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We calculate the density of  states of  a two-dimensional electron gas in 
a quantum well with effective barrier height and width in the presence 
of  interface-roughness scattering. The subband-edges energies of  the 
subbands n = 1, 2, . . shift with disorder. Analytical and numerical 
results for the renormalization of  the subband-edge energies are pre- 
sented for an unscreened and a screened potential. The effects of finite 
confinement are discussed. 

IT IS important to understand the interfaces of quan- 
tum wells grown by molecular beam epitaxy. Some 
unexpected results have been found in thin quantum 
wells. The photoluminescence line width increases 
with decreasing quantum well width L [1]. A strong 
decrease in the mobility with decreasing L has been 
reported for thin quantum wells [2-4]. We have argued 
[3] that this anomaly is due to interface-roughness 
scattering and for the mobility we predicted the 
relation: /~ oc L 6. Recent experimental results [4, 5] 
confirm the strong decrease of the mobility with 
decreasing quantum well width. 

The band gap renormalization in quantum wells 
due to electron-electron interaction has been cal- 
culated [6, 7] and measured [8, 9]. In this paper we 
present a calculation on the band-gap renormalization 
and the shift of  subband-edge energies due to disorder, 
which is induced by interface-roughness scattering. 

We consider a two-dimensional electron gas in the 
lowest subband of  a quantum well with a width L and 
with infinite barriers. The roughness of  the quantum 
well interface is parameterized by the height A and the 
length A. A Gaussian-like decay of the fluctuations is 
assumed [10]. The random potential U(q) due to this 
interface-roughness is written as [3] 

~5 A2A 2 
(IU(q)l 2) = 2 L 6 e q2A2/4. (1) 

mz 

mz is the mass perpendicular to the well. We assume 
that (U(q  = 0)) = 0. 

In a quantum well with infinite barriers the 
subband structure is given by E, = n2n2/2mzL 2. The 
fluctuation of  the first subband energy due to 

fluctuations of  the quantum well width is given by 
dEi = - (~z2 /mzL 3) dL. 

The density of  states is determined by the imagin- 
ary part of the one-electron Green's function G(k, z). 
As usual we express G(k, z) as 

- l  
G(k, z) = (2a) 

z - k2/2m * + Y.(k, z)" 

k is the wave vector and z is the complex energy of the 
quasiparticle (we use h = 1). m* is the electron mass 
parallel to the interface. Z(k, z) is calculated in the 
selfconsistent Born approximation [11]: 

Y.(k, z) = 2 ~ (IU(k - q)J2)G(q, z). (2b) 
t l  

The factor 2 in equation (2b) is due to the 
two interfaces. We assume that both interfaces are 
parameterized by the same interface-roughness par- 
ameters. However, experimental results indicate that 
the two interfaces might be different under special 
growth conditions [12]. 

In the following we will neglect the k-dependence 
of  the self-energy: E(z) = E(k = 0, z). For  a discus- 
sion on the validity of  this approximation, see [13]. 
For a short-range random potential (A = 0) the self- 
energy is independent of  the wave number [13-16]. 
Then the "ultraviolet" divergency of  the q-integral in 
equation (2b) is a result of the short-range random 
potential. Any realistic potential has a finite range 
qc and the q-integral has a cutoff at a certain wave 
number qc. We use qc = 2/A and we replace exp 
( -  q2A2/4) by 19(1 - q2A2/4) and 19(x) is the unit step 
function. From equation (2) we then get for Y.(z) = 
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£(8)Eo [151 ( l )  
~:(8) = U~ In 1 8 + E(-~ (3a) 

n2 m* AA 2 
Ui = 2 m~ L 3" (3b) 

Eo = 4a*2R/A 2 is the energy unit. a* = at/rn*e z and 
R = m*e4/2a~ are the Bohr radius and the effective 
rydberg, respectively, at is the dielectric constant of 
the host lattice. 

For a long-range random potential (1/A = 0) we 
get for the self-energy [17] 

4 1 A 2 
Z(q, z) = 27t ~ ~-g G(q, z). (4) 

Explicitly we derive the following expression (in 
reduced units with q = Aq/2): 

~,(q, 8) = (q2 _ 8)/2 + ((8 - ¢)2/4 - 2U?) 'a. 

(5) 

We have solved equation (3) to calculate the 
density of states. The energy &l defines the disorder 
induced shift of the conduction band edge to lower 
energies and is given by 

,~a, = ½ - (¼ + u ? )  '/~ 

[ ] - U t l n  ½ + U 2 - ~  + U?),/2 . (6) 

In the limits of small and large U~ one gets 6~ = 
2U~ In Ut + O(U~) and 6~ = -2U~ + 1/2 + 
O(1/Ut), respectively. The reason why 6el is linear in 
U~ for U~ >> 1 is because we used the dressed electron 
propagator (X(z) # 0) on the right hand side of 
equation (2b). 

We restrict our results to krA <~ 1, kris the Fermi 
wave number. For the Fermi energy at we find the 
relation at ~ Eo/4. The relation krA <~ 1 is well satis- 
fied in undoped or weakly doped quantum wells. We 
point out that in all reduced energy variables, which 
linearly depend on U~, the A disappears in the real 
energy variables. 

For long-range interface roughness potentials we 
get from equation (5) for the disorder induced shift of 
the conduction band edge 6~ = -2(1  + 2~/2)UI, 
which is the strong coupling result in mass-shell 
approximation. 

Energy a~c = 6a~ describes the shift of the con- 
duction band edge with disorder. Of course, similar 
results (but with the hole masses) hold for the renor- 
malization of the valence band edge, denoted by el e. 
The disorder renormalized band-gap E~R is expressed 
in terms of the gap of the clean material Ec-0 via 

EGR = Ec-0 - lal~l - l a l c l .  (7) 
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In a recent work [5] the interface-roughness par- 
ameters have been determined by comparing mobility 
measurements on thin GaAs quantum wells (40 A < 
L < 60A) with the theory of [3]: A ~ 2.4A, 
A ~ 65 A. In similar experiments [4] A = 3A and 
A = 70 A have been found. With equation (6) we get 
tic = - 3 5 m e V  and - S m e V  for L = 50A and 
70A, respectively. This example shows that strong 
band gap renormalization effects are expected from 
interface-roughness scattering. Screening effects 
reduce these numbers. We mention that in the experi- 
ments of [4, 5] kFA ~ I. 

Our calculation was done for a non-interacting 
electron gas. In this model the electrons are localized 
for arbitrary weak disorder because of  weak localiz- 
ation effects [18]. Then, screening effects should be 
negligible. A complete picture of  the localization 
phenomena in an interacting electron gas is missing 
[18]. We argued that a metal-insulator transition 
occurs in thin quantum wells because of the interface- 
roughness scattering [3]. 

In the most simple approximation in order to 
treat the electron-electron interaction effects we have 
to screen the random potential and we have to include 
the exchange and correlation contribution Exc to the 
self-energy. Exc for quantum wells was calculated 
before [6, 7] and will be neglected: E = 0. Exc gives 
rise to a rigid shift of the band and this shift must be 
added to the disorder induced shift. For the screening 
function we use e(q)= 1 + qs/q [19]. q~ is the 
Thomas-Fermi wave number. In units of 2/A we find 
qs = g~A/a*, g~ is the valley degeneracy. The self- 
consistent Born approximation is expressed as 

i ¢ 1 Z(8) = , 2U 2 dq (q~ + q)-------------~ 8 - ¢ + 1~(8)" (8) 

We have solved equation (8) and the result for &l 
is shown in Fig. 1. As expected we find that screen- 
ing reduces the effects of the interface-roughness 
scattering. 

Equation (1) describes the interface-roughness 
scattering in the lowest subband n = 1 of a quantum 
well with infinite barriers. For a quantum well with 
finite barriers the wave function penetrates into the 
barriers and the interface-roughness scattering poten- 
tial becomes weaker as in case of infinite barriers. The 
interface-roughness scattering potential for the n-th 
subband and finite barriers is given by 

<G(q)Um(--q)> = <IU(q)I2>F,(V, L)Fm(V, L). (9) 

Equation (9) describes the scattering potential for 
intersubband scattering (n # m) and for intra- 
subband scattering (n = m). Interface-roughness 
scattering is strongly increased in higher subbands. 
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Fig. 1. 6e~ vs disorder U~ for the screened interface 
roughness potential according to equation (8) and 
various values of  the screening parameter  ~,. 

The functions F,(V, L) are determined by the wave 
function at the interface [20]. We calculate F,(V, L) 
for a quantum well with barrier height V and width L. 
Band-bending effects are neglected. For  n = 1, 3, 5 . .  
one gets 

4 (1 - mblm~)y 2 sin 2 (y) + C* cos 2 (y) 
F,(V, L) = ~ sin (2y) m~ cos 2 (y) 

1 + - - +  
2y mby  tg (y) 

(lOa) 

and y (rffn - 1)/2 < y < nn/2) is defined by the 
solution of  

y *  tg (y)  = (C - y2)~/2, (mdmb)W2 (lOb) 

and 

1 m~ L 2 V 
C = 4 m* a .2 R" (10c) 

F o r n  = 2, 4, 6 . . w e g e t  

F,(V, L) = 
4 (1 -- mb/m~)y 2 cos 2 (y) + C* sin 2 (y)  

zr 2 sin (2y) m~ sin 2 (y) 
1 

2y mb y ctg (y)  

(1 la) 

and y Qr(n - 1)/2 < y < nn/2) is defined by the 
solution of  

- y/tg( y) = (C - y2)l/2,(m~/mb)l/2. ( l l b )  

For the electron mass in the barrier mb we use rnb = 
0.067 + 0.071x. The effective height of  the barrier V 
is given by the height of  the barrier V0 and the Fermi 
energy: V = V 0 -  er. We used V0 = 1 .04eV,x .  
F,(V, L) for n = 1, 2, and 3 is shown in Fig. 2 for a 
confining energy V = 300meV, which is a realistic 
value for AlxGal_xAs/GaAs/AlxGa~_xAs quantum 
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Fig. 2. F,(V, L) vs quantum well width L for V = 
300 meV (solid lines), V = 1000meV (dashed lines), 
and n = 1, 2, 3. The dotted lines are for V ~ oo. 

wells (a* = 103 A, R = 5.56meV) with x ,~ 0.3. The 
dashed lines are for V = 1000meV, a realistic value 
for the system A1As/GaAs studied in [4]. For  V ~ oo 
we get F,(V, L) = n 2, see the dotted lines in Fig. 2. 
The strong decrease of F,(V, L) for n I> 2 at a certain 
quantum well width is due to the fact that there the 
binding energy goes to zero. 

Equations (6, 8) and Fig. 1 can be used to estimate 
the band-gap renormalization and the subband-edge 
energies in the presence of disorder, however, U~ must 
be replaced by 

U,(V, L) = U , .F , (V ,  L). (12) 

The decrease of  F~ (V, L) with decreasing quantum 
well width (Fi (V, L) oc L ~ in some small range of 
L (L~ < L < L2)) changes the power law for the 
mobility to # oc L 6-2". 

In Fig. 3 we show the shift of  the subband-edge 
energies of  the first (&l) and second subband (&2) 
versus quantum well width for GaAs  quantum wells 
and confining potential V = 1000meV. The dashed 
lines represent subband-edge energies in the presence 
of  an unscreened interface-roughness scattering 
(A = 3A, A = 60A). The solid lines are for a 
screened interface-roughness scattering potential. The 
effects of  disorder are stronger for the higher subbands 
and for an unscreened potential. The subband-edge 
energies, measured from the bot tom of  the quantum 
well, increase with decreasing width. With no disorder 
present the energy of  the first subband-edge is 70 meV 
for L = 70/~ and 610meV for L = 10A. The energy 
of  the second subband-edge is 280 meV for L = 70 A 
and 870 meV for L = 30/~. 

In conclusion, we have shown that in thin quantum 
wells the interface-roughness scattering renormalizes 
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Fig. 3. Energy shifts of the first (6e~, n = 1) and 
second (6e2, n = 2) subband-edge versus well width 
for confining potential V = 1000meV. The dashed 
lines represent the shift of the subband-edge energies 
of the first and the second subband in the presence of 
unscreened interface-roughness scattering. The solid 
lines are for a screened interface-roughness scattering 
potential. Energies are measured from the bottom of 
the subbands with no disorder. Intersubband scatter- 
ing is neglected. 

the conduction band edge and that the band-gap 
energy and the subband-edge energies are reduced. 
Undoped quantum wells are favourable to measure 
these effects. Then an unscreened interface-roughness 
potential has to be considered. Screening and finite 
confinement reduces the expected effects. Because 
of the strong dependence of the interface-roughness 
scattering potential on the quantum well width, U, ,,~ 
- I / L 3 . F , ( V , L ) ,  the discussed effects might be 
measurable in thin quantum wells with large barriers. 
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