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A formalism has been developed, using Feynman’s space-time formulation of 
nonrelativistic quantum mechanics whereby the behavior of a system of in- 
terest, which is coupled to other external quantum systems, may be calculated 
in terms of its own variables only. It is shown that the effect of the external 
systems in such a formalism can always be included in a general class of func- 
tionals (influence functionals) of the coordinates of the system only. The prop- 
erties of influence functionals for general systems are examined. Then, specific 
forms of influence functionals representing the effect of definite and random 
classical forces, linear dissipative systems at finite temperatures, and combina- 
tions of these are analyzed in detail. The linear system analysis is first done for 
perfectly linear systems composed of combinations of harmonic oscillators, loss 
being introduced by continuous distributions of oscillators. Then approxi- 
mately linear systems and restrictions necessary for the linear behavior are 
considered. Influence functionals for all linear systems are shown to have the 
same form in terms of their classical response functions. In addition, a fluc- 
tuation-dissipation theorem is derived relating temperature and dissipation of 
the linear system to a fluctuating classical potential acting on the system of 
interest which reduces to the Nyquist-Johnson relation for noise in the ease of 
electric circuits. Sample calculations of transition probabilities for the spon- 
taneous emission of an atom in free space and in a cavity are made. Finally, a 
theorem is proved showing that within the requirements of linearity all sources 
of noise or quantum fluctuation introduced by maser-type amplification devices 
are accounted for by a classical calculation of the characteristics of t’he maser. 

I. INTRODUCTION 

Many situations occur in quantum mechanics in which several systems are 
coupled together but one or more of them are not of primary interest. Problems 

* This report is based on a portion of a thesis submitted by F. L. Vernon, Jr. in partial 
fulfillment of the requirements for the degree of Doctor of Philosophy at the California 
Institute of Technology, 1959. 
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in the t.heory of measurement and in statistical mechanics prrsent good examples 
of such situations. Suppose, for instance, that the quantum behavior of a system 
is to be investigated when it is coupled to one or more measuring instruments. 
The instruments in themselves are not of primary int.er&. Howe\.er, thei 
effects are those of perturbing the characteristics of the system h&g observed. 
L1 more concrete example is the case of an atom iI1 an excited state which inter- 
acts with the electromagnetic field in a lossy cavity resonator. I3ecause of the 
coupling there will be energy exchange between the field and the at,om lult il 
equilibrium is reached. If, however, the atom were not coupled to any ~~xterual 
disturbances, it would simply remain mlperturbed in its original excited st,at(l. 
The tax-ity field, although not of central inkrest, to us, infhlences the beha\%)r 
of the atom. 

To make the discussion more defiuite, let us suppose there are t,wo llo~nx~la- 
tivistic quantum systems whose coordinat,es are represented in a general x\-ay 
by Q and LY, as in Fig. 1, coupled together through some interaction potential 
which is a fun&on of the parameters of the t,wo systems. It. is desired t,o ~omput(~ 
the expectat’ion value of an observable which is a function of the Q \,ariabl(ss 
ouly. .\s is well horn, the complete problem can be analyzed by taking t,hc 
Hamiltonian of the complete system, forming t,he wave e(iuat,ioll as follows: 

and then finding its solution. In general, this is an extreme1.y difficult problen~. 
In additiou, when this approach is used, it is not’ easy to see how to eliminate th(> 
coordiuates of X and include its effect in an equivalent way when making I.WIW 
putations on Q. A satisfactory method of formulating such problems as this ill a 
general way was made available by the introduct.ion of the 1,agrangiau formula- 
tion of quantum mechanics by Feynman. He applied the techniques afforded 
hy this method extensively to studies in quantum electrodynamics. Thus, ill a 
problem where several charged particles interact through the el~~ctro~llag~~~~ti(~ 
field, he fouud that it was possible to eliminate the coordinat,es of the field and 
recast the problem in terms of the coordinates of the particles alone. The effect, of 
the field was included as a delayed interaction between the particles (1, 2). 

The central problem of this study is to del:elop a general formalism for finding 
all of t’hc quantum effects of an enxTironmenta1 syskm (t,he intera&oll s,vstetu ) 
upon a system of interest (the test system), to investigat,e the properties of this 
formalism, and t’o draw conclusions about the quantum dfwt,s of’ spwific* 



120 FEYNMAN AND VERNON 

interaction systems on the test system. Cases where the interaction sy&xn is 
composed of various combinations of linear systems and classical forces will be 
considered in detail. For the case in which the interaction system is linear, it 
will be found that parameters such as impedance, which characterize its classical 
behavior, are also important in determining its quantum effect on the observed 
system. Since this linear system may include dissipation, the results have ap- 
plication in a study of irreversible statistical mechanics. 

In Section II, after a brief discussion of the Lagrangian formulation of quantum 
mechanics, a general formulation of the problem is made and certain functionals, 
called influence functionals, will be defined, which contain the effect of the in- 
teraction system (such as system X in Fig. 1) on the test system in terms of the 
coordinates of the test system only. General properties of these functionals will 
be derived and their relationship to statistical mechanics will be discussed. To 
obtain more specific information about the properties of the formalism, we then 
specialize the discussion to cases where well-defined systems are involved. In 
Section III, the special cases are considered in which the interaction system is a 
definite classical force and a random classical force. In Section IV, the influence 
functionals for exactly linear systems at zero temperatures are derived and then 
extended to the case that the linear systems are driven by classical forces. In 
addition, the effect of finite temperatures of linear systems is considered. Then, 
in Section V, the unobserved systems are again assumed to be general but weakly 
coupled to the observed system. Within the approximation of weak coupling 
these general systems also behave as if they were linear. Then finally in Section 
VI, the results of the analysis are used to prove a general result concerning maser 
noise. 

It is to be emphasized that although we shall talk of general test and interac- 
tion systems, the Lagrangian formulation is restricted to cases involving mo- 
mentum or coordinate operators. Therefore, strictly speaking, systems in which 
the spin is of importance are not covered by this analysis. However, this has no 
bearing on the results since their nature is such that their extension to the case 
where spins are important can be inferred. 

An equivalent approach can be made to the problem using the Hamiltonian 
formulation of quantum mechanics by making use of the ordered operator calcu- 
lus developed by Feynman (3). This approach has been used to some extent by 
Fano (4) and has been developed further by Hellwarth (5).l Some advantages 
of this method are that many results may be obtained more simply than by the 
Lagrangian method and nonclassical concepts such as spin enter the formalism 
naturally. However, the physical significance of the functions being dealt with 
are often clearer in the Lagrangian method. 

1 Many of the results obtained in this work have also been obtained by him using ordered 
operator techniques. 
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II, GEKERAL FORMULATION-INFLIXNCE FVKCTIOXAL 

A. LAOR~~NOL~~ ~?~RMULATIOX 0~ (&.4iv~uM &hH~4NIcs 

We shall begin the discussion with a brief introduction to the Lagrangial\ or 
space-time approach to quantum mechanics and the formal way iu lvhich one 
may set up problems of many variables.’ Let us suppose that we are considering 
a single system which has coordinates that are denoted by Q, and that for the 
time being it is not acted on by any other quantum system. It can be acted WI 
by outside forces, however, The system may be 1.ery complicated, in ~vhich case 
Q represents all the coordinates in a very general way. If at a t,ime I the variable 
Q is denoted by Ql , then the amplitude for the syst,em t,o go from posit,ion 
Qr at t = r to QT at t = T is given by 

KtQT, T; QT , ~1 = .f =p ICi/filWQ~lDQtt~ t *>.1 1 - 

in integral which represents the sum over all possible pat’hs Q(t) in coordinate 
space from Q7 to QT of the functional exp [(i/fi)S(Q)].3 S(Q) = Jr’ ,5( 0, (‘1, t) dt 
is the action calculated classically from the Lagrangian for the trajectory Q( t ). 
I:or the case that Q is a single linear coordinate of position, this is represented ill 
the diagram in Fig. 2. The magnitude of the amplitude for all paths is equal 1 jut 
the phase for each path is given by the classical action along that path in units 
of 5. Thus, amplitudes for neighboring paths which have large phases tend to 
cancel. The paths which contribute the greatest amount are those whose ampli- 
tudes have stationary phases for small deviat,ions around a certain path. This is 
the path for which the classical action is at an extremum and is, therefore, t,he 
classical path. Remarkably enough, for free particles and harmonic oscillators, 
the result, of the path integration is 

K(QT, Q7) = (Smooth Function) exp [(i/fi)&] 

where SC, is the action evaluated along the classical path between the two end 
points Qr , QT . However, for more complicated systems this simple relation does 
not hold. A discussion of the methods of doing integrals of this type k not in- 

cluded here since methods appropriate for thr purposes here are already con- 
tained in the literature (1,s). 

Since K(QT , Q,) is the amplitude to go from coordinate Q7 to QT , it follows 
that at t = T the amplitude that the system is in a state designated by .+,,(( QT.) 
when initially in a state +,,(Q,) is given by 

il “S,L = J &*CQXCQT, Q~h$,~CQ~) ~QT dQr 

= i &*(QT) =P [(~~~)~S(Q)l~~(Q~)~Q(t) c?QrdQr 
t 2.2) 

’ For a more complete treatment, see ref. 1. 
’ In subsequent equations zi(Q~ , 7’; Q* , t) will be written Zi(& , ~1~). 
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FIG, 2. Space-time diagram showing possible paths for particle to proceed from Q7 to QT 

The probability of the transition from n + m is given by jAmniz and from Eq. 
(2.2) this can be written in the form of multiple integrals as follows: 

As a example of a more complicated case let us consider two systems whose 
coordinates are Q and X.4 The systems are coupled by a potential which can be 
designated as V( Q, X) and incorporated in the total Lagrangian. We assume 
that when V = 0 the states of Q and X can be described by sets of wave func- 
tions @k(Q) and x=(X) respectively. If, initially, Q is in a state &(Q7) and X is 
in a state x~(X,), then the amplitude that Q goes from state n to m while X 
goes from state i to J can be formed in a similar way to that of Eq. (2.2), 

where S(Q, X) represents the classical action of the entire system including 
both Q and X. The important property of separability afforded by writing the 
amplitude in this way is now apparent.5 For instance, if one wishes to know the 
effect that X has on Q when X undergoes a transition from state i to f, then all 

4 Each system will be denoted by the coordinates that characterize it. Where Q or X 
means specifically a coordinate, it will be so designated by a statement if it is not obvious. 

5 If system Q represents a harmonic oscillator and the interaction of Q with X were linear 
and of t,he form --y(t, X)Q(t), then that part of Eq. (2.4) which involves t’he Q variables 
corresponds to the function Gm,, defined and used by Feynman to eliminate the electromag- 
netic field oscillators. See ref. 2. 
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of the integrals on the X variables may be done first. What is left is an expression 
for -4 mn for Q and in terms of Q variables only but with the effect of X included. 
The extension of writing transition amplitudes for large numbers of systems is 
obvious. In principle the order in which t’he variables are eliminated is always 
arbitrary. 

A functional can now be defined which can be used to describe mathematically 
the efkt of external quantum systems upon the behavior of a quantum system 
of iuterest.fi 

The fundamental theorem for this work may be stated as follows: For any 
system, Q, acted on by external classical forces and quantum mechanical systems 
as discussed above, the probability that it makes a transition from state y?,< f Q7 ) 
at t = 7 to $m(QT) at t = T can be written 

where CF[Q, Q’) contains all the effects of the external influenees on 0, aud 
S$(,Q) = JF L(a, Q, t) rlt, the actionof Q withoutexternal disturbance. The proof 
of this is straightforward. Let us examine two coupled systems characterized by 
coordinates Q and X as represented diagrammatically in Kg. 1. Q will represent 
the test system and X the quite general interaction system, (excepting only the 
effects of spin) coupled by a general potential V(Q, X, t) to Q. Assume Q to by 
initially (t = 7) in state $J~(Q~) and X to be in state xi(AYTj, a product &ate. 
The probability that Q is found in state Gm( Q~j while LIY is in statme x,, f AF71 at 
t = 2’ can be written in the manner discussed above and is 

. . . ,iQ’gX’Ct) . . . IDQ~ t I 

The primed variables were introduced when the integrals for each A ,,t,, ,,, , \vpre 
combined. Kow if all of Eq. (2.6) which involves coordinates other than Q ol 

6 Hereafter, the system of interest will be referred to 2s t,he test system. CTonversely, the 
system not of primary interest will be cElled the interaction or environmental systenl, 



124 FEYNMAN AND VERNOiX 

Q’ is separated out and designated as T( Q, Q’), then the fdowhg expms$cm & 
obtained 

Incorporation of this expression into Eq. (2.6) yields the desired form of Eq. 
(2.5). If the path integrals are written in terms of kernels, Eq. (2.7) becomes 

s(Q, Q'l = J ~.~*LWXA~‘TVLGG , XX& (A%, X'J 
X x:(X',)xi(Xr) dX7 . . . dX’T 

c2.8) 

where the subscript Q means that the kernel includes the effect of a potential 
V(Q, X) acting on X during the interval T > t > T. As can be seen, CF is a 
functional whose form depends upon the physical system X, the initial and final 
states of X, and the coupling between Q and X. 

It is to be emphasized that the formulation of 5 is such that it includes all the 
effects of the interaction system in influencing the behavior of the test system. 
Thus, if there are two systems A and B which can act on Q, and if 

then the effects of A on Q are the same as those of B on Q. It follows that if 
simplifying assumptions are necessary in finding F* 0,, Q and sB 0,, Q (due to the 
complicated nature of A and B) and if the resulting functions are equal, then 
within the approximations the effects of A and B on the test system are the same. 
In the situation where the interaction system is composed of a linear system or 
combinations of linear systems we shall see that the same form of CF is always 
appropriate. To adapt this general form of CF to a particular linear system it is 
only necessary to know such quantities as impedance and temperature which 
determine its classical behavior. In still other situations, very weak coupling 
between systems is involved. The approximate 5 which can be used in this case to 
represent the effect of the interaction systems has a form which is independent 
of the nature of the interaction system. This form is the same as for linear 
systems. These cases will be considered in more detail in later sections. 

C. GEKERAL PROPERTIES OF INFLUENCE ~NCTIONALS 

There are several general properties of influence functionals which are of 
interest and which will be useful in subsequent arguments. The first three of 
these (1, 2,3) follow directly from the definition of S( Q, Q’). The last two (4, 5) 
will require more discussion. 
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1. If the physical situation is unsure (as for instance if the type of interaction 
system X, or the initial or final states are not known precisely) but if Gee prob- 
abilit,y of the pth situation is wP and the corresponding influence functional is 
:Fp , then the effective 5 is given by 

5eff = x* wpcfp SE (3) f ?.!I 1 

Thus, in Eq. c 2.6) if the initial state of X were not certain but the probability 
of each init,ial state xvere wi , then Pm,& for system Q would be given by 
~~J’m./,nt . -” bmce t h e summation involves on1.y the part of Eq. (2.(j) involving 
the X variables, it is a sum over the influence functions for each possible initial 
stat,e and results in an average influence functional of the type given above. 

2. If a number of statistically and dynamically independent partial systems 
act on Q at, t’he same time and if CF”’ is the influence of the Ath system alone, 
the total i~~fluence of all is given by the product of the individual 5”’ : 

Again referring to Eq. (2.6), if there were N subsystems interacting with Q, 
then the probability that Q makes a transition from state /l. to wl while each of 
the subsys+ms makes a transition from its initial to its final state is give]) by 
an exprwsion of the same form as Eq. (2.6). The difference in this case being 
that the term involving the X variables would be replaced by a product of hr 
similar t,erm--one for each subsystem. Thus, when the term involving all the 
P \xrial+~ is separated out the complete influence funct,ional is recognized 
as a product of t,he functionals @(Q, Q”) for each subsystem. 

I~XFI~ITI~~~X: In many cases it will be convenient to writ,e 5 in the 
form exp [z’%( Q, Q’)]. @ is then called the influence phase. ITor independent dis- 
ttwbances as considered in 2, the influence phases add. In the event that &( Q, Q’ ) 
is a real nnniber we will continue to use the notat’ion a; the phase simply bwomes 
imaginary. It will frequently be more conwnien~ to work with @ rather that) 3. 

3. The influence functional has the property that 

3*(Q, Q’j = TcQ’, QI (2.11 1 

Referritq t’o Eq. ( 2.i), the definition of the influence functional, this fact follow 
immediately upon int,erchanging Q and Q’. 

4. In the class of problems in which the final state of the interaction system 
is arbitrary, which means the final states are to be summed over, then S( 0, 0’ 1 
is independent of Q(t) if Q(t 1 = Q’(t) for all t. zUl of the problems NY will 1~ 
concerned wit,11 here are of this type. 
The validity of this statement can be ascertained by observing Eq. ( 2.7 1~ the 
general definition of the influence functional. In particular, for the case It-here the 
initial a1~1 final states of the interaction s.vstem X are i and ,/” respec~,ivel~v, as iu 
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Eq. (2.7), we denote the influence functional by f~i(Q, Q’). Let us assume we 
have no interest in the final state of X which means that !T~(Q, Q’) must be 
summed over all such states. The initial state i can be quite general. Thus, the 
influence functional for the case of an arbitrary final state is 

For clarity in finding the result of letting Q(t) = Q’(t) for all t in 3, (Q, Q’) , we 
will write out the expression explicitly from Eq. (2.7). It is 

FiCQ, Ql = J Ej xr*GWx./~~‘~~ 

Since Q appears in the interaction potentials acting on the X and X’ variables 
respectively, it loses its identity as the coordinate of a quantum system and 
becomes just a number (which may be, of course, a function of time). Thus 
sl( Q, X) may be interpreted as the action of an external potential which drives 
the X system. The above expression then represents the probability that X, 
which is in state i initially, is finally in any one of its possible states after being 
acted on by an external potential (as, for instance, in Eq. (2.3) summed over the 
final states, VZ). This result is unity. We have then that 3(Q, Q) = 1 and is 
independent of Q(t) . 

.!I. A more restrictive statement of the property in the above paragraph (4) 
can be made. In this same class of problems in which the final states are summed 
over, if Q(t) = Q’(t) for all t > r then 5(Q, Q’) is independent of Q(t) for t > r. 
To see this we write down the influence functional from Eq. (2.8) breaking up 
the time interval into two parts, before and after r. Setting Q = Q’ for l > Y and 
utilizing the closure relation for the sum over final states we have, 

‘ih(Q, Q‘) = J 6(XT - &K&G, Xh&*&, X’T) 

x KQ(Xv, XT)K:,(X’r , X’T)x:(X’Axi(XT) dX, +. . dX’T 

Examining the parts of the above integral which contain the effects of t > r: 

J a(Xr - X’~)IL+,(X~ , Xr)IL*(X’T , X’A d-XT dX’T 

= J &(X’r , XT)KQ(XT , Xr) dXT 

= &(XC, Xv) = 6(X? - Xi) 

The expression for %,.( Q, Q’) becomes then 

3r(Q, Q’) = J 6(X,. - X’MdXr , XJ~~$W’~, X’T) 

x x,*Lf4x&Y4 d-XT =‘v , 
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which is independent of Q(t) for L > r. A4s will be seen later in the specific case 
of linear systems, this leads to a statement of causality. 

l~inally it is appropriate to point out explicitly the significance of the influence 
functional in a study of quantum statistical mechanics. In the class of problems 
considered here we are only interested in making measurements on thp test 
system and not on the interacting system. Thus, when the expectation value of an 
operator which acts only on the test system variables is taken, the final states of 
the interacGon system must be summed over. It is equivalent to taking t’he ex- 
p&ation value of the desired operator in the test system and simultaneously 
the unit, operator in the interaction system. Therefore, only the influence func- 
tional where the final states of the interaction system are snmmed over will 1~ 
of iiit,erest to us. 

Starting with the coordinate representation of the density matrix (6’) for the 
test and interaction systems, P( Q, X; Q’, X’) , we will show the part played by 
the influence functional in obtaining an expression for P(Q~ , Q’T), that is, wit,h 
the X coordinates eliminated, in terms of its value at an earlier time 7, p( Q7 , Q’7 I. 
l>irst, wfb r(>call t,hat the definition of p is as follows: 

dQ, X; Q’, X’j = (tic Q, -x7+*( Q’, x’j)ttt. (2.12’) 

where $C Q, AY) represents the wave function for one of the systems in an ensemble 
of systems each representing one of the possible states of the Q, X system (7 1. 
The average, represented by ( )aV , is taken over the ensemble. The trace of the 
density matrix is 

Tr p(Q, X; Q’, X’) = JJ p( Q, X; Q, XJ c!Q c?X f 2.13 1 

and the espectation value of an operator A which operates on the Q varia,hles 
0111~ is 
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in terms of p( Qr , Q’r). From the rules given in Section KA for propagation cd 
a wave function with time we can easily find pF in terms of pT . Thus 

PCQT , XT ; Q’T, X’T) = J exp { ~i/fi~~~~~Q~ - 80CQ’l 

+ A(X) - S@‘l + MQ, X) - WQ', X’)]] (2.17) 

X p(Q, , Xr ; Q’, , X’&DQ(t) . . . dX’r 

Now, for simplicity let us assume that initially the two systems are independent 
so that 

/dQ, , X ; Q’r , X’4 = AQr, Q’MX , X’d 

Then eliminating the XT coordinate as indicated in Eq. (2.16) we have 

PCQT , Q’T) = J 1.f @XT - X’Tl exp LCi/6)[8(X) - 8(X’) 
+ SdQ, JO - WQ', X'MX , X'd 

x SIX(t) *-* dX'J ew ~~~/fi~~~~~Q~ - ~o~Q'~lldQ~ , Q'rI~QCtI . . . dQ'7 
The expression inside the braces is identified as 3 (Q, Q’) for the case in which 

the final state of X is summed over. Therefore, the following result is obtained: 

PCQT , Q’T) 
= .f FCQ, Q'l ev ~~~/fi~~~~~Q~ - ~o~Q'~lldQ~ , Q'TI~QCtI . . . dQ'r 

(2.18) 

Thus, if the density matrix of the test system Q is represented by P(Q~, Q’T) 
at some initial instant T, the density matrix P(Q~ , Q’T) at some later time T 
is given by Eq. (2.18). The entire influence of the interaction system is contained 
in %CQ, Q’l. 
E. USE OF INFLUENCE FUNCTIONALS 

At this point we need to consider how influence functionals can be used in 
the analysis of a problem. For clarity the discussion will be specialized to a 
particular problem but the principle is valid more generally. Suppose we wish to 
know the probability that a test system Q makes a transition from an initial 
state r&(Qr) exp [( - i/fi)IL~] to a final state 4m(QT) exp [( - i/fi)EmT] when 
coupled to an interaction system. The formal expression for this probability is, 
from Eq. (2.5), 

Prim = J&*~QT~AQ'T~ =p ~~dfi~~~~~Q~ - ~o~Q'~II~~Q,Q'~ 
x ~n*~Q’&dQ4 dQ7 . . . dQ’O1 

(2.19) 

This is formally exact but except in special cases it cannot be evaluated exactly. 
Furthermore, to obtain any specific answers to the problem the characteristics 
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of Q must be known as well as knowing the influence functional. However, b) 
using perturbation theory we may find general expressions for transition prob- 
abilities to as many orders as desired. k’or example, if the interaction syskm is a 
linear system at zero temperature, we will find that &(Q, Q’) is of t’he 
form exp[z&( Q, Q’)]. The perturbation expansion is obtained by writing 
exp[z&,( Q, Q’)] in terms of a power series and evaluating t)he path integral 
corresponding to each term in the expansion. In man.y cases the coupling betlveen 
Q and the interaction system is small enough that only a few terms in the espatj- 
sion are necessary. In Appendix I the basic procedure for finding the perturbation 
expansion is demonstrated by finding the specific expression up to secotld o&t 
in the potentials involved for transition probability of a test system whet1 acat& 
on by a linear interaction system at zero temperature. Calculation of tratGtioi1 
probabilities represent only one piece of information that one might desire> to 
know about a test system. For instance, it is more usually desired to fitId thcx 
expectation value of an operator in the test syst#em. To calculate this otl(l IIP& 
to know the density matrix describing the test system when it is coupled to an 
interaction system. The exact expression for the required density matrix ih 
gilFen in Section 11,D. .4gain in the general case, one runs into the diffic~J~y of 
making an exact calculation and is forced to make calculations using perturba- 
tion theory. The same procedure of expanding the influence functional illto a 
power series and performing the required path integrations yields usef1~1 ~PI’- 
t,urbation expressions. 

In this section we will derive specific forms and properties of influence ~IIW- 
tionals for the effects of classical potentials 011 the test system. These represent 
the simplest form of influence functionals and their properties follow dirc>cUy 
from the general properties obtained in the previous section. These forms will 
then bc extended to the case where the classical potential represent,s BrotvtGlk 
noise. 

The first step is to find the influence functional for a definite classical potential 
acting on the test system, Q. If the potential energy term in the Lagrangian is 
of the form 17( Q, t), then it can be ascertained readily by referring to the funda- 
mental definition of F(Q, Q’J that 
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The next degree of complication is to have several potentials, xkvk(Q, t) 
acting on Q simultaneously. However, since the sum of all these potentials repre- 
sents an equivalent potential, say V( Q, t) = xhVh( Q, t), then it is obvious that 
the total influence functional s( Q, Q’) is the product of the individual %k( Q, Q’) . 
1More specifically, 

(3.3) 

or 

The same result follows directly from Section II.C.3 which gives the total 
influence functional for several statistically and dynamically independent systems 
acting on Q. The total influence functional for all the systems (in this case po- 
tentials) is the product of the functionals for the individual systems. 

Another property of the classical influence functionals is obtained by inspec- 
tion of Eq. (3.1). We notice that for any classical 5( Q, Q’) if conditions are such 
that Q(t) = Q’(t), thenT(Q, Q’) = 1 an d is independent of t for all times that 
the two variables are equal. It follows that the influence phase is zero for this 
condition. 

Finally, from Section KC.1 we find that if the potential is uncertain but the 
probability of each V?(Q, t) is We then the average functional is given by 

In the following Sections we will assume a probability distribution We appropriate 
to Brownian noise and will be able to derive a specific form for the average 
influence functional. 

B. SPECIFIC FUNCTIONALS FOR RANDOM POTENTIALS 

Let us now suppose that the potential has known form, V(Q), but unknown 
strength C(t) as a function of time so that the total potential is V(Q, t) = 
C(t) V (Q) . The average influence functional for two cases involving this type of 
potential will be particularly useful in the discussion contained in Sections IV 
and V. These cases are: (1) when C(t) is characterized by any coupling strength 
(average magnitude of C) with a purely Gaussian distribution, and (2) when 
C(t) is composed of large number of very weak potentials (acting on the test 
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system simultaneously) whose distributions are stationary but not necessaril) 
Gaussiau. 

lcirst, we cousider the situation when C”(t) is Gaussian noise with a power 
sp&rum %(v) aud a correlation fmlction R( T) = (2 ‘r 1 J: @( VJ cos VT C/V 
t,hen (3) is given by 

Yv(Q) - 1,~vC.Q’ 1 = J/[Vt Q) - lrc Q’)]e--%t t 3.8 1 

ICxpressions of the type given in Eq. ( 3.6) are common for operations iti which 
it is required to find the characteristic function, F( i{ 1 = (P”““) for J, T I repw 
sented by integrals of the form JC7’) = JiiFi :i(T, f).rt,t) dt where .r~tj is a 
C+aussian process. The result will not be worked out here as it may be fouud iu 
standard references (8).7 The equivalent expression for :5 iu terms of frequeucy 
components, Eq. (3.7’), is obtained from Eq. (3.6 1 in a direct manner usiug the 
definitions for R(t) and Eq. (3.8). 

The Gaussian behavior of Brownian noise, characterized by the typical 
(Gaussian probability distribution, may be the result of the cumulative effect,s 
(Jf many small statistically independent sources, none of which is truly Gaussian. 
How that comes about can be seen as follows. The effect of these small sources 
on a test system may be represented by an influence functional of the same form 
as that of Eq. (3.6) where now C(L) = x:=1 C’i( t ), N is a very large number, 
and the C’;( L ) are independent random variables. Application of the central-limit 
theorem to t,his situation shows that the probability distribution appropriate 
tlo C’C LJ is asymptotically normal subject to the following conditions c 9 1: 

(a) The average values, 

and 

i See, for example, pp. 372-373 where it is shown that the characteristic function Fc& 
tippr0priate to tlie integral given above for a Gaussian process .r(t) is exp[-L~~zJJ~~~I~. 
.A (7’, t):I(7’, sjfL(t, .s) cls &] where thecovzrknce Kz(t, s) = (x,.ra) is 
corresponding to R(t - s) in I+. (3.(j). 



132 FEYNMAN AND VERNON 

(b) The absolute moments 

exist for some 6 > 0, and 
(c) Making use of the definition 

PZ = XL Pi,2 , 

then 

The condition of independence on the large number of variables and the finite 
average values required by (a) and (b) above assures that no one component 
dominates the total distribution. Condition (c) is sufficient to ensure that all 
higher order correction terms tending to deviate from a normal distribution 
vanish in the limit of large N. It should be recognized that if the Ci possesses 
finite third moments pi,3 the correction terms arising from these moments de- 
crease as N-l”. However, for the cases in which we are interested, the number of 
the component forces Ci is essentially infinite and higher order terms are negligi- 
ble. 

IV. INFLUENCE FUNCTIONALS FOR LINEAR SYSTEMS 

Linear systems are of considerable interest both because of the large number 
of situations in which they are involved and because they are amenable to exact 
calculation. In this section the influence functional for arbitrary combinations 
.)f oscillators will be found by direct extension of the analysis of a single oscillator. 
411 linear systems which are lossless and those which contain certain kinds of loss 
can be represented by distributions of oscillators. Situations in which dissipa- 
tion arises from sources other than distributions of perfect oscillators will be 
covered in Section V. The same conclusions apply for all linear systems, however, 
as will be discussed subsequently. For clarity, we will restrict our attention 
initially to linear interaction systems at zero temperature and not acted on by 
classical forces. The effects of finite temperature and forces can then be included 
so that their significance is more apparent. 

A. ZERO TEMPERATURE LINEAR SYSTEM 

The result to be proven involves the assumption that the interaction system 
(X) is linearly coupled to the test system (Q). The total Lagrangian for the system 
is 
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where I,, = Y QA’, and L(k, X, t) is the part of the Lagrangian involving the 
A’ system above. The situation is the same as that shown in Fig. 1 except the 
interaction potential is given by k7(Q, A’, f) = --yQ&Y and the X qwkw is 
linear. C )ur fundamental theorem for linear systems is as follows: 

and t#lw inverse relations 
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AO(t) and B(t) are related as follows: 

- sB(s) 
gq? CL9 (4.k) 

These relationships may be written in many forms. Two additional forms are 

and 

J:m $‘( / t /)e-+‘dt = 2i(ivZJ1 

= 2i( -i&J1 

for v > 0 

for v < 0 
(4.5d) 

All the poles of l/ivZ” have positive imaginary parts and this impedance func- 
tion has the additional property that 

( l/ivZv) = (l/-&z-“)* 

In the case of finite temperatures, the influence phase can be written in the same 
form as Eq. (4.4) except that ReF( t) = A(i), that is, without the subscript 
0, and a more general relation exists connecting A(t) and Im (l/ivZ”) (see 
Section IV,C). 

CF( Q, Q’) Jar Single Lossless Harmonic Oscillator 

To prove the above theorem, we consider first a test system, Q, which is 
coupled to a simple harmonic oscillator whose mass is m, characteristic frequency 
U, and displacement coordinate X. The complete Lagrangian for X and Q can 
be written 

L totaI = LO(o, Q, t) + $$$rn-%’ - ~mu2X2 + QX 

and the total action is written similarly.’ 

(4.6) 

S t,,ta~ = SO(Q) + J~(%m~2 - %imu2Xz + QW dt 

If X is assumed to be initially in the ground state (corresponding to zero tem- 
perature) then to within a normalizing constant xi(X) = eFUxz”‘. The final 
state of X is assumed to be arbitrary which means the final states are to be 
summed over. Therefore, in Eq. (2.7), the definite state m*(XT)w(X’T) 
will be replaced by the sum &Bn*(XT)+n(X’T) = 6(XT - X’F). The %(X) 
represent the energy eigenfunctions of the harmonic oscillator. With this in- 

9 The interaction Lagrangian QX could be written more transparently as ?QX where Q 
and X are the coordinates of the system involved and 7 is a coupling factor which may or 
may not be a function of time. For simplicity in writing the lengthy expressions to follow, 
7 has been incorporated into an effective coordinate Q since no loss in generality results. 



I” See ref. 2, Section 3. 
l1 The finite time interval indicated by the limits 7’ znd T czn 1~ interpret,ed LLS turning 

the coupling (between Q and LY) on at t = 7 :tnd OK at t = 7’. However, since the in~erac~i~~n 
sy&nl is IO he considered in most cases as part of the st.eady-stat,e environment of Q, ii is 
re:dly nt~rre meaningful to extend these limits uvw an infinite range of time (T - - a, 
7’ + + z J. The possibility of allowing AY to interact with Q over a finite rznge of tinIt> c:+n 
be t::ken WIT of by giving the coupling factor (alrezdy included in the variable 0) IIW 
proper Cme dependence. 

lz c which occurs in &.ZV is a convergence factor which was inserted in t,:iking the Fo\u-i(~r 

transform i l (t)/mm) sin COG where 1 (t) is the unit step function and is kept, to show t,hc loca 
tion of t,he poles wit’h respect to the v axis when doing intcgmtions of the type j’r II(V) 
[ivz”J--’ /lv. 
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Having obtained the expression for the influence phase we now turn to the 
classical problem of finding the response of X(t) to a driving force, j(t) , applied 
at t = 0 with the initial conditions X(0) = X(0) = 0. Starting with the La- 
grangian of the unperturbed oscillator from Eq. (4.6), we add to it a potential 
term -j(t)X(i). This potential has the same form as the coupling potential 
-QX used in the quantum calculation. However, it is to be emphasized that 
the response of X to a force has nothing to do with the system Q outside of the 
type of coupling involved; therefore, J(t) will symbolize the force in the classical 
problem. The complete Lagrangian is 

Jm, x, tl = ?f$rnATz - $$rnuzXz + j’X 

and the equation of motion derived from it is, 

(4.10) 

ml2 + muzX = J* 

Its solution under the initial conditions stated above is 

(4.11) 

X(t) = (mu)-‘Jo’j(s) sinm(t - .s) ds 

or alternatively, in terms of Fourier transforms, is 

(4.12) 

Xv = fv{ -m[(v - i~)~ - w~]}-~ (4.13) 

Therefore, B(t - s) in this case is a Green’s function which yields the response 
of X(i) to an impulse force J’(s) = 8(s) and its transform yields l/‘ivZV . Thus a 
classical calculation of the ratio XV/f” under quiescent initial conditions yields 
the proper function for 1,‘iv.Z” . 

Distribution of Oscillators-Representation of Loss 

The results of the preceding section are easily extended to the situation where 
the interaction system is a distribution of oscillators. First, we consider the case 
of independent oscillators coupled to the test system. It is assumed that there is a 
distribution of oscillators such that G(Q) dfl is the weight of oscillators whose 
natural frequency is in the range between fi and fi + dfi. More specifically, 
G’(a) dfi is the product of the number of oscillators and the square of their coupling 
constants divided by the mass in dfl. Thus, we have a situation represented by 
the diagram of Fig. 3. Each oscillator is assumed to be initially in the ground 
state and finally in an arbitrary state; the coupling is again assumed to be linear. 
The total action is then given by 

S[Q, X(Q)] = t&(Q) + J/ Jo- G(Q)[>6~2 - %X%t + QXJ da dt (4.14) 

For the general properties of influence functionals already described we know 
that when independent disturbances act on Q the influence functional is a product 
of the ones for each individual disturbance. Since %(Q, Q’) = exp [i%(Q, Q’)] 
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l:or this case t’heu, the form of Eq. (4.2) is obtaiued if we put 

(z”)p = (?r/2)G( v) - iuJ.,,- C(Q) c u - ii2 1 1 dl (4.lSl 

TIus the cffwts of all the oscillators are included ill the influence phase through 
the Pxpression for ZP , Eq. (4.17). Sow, however, because of the continuot~s 
distrit)ution of oscillators, 2” has a finite real part. \+‘e will tlo~v show that, this 
real part, represents dissipation by arriving at, tlw same impedanw funct~iol~ 
classically. 

:Is hefore>, we take the part of the Lagrangiau from likl. (4.14) having to do 
with the oscillators, except that the coupling potential -0~ t)i,IE tj(f2)X(i& /I C/I! 
is replaced by -j’(t) JUm G( Q )X( Q, t) Al, a classical potential. .Y( $2, l) is the ~0. 
ordijiatc of the oscillator in the distribution whose fre(~uency is (1 while t,hc total 
coordinate of the complete liiiear s.ystem with which ,I’( /) is iiitcracti~~g is 
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Jo-‘G(Q)X(Q, t) da = X(t). It is the relationship between l(t) and X(t) in 
which we are interested in this classical case: 

me49 X(Q), 4 = Jo- G(ci) dfi[?&(ti)2 - ~~?~X(fi?)~] 

+ ./-(tlJom G(Q)X(L?) dQ 
(4.19) 

The equations of motion are the infinite set represented by 

T?(Q) + Q2X(o.) = J(t) (4.20) 

They result from varying L with respect to the independent variables X(Q). 
For quiescent initial conditions and for j’(L) applied at t = 0, this solution is 
expressed 

X”(Q)/j”” = -[(v - g2 - ci2]-l = [id@)]-’ 

The relation of the total coordinate XV to jP is obtained simply, 

Xv/./-v = [Jo’= XdQlGCQl dW.W1 
= -J”mG(Q)[(v - i~)~ - if-‘dQ = (iv&)-’ 

(4.21) 

Referring to Eq. (4.17) it is seen that the same expression for .ZV is obtained in 
the quantum and classical cases. In addition, since .Z” is now identified with a 
classical impedance, the real part represents resistance while the imaginary part 
corresponds to reactance. Therefore, at least for the case that loss is represented 
by distributions of oscillators, its effect can be included in the influence func- 
tional by using the appropriate impedance expression. The spontaneous emission 
of a particle in free space represents a good example of such a loss mechanism. 
A demonstration of this point is included in Appendix II where the oscillator 
distribution is related to the probability of spontaneous emission starting from 
the influence functional representing the effect of free space. 

The relationship 

( ivz”)-l = J,,- B(t)6’“‘dt 

has already been established during the course of the derivation of the influence 
phase for the single oscillator. xow the inverse relation between J’(t) and l/ivZV 
can be written for the zero temperature case. In the time domain the influence 
phase for the distribution of oscillators is 

WQ, Q’l = - (2fi)-‘Jo- G(Q)Q-’ daJ:w Jim (QcQ’t) 
. (Qse-iQ(t-& BQ’8etn(t-a)) & & 

Comparing this with Eq. (4.4) it is evident that 

F(t) = Jc,-G(iI)C1eiQf dfi 
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mmediately written that 

The results above can now be extended by a simple argument to include all 
linear systems composed entirely of distributions of oscillators. To do this it 
need only be shown that the general system can be reduced to a distributiou of 
oscillators independently coupled to the test syst.em, which was the situation 
just considered. Explicitly, suppose there exists a test system Q, coupled to an 
assemblage of oscillators which are also intercomlected with each ot,her. l:or 
iust,ance, the situation might be as in Fig. 4, where each of the Xx components 
of t,hc total interaction system could also represent a system of oscillat,ors. 
However, it is well known14 that such a linear system may be represented by al) 
equivaleilt set of oscillators (the normal modes of the total system) independent13 
coupled to Q.” Or, stated another way, the classical representation of thaw La. 
grangian in normal modes finds new linear combinations of the Xa which make 
the t,ot’al Lagrangian, except for the coupling, a sum of individual quadratic 
forms with no cross terms. But, this same t,ransformation of variables can be 
made on t,he expression for F(Q, Q’j (see Eq. (2.7) .j. The effect of this trans. 
format,ion is to change the 53X(t) volume by a numerical factor, since the traus- 
formation is linear.16 Thus, in effect, we get tJhe sum of independent systems in 
the quantum mechanical case also. From this argument it is concluded that, t,heb 
results above regarding a distribution of independent oscillators coupled to a 
t,est system, apply t’o any linear interaction system. Therefore, it> has bwu fo~~nd 
that the influence functional for all linear systems has exactly t,he same form 
exp[&,,( Q7 CJ”)] where aO(Q, Q’) is a quadratic functional of the Q al~i 
Q’. @+t( Q, Q’J is adapted to a particular linear system only through t,he classical 
response of that linear system to a force. Thus, the proredure for finding t,h~ 
iuflueilce fu~lctional for a linear system has beeu reduced t,o a classical problem. 
The fact that eliminating the coordinate of aI1 oscillat,or alwa.ys yields ~II iI]- 
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FIG. 4. Test system coupled to an arbitrary assemblage of oscillators 

fluence functional which is quadratic in the potential applied to that oscillator, 
is a basic property of linear systems. For example, where the coupling Lagrangian 
is linear between an oscillator of coordinate X and another system of coordinate 
Q, the elimination of the X coordinate yields an influence phase which is quad- 
ratic in Q as has already been shown. If Q were the coordinate of another oscillator 
coupled to P, then elimination of the Q coordinates would yield an influence 
phase quadratic in P, etc. This can be understood mathematically by observing 
that the Lagrangian for all the oscillators with linear coupling is always quadratic. 
Doing the path integral to eliminate a coordinate is basically a process of com- 
pleting the square and performing Gaussian integrals. This process of completing 
the square also yields quadratic terms. It is therefore not surprising that the 
influence phase for any linear system should be always of the same quadratic 
form. 

It is to be emphasized that the analysis so far presented has been concerned 
entirely with systems whose complete behavior can be described by combinations 
of lossless oscillators at zero temperature. The only example of such a system is 
the electromagnetic field in free space. In all other physical situations linear 
behavior is an approximation to the actual behavior. However, this approxima- 
tion may be very good over a wide range of operating conditions. In Section V 
the problem of approximately linear systems will be considered in detail. The 
results will be found to be the same as for perfect oscillators to the extent that 
linear behavior is realized. 

Form OJ Influence Functionals Jar Linear Systems and Classical Forces as De- 
duced j”rom Properties oj” Influence Functionals 

So far, we have found the influence phase for classical potentials, uncertain 
classical potentials, and linear systems at zero temperature. By studying Eqs. 
(3.1), (3.6), and (4.4), we see that the general form for the influence functional 
in which all three of these were acting on Q is 

SCQ, Q’l = exp lJTTiC~CtlCQt - Q’tl dt - JTz’ JTt AlCt - sl(Qt - Q’t) 
. lQv - Q’8l ds dt - lTT J,t i&Ct - s)(Qt - Q’t)CQs + Q’s) ds dt] 

(4.23) 
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The exponent is written solely in terms of Q for simplicity although when the 
potentials are not linear in Q (as XV(Q) ), the same general form exists, es- 
cept that it is written in terms of V(Q). We now observe that there are other 
possible combinations of the Q, Q’ variables not represented here such as terms 
in (Qt + Q’t), (Qt + Q’t)(Q8 + Q’s). ‘I o see if such terms are possible, let US form 
a hypothetical functional containing all possible forms up to second order iI1 0. 

s(Q, Q”) = =IJ XT liP~(t)[Qi - Q’A + D~Cflt.Qt + Q’dJ dt 

That the coefficients of the Q’s inside the double integrals should be functions of 
(t - s) is evident since the functional should not depend ou the absolute time. 
We now will try to eliminate terms in the exponent by using the general properties 

of 3( Q, Q’ ) given in Section II. First, we know 5~ Q, Q’ ) = CJ*( Q’, Q 1. This 
implies that all the functions /II , & , C’L , Dl , Dz , and Dx are real. xext, we klw~ 
that %(Q, Q’) = 1 if Q’(L) = Q(L). Hence, Dl, D:l are zero. This leaves ouly ow 
term which we did not have before, that of IM L - ,Y 1. Kow w apply the propert! 
of these functionals requiring that if Qt = Q’t fc~r t > tu then %( Q, Q’ 1 is itl&- 
pendent of Q for t > to . This statement is obviously true for tht> (‘I ( / I 
andadl( L - .sJ terms. Considernowthe&( t - s) krm. l:or f > t,) , Q[ - Q’, = o 
a,ud therefore this term is also legitimate. As for the &( t - s J term, let 11~ loll- 
sider t > &, , but s < to . Then QS - Q’s + 0. l:urthermow, Qt + Q’, = ~0, # 0. 
Therefore~ D2( L - .s) must also be zero. The fact that Dz( L - .Y 1 = o is apttla11) 
a, statement, of causality, i.e., that the effect dw to an applied force ralll~~t 
precede the time the force was applied. To see t’his, M us rhange the limits of 
iiitcgratioii 011 this term 

xow the integrand is of the same form as that of the B( t - .s’) term. Ho~~e\~~r, 
for a fixed L the integration over s is over the range of s > f. This amount!s to a 
sum over the future rather than a sum over past histories of the variable 0. 

The conclusion to be drawn is that there are three possible types of terms up 
to second order in Q and Q’ when definite classical forces, indefinit,e classical 
forces, and linear systems act on Q. Terms of this type have already beei1 derived 
during the course of our analysis. Therefore, there are no major types of phe~lonl. 
ena which have lkot been noticed. In the light of t,he above discussion 11-e \~o111d 
expect the effects of additional phenomena! if thq are described by therms of 
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second order or less in Q and Q’, to be contained in one or more of the three 
forms of exponents shown in Eq. (4.23). For instance, in the case of a linear 
system at finite temperature, it will be found that the effect of temperature is to 
change the effective value of Ar(i - 8) in the exponent of Eq. (4.23) from its 
minimum value which occurs at zero temperature. It should be pointed out that 
although &(i - 8) (see Eq. (4.5b)) occurs in a term which has the form of an 
uncertain classical potential acting on the test system, at zero temperature one 
must be careful about this interpretation, for the existence of a random classical 
potential implies a random fluctuation of the variables of the interaction system 
which could induce transitions in the test system either upwards or downwards 
in energy. However, if the interaction system is already in its lowest state it 
can only induce downward transitions in the test system so that the term in 
&(t - a) by itself is not sufficient. Thus, as has already been found, the ex- 
ponent of the zero temperature influence functional contains two terms, one in 
&(t - a) and the other in B(t - s), which are related through Eq. (4.5~). 
Together they give the whole picture, i.e., that there is a zero point, random 
fluctuation of the variables of the interaction system but that this fluctua- 
tion can induce only those transitions in the test system which, through spon- 
taneous emission, give up energy to the interaction system. 

B. INFLUENCEFUNCTIONALS FOR DRIVEN LINEARSYSTEMS 

It is to be expected that if a classical force is applied to a linear interaction 
system which in turn is coupled to a test system, the effect of the interaction 
system is to modify the character of the force applied to the test system. In this 
section we will find the exact form for the influence functional of this effective 
force. If a linear system is coupled to Q(t) through one of its coordinates X(t) and 
if a classical J’orce C(t) is coupled to another coordinate Y(t), then a( Q, Q’) repre- 
senting the efect of both the linear system and the force is 

@(Q, Q’) = %,(Q, Q’) + (27&-l l- [ cu’Q-;v; “‘I 
” 

+ UQv - Q'J dv 
- iv.z+ 1 

(4.25) 

where % is the injluence phase of the linear system is the absence of a classical force 
C(t), and zv is a transjer impedance j’unction which mod$es the effect oj CV on Q. 
The impedance .zV is found by computing the classical response of the coordinate X 
to the force C with all other potentials acting on the linear system (including those due 
to coordinates of external systems such as Q) set equal to zero. The result of the 
calculation yields ivzV = CV/XV . Alternatively, in the time domain, 

%(Q, Q’) = @o(Q, Q’) + 5-l -I”:- .I% (Qt - Q’t)b(t - s)Cs ds dt (4.26) 
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(iuzv)-’ = J-o%(t)e? dt 

The theorem can be stated in the form of a diagram as show1 in Fig. 5. 111 this 
figurej? f ,I = JL F(.s)b( t - .sl ds. It will be conveuieut to work iu the ftw~ue~wy 
domain. 

First we recall the influence phase for a classical force acting directly OII t). 
Icrom this expressiou we will be able to identify the character of the force act,ing 
ou Q in more complicated expressions. If the potential is of the form - C’f f ~Qc t I. 
we have, from Section III, 

Before de\reloping the general situation we consider the simpler situation \vhere 
Q is coupled to a linear system through the potential -Q-Y, and a force Ft / 1 is 

applied to the same system through the potential -F.Y. The Lagrangia~~ for the 
complete system is 

1, (y&m) = L~(tj, Q, t) + (F + Q)-Y + LLi-, ps ... A-, IF, tl (J.23) 
\v11w? x, 17, . represellt all the coordinates of the linear system. If F = 0. 

at Q, Q’ ) = a+,( Q, Q’ 1 

If F # 0 it. is evident from Eq. (4.23) that the required influence phase ca11 be 
found by replacing Q by Q + F and Q’ by Q’ + F. Notice that F does uot carry 
the prime notation since it is not a coordinate. If this substitution is made itI 

Eq. ( 4.29) we have 

I7 The noktion zV , b(t - s) wzs chosen to xvoid confusion with Zv and B(i - S) wl~ich 
::re t.he impedance 2nd response function respectively of the linexr system ::s seen lb)- thy 
test system. 
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FIG. 5. Equivzlent influences of a linear system and a force, F’(t), zcting on a test system, 

Q. 

As might be expected the total effect of the linear system and the driving force 
consists of two separate terms, one describing the effect of the linear system 
alone, and the other describing the effect of the driving force. Comparison of 
Eqs. (4.26) and (4.30) shows that the effective force applied to Q is, in transform 
language, FJivZ,, and, further, shows that Fp is modified by l/iv.&, the classical 
impedance function of the interaction system. In this special example where F 
and Q are both coupled to the same coordinate, 2” is both the correct impedance 
to be used in %(Q, Q’), i.e., that impedance seen by the test system, and is the 
transfer impedance zV which modifies F” . This is not true generally as we shall 
see in the next section. In addition, it is interesting to observe that no unexpected 
quantum effects appear because of the addition of a force to the interaction 
system. The only effect of the interaction system is to modify the characteristics 
of F(t) in an entirely classical way. 

Classical Forces Acting Through a General Linear System 

Having obtained an idea of the type of results to expect in the above simplified 
analysis we now proceed to the more general case. Let the N coordinates of the 
interaction system be represented by Xi , i = 1 . . . N. Its coupling to the test 
system, Q(t), and to the driving force C(t) is given by the potentials -XnQ and 
-XkC, respectively. Thus we are assuming, for simplification in writing, that Q 
is coupled only to the variable Xn and the force C(t) is applied just to the variable 
Xk . Again the interaction system is assumed to be composed entirely of harmonic 
oscillators. The Lagrangian is 

L (system) = L(($, Q, t) + x;,j [%(Tijz+%j - VijXiXj)] 

+ XnQ + XX 
(4.31) 

It is well known in the theory of linear systems that new coordinates may be 
defined by means of a linear transformation of the Xi . These new coordinates 
will be chosen as the eigenvectors, Yl , of the interaction system (10). Thus, 
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Since these are now independent oscillators coupled to Q the influence phase CWI 
be writte~~ down immediately, 

where 

calculated classically. 

and 



146 FEYNMAN AhD VERNON 

Equation (4.36) is a mathematical expression of the argument used earlier to 
find the appropriate impedance function to be used in the influence functional 
for a linear system acting on Q. The additional information obtained here in this 
regard is that when other forces are present they are to be set equal to zero when 
this computation is made. Equation (4.37) states the new result that the transfer 
impedance which modifies C” in its effect on the test system is to be found by 
computing the ratio of C,, to the coordinate Xn( v) to which the test system is 
coupled. The total force acting on the test system when several forces are acting 
on the interaction system is simply the sum of these forces each modified by the 
appropriate transfer impedance determined in the above described manner. 

C. LINEAR SYSTEMS AT FINITE TEMPERATURES 

The forms of influence functionals which are possible for linear systems have 
been established by an argument which utilized the general properties discussed 
in Section II. Each of these forms has already occurred in the analyses of classi- 
cal potentials, random potentials, and zero temperature linear systems. There- 
fore, the results to be expected here are one or more of the forms already ob- 
tained . 

The discussion is begun again with a single oscillator as our linear system, foi 
simplicity. From this, the extension to distributions of oscillators is immediate, 
as it was in Section 1V.A. The complete problem is set up in the same way as for 
zero temperature except that the initial state of the oscillator is not simply the 
ground state or any definite eigenstate. The effect of temperature is to make the 
initial state uncertain and it is properly represented by a sum over all states 
weighted by the Boltzmann factor CPE” where 0 = l/kT, T being the tem- 
perature in this case. The final state is again arbitrary: therefore, a formal 
expression for the influence functional is 

where N, the normalization constant, is xn f?@n. The 4% represent the energy 
eigenfunctions of the oscillator unperturbed by external forces. The first problem 
is to find a closed form for the expression xn &(X)&(X’) CPE*. This can be 
done by noticing that its form is identical with the kernel which takes a wave 
function from one time to another if we make the correspondence that fi repre- 
sents an imaginary time interval. If the times involved are & and t1 , this kernel 
is 

(4.39) 



PJTERAC’TIOK OF SYSTEMS 14i 

for the harmonic oscillator, and where the subscript 0 indicates the absence of 
ext#ernal forces. For the harmonic oscillator the expression for S is easily obt)ained 
in terms of the initial and final positions XI and X2 (2). Thus. 

ITsing this closed expression for the average initial state of the oscillator and the 
ker11e1 for t,he driven harmonic oscillator (Eq. (4.7b ) ) t,he influence functional 
can be evaluated by evaluation of a series of Gaussian integrations just as ill thv 
zero trmperature case. The result expressed in the frequency domain is, 

i@f Q, Q’ ) = &,c Q, Q’:) 

Thus, the influence phase is made up of two terms, the first of which is the effect 
of the oscillator at zero temperature. The second is recognized as having the 
same form which was found for an mlcertain classical potential with a Guassiall 
distribution. Therefore, the effect of finite t,emperature is to introduce a noiq 
pote~~tial acting on Q at the frequency of the original oscilla.tor. The power 
spwtrum of the noise produced by the finite temperature is 

$C v) = 7&[2mv( P” - 1 )I~-‘& v - C0) ( 4.43 1 

To ilidicate more clearly the relationship of 4~ V) to the characteristics of t,h(> 
linear syst,em it is instructiJ,e to extend this expression to the case of a distri- 
butiolk of oscillat,ors C;(Q) all at the same finite temperature. The res\llt,ittg 
influence phase is 

i+( 0, Q’ 1 = ,t’ Jo= %(Q, Q%(Q) d-2 

+ (7d2)-’ Jo- T~~G(v)[~v(P~ - 1 j]-’ IQ0 - Q’J’ dla 
t 4.4-l 1 

~vher~ in t,he distribution WL has been set equal to ullity. The first term is agail 
t,he influence phase for zero temperature, while the second term again has the 
form of a noisy potential whose power spectrum 

4(v) = vkr~2)G(v&J(P” - l)]-1 

Recalling the analysis of the distribution of oscillators, it is found from l?(,, 
(418 j that 7rC( v);‘2 = Re( l/Z”). Therefore, the power spectrum call be \vrittejl 

G(v) = fi,Re (l/Zv)[v(eO’” - 1’11.~’ c 4.-L\ I 
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In the time domain the influence phase is 

i@ = ia,, - (~fi~)-~ Jo’= dvG(v)fi[v(e”” - l)] 

X J?c, J:cn (Qt - Q’t) (Q.s - Q’s) cos v(t - s) ds dt 
(4.46) 

Comparing this with Eq. (3.6) for random classical forces we see that the 
correlation function of the noise due to the finite temperature is 

zi(t - s) = J,,- fiG( v)[v(e? - 1)1-r cos v(L - 8) dv 

= -(2/r) Jam 6 Im (i~Z-‘(e’~” - 1)-r cos v(i - a) dv 
(4.47) 

Finally, if we write Eq. (4.46) in terms of F(i - a) as, for instance, in Eq. 
(4.4), we find that 

F(t) = Jo- [G( v)/v] coth (O&/2) cos vt dv + i Jo- [G( v)/v] sin vt dv 

Thus, 

A(t) = - (2/7r) Jaw Im (ivZV)-’ coth @G/2) cos vt dv 

= - (2/7r) J,,- Im (ivZV)-‘[l + 2(e@” - 1)-l] cos vt dv 
(4.48) 

B(t) = - (2/r) Jam Im (iv.ZP)-’ sin vt dv 

which are the more general counterparts of Eq. (4.5b). Notice, however, that 
only the relation for A (t) changes with temperature. 

Thus, if a linear interaction system is initially at a finite temperature, the 
resulting effect is the same, as far as the test system is concerned, as if the linear 
system were at zero temperature and, in addition, a random classical potential 
were connected independently to the test system. The power spectrum of the 
random potential is given by Eq. (4.45) and is related both to the temperature 
and to the dissipative part of the impedance of the linear system. The theorem 
is stated in terms of a diagram in Fig. 6 where the power spectrum 4(v) of the 
random force CV is defined by 

c/J(v) = 4Ti-(cVc”~)qv+ v’) (4.49) 

This fluctuation dissipation theorem has a content which is different from those 
stated by Callen and Welton (11), Kubo (lg), and others. It represents still 
another generalization of the Nyquist theorem which relates noise and resistance 
in electric circuits (I?.?). These previously stated fluctuation dissipation theorems 
related the fluctuations of some variable in an isolated system, which is initially 
at thermal equilibrium, to the dissipative part of the impedance of the isolated 
system. This would be equivalent in our case to relating (Q’) when the test system 
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~1~. 6. l<quiv:dent influences of 8 iinexr system :!t, 2 finite temperature wting on 2 iwt 
sysi err,. 

Q 
QF 

F 

is at equilibrium (F = 0) to the dissipative part of FV/QV where J’ is a classical 
force acting on Q through a linear potential as shown in Fig. 7. Howevw, w 
have shown that the effect of an external quantum system at thermal e(~uilibrim~l 
on a test system can be separated into two effects, a zero point quantum term, 
which cannot be classified as pure noise, and a random potential term. I’sing 
this influence functional approach we can find (Q’j due not) only to the internal 
fluctuations of Q but also due to the effect of X. 

The fact that all the derivations so far have beeu exact, which is a conse~~uw~~~ 
of dealing only with systems made up of distributions of oscillators, brings 11p 
two interesting aspects of the theory. The first oue is t,hat XV does not depend 011 
the temperature, only on the distribution of oscillators. J-et, in any real f-init,cs 
system, it is to be expected that the temperature of a system does affect, its 
impedance. The second aspect is that when a force j( f ), of any magnitude what,- 
ever, is applied to the linear system, its temperature does not change alt,hough 
it is obvious that if zV has a finite real part the lilw.?ar system must, absorb etiergy. 
For example, we have shown that the effect on a test) system of a linear system 
at a finite temperature acted on by a force j’(t) is the same as the effect of :I 
linear system at zero temperature, a force dependent only on the kmpera~,uw of 
the linear system, and the force j’(t) modified by t#he transfer characteristics of 
the linear system. Figure 8 shows the situation whereji = FPi ~VZ” and C’( t I is 
the random force with a poIver speckum given in I$. ( 4.4) 1. The influetlw phaw 
acting on Q is 

As can be seen, the addition of the driving force j( f’) (which is denoted in the 
above expression by its Fourier transform j’” ) does uot, change either the impe(]. 
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FIG. 8. Equivalent influences of a linear system at a finite temperature and a force act- 
ing on Q. 

ante characteristics or the temperature of the interaction system (which would 
be reflected as changes in %(Q, Q’), zV , and C#J( v)). 

The fact that the impedance characteristics of the interaction system are not 
temperature dependent is a direct result of linearity. The incremental response 
of a perfectly linear system due to a driving force is independent of its initial 
state of motion or of that induced by other linearly coupled forces. Therefore, 
the random motion of the coordinate of the interaction system implied by a 
finite temperature does not affect its response to a driving force. 

To see the reason that temperature of the linear interaction system has no 
dependence on the applied force P’(L), let us consider a linear system represented 
by a very large box whose dimensions we will allow to become infinite. In addi- 
tion, we assume that a test system is located in the box and is receiving portions 
of a classical (very large amplitude) electromagnetic wave which is being trans- 
mitted by an antemra also within the box. As long as the box is of finite size and 
has lossless walls, any signal transmitted by the antenna will find its way either 
to the test system or back to the antenna. Transmission of the signal will be 
effected through the modes of the cavity which have a discrete frequency dis- 
tribution. This system exhibits no loss since each mode represents a lossless 
harmonic oscillator. For the rest of the discussion it is convenient to separate 
the energy transmitted by the antenna into parts which reach the test system 
directly or through reflection from the walls. As the dimensions of the box are 
allowed to become infinite (i.e., the distribution of oscillators describing the 
electromagnetic behavior of the box becomes continuous), the time required for 
the energy to reach the test system by reflection from the walls also becomes 
infinite. Therefore, since part of the energy is lost from the antemia and test 
systems, the box has, in effect, dissipation. However, because of the volume of 
the box is infinite, its temperature is not changed by this lost energy. In other 
words, the box has an infinite specific heat. In addition, the energy transmitted 
by the antenna will generally have different characteristics from that of the 
Gaussian noise associated with temperature and even if the average background 
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energy content of the box were changed it could not be properly described by a 
temperature parameter. 

All the results so far suggest that any linear system can be handled by the 
same rules that have been de\:eloped for systems of oscillators. This will kw 
developed fully in the next section. However, we will assume this to be true IWW 
and conclude this section by applying the theorem just derived to obtain 
Xyquist’s result, for noise from a resistor. Take as an example all arbitrary 
circuit as the test system com~ected to a resistor A’+ V’I at a temperatlw 7’ as 
shown in Fig. 9. The resistor comprises the interaction system. The interaction 
between the test system and the resistor is characterized by a chargca QI! 1 
flowing through the test system and resistor and a voltage 1-c t I across ttw 
terminals. Let us associate Q(t) with the coordinate of the test) system a11d 1.t t 1 
with the coordinate of R( v). The interaction part of t,he Lagrangial~ is qwholi- 
tally represented by -Q(t’)l,.( L) since the current voltage relationship in fit IJ 1 
is opposite to that of a generator. The quantity ~vZ” appearing iu tlw i~~fltwtw 
functional is gilyen by 

Thus, it follows that 

Then the results of this section tell us that this situation, as shown in k’ig. !), 
may be replaced by a resistor at zero temperature (i.e., a resistor wit,11 t,hermal 
fluctuatioiis appropriate to zero temperature but with the same magnitude of 
resistance it has at temperature 2”) and a random classical \roltage whose po~vw 
spectrum is 

as shown in Fig. 10. 

- Q(t)- 

TEST SYSTEM v ct1 RTb) 

FIG. 9. Test systetn acted on by a linear system represented by 311 electrick rwistxw /< 
:*t :i finite temperature. 

TEST SYSTEM 
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The mean value of this voltage is 

(4.51) 

For high temperature ,6 << 1, and we find that over the frequency range where 
@iv << 1, 4(v) = kTRv . If Rv is constant over the frequency range of interest 
whose limits are v2 and vl , then as a result of the noise power in this range 

(t?tH = 4ki"RCfg - .fd (4.52) 

where j’ is the circular frequency. This is the famous Eyquist result for noise 
from a resistor. Notice that the noise voltage generator must be placed in series 
with the resistor as a consequence of interacting directly with the coordinate of 
the test system, which in this case is Q(t), the charge flowing in the circuit. If 
the coordinates were chosen such that Q(t) were the coordinate of the resistor 
and V(t) that of the test system, then the noise generator would become a current 
source interacting with the voltage V(t) so that the situation would be as shown 
in Fig. 11, where (i2) = (4kT/R) (J”~ - jl) in the high temperature limit. 

It is worth mentioning, but obvious from the derivation, that if there were 
many sources of dissipation coupled to the test system, each at different tem- 
peratures, then there would be a fluctuating potential associated with each 
source of dissipation with a power spectrum characteristic to the temperature 
involved. The case of different temperatures represents a nonequilibrium con- 
dition in that the hot resistors are always giving up energy to the cold ones. 
However, when the resistors are represented by continuous distributions of 
oscillators as in the case of an infinite box (free space), the temperatures do not 
change because of the infinite specific heat of the ensemble of oscillators. 

V. WEAKLY COUPLED SYSTEMS 

We are now faced with the problem of finding influence functionals whose 
behavior is in some sense linear but whose total behavior is not representable by 
systems of perfect oscillators. There are many examples of this. The concepts of 
resistance, electric and magnetic polarizations, etc. are basic quantities which 
characterize the classical electrical behavior of matter. However, for an accurate 
description of this behavior, these quantities can be constant, independent of 
the applied electromagnetic field only in the range of approximation that the 

TEST SYSTEM 

FIG. 11. Equivalent interaction system of a resistor at finite temperat,ure when the co- 
ordinate associated with the resistor is the charge flowing through it. 
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magnitude of this applied field does not become too large. We will consider hew 
the analysis of such systems and the approximations which make linear analysis 
valid. Insofar as linear behaGor is obtained, the results of this section arca hasi- 
tally the same as those obtained in previous sections with regard to finding iw 
fluence functionals. However, it is interesting to see the same principles come out 
of the analysis another way. In addition, it will be found that expressions cot.- 
responding to XV which appear in the influenw functional are actually ~~lwwd 
forms which can be used to compute such quantities as thf> conductivity from a 
Lowledge of the unperturbed quantum characteristics of a system. Thew PX- 
pressions have been derived before by several authors but it is i~lterwti~lg to 
find that they also appear in the influence functional quite naturally. The results 
will then be applied to the case of a beam of non-interacting particles passing near 
a test system such as a cavity. This analysis naturally lends itself to a dkcussion 
of noise in beam-type maser amplifiers. In Appendix III, t,he results of this a11d 
Section I\- are used to compute the spontaneous emission of a partick iI1 :L 
cavity. 

The specific result to be shown here can be stated as follows: If a general 
interaction system, P, is coupled to a test system Q so that the interaction po- 
tential is small and of the form - V(Q)ZT(P), then the effect of the test system 
is that of a sum of oscillators whose frequencies correspond to the possible t,ransi- 
tions of the interaction system. Therefore, to the extent t,hat second order per- 
turbation theory yields sufficient accuracy, the effect, of an interaction qwkm 
is that of a linear system. 

To show this, we shall first assume the interaction system to be in an eigenstat,e 
&C,P7 1 exp { - ( i/fi)Ea~] at the beginning of the interaction and in an arbitrary 
state at the end of the interaction consistent with the usual procedure we have 
followed. 211~0, for convenience in writing, the interaction potential will 1~ 
assumed - Cy(PjQ. The influence functional is then 

ZFlQ, Q’) = J 6(PT - FT) exp [(i/fi)[S(Pj - S(p”) 

+ JTT (QU - Q’ta7’) d~]]&*(P’Tj&,(P~) dP, . . . ~P’ct I 
(Yl.1) 

where in the above we have written Z’ for C7(Pj and Z7’ for ZT( P’). Since tlte 
magnitude of the interaction is assumed to be small, the perturbation approach 
can be used to good advantage. Thus, expanding the interaction part of the 
exponent and keeping terms to second order in Q only, 

cf(Q, Q’) = j’6cPr - P’T) exp {(i/fi)[S(P) - s’(P’)]} 

X 11 + (i/‘fi) Jr’ (QZT - Q’Z;‘) CA + ($fi)’ JT’ j’,’ (QtZTt - Q’tZ:‘tj (5.2’) 

x CQsZ’s - Q’,J’a) dsd&$,*W’&,q~PJ dpr . . :DP’(~,) 
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The evaluation of this is done in an entirely dm$ghtfonvmd manner and the 
following is obtained,” 

All terms which involve UOa will be disregarded. This is because iIJaa represents 
the average value of the operator U(P) in an eigenstate of the interaction system 
alone. Even if it is not zero, it will be noted from Eq. (5.2) that terms involving 
Ua,, can be written 

1 + CiUw/fil Jr* (Qt - Q'J dt + (lD!)[(iUm/fi) JrT (Qt - Q't) dt]‘+ ... 

= -p { Ci/fil .fTT UdQt - Q’d dt\ 

When %(Q, Q’) is used to make a calculation on the test system, this term has 
the effect of adding a constant potential V( Q(t)) = - UaaQ(t) to the unper- 
turbed test system. Disregarding U=,, , the influence functional then becomes 

%CQ, Q’l = 1 + aa (5.4) 
where 

aa = 
0 

; .L JLO -f,t-fa (Qt - Q’dLQS’a*(t - s) - Q’JW - s)J ds dt 

and 

Fa(t - s) = xb (jubai2/fi) exp kdbdt - .s)l 

where the limits have been extended and the factors ~~7~ inserted to allow finite 

M A typical term in Eq. (5.2) is as follows: 

J&(PF - P’T) exp( (i/h)[S(P) - S(P’)]) (i/hPJT J; QLJtQSU8 ds dt 

X &*(P’~)+aCP~) df’T ... TN’(t) 

Taking the time integrations outside the path integral and replacing the path integrations 
by propagating kernels, this becomes 

(i/f& J: QtQs d.s dtJs(PT - P’T)K*(P’T , P’T)K(PT , Pt) 

. UtK(Pt , Pa) UZ@‘s , P,).$a*(P’r)+a(E’r)d~r . . . @‘T 

Remembering that K(PT , Pt) = x+n(PT)+n*(Pi)exp{ -L&(2 - t)/h}, this expression 
becomes simply, 
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coupling time if necessary. If the strength of coupling is sufficiently weak then 
Eq. (5.4) can be rewritten 

3 aexp (a,) C 5.5 1 

In this form we recognize 3(Q, Q’) as that describing the effect of a sum of 
harmonic oscillators independently connected to the test system each ol’ whose 
“weights” is UbUt7&fiz. The complete response function for the system of 
oscillators is 

where the subscript u on & refers to the initial eigenstate. According to previous 
definition, the mass of each individual oscillator is identified by M = 6 (21 f V,,G~2~~O)~~1 
and its characteristic frequency by c.dba . Therefore, t’o the extent that second 
order perturbation theory yields satisfactory a,ccuracy, any system may lw 
considered as a sum of harmonic oscillators. This is equivalent in classical 
mechanics to the theory of the motion of a particle having small displacement,s 
arowld an equilibrium position. Its motion, to a first approximation, is also 
that of a harmonic oscillator, if t.he first effective term in a power series expaG~)l 
of the potent’ial around that equilibrium position is quadratic in the displace- 
ment . 

In this part of the discussion x+-e should again point out the mot.ivation fat 
writing the approximate influence function, Eq. (5.4), in terms of t’he approxi- 
mate exponential of Eq. (5.5), apart from the obvious advantage of making th(l 
form agree with that of exactIy linear systems. Frequently, w-e deal lvith a test 
system which is influenced by another system which is actually made up of a 
large nunlber of very small systems. Examples of such an interaction system 
would be a beam of atoms or the electrons in a metal. Although the expressiotj 
for the influence functional for any one of the subsystems is only good to wcond 
order, their individual effects are so small that this accuracy is very good and 
Eqs. (,5.4) or (5.5) is equally valid. However, when the sum of the effects of the 
subsystems is not small, then the two forms above do not describe the situation 
rqual1.y insofar as the composite effect of the interaction system is conwr~wd. 
We know that when these subsystems are dynamically and statistically ind(>- 
pendent, the total influence functional is simply a product of the individual (Jllw. 

In such a case t.he influence functional obtained by using Eq. (5.5) as t’0110w~ 

yields much greater accuracy than that obtained from P&i. (\.‘i.4) wherr LVP would 
find 

FCQ, Q'l = 1 + ixk%(Q, Q’) 
&( Q, Q’) being the influence phase for the A%11 subsyst,em ( see Appendix I\-~), 
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The espression given by Eq. (5..5) has additional implications which are not 
immediately apparent’ from the analogy with the harmonic oscillator. No 
assumption was made as to whether the initial state was necessarily the lowest 
of the system. Therefore, a&, could be either positive or negative. Suppose for a 
moment that the interaction system has only two states (&(P) and &(p)) and 
that the initial state, u, is the lower one (Uba > 0). It is obvious that the only 
effect it can have on the test system Q is to absorb energy from Q. However, if 
the initial state, u, is the upper state (corresponding to W& < 0) then the inter- 
action system can only give up energy to the test system. It can do this in two 
ways, through spontaneous emission or through coherent emission due to some 
coherent driving force exerted on it by the test system. So for the case 0&, > 0 
we expect the influence functional to show that the interaction system has the 
effect of a cold system characterized by a dissipative impedance (or positive 
resistance). Conversely, for Wba < 0 it is expected that T(Q, Q’) will be char- 
acterized by a negative resistance and a random potential due to the spontaneous 
emission transitions. This situation is made more obvious if we translate Eq. 
(.5.5) into transform notation. Thus, 

iV&,c,v = -fi(2Wba~~b&-‘[(V - iE)2 - W;‘] (5.7) 

First of all we notice that the sign of Z ba,v changes with that of Wba and therefore 
its dissipative part can be positive or negative as was argued above. Secondly, 
for wba < 0 there is a random potential acting on Q whose power spectrum is 
giVt?ll by 4(V) = ,+$,$8(v + Wba). of course when W&, > 0, the integral in- 
volving this term disappears indicating the noise potential does not exist and 
the effect is the same as that of a harmonic oscillator initially in the ground 
state with l/Zrnw identified with 1 Uhj2/L 

In a real physical situation it is not likely that the interaction system will be 
in a definite state initially. So to extend the above results to a more general case 
we assume that the initial state is described as a sum over states weighted by a 
density matrix P(T) which is diagonal in the energy eigenstates of the 
system. For example, if the system is initially in temperature equilibrium, 
p=e -~H,‘T&-@H~ h w ere H is the Hamiltonian operator such that pmn = 
L exp (-@L)/~~ exp (-/3&). Th e influence functional becomes 

%(Q, Q’) = J 8(PT - P’T) ap i ~i/fi~~~S’~~~ - b’(P’l 
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\j7ithin the limit of small coupling, then we can simply extend the influeuce 
phase of Eq. (5.5) by summing over all initial states weighted by the init’iai 
dei&y matrix pOa . If this is done, we obtain the usual form of the influenw 
phase, EC]. ( .>.A), with a response function B(t - s) given by 

B(t - s) = xa,b (2po, ~C~J;fi) sin w<,(f - s) ( .i.9 I 

.1gaiu +C 0, 0 1 is the phase for a sum of oscillators, each of whose weights is 
pa,,1 CYC.f,,‘;,fi’.‘,’ In Section IV it was shown that B(t - .s) was the classical response 
of the linear system to an impulse of force applied to the coordinate t .t f’ 1. 
Howexw, the expression above is in a form which is familiar to us only when we 
think of the interaction system, P, as consisting of a sum of oscillators. 111 
this connection B( L - s) is the total classical response of the oscillators describing 
t)he system 1’ to an impulse of force applied to the “coordinate” C’(1’).“’ To 
obt’aiil a more direct interpretation of Eq. (5.9 ) we uow calculate the lilwar 
classical rwponse B(t - 8 j of the interaction system to an applied impulw of 
force iI1 terms of its unperturbed quantum characteristics. In so doing WC \vill 

show U~at ECU. c L.9 1 is indeed this expression. Therefore, we will again ha1.e the 
result that, t,he influence functional for a geueral, linear iut,eraction s~vstem is 

t’ormed simply from a knowledge of its classical charact,eristics just as in the case 
of sy&ms of perfect oscillators. By the “classical characteristics” of the (~~~aikum 
mechanical system we mean the expected value of 1 ‘(P) as a function of tinw 
after a potwt’ial -,1(t) C7( 1”) is applied startiug at ! = 0. Thus 

(7-cPtl) = ~~*(z’~)l.(~~,j~(z~~) dP, lqi.lOI 

where 4~ 1’0 represents the state of syst’em P at t. lrsing the path integral reps 
sentatiou for the development of a wave funct,iou with time. as outli~w(l i l l 

Swtiot~ 11, this can be written 

u It is interesting to nntice that the relative pf)pulztions of anv two levels ~~i:!y be d+ . 
scribed l)y :.n etiective temperature TC = l/kflc . Fur instxnce if the probxbilit,ies of swung- 
t ion of states a xnd b uep aa sndpbb respectively, weuse t,llede~nitionp~~/p,,* = exp@, (A’,, - IL ). 
If P,,<~ = 0 tllis is described by set,ting T, = O+, meaning to ::pproach zero frgxn the pfwitive 

side. Simil:,rly, if t,he twn stz+tes were invert,ed ,a,b = 0 :md ‘/‘< = O-. This device 1w.s bwn 
used widely in the description of such sitwt,ions. 

w CTCI’) 111::y be regarded ~8 x coordinate which is x function of other coordinxiw f’ in 
terms of whicl~ we choose tco describe the interaction system. 
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The initial definite &ate &*(P’)&(P) will be replaced by an average state 
described by the following density matrix diagonal in the energy representation, 
&&*(P’o)&(PO) so that 

- xi, (i/g) 1 uab I2 .fo$ =p k’ba(t - s)] d.4 

Again assuming iYoa = 0, Eq. (.5.11) becomes 

(ut) = xc.b (2&a\ uab 12/g) j-0’ j”s &I aba(t - S) ds (5.12) 

For j(s) = 8(s), then, the classical response function is*’ 

B(t) = Eo,b (&ha\ u&b i2/6) ‘Sk wbd (5.13) 

which is identical with the response function found in the influence functional. 
Since we have found expressions identifiable as classical response functions 

and impedances, it remains to show that associated with the dissipative part of 
the impedance is a noise potential. The impedance is simply obtained fromzz 

(~v,Z~)-~ = Jo- B( t)e? dt 
= xa,b (-2h~ba 1 uba [2/@[(v -id2 - da]-’ (5.14) 

To obtain the power spectrum it is only necessary to sum the influence phase 
of Eq. (5,6) over all initial states weighted by pa . Thus we find 

4(v) = x a,b Wmj ucb I2 6(v + mba) (5.15) 

and we now wish to relate this to the real part of l/Z” . From Eq. (5.14) it is 
found that 

Re (%)-I = xa,b (TV 1 uba i*/fi)(Pbb - Pa, )6(p + wba) (5.16) 

H It should be noted that implicit in the use of first order perturbation theory to obtain 
Eq. (5.13) is the fact that for this relation for the response function to hold as a steady- 
state description of the linear system, the initial distribution must not be significantly 
disturbed by the application of the driving force. 

-z2 Expressions of this kind have been used by several authors to compute quantities such 
as the conductivity of materials. See, for instance, ref. 14. 
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Therefore, again we find that the power spectrum is related to t#he dissipative 
par& of the impedance when the initial state is one of temperature equilibrium24 
The power spectrum given in the form of Eq. (5.17) again illustrates the origin 
of thermal noise and identifies it as being just another aspect of spontaneous 
emission. Pound has also discussed this (16). The only contribution to the noise 
power spectrum is through the possible downward transitions of each possible 
state, a, weighted by the statistical factor, p,,,, . 

11~ the cases just considered the interaction system provided a steady-state 
environment for the test system. In contrast, let us now examine the situation 
where the interaction system is made up of a large number of independent 
particles coupled to the test system at different times. As an example consider a 
beam of jloninteracting, identical particles which interact weakly with a resonant 
cavit,y as might occur, for instance, in a gas maser. We assume that the beam is 
not necessarily in temperature equilibrium but that the initial state of thus 
particles ent’eriug the cavity would be properly represented by a density matris 
diagonal in the energy representation. Such a situation would occur if the beam 
were prepared by passing it through a beam separator whose function would tw 
to eliminate certain particles from the beam depending on their energy levels. 
lcor t,he purposes of simplifying the analysis we assume the molecules to be two- 
level (~ual~tum systems and that before they enter the caI:ity all of them aw ill 

xi K~~tic(~ t ll::t if P were a two-level system initially in the lower &ate, then PI,,, = 1) :tn(l 
7’* = (I+. In this case G(V) = 0 which agrees with the rquired result fur v > 0 Bki. (5.1i) 
f’nr W” > 0). If initially P were in the upper state then ptia = 0 and 7’,. = 0- yielding +(v) = 
- (/l/~)Re(l ~2~) agreeing wit,h J3q. (5.6) for w,~ < 0. ‘l%is is the power spectrum of I tit, so- 
called spont:<neous emission noise from an inverted two-level system. 

N It may 1~ disturbing that Re(l/Z,) contains singular forms such as &(v + w,,>. How 
ever% the infinite sums over the distribution of states of which it, is :: coefficient can he re- 
placed by integrals over densities of states in most, practical situ:stions ::nd ::s p::rt of :‘n 
integr:and 61 v + w=) is not lmrealistic. 
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the lower state or all in the upper state. It is easy to extend these results to the 
case where the beam is mixed with a certain fraction in the upper state and a 
certain fraction in the lower state initially. Since the beam is assumed to be 
composed of noninteracting particles, we can consider the total beam as composed 
of two independent beams appropriate to the two possible initial states of the 
constituent particles. The influence phase for the complete beam is simply the 
sum of the influence phases for the two beams. In addition, we assume that the 
beam is characterized by a spatial density such that the number of particles 
passing a given point along the beam in a time dt is Ndt and if to is the time a 
molecule passes a reference point in the cavity, ~(t - to) describes the coupling 
between the molecule and cavity. Thus, the beam is a univelocity beam. Again, 
in a real case where the beam is characterized by a distribution of velocities, the 
total beam may be split up into many univelocity beams. The total influence 
phase is simply a sum of those for each component beam. 

Let us call the coordinates of the cavity Q, representing the test system and the 
coordinates of a particle in the beam P. The interaction between beam and 
particles is given by Ll( Q, P) = -y(t - to)QP. Under these circumstances the 
influence functional for the effect of the beam on the cavity can be written down 
immediately : 

ih(Q, Q’) = -N 1 pab/fi I2 -f:c., Jk, ds dt [ J?my(t - to)y(s - tc,) dt,,] 
x (Qt -  Q’t)(Q8e-iwba(+d -  Q’seiubd-S)) 

(5.19) 

The integral involving the coupling parameters can be used to define a new 
function I?, 

J:co -dt - toh4.s - to) dto = L -dtMt - t + .sl d,$ 

= r(t - s) 
(5.20) 

Therefore, 

i+( Q, Q’) = -N 1 Pab/fi 1’ J:c, J:w F (t - 8) 

x (Qt -  Q’t) (Qse-i“‘ba+8) -  Q’8e~wba(~-d) & & 
(5.21) 

From this we can identify the response function of the beam as 

B(t - S) = (2/fi)N 1 P&j i2r(t - S) SiIl ‘O&,(t - .S) (5.22) 

In transform notation the influence functional for the effect of the beam has the 
same form as has been previously derived with 

(iv.zv)-1 = (i/e&v 1 &b p(rLba - rv+aba) (5.23) 

where 

r “+uba = JZw i(7-)r(7-)~-icv+m@ dr (5.24) 
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and with a power spectrum 

+(v) = $!iN 1 pab ~‘[~P+co~,~ + r-v-qa] C ,j.‘)j 1 d. 

Previously, we have found that for a linear system initially in the ground st!ate 
the power spectrum is zero over the range of positive v thus indicat,ing a zero 
noise potential due to the linear system. However, 4” is not necessarily zero fol 
v > 0 in Eq. (5.25) in the case that the beam is initially in its lowest state 
( Cdb,, > 0). This is because no restrictions were placed on the time variation of 
y( t - &I). However, in practical situations the coupling between a cavity a11d a 

particle in a beam passing through the cavity varies adiabatically so that for all 
practical purposes 4(v) is really zero for v > 0. To point this out more clearly, 
let us assume that y( t - &I) = 1( t - &) l(&, + 7U - t 1, that is, t’he coupling 
is turned on at t0 and off at to + ~~ , the time of transit in t,he cavity being T,, . 
We find by evaluating Eq, (5.20) that 

rtt - 8j = cs - t + 7oji(~~ - i + 7cj) 

and from t,his we can find 

$6(v) = ($$)N 1 pab /2r~(sin2t?,‘@‘) c .;.Yxj 

where 

e = ;,$ ( &’ + mba ) T,, 

TO find the effect of suddenly turning the coupling on and ofi we find the ratio 
of the total noise power to the noise power for v > 0. This is given by 

For ammonia molecules at a temperature of l’ = 290°K, the average velocity 
ti s 6 X 104 cm/set. For a microwave cavity of 10 cm length T,, = 2 X 10’ sec. 
l:or the 3-3 line of ammonia C,J~ z 1.5 X 10” rad/sec. For our case 
then (Tuba ro) E 10’. From this, we can conclude that even in this unfavorable 
case of coupling time variation, the c$(v) is negligible for v > 0. 

Examination of Re( l/Z”), derived from Eq. ( 5.23), reveals terms of thcl 
same form as those just discussed, 

Re(l/ZVI = %[(l/ZV) + (l/ZP*)] 
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By the same type of argument as above, the terms in I’V-Uba can be neglected 
when v > 0, 6&, < 0 and conversely, when v > 0, oh > 0 the terms in l?V+U6a 
can be neglected. Since this is the case, we can write 

4(v) R!J A! Re ( l/zP)[V(PW*O - 1)1-l (5.28) 

where /3e = l/l~T~ , describes the relative initial populations of the two states. 
Therefore, we conclude that in most practical cases the power spectrum can be 
written in the form of Eq. (5.28). In cases where the transients cannot be 
neglected for very low ‘L)bO and very short transit times, however, I#J( V) is not so 
simply related to Re( l/.ZV) an d must be written in the form given by Eq. (5.25). 

It is to be noted that +(v) of Eq. (5.28) is not precisely of the form for the 
Nyquist relation because of the appearance of eohUba in the denominator rather 
than eoh”. This is a consequence of the finite coupling time between each part of 
the beam and the cavity which results in a nonequilibrium condition. If the 
coupling times were infinite, the expression for Re( l/Z,) would contain forms 
such as 6( v + ‘&), a situation discussed earlier, so that the Nyquist form then 
results. However, when the coupling time is long as in masers, 

r “+t,& + r-“-CO&, = 4&(v + ‘&a) 

so that the true Nyquist relation may be used with negligible error. 

VI. SOURCES OF NOISE IN MASERS 

Having developed the theory of linear systems in detail we are now in a posi- 
tion to discuss the sources of noise in linear quantum-mechanical devices such 
as maser amplifiers. The subject of maser noise has been explored by many 
authors (161.9). The details of the treatment given the subject differ, but the 
principles are essentially the same. The amplifiers are considered as operating at 
signal levels high enough (classical) that a signal entering a maser may be con- 
sidered as a group of photons whose number is large enough that the amplifica- 
tion process increases the signal in a continuous fashion. The sources of noise 
were found to be those derived from the thermal noise arising from the sources of 
dissipation, and those derived from spontaneous emission from the “active” 
quantum material. They go further and define an effective temperature of the 
active quantum system so that the noise it produces is related to the negative 
resistance of the active materials. Our analysis of linear systems has also shown 
that these same sources of noise exist. However, if the signal level entering the 
maser is very small such that its strength can be characterized by a few quanta 
per second, a serious question arises as to the nature of the signal out of the maser 
(here assumed to be at a classical level). An additional fluctuation of the output 
signal or “quantum” noise might be expected due solely to what might be termed 



INTERACTION OF SYSTEMS I ti:j 

a “shot noise” effect created by each individual photon entering the cavity. 
It has been shown that no such signal exists by other authors (20, $1). We wish 
to show how the same result follows from the theory developed here in an ox- 
tremely transparent way. We will show that the only fluctuations in output. 
signal which are to be expected are those noise sources computed classically. 
No additional “shot noise” does, in fact, appear. 

Let us suppose that we have a beam-type maser amplifier in which all partici- 
pating systems used meet the requirement of linearity. There may be 011~ 01 
more beams interacting with various electromagnetic resonators which can be 
coupled together in any way desired. The output of the maser is connected t,o a 
detector of some sort which perhaps consists of a resistor in which the current 
is to be measured. To the input of the maser system we now apply an incoming 
classical signal of large magnitude and of frequency CA through an attenuator 
whose value of attenuation may be varied at will as shown in Fig. 12. In practice 
such a situation could arise if the classical wave originates from a distant antenna 
with a very large magnitude of output, so large that all quantum effects in t,he 
wave are effectively obscured. The long distance would then play t,he role of th(l 
attenuator. 

Kow, if the classical wave were attenuated by a large amount so that only a 
few photons/set were entering the maser, the only uncertainty in the signal in 
the output of the maser caused by the maser itself arises from those sources of 
noise which can be arrived at by a classical calculation of the characteristics of 
the maser. There is no extra quantum fluctuation introduced by the maser into 
the output signal due to the small number of quanta entering the maser. 

It is true that the amplitude of the signal output from the maser might itself 
be so small that it is still on a quantum level. In this case the detector output 
would be uncertain due to the inherently small magnitude of the signal from t,h(l 
maser. However, if this is the case, we may put as many amplifiers in series as 
necessary to bring the output signal back to a classical level. When this is done 
the signal applied to the detector consists of the original signal modified by t,hcl 
transfer characteristics of the maser system (and attenuator) and noise signals 
which arise from all the possible sources computed classically. The proof of &is 

assertion is not dificult. We divide up the total system into a test system, here 
the detector, and an interaction system which consists of the maser, attenuator, 
and classical signal, C”(t). Then, to find the ef%ct of the interaction system on thch 

CLASSKAL 
WAVE MASER DETECTOR 

FIG. 12. System in which a classiczl wzve is attenuated to z very low level (z few photons 
set), then zmplified by a mzser and det,ected. 
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detector we need only to look at the influence functional. However, we already 
know that it can be written as follows: 

where I$~( v) represents the power spectrum of the noise from the &h source, 
Z~ is the classical transfer characteristic of the complete interaction system, and 
.ZP is the impedance of the maser system as seen by the detector. All the terms 
in the influence functional are familiar in view of the derivations which have 
been presented previously. The first term in the exponent of the influence func- 
tional is recognized as describing a linear system at zero temperature (Section 
IV), the linear system in this case being the maser. This term describes the 
spontaneous emission of the detector back into the maser (see Appendix I). Fur- 
thermore, it can be deduced that this spontaneous emission can be thought of as 
resulting from a noise generator created by the detector (test system) acting on 
the interaction system in the usual classical way, i.e., whose power spectrum was 
related to the dissipative part of the detector impedance and to the temperature 
by the Nyquist relation 

4(v) = fiv%[exp (fiv/i%T) - 11-l 

where Rv is the detector resistance and T its temperature. The second term in 
the above composite influence functional is easily interpreted and is simply the 
effect of a classical voltage, related to the input voltage by the classical transfer 
characteristic of the maser, acting on the detector (see Section IV.B), The last 
term represents the effect on the detector of random noise voltages associated 
with the various classical noise sources in the maser (Sections 1V.C and V). 
Both positive and negative resistances are such noise sources. In either case the 
power spectrum of the noise from a particular resistance is computed from the 
same relation as given above. 

If Rv is negative the effective temperature of Rv will also be negative always 
giving a positive power spectrum. Therefore, if we were to compute the current 
in the detector due to the interaction system (maser) using the influence func- 
tional we would find components of current due to : (1) the noise voltage gener- 
ated by the detector itself, the power spectrum of which is related to the resist- 
ance of the detector by the generalized Nyquist relation given above; (2) a 
classical voltage related to the input voltage C(t) by the classical transfer char- 
acteristic of the maser; and (3) random noise voltages associated with the 
various classical noise sources (resistances) in the maser. Therefore, the maser 
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where 

j( v,wJ = J:c, J:m yp/JF*(t - ~)e~“~‘- + F(t - ~)e-~“~‘-‘] ds dt (1.5) 

j(v) can be simplified by restating the integral over L and s in terms of frequency. 
To do this we replace the upper limit t by + GC and multiply the integrand by 
a step function 1 (t - s) . Then utilizing the convolution theorem in the form 

J:m J:m M(t)N(s)R(t - s) ds dt = (27r)-’ J MmpNpRpdv 

where 

M(v) = J?!- M(t)eC”’ dt 

i(v) b ecomes 

f(v) = (274-l J:w 1 yv-a j’(Fv + F:l dv 

where 

Fp = J?Ym l(t)F(t)e-i”’ dt 

From Eqs. (4.5a) and (4.5b) we have that 

F(t) = - (2/7r) 1: Im ( l/~+Z,,)e”t dq 

Therefore, 

Fv + Fv* = - (2/7r) Jam dv Im (l/i+Z,,) JOm dt(ei”-“” + emi”‘-““) 

= -4 Im (l/iv.Z”) = (4/v) Re ( l/.ZV) 

and 

f(v) = (2/7rl .I% I -y9+ 12vw1 lb Cl/.%) dv (I.61 

Thus, to second order 

P nnl = &m{ 1 - xh brW1 1 Qak I2 Joa v-l 1 ywnk I2 Re (.ZJ1 dv] 

+ C~fil-’ 1 Qam I2 Jorn v-l 1 yvmvnm 1 ‘Re (Zv)Y1 dv 
(1.7) 

For the special case that the coupling 7 is 

y=o for t>T/2 and t<-T/2 

Y 1 C for -T/2 < t < T/2 

1 yv-vnk 1 ’ = 1 J?g12 e-i’“pVnk”dt 1 ’ = 4( v - vnh)m2 sin2 (v - vnk) T/2 

+ 27rT@v - v%k) for large T 
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Thus, it is seen that the P%+,, now is proportional to the matrix element and to 
the dissipative part of the impedance ZV,,m . Appropriately enough, no transition 
is possible to energy states such that v,~~, < 0 since the interaction system, being 
at zero temperature initially, can give up no energy to the test system. 

APPENDIX II 

A. INFLCESCT PHASE FOR EFFECT OFFREE SPACE ox AN LYNCH 

As an illustration, the influence phase for the effect of free space on an atom 
will be calculated. This problem is more complicated than the idealized systems 
considered in deriving the formalism since the interaction here is of the form 
Q-X, Q and X being vectors rather than QX where Q and X are scalars. This 
difficulty could be overcome by writing the influence phase in tensor notation 
or by recasting the problem so that the interaction is of the form QX. The latter 
will he done to adhere more closely to the point of view of the derivations. Sinc(l 
a linear system is being dealt with, it is only necessary to determine a suitable 
coordinate for the atom and find the impedance function ZP for the effect of free 
space. It is assumed that the atom is made up of a system of particles of mass 
‘rn,! , charge c7, , and position rA + x% where rA is the position of the center of 
charge of t’he atom. If the transverse part of the radiation field in the box is 
expanded into a series of plane waves each representing independent harmonic 
oscillations (2,2), then the nonrelativistic Lagrangian for the complete system 
consistJing of t’hc atom and the field in the box can be written (2 J 

1,(-q, Ly, fjk, qk, t) = LA + cplxn @,&.AtrtrA + r,,j 

+ ;‘;xk ~;zel [(($I 1 - &.~(g jq 
(II.1 1 

where L.4 is the Lagrangian of the atom unperturbed by outside forces and 

At*(X) = (%r~~)“~~ [ (q”’ k t2k k cos(k.Xj -+ qk3’sin(,k.X) 1 

+ el($cos(k.X’) + qF’sin(k.X))] 
c II.2 1 

Here ei and el are two mutually orthogonal polarization vectors, each orthogonal 
to the propagation vector k. Now we assume that the radiation field of the box 
is constant over the particle, i.e., that A(rA + r,2 ) E A(rA), the dipole approxi- 
matjion.z5 This permits one to replace x x P,% by j, the current operator for 

u This is equivalent to taking A(k.4 + xv,), ex:panding it, in a series of k,xn since this is 
assumed small, and keeping only those terms which keep the interaction term of the 1,~ 
grangian linear. Since the interaction is of the form c,,x,,.A(k.h + x,,j for the n,th particle. 
HIen A can only con&in constant terms. 
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the atom. In addition, even though eA.el = 0, which fixes their relative orienta- 
tions, their absolute directions in a plane perpendicular to k are still arbitrary. 
Choosing ez so that 

el.j = 0 (11.3) 

We assume the box to be very large so that xk + ( 167r3)-‘J d3k, because the 
mode corresponding to k and -k is the same. Combining (II.l), (11.2), and 
(11.3) the following total Lagrangian is obtained. 

(11.4) 

+ (8~)“~ [ $ (j.eh)q?’ sin (k.rA) 

Thus, the number of each of the two sets of oscillators (qg’ and qc’) in a volume 
of k space dk is d3k/16r3. The coupling strength of the qr’ and qf’ oscillators 
with the atom is (8~)1’2(j.e~)q~‘cos(k.rA) and (8x)“*(j.eA)&‘cos(k=rA) 
respectively. If j is oriented along the 19 = 0 axis in polar coordinate representa- 
tion, j. eA = i sin 0. Then choosing j as the atom coordinate, the impedance for 
the two oscillators of frequency AX can be found from the rule found in Section 
IV to be 

[&Z~(k)]-l = (l/jJ[(8~)“~ sin 0 cos (k.rJ&’ + (87r)1’2 sin 0 sin (k.rJ&‘]” 

87r sin2 0 cos2 ( k.rA) z- - 8r sin2 0 sin2 (k.rA) 
(u - $2 - k%s (u - iq - kV 

(11.5) 

= -8~ sin2 /3[(~ - G)2 - k2c2]-’ [c..,o 

The total effect of all the oscillators is 

(Zp)-’ = (167r3)-‘JZL1 (k) d3k = ( 167r3)-‘Jk2 sin 0d0 & dk(.ZL’) 

= -~4v(3Tc3)-1J~mQ2 &[(v - g2 - CT-l \&I (11.6) 

= (2v2/3c3) - i(4v/3m3)J,,- a2 &(v2 - Q2)-’ 

where the substitution fi = kc has been made. Thus, the effect of free space is 
characterized by (GJ.%-‘. The equivalent distribution of oscillators coupled to 
jv is 

G(Q) = (4Q2/37rc3) (11.7) 
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To compute the transition probability for this atom, we use second order 
perturbatiou theory developed in Appendix I for a system initially in stat{, 
&(X,) and finally in state &(XT) when acted on by au influeuce functional for a 
linear system at zero temperature. The exprcssiou is 

(Ir.10) 

where t,o obt’ain the last, more familiar form, t>he substitution ,j,>,,, = vn ?r,L ~~n?n, 
has txw~ made. This is the first order spontaneous emission prohability for au 
atom in free space. 

Kow we cau form au expression for the iuteusity of radiation per unit tim(*. 
The power radiated from the dipole is 

(II.11 j 

au expression which is almost the same as that for power radiated from a classical 
dipole. The expressiou becomes exactly the same if we apply the correspondence 
principle by replaciug the matrix element of the time average of the coordinate; 
of the oscillator by its corresponding classical quaut,ity. Thus, if X is the coordi- 
uat,e of the corresponding classical oscillator cLY,, is its maximum value) thenz6 

2 1 x”,n I2 + (X2) = ! &Iy 
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If 1 Xma 1’ is replaced by XOz/4 then Eq. (11.11) becomes the expression for the 
power radiated from a classical dipole. Our purpose, however, in doing this ex- 
ample, was to show for a specific problem that the effect of a distribution of oscil- 
lators interacting on a system is the same as the effect of loss on the system.*’ 
This has been done by relating the energy lost from the radiating dipole to the 
distribution. It is not surprising that a sea of oscillators should give this effect. 
If the dimensions of the box are allowed to be finite then energy emitted from 
the system under observation is reflected from the walls and eventually finds its 
way back to be absorbed again. This is equivalent to saying that the number of 
oscillators comprising the electromagnetic field in the box is infinite with a finite 
frequency spacing between the modes. Since the oscillators are independent there 
is no coupling between them and energy coupled into one of the oscillators from 
the test system must eventually return to it. If the dimensions of the box are 
allowed to get infinitely large, energy emitted from the test system never gets 
reflected and thus never returns. In oscillator language this means that the 
frequency spacing between oscillators has become infinitesimal, so close that a 
little of the energy absorbed by each one gradually leaks into nearby modes and 
eventually is completely gone. 

APPENDIX III. SPONTANEOUS EMISSION OF AN ATOM IN A CAVITY 

In this calculation as in the free space calculation the dipole approximation 
will be used in computing the spontaneous emission probability. The linear 
coordinates inside the cavity will be represented by the vector Q while the time 
varying coordinates of the single cavity mode being considered will be X(t). 
The Lagrangian of the system may be written 

IA E L( & , CL, t) + cplxn en&.A(Qt + Qn , t) + Cavity (111-l) 

where QP is the atom coordinate, Q* + QP is the particle coordinate in the atom, 
and A is the vector potential of the cavity field. The interaction term is the one 
of interest, since from it we find the terms that we wish to solve for classically. 
This term will be put into more convenient form. Let us write 

*T If the power radiated from the oscillator is related to the classical expression %Z*R 
then from Eq. (11.11) it can be seen that R is proportional to Re[l/Z(v)] which in turn is 
related to the distribution of oscillators. One might expect Im[l/Z(v)] to be replaced to 
the reactance seen by an oscillating dipole, a quantity which is known to be infinite classi- 
cally. From Eq. (11.7), 

Im(l/&) = 4v/3r03Jr Q2(G - a*)-i ~5% = 4zW3~9 hi+=0 

The integral is linearly divergent. This factor is also related to the infinite self energy of a 
point charge which occurs both classically and in quantum electrodynamics. Here this di- 
vergence does not bothee us since it never enters into the calculation. 
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where 

J” a(Q) .a( Q) dQ = &rc’ (111.3) 

If A does uot vary much over the atom, then A( Qp 1 E A( Qp + Qn ) aud the 
int~ract.i0ii km is writteu 

c?xrh erb&.a(Qp)X(l) = (j/cl 1 a(Qp) i X(t) (111.-l J 

where j = (x ~~t&).a(Q~)/ 1 a(Qpl 1, th, e component of the atom current in 
the directiw of the cavity tield. 

Let us uow determiue the ratio 

j$ a(,Qp) 1 X&‘]-’ = ivZv (III..il 

classically. The wave equation appropriate for this calculation ( high CJ )‘” is 

‘$A - (l/&A + (&&A - %r/~)~ = 0 t 111.~~~ 

The atom is located at QP and, siuce the dipole moment is iuduced, its direction 
CJn the average is the same as that of the field A in the cavity, We have theta 

p = $CQ - QpIbCQp~i I dQp) i C.lI1.i 1 

Substitut,iug ( 111.7) aud (111.2) into (III.6 ) we okdain 

[ - w2X + (w/Q)~? - z]cp2a(Q) 

where ti is the resouant frequency of the tax-ity. Multiplying by a( @, intcgratillg 
over CJ, aud taking I:ourier transforms, (III.Sj bwomes 

t, vz -  W’ + ~vw/Q)X~ -  C’ 1 a(Q,,j jp = 0. c IIl.!b} 

We fiud that the ratio tIII.Gj 

ivzp z [v2 - w2 + (ivw/‘Q)]i2/j a(Qpj2 

The influence phase for this is (although it is unnecessary to write it) 

From seccmd order perturbation theory we kuow 

** CJ is used here as the dissipation factor of the cavity, wJ,/R, while Q is a vector rep- 
resenting the linear coordinates inside the cavity. 
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PJoting that 

Re( Zvnm)-’ = uvirn 1 a(QP) 1’ Q-‘c?[( iris - CO’)’ + Undo,,&-‘]-’ 

and defining a cavity from factor Jz = v ] a( QP) ~‘/4~ 

Prim = (%r 1 jnm ~z"fzcovnmT)(fiVQ)-l[( IL - coy + cd2v:mQ-z] (111.10) 

At resonance this expression reduces to 

P nm = %r 1 jm ~2"fzQvNvL (111.11) 

The quantity usually computed is the ratio of the transition probability in the 
cavity at resonance to that in free space. This ratio is 

Prim (cavity) = Kh 1 An ~zQ.f2/vkn VU? 67rc3Q.fz =z- 
Prim (free space) ]4 1 jmn ~%m/3fic3] T vl& 

At resonance, the ratio increases with respect to Q as one might expect and 
decreases with respect to the cavity volume V and vim . This expression agrees 
with the one given by E. M. Purcell (23) although the form factor in his calcu- 
lation was left out. This does not matter since for a particle located near the 
maximum field point in a cavity the magnitude of .f is of the order of wity. 

APPENDIX IV 

It is to be demonstrated that 

G(X) = limN I:~~~~ H~=I (1 + Xk) + eq$xk Xd (IV.1) 

where the X,+ are small but not necessarily equal to each other, and where the 
total sum xkXk is finite. Rewriting the expression for G(X) we have (where 
the summations on all indices go from 1 to N) 

G(X) = 1 + xk Xk + ,S$x+k XjXk •k (l/6) ~+/+~ XjXkXf + * * * 

= 1 + EkXk + ,35!xj,kXjXk(l - 6jk) + (>g!)xj,k,t XjXkXt 

x (1 - 8ik - Sk4 - Sjl + 2Wk) (IV.2) 

As N is allowed to get very large the contribution of the terms involving quan- 
tities such as ~j~ becomes less significant. For instance, in the third term 

xi,k (X&k) (1 - ajk) - CNXj2 - CNXj2/‘N (IV.3) 

and for very large N only the leading term in this sum is important. Thus, we 
have the result that 

G(X) large N = 1 + EJCXk + >5!( Ek xk)2 + $,$!( EkX$ 

c eqdEk 24 
(IV.4) 

RECEIVED: April 5, 1963 
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