The expression given by Eq. (5.5) has additional implications which are not
immediately apparent from the analogy with the harmonic oscillator. No
assumption was made as to whether the initial state was necessarily the lowest
of the system. Therefore, ws, could be either positive or negative. Suppose for a
moment that the interaction system has only two states (¢,(P) and ¢5(P)) and
that the initial state, a, is the lower one (wps > 0). It is obvious that the only
effect it can have on the test system @ is to absorb energy from Q. However, if
the initial state, @, is the upper state (corresponding to wy,, < 0) then the inter-
action system can only give up energy to the test system. It can do this in two
ways, through spontaneous emission or through coherent emission due to some
coherent driving force exerted on it by the test system. So for the case wp > 0
we expect the influence functional to show that the interaction system has the
effect of a cold system characterized by a dissipative impedance (or positive
resistance). Conversely, for ws, < 0 it is expected that $(Q, Q") will be char-
acterized by a negative resistance and a random potential due to the spontaneous
emission transitions. This situation is made more obvious if we translate Eq.
(5.5) into transform notation. Thus,

#0.0) = 2y [ [Q',(Q_y - QL) | Q- Q’,>] i

(v Zsa,») (—1vZba—) (56)
- (Tﬁz)_lf IQV - Q"‘IQ’”_ lUba|25(V + wba) dl}
0
where
oy = — (20| Usal”) 7' [(¥ — 1€)* — wia] (5.7)

First of all we notice that the sign of Z;,,, changes with that of ws, and therefore
its dissipative part can be positive or negative as was argued above. Secondly,
for wy, < 0 there is a random potential acting on @ whose power spectrum is
given by ¢(») = 7|Us|’6(» + we). Of course when ws, > 0, the integral in-
volving this term disappears indicating the noise potential does not exist and
the effect is the same as that of a harmonic oscillator initially in the ground
state with 1/2mw identified with |Us|*/%.

In a real physical situation it is not likely that the interaction system will be
in a definite state initially. So to extend the above results to a more general case
we assume that the initial state is described as a sum over states weighted by a
density matrix p(7r) which is diagonal in the energy eigenstates of the
system. For example, if the system is initially in temperature equilibrium,
p= e*ﬂH/ Tr(e_’sH) where H is the Hamiltonian operator such that p,, =
Smn €xXp (—BE,)/ > . exp (—BE,). The influence functional becomes

5(Q,Q) = [8(Pr— P'z)exp {(/B)[S(P) — S(P)

1PN * ’ ’ (58)
+ f:T (UQ - (] Q ) dt]} Za Paad’a (P 7>¢0(PT> dPr cc iDP (t)
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Within the limit of small coupling, then we can simply extend the influence
phase of Eq. (5.5) by summing over all initial states weighted by the initial
density matrix p,, . If this is done, we obtain the usual form of the influence
phase, Eq. (5.4), with a response function B(¢ — s) given by

Bt —38) = 2 ap (200 | Ul /7) sin wp(t — 5) (5.9

Again $(Q, ()') is the phase for a sum of oscillators, each of whose weights is
paal Uen” /1. In Seetion IV it was shown that B(f — s) was the classical response
of the linear system to an impulse of force applied to the coordinate (/).
However, the expression above is in a form which is familiar to us only when we
think of the interaction system, P, as consisting of a sum of oscillators. In
this connection B(t — s) is the total classical response of the oscillators deseribing
the system P to an impulse of force applied to the “coordinate” (7(£?).*" To
obtain a more direct interpretation of Eq. (5.9) we now caleulate the linear
classical response B(f — s) of the interaction system to an applied impulse of
force in terms of its unperturbed quantum characteristics. In so doing we will
show that Eq. (5.9) is indeed this expression. Therefore, we will again have the
result that the influence functional for a general, linear interaction svstem is
formed simply from a knowledge of its classical characteristics just as in the case
of systems of perfect oscillators. By the “classical characteristics” of the quantum
mechanical system we mean the expected value of U'(P) as a function of time
after a potential —f(#) U(P) is applied starting at t = 0. Thus

(U(P)) = [Y5(PHIUPHP,) AP, (5.1

where (F’,) represents the state of system P at (. Using the path integral repre-
sentation for the development of a wave function with time, as outlined in
Section 11, this can be written

<l‘v(])t)> = J (vzﬁ(P, - Plt) exp {(Z/ﬁ)[Sﬂ(l)) - SQ(I),_)
+ (U= UY) ds™ (P (P dPy -+ 0P

Alternatively, this expression can evidently be written

<[‘V(. Pt)) = —qf] ?3“; 2.“) Ly
a/

Tt ix interesting to notice that the relative populations of any two levels meay be de-
seribed by =n effective temperature T, = 1/k8. . For instance if the probabilities of occupa-
tionof states a 2nd b are p.a 2nd py, respectively, weuse the definition pse/pms = expf. (E. — FE.).
If pae = 0 this is described by setting T'. = 0+, meaning to approach zero from the positive
side. Similarly, if the two states were inverted pip = 0 and 7', = 00—, This device has been
used widelv in the description of such situations.

% [7(P) may be regarded as a coordinate which is & function of other coordinates £ in
terms of which we choose to describe the interaction svstem.
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The initial definite state " (P')yo(P) will be replaced by an average state
described by the following density matrix diagonal in the energy representation,
Zpaa¢a*(P 0)¢(.(P0) so that

V(P OV(Po) = 24 puaba” (P'0)du(Po)
Assuming f(s) to be small in magnitude, Eq. (5.10) can be written to first order
(U = 2apua [ Us(Pe— Pu) exp {(i/B)[So(P) — So(P)]}
AL+ (i/F) [o' fuUds — (3/R) o' £,U's ds}

.o , (5.11)
“$a (P'o)¢a(Pa) dPq - - - DP'(2)
= 20 Padd Uae + 26(1/R)| Uas " o' fo exp [—twna(t — 5)] ds
— 220 (i/B)| Uas " u'fu exp liwna(t — 5)] ds]
Again assuming U,, = 0, Eq. (5.11) becomes
U = 2 s (2paal Uas /B [0 o sin wpa(t — ) ds (5.12)
For f(s) = 8(s), then, the classical response function is™
B(t) = 2 ais (20| Ucs '/7) sin anat (5.13)

which is identical with the response function found in the influence functional.
Since we have found expressions identifiable as classical response functions

and impedances, it remains to show that associated with the dissipative part of

the impedance is a noise potential. The impedance is simply obtained from?

(vZ,) 7' = [0* B(t)e " dt
= Za,b (_2paa Wha | Ubu |2/ﬁ)[<v _i6)2 - wga]_l (5'14>

To obtain the power spectrum it is only necessary to sum the influence phase
of Eq. (5.6) over all initial states weighted by p, . Thus we find

¢(») = D anTaa) Ut F8(¥ + wra) (5.15)

and we now wish to relate this to the real part of 1/Z, . From Eq. (5.14) it is
found that

Re (Z,) = D us (19| Usa [2/5) (ow6 — pac )8(» + wpa) (5.16)

21 Tt should be noted that implicit in the use of first order perturbation theory to obtain
Eq. (5.13) is the fact that for this relation for the response function to hold 25 2 steady-
state description of the linear system, the initial distribution must not be significantly
disturbed by the applieation of the driving foree.

22 Expressions of this kind have been used by several authors to compute quantities such
as the conduectivity of materials. See, for instance, ref. 14.
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Rewriting ¢(»)
¢(r) = 2ap®| U (o — poa)[(ptr/pua) — 178(r + wpa)  (5.17)

If the average initial state of the interaction system is one of temperature
equilibrium, then p, = ¢ #%/ S e and pwpee = 5 = 70 Taking
advantage of the characteristics of (v + ws.) so that » can replace w, , from
Eqs. (5.16) and (5.17)%

60) = San (1/B) | Usa [20 (o — paa)d(v + wra)Blp(™ — 1)

. - (5.18)
= i Re (Z,) v — 1)]

Therefore, again we find that the power spectrum is related to the dissipative
parts of the impedance when the initial state is one of temperature equilibrium.*
The power spectrum given in the form of Eq. (5.17) again illustrates the origin
of thermal noise and identifies it as being just another aspect of spontaneous
emission. Pound has also discussed this (15). The only contribution to the noise
power spectrum is through the possible downward transitions of each possible
state, a, weighted by the statistical factor, p.. .

B. BEaM oOF PARTICLES INTERACTING WITH A CAVITY

Iu the cases just considered the interaction system provided a steady-state
environment for the test system. In contrast, let us now examine the situation
where the interaction system is made up of a large number of independent
particles coupled to the test system at different times. As an example consider a
beam of noninteracting, identical particles which interact weakly with a resonant
cavity as might occur, for instance, in a gas maser. We assume that the beam is
not necessarily in temperature equilibrium but that the initial state of the
particles entering the cavity would be properly represented by a density matrix
diagonal in the energy representation. Such a situation would occur if the beam
were prepared by passing it through a beam separator whose function would be
to eliminate certain particles from the beam depending on their energy levels.
For the purposes of simplifying the analysis we assume the molecules to be two-
level uantum systems and that before they enter the cavity all of them are in

2 Notice that if P were a two-level system initially in the lower state, then p,, = 00 and
7', = 0+. In this case ¢(r) = 0 which agrees with the required result for » > 0 (Kq. (5.6)
for wee > 0). If initially P were in the upper state then p,e = O znd 7', = 0— yielding ¢(v) =
—(h/v)Re(1/Z,) agreeing with Eq. (5.6) for wi. < 0. This is the power spectrum of the so-
called spontzneous emission noise from an inverted two-level system.

% It may be disturbing that Re(1/Z,) contains singular forms such as §(» 4+ wn.). How-
ever, the infinite sums over the distribution of states of which it is 2 coefficient can be re-
placed by integrals over densities of states in most practical situations and as part of an
integrand 8i» + wi) 18 not unrealistic.
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the lower state or all in the upper state. It is easy to extend these results to the
case where the beam is mixed with a certain fraction in the upper state and a
certain fraction in the lower state initially. Since the beam is assumed to be
composed of noninteracting particles, we can consider the total beam as composed
of two independent beams appropriate to the two possible initial states of the
constituent particles. The influence phase for the complete beam is simply the
sum of the influence phases for the two beams. In addition, we assume that the
beam is characterized by a spatial density such that the number of particles
passing a given point along the beam in a time df is Ndt and if ¢ is the time a
molecule passes a reference point in the cavity, (¢t — ¢) describes the coupling
between the molecule and cavity. Thus, the beam is a univelocity beam. Again,
in a real case where the beam is characterized by a distribution of velocities, the
total beam may be split up into many univelocity beams. The total influence
phase is simply a sum of those for each component beam.

Let us call the coordinates of the cavity @, representing the test system and the
coordinates of a particle in the beam P. The interaction between beam and
particles is given by L;(Q, P) = yv(t — {)QP. Under these circumstances the
influence functional for the effect of the beam on the cavity can be written down
immediately:

i®5(Q,Q) = —N | Pa/Bi 2 2 [fadsdt [ [Zey(t — to)y(s — &) dio)
X (@ = @(Qu 0 — gm0

The integral involving the coupling parameters can be used to define a new
function I,

(5.19)

Iy (t — to)v(s — t) dty = [Zoy(E)y(E — t + 5) dt

— (-8 (5.20)
Therefore,
i#(Q,Q") = —N | Pu/A|? [2o [La T(t — 5) 521)
X (Qi — Q1) (Que ™" — Q™) ds dt
From this we can identify the response function of the beam as
B(t —s) = (2/h)N | P ’T'(t — s) sin wp(t — 8) (5.22)

In transform notation the influence functional for the effect of the beam has the
same form as has been previously derived with

(ivZ,) ™ = (§/B)N | Pap |2(Tresy, — Do) (5.23)
where

Toiay, = JZu 1(r)T(r)e 70" gp (5.24)
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and with a power spectrum
¢(V) = }2N l Pab iz[ru-f-wg,,, + I‘—v—wzm] (5.25)

Previously, we have found that for a linear system initially in the ground state
the power spectrum is zero over the range of positive v thus indicating a zero
noise potential due to the linear system. However, ¢, is not necessarily zero for
vy > 0 i1 Eq. (5.25) in the case that the beam is initially in its lowest state
{wp, > 0). This is because no restrictions were placed on the time variation of
v(t — &). However, in practical situations the coupling between a cavity and a
particle in a beam passing through the cavity varies adiabatically so that for all
practical purposes ¢(») is really zero for » > 0. To point this out more clearly,
let us assume that v(¢ — &) = 1(t — &) 1(ty + 7o — ¢), that is, the coupling
is turned on at ¢ and off at £ + 7o, the time of transit in the cavity heing 7, .
We find by evaluating Eq. (5.20) that

Tl —s) = (s—t+7)1(s— 1+ 79)
and from this we can find
it = [Z0 (10— 7)1(ro — r)1(r) exp [—1(v + wp)7] dr
=11 — ir(v + wa) — exp [—2(» + wma) 7o)l (¥ + wpa) "
Therefore, from Eq. (5.25),
d(v) = (Lo)N | Py |2r?(sin20/6?) (5.26)
where
= 15(v + walmo

To find the effect of suddenly turning the coupling on and off we find the ratio
of the total noise power to the noise power for » > 0. This is given by

JZad(v)dv _ [Z.(sin 6/6°) df
Jo o(v) dv Joparo d0/6°

For ammonia molecules at a temperature of 7' = 290°K, the average velocity
v =6 X 10" em/sec. For a microwave cavity of 10 em length 7, = 2 X 10" sec.
For the 3-3 line of ammonia wy ~ 1.5 X 10" rad/sec. For our case
then (wwwro) & 10°. From this, we can conclude that even in this unfavorable
case of coupling time variation, the ¢(») is negligible for » > 0.

Examination of Re(1/Z,), derived from Lg. (5.23), reveals terms of the
same form as those just discussed,

Re(1/Z,) = Y4[(1/Z,) + (1/2,%)]
(VN/2ﬁ) | Pab ‘Q[Fp+w;,a - I‘v—whu - F—V+w!,,, + I“"’*whu]

= MTWhae To

ot
[
~1
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By the same type of argument as above, the terms in I',_,,, can be neglected
when » > 0, w, < 0 and conversely, when » > 0, wp > 0 the terms in Tyiuy,
can be neglected. Since this is the case, we can write

¢(») X HRe (1/Z,)[v(e Pt — )] (5.28)

where 8, = 1/kT. , describes the relative initial populations of the two states.
Therefore, we conclude that in most practical cases the power spectrum can be
written in the form of Eq. (5.28). In cases where the transients cannot be
neglected for very low oy, and very short transit times, however, ¢(») is not so
simply related to Re(1/Z,) and must be written in the form given by Eq. (5.25).

It is to be noted that ¢(») of Eq. (5.28) is not precisely of the form for the
Nyquist relation because of the appearance of ¢“% in the denominator rather
than ¢*. This is a consequence of the finite coupling time between each part of
the beam and the cavity which results in a nonequilibrium condition. If the
coupling times were infinite, the expression for Re(1/Z,) would contain forms
such as 8(» + wis), & situation discussed earlier, so that the Nyquist form then
results. However, when the coupling time is long as in masers,

Fv+wba + F—v—wba = 47"6(1‘ + wba)
so that the true Nyquist relation may be used with negligible error.

VI. SOURCES OF NOISE IN MASERS

Having developed the theory of linear systems in detail we are now in a posi-
tion to discuss the sources of noise in linear quantum-mechanical devices such
as maser amplifiers. The subject of maser noise has been explored by many
authors (15-19). The details of the treatment given the subject differ, but the
principles are essentially the same. The amplifiers are considered as operating at
signal levels high enough (classical) that a signal entering a maser may be con-
sidered as a group of photons whose number is large enough that the amplifica-
tion process increases the signal in a continuous fashion. The sources of noise
were found to be those derived from the thermal noise arising from the sources of
dissipation, and those derived from spontaneous emission from the “active”
quantum material. They go further and define an effective temperature of the
active quantum system so that the noise it produces is related to the negative
resistance of the active materials. Our analysis of linear systems has also shown
that these same sources of noise exist. However, if the signal level entering the
maser is very small such that its strength can be characterized by a few quanta
per second, a serious question arises as to the nature of the signal out of the maser
(here assumed to be at a classical level). An additional fluctuation of the output
signal or “quantum’ noise might be expected due solely to what might be termed
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a ‘“‘shot noise’ effect created by each individual photon entering the cavity.
It has been shown that no such signal exists by other authors (20, 21). We wish
to show how the same result follows from the theory developed here in an ex-
tremely transparent way. We will show that the only fluctuations in output
signal which are to be expected are those noise sources computed classically.
No additional “shot noise” does, in fact, appear.

Let us suppose that we have a beam-type maser amplifier in which all partici-
pating systems used meet the requirement of linearity. There may be one or
more beams interacting with various electromagnetic resonators which can be
coupled together in any way desired. The output of the maser is connected to a
detector of some sort which perhaps consists of a resistor in which the current
is to be measured. To the input of the maser system we now apply an incoming
classical signal of large magnitude and of frequency « through an attenuator
whose value of attenuation may be varied at will as shown in Fig. 12. In practice
such a situation could arise if the classical wave originates from a distant antenna
with a very large magnitude of output, so large that all quantum effects in the
wave are effectively obscured. The long distance would then play the role of the
attenuator.

Now, if the classical wave were attenuated by a large amount so that only a
few photons/sec were entering the maser, the only uncertainty in the signal in
the output of the maser caused by the maser itself arises from those sources of
noise which can be arrived at by a classical calculation of the characteristics of
the maser. There is no extra quantum fluctuation introduced by the maser into
the output signal due to the small number of quanta entering the maser.

It is true that the amplitude of the signal output from the maser might itself
be so small that it is still on a quantum level. In this case the detector output
would be uncertain due to the inherently small magnitude of the signal from the
maser. However, if this is the case, we may put as many amplifiers in series as
necessary to bring the output signal back to a classical level. When this is done
the signal applied to the detector consists of the original signal modified by the
transfer characteristics of the maser system (and attenuator) and noise signals
which arise from all the possible sources computed classieally. The proof of this
assertion is not difficult. We divide up the total system into a test system, here
the detector, and an interaction system which consists of the maser, attenuator,
and classical signal, C(¢). Then, to find the effect of the interaction system on the

CLASSICAL

WAVE —ATTENUATOR— MASER | DETECTOR

Fra. 12. System in which a elassical wave is attenuated to a very low level (a few photons;
sec), then amplified by a maser and detected.
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detector we need only to look at the influence functional. However, we already
know that it can be written as follows:

5(0.0) — exp {( i > [ I:Q'V(Q_v — QL) | Q. — Q’»J o

27h (vZ,) (—wZ_)
i i(v) dV}

L) 0mern- ()] 0

where ¢:(») represents the power spectrum of the noise from the ¢th source,
2, is the classical transfer characteristic of the complete interaction system, and
Z, is the impedance of the maser system as seen by the detector. All the terms
in the influence functional are familiar in view of the derivations which have
been presented previously. The first term in the exponent of the influence func-
tional is recognized as describing a linear system at zero temperature (Section
IV), the linear system in this case being the maser. This term describes the
spontaneous emission of the detector back into the maser (see Appendix I). Fur-
thermore, it can be deduced that this spontaneous emission can be thought of as
resulting from a noise generator created by the detector (test system) acting on
the interaction system in the usual classical way, i.e., whose power spectrum was
related to the dissipative part of the detector impedance and to the temperature
by the Nyquist relation

¢(v) = fivR,[exp (iv/kT) — 1]

where R, is the detector resistance and 7' its temperature. The second term in
the above composite influence functional is easily interpreted and is simply the
effect of a classical voltage, related to the input voltage by the classical transfer
characteristic of the maser, acting on the detector (see Section IV.B). The last
term represents the effect on the detector of random noise voltages associated
with the various classical noise sources in the maser (Sections IV.C and V).
Both positive and negative resistances are such noise sources. In either case the
power spectrum of the noise from a particular resistance is computed from the
same relation as given above.

If R, is negative the effective temperature of R, will also be negative always
giving a positive power spectrum. Therefore, if we were to compute the current
in the detector due to the interaction system (maser) using the influence fune-
tional we would find components of current due to: (1) the noise voltage gener-
ated by the detector itself, the power spectrum of which is related to the resist-
ance of the detector by the generalized Nyquist relation given above; (2) a
classical voltage related to the input voltage C'(¢) by the classical transfer char-
acteristic of the maser; and (3) random noise voltages associated with the
various classical noise sources (resistances) in the maser. Therefore, the maser
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simply acts as a classical amplifier with sources of noise which can be predicted
from considerations of its classical characteristics.
APPENDIX 1

In Section ILLE the problem of making perturbation calculations using in-
fluence functionals was outlined. Here we will caleulate in detail the probability,
to second order in the coupling potentials, that a test system which is in a
definite state at ¢ = r and finds itself in another state at ¢ = 7' when interacting
with a zero temperature interaction system. Let us call the initial and final states
¢.{Q.) and ¢,.(Qr) respectively and, for simplicity, assume that these are eigen-
states. The formal expression for the transition probability is given by I.
(4.24) and for this case,

FQ, Q) =exp ! —(20) " [Z, [l yma(Qu — Q' .
X [QF*(t — s) — Q Fit — s)]ds dt} o

Then to second order
P X 60" (Qrign(Q'r) exp | (£/A)[So(Q) — Syt Q"1i
XL = 20 2 Ty (Qe — Q' DQF™ (L — ) — Q' F (L — s)]dsatl (1.2)
X 6.5 (Q" N (Qr) dQs -+ DQ (1)
Making use of the fact that
Jexp [ 7)S(Q)]9Q(8) = K(Qr, Q)

= [K(Qr,Q)K(Q,,0).)dQ, (where T < { < 7}
and writing (1.2) as a sum of integrals
P X 9. (Qn)n(Q'r) exp [ (6/H)[S0(Q) ~ Su( Q)]
@ Q' D (Q) dQ, - Q' (1)
— 2 2 [ ds diyeys [ du (Qr)gn(Q'r) L)

rexp | (4, ]18a(Q) — So(Q)]:
X Q= QORF™(t — ) = QF(t — 5]
6 QD () dQy -+ Q' (1}
Replacing K(Qz, Q) by 2k u(Qr)d™(Q0) exp [—iE(T — 1)/#] and taking
matrix elements we have

P = Sanll = 226(28) 7| Qui [ ()] + (20)7 | Quin [f(wan) (L)
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where
Fum) = [P0 [ravevF*(t — 8)e”™ ) + F(t — 8)e ™" dsdt (1.5)

f(») can be simplified by restating the integral over ¢ and s in terms of frequency.
To do this we replace the upper limit ¢ by + « and multiply the integrand by
a step function 1(¢ — s). Then utilizing the convolution theorem in the form

[20 [2 M()N(8)R(t — s) dsdt = (2x)"" [ M_N,R, dv
where
My) = [2. M()e ™ dt
J(v) becomes
J) = @07 [Za | o ['(Fs + F.F) dv
where
F, = 2, 1(t)F(t)e ™ dt
From Egs. (4.5a) and (4.5b) we have that
F(t) = —(2/m) [§ Tm (1/inZ,)e™" dn
Therefore,
— (2/m) [ dn T (1/inZy) Ji° di(e T + T
—4Im (1/ivZ,) = (4/v) Re (1/Z,)

F,+Ff*

and
f(v) = (2/7) [Z0 | Yo I'n " Re (1/2,) dn (1.6}
Thus, to second order
an = 6nm{1 - Zk (rﬁ)—l I an I2 wa 1'_1 I'Yv—-v,,k |2 Rﬂ (Zv)_.l dV}
+ (@)™ | Qum [ 6™ v | Yomsyn | "Re (Z) dv

For the special case that the coupling v is

(1.7)

vy=20 for ¢t> T/2 and t < —T/2
y=1 for —T/2<t<T/2
| Yoo | = | 252 7 AL | * = 4(v — v) 7" sin® (v — vui) T/2

— 27T8(v — wu) for large T
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Then,
Puw = 8umfl — Zk,vnk>0 27 (hvne) ™ | Quy |° Re(Z,,,) 7}
+ 2T (Fivun) " | Qum " Re(Z,, )" for vym > 0 (1.8)
= (0 for vo, <0

Thus, it is seen that the P,., now is proportional to the matrix element and to
the dissipative part of the impedance Z, , . Appropriately enough, no transition
Is possible to energy states such that ».. < 0 since the interaction system, being
at zero temperature initially, can give up no energy to the test system.

APPENDIX II
A. INFLUENCE PHASE FOR EFFECT OF FREE SPACE ON AN ATOM

As an illustration, the influence phase for the effect of free space on an atom
will be ealculated. This problem is more complicated than the idealized systems
considered in deriving the formalism since the interaction here is of the form
Q-X, Q and X being vectors rather than QX where () and X are scalars. This
difficulty could be overcome by writing the influence phase in tensor notation
or by recasting the problem so that the interaction is of the form QX. The latter
will be done to adhere more closely to the point of view of the derivations. Sinee
a linear system is being dealt with, it is only necessary to determine a suitable
coordinate for the atom and find the impedance function Z, for the effect of free
space. It is assumed that the atom is made up of a system of particles of mass
m, , charge ¢, , and position r, + x, where r, is the position of the center of
charge of the atom. If the transverse part of the radiation field in the box is
expanded into a series of plane waves each representing independent harmonic
oscillations (22), then the nonrelativistic Lagrangian for the complete system
consisting of the atom and the field in the box can be written (2)

LN, X G, g, t) = La+ ¢ ' 2 e X A%(rs + 1)

+ 2520 2 ) — R
where L, is the Lagrangian of the atom unperturbed by outside forces and
AY(X) = (8rc")"* Dk [en(gi cos(k-X) + ¢ sin(k-X))

+ elgPcos(k-X) + ¢'sin(k-X))]

Here ey and e, are two mutually orthogonal polarization vectors, each orthogonal
to the propagation vector k. Now we assurne that the radiation field of the hox
is constant over the particle, i.e., that A(r, + r,) = A(r,), the dipole approxi-
mation.”® This permits one to replace Y, ,X, by j, the eurrent operator for

(H.1)

% This is equivalent to taking A(k, + x,), expanding it in a series of k-x, since this is
assumed small, and keeping only those terms which keep the interaction term of the La-
grangian linear. Since the interaction is of the form e.x,.-A(ks + x,) for the nth particle,
then A can only contain constant terms.
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the atom. In addition, even though ey-e; = 0, which fixes their relative orienta-
tions, their absolute directions in a plane perpendicular to k are still arbitrary.
Choosing e; so that

erj=0 (11.3)

We assume the box to be very large so that Y_x — (16x°)7'f d°k, because the
mode corresponding to k and —k is the same. Combining (II.1), (I1.2), and
(I1.3) the following total Lagrangian is obtained.

Le= L, + Z f d’k [% (qy))z_%kzg(qér))il

=13 J 1678
4 8m" [ 9E Glea® cos (I 114
T 165 (Jreac cos ‘Ta) (I14)
3
+ (87)'* dk (j-en)g” sin (k-ry)
1672

Thus, the number of each of the two sets of oscillators (g and ¢i>) in a volume

of k& space d’k is d’k/ 167°. The coupling strength of the ¢ and ¢y oscillators
with the atom is (87)"*(j-ex)gi cos(k-ry) and (87)"*(j-e\)qs cos(k-r,)
respectively. If j is oriented along the § = 0 axis in polar coordinate representa-
tion, j-ex = 7 sin 6. Then choosing j as the atom coordinate, the impedance for
the two oscillators of frequency kc can be found from the rule found in Section
IV to be

livZ, (K] = (1/7,)[(87)*sin 6 cos (k-14)gs” + (8x)"*sin Osin (k-ri)es” ],

=_81rsin200052(k~rA) 8 sin® 6 sin® (k-r,)

b —i—Re | —i = (IL5)
= —8rsin’ 0[(y — de)® — K¢’ T o
The total effect of all the oscillators is
(Z)' = (162°) 2, (k) d’k = (16x°)7' [k’ sin 040 dg dk(Z, ")
= —4y(3r) T LAy — 1)’ — LT e (T1.6)

(2,°/3¢") — i(4v/3xc®) [° QP dQ(S — )7

where the substitution & = k¢ has been made. Thus, the effect of free space is
characterized by (ivZ,)”". The equivalent distribution of oscillators coupled to
Jvis

G(Q) = (49%/3xc?) (I1.7)
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B. SronTANEOUS EMISSION PROBABILITY OF AN ATOM IN FREE SpracE

To eompute the transition probability for this atom, we use second order
perturbation theory developed in Appendix I for a system initially in state
¢.(X,) and finally in state ¢..(X») when acted on by an influence functional for a
linear system at zero temperature. The expression is

P = 2T | jom |° Bvam) " Re(Z,,,)7", vum > 0, n = m

(11.8)
=0, v,m < 0

I'rom Eq. (I11.7) we find
Re(Z,,)" = (@/DC(rm) = 205./3 (11.9)

Using this in Kq. (I1.8)

1)7),7" = 4V7Lm |j7bm 2 T//:;ﬁrc:‘
s . . . (11.10)
= 4vyne | Xpwm |” T/300¢

where to obtain the last, more familiar form, the substitution j,,, = v,nX

has been made. This is the first order spontaneous emission probability for an
atom In free space.

Now we can form an expression for the intensity of radiation per unit time.
The power radiated from the dipole is

FvanPun/T = 2050€” | X |° Re(Zvym) !
) . . (I1.11)
=4de¢ | Xom | V‘:,m/3(:“

an expression which is almost the same as that for power radiated from a classical
dipole. The expression becomes exactly the same if we apply the correspondence
principle by replacing the matrix element of the time average of the coordinate
of the oscillator by its corresponding classical quantity. Thus, if X is the coordi-
nate of the corresponding classical oscillator (X, is its maximum value) then™

21 X, [ o (X% = 15X,

26 That this correspondence is true can be seen easily as follows. Consider the dipole, a
harmonie oscillator as above, to be in a high quantum state, ¢, . Classically the motion of
the dipole ean be described as X = X sin wl. We wish to relate the classical value of (X2,
to its matrix element. In a quantum mechanical sense,

(X2 = [¢.* (X)DX2%.,(X) dX = [[é.* (DX D s (XN )p* (X)X 80 (X)) dX d X’
Since matrix elements exist, in the case of a harmonic oscillator only fork = n — 1,k =
n + 1, we have

(X2 = | Xpot |2+ | Xuo 2

For very high quantum numbers these two terms become nearly equal since
| Xone1 12 = nh/2me, | Xongr 2= (n + DA/2mw

Thus, as n — % (X?) = 2| X,,,.1 [2. But in the classical cuase, X2 = ;X2 Therefore,
P X 2= N2
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If | X,y |* is replaced by X,°/4 then Eq. (I1.11) becomes the expression for the
power radiated from a classical dipole. Our purpose, however, in doing this ex-
ample, was to show for a specific problem that the effect of a distribution of oscil-
lators interacting on a system is the same as the effect of loss on the system.27
This has been done by relating the energy lost from the radiating dipole to the
distribution. It is not surprising that a sea of oscillators should give this effect.
If the dimensions of the box are allowed to be finite then energy emitted from
the system under observation is reflected from the walls and eventually finds its
way back to be absorbed again. This is equivalent to saying that the number of
oscillators comprising the electromagnetic field in the box is infinite with a finite
frequency spacing between the modes. Since the oscillators are independent there
is no coupling between them and energy coupled into one of the oscillators from
the test system must eventually return to it. If the dimensions of the box are
allowed to get infinitely large, energy emitted from the test system never gets
reflected and thus never returns. In oscillator language this means that the
frequency spacing between oscillators has become infinitesimal, so close that a
little of the energy absorbed by each one gradually leaks into nearby modes and
eventually is completely gone.

APPENDIX III. SPONTANEOUS EMISSION OF AN ATOM IN A CAVITY

In this calculation as in the free space calculation the dipole approximation
will be used in computing the spontaneous emission piobability. The linear
coordinates inside the cavity will be represented by the vector Q while the time
varying coordinates of the single cavity mode being considered will be X ().
The Lagrangian of the system may be written

Ly= L(Qn ’ Qn; t) + C_lzn enQn'A(Ql + Qn, t) + Leavity (IIl-l)

where Q,, is the atom coordinate, Q. + Q, is the particle coordinate in the atom,
and A is the vector potential of the cavity field. The interaction term is the one
of interest, since from it we find the terms that we wish to solve for classically.
This term will be put into more convenient form. Let us write

A(Q,t) = a(Q)X(¥) (1I1.2)

21 If the power radiated from the oscillator is related to the classical expression 412k
then from Eq. (IL.11) it can be seen that R is proportional to Re[l1/Z(»)] which in turn is
related to the distribution of oscillators. One might expect Im[1/Z(»)] to be replaced to
the reactance seen by an oscillating dipole, a quantity which is known to be infinite classi-
cally. From Eq. (I1.7),

Im(1/Z,) = 4v/3xc3f, Q202 — 92)~1dQ = 49Q/37¢* |2w

The integral is linearly divergent. This factor is also related to the infinite self energy of a
point charge which oecurs both classically and in quantum electrodynamics. Here this di-
vergence does not bothe~ us since it never enters into the calculation.



INTERACTION OF SYSTEMS 171

where
Ja(Q)-a(Q)d'Q = 4nc* (111.3)

If A does not vary much over the atom, then A(Q,) ~ A(Q, + Q,) and the
interaction term is written

Y eQ.a(Q)X () = (j/c)|alQy) | X(4) (1114

where j = (2 €,0.)-a(Q,)/ | a(Q,) |, the component of the atom current in
the direction of the cavity field.
Let us now determine the ratio
MlaQy) [ X T = v, (111.5)
classically. The wave equation appropriate for this caleulation (high Q)™ ix

VA — (1/HA + (w/CQ)A — (4x/c)P = 0 (111.6)

The atom is located at Q, and, since the dipole moment is induced, its direction
on the average is the same as that of the field A in the cavity. We have then

P = j5(Q — Q,)a(Q,)/ |a(Q,) | (IIL.7)
Substituting (II1.7) and (II1.2) into (II1.6) we obtain
[— X + (o/QX — XIca(Q)
— (47/c)j5(Q—Q,)a(Q;,)/1a(Q,)| = 0

where w is the resonant frequency of the cavity. Multiplying by a(®), integrating
over @, and taking Fourier transforms, (II1.8) becomes

(111.8)

(¥ = o + /X, — ¢ a(Q,)]j, = 0. (111.9)
We find that the ratio (IIL.5)

wZ, = [V — o + (/Q)lc/] a(Qy)

The influence phase for this is (although it is unnecessary to write it)

PR T I € A 0 N B¢ Py
‘W’“_m[, [ A +"”(—ivz_,) v

From second order perturbation theory we know

an = 2T |jnm l2 (ﬁynnb)——l Re(an,)“l fOl' Ve > 0

% () is used here as the dissipation factor of the cavity, wl./l, while Q is 2 vector rep-
resenting the linear coordinates inside the cavity.
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Noting that
Re(Zvan) " = @um [2(Q,)[ Q@7 ¢ [(vam — «')* + &5n@”
and defining a cavity from factor /* = V | a(Q,)|"/4xc’
Pum = (87 | jum | frorunT) (BVQ) [(vom — &) + ™v2m@”7]  (1I1.10)
At resonance this expression reduces to
Pon = 8 | um ' S'QT/EV VL, (I11.11)

The quantity usually computed is the ratio of the transition probability in the
cavity at resonance to that in free space. This ratio is

an (CaVity) = [87!' |]nm |2Qf2/1’2nm Vﬁ]T = 61!'63Qf2
P.. (free space) (4| Jum [2¥um/3Fc ] T Vil

At resonance, the ratio increases with respect to € as one might expect and
decreases with respect to the cavity volume V and »5,, . This expression agrees
with the one given by E. M. Purcell (23) although the form factor in his calcu-
lation was left out. This does not matter since for a particle located near the
maximum field point in a cavity the magnitude of f is of the order of unity.

APPENDIX 1V
It is to be demonstrated that
G(X) = limy arge [ [1m1 (1 + X&) — exp[ 2 Xl (IV.1)

where the X; are small but not necessarily equal to each other, and where the
total sum D_:X is finite. Rewriting the expression for G(X) we have (where
the summations on all indices go from 1 to N)

G(X) =14 20X + Y2 5u X;Xi + (1/6) 2 same X, X X0 + + -
=14+ DX + I e XoXo (1 — 85) 4+ (14D 2w X, X0 X,
X (1 - 8]']0 — Ope — 6]-5 + 23]]96H) (IV2)

As N is allowed to get very large the contribution of the terms involving quan-
tities such as 8,;; becomes less significant. For instance, in the third term

2w (XiXe) (1 = 83) ~ (NX)* — (NX)*/N (1Iv.3)

and for very large N only the leading term in this sum is important. Thus, we

have the result that
GX ey & 1+ 20 Xe + U0 X)' + 110 X' (IV.4)
= eXp[Zk Xz '

REcEIvED: April 5, 1963



10.
11.
12.
13.
14.
15.
16.
1.
18.
19.
20.
21,
22.
23,

INTERACTION OF SYSTEMS 173

REFERENCES

. R. P. FEYNMAN, Rev. Mod. Phys. 20, 367 (1948).

R. P. FEynMan, Phys. Rev. 80, 440 (1950).
R. P. FEyNmaN, Phys. Rev. 84, 108 (1951).

. V. ¥ano, Rev. Mod. Phys. 29, 74 (1957).

R. W. HELLwARTH (private discussion).

. R. McWEENY, Rev. Mod. Phys. 32, 335 (1960).
. R. C. Touman, “The Principles of Statistical Mechanics,"” Chapter 9. Oxford Univ,

Press, New York, 1830.

. . MipprLeron, “An Introduetion to Statistical Communication Theory.” MeGraw-

Hill, New York, 1960.

. D. MipprLETON, “An Introduction to Statistical Communication Theory,”” pp. 362-364.

MeGraw-Hill, New York, 1960.
H. GoupsTEIN, “Classical Mechanics,”” Chap. 10. Addison Wesley, Reading, Mass, [953.
H. B. CarLrex axp J. H. WELTON, Phys. Rev. 83, 34 (1951).
R. KvBo, J. Phys. Soc. Japan 12, 570 (1957).
H. Nyquist, Phys. Rev. 32, 110 (1928).
H. NaRaNo, Progr. Theoret. Phys. (Kyota) 17, 145 (1957).
R. V. Pounn, Ann, Phys. (N.Y.), 1, 24 (1957).
M. W. MvELLER, Phys. Rev. 108, 8 (1957).
K. Sainopa, T. C. Wang, anp C. H. TownEs, Phys. Rev. 102, 1308 (1956).
M. W. P. STRANBERG, Phys. Rev. 106, 617 (1957).
K. SHinora, H. Takauast, anp C. H. TownEs, J. Phys. Soc. Japan 12, 686 (1957).
W. H. WeLLs, Ann. Phys. (N.Y.), 12, 1 (1961).
J. P. Gorbon, Proc. IRE 50, 1898 (1962).
5. FerMmi, Rev. Mod. Phys. 4, 87 (1932).
2. M. PurceLy, Phys. Rev. 69, 681 (1946).



