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ABSTRACT

In this research, a scheme for SIMD (Single Instruction stream Multi Data stream) pattern processing for two
dimensional (2D) image data is applied to the traveling salesman problem (TSP). Firstly, 2D SIMD pattern
processing for the TSP is designed. In the processing, two kinds of image data are prepared to represent graph
data. By cross correlation between the prepared images, a set of pathlength is obtained. The tour with the
minimum path length is extracted from post pattern processing. Numerical analysis verifies that the scheme is
effective for the TSP.

Keywords: spatial coding, SIMD pattern operation, large scale information processing, image compression,
traveling salesman problem

1. INTRODUCTION

Some schemes for ultra large scale processing are much attractive for various problems with computational hard.
Quantum computing and DNA computing are mentioned as examples of them. In such a situation, we research
on SIMD (Single Instruction Multiple Data) type two dimensional (2D) pattern processing. This processing
has inherently been proposed in digital optical computing.1 It is considered to be useful for not only optical
implementation but also electronic one.

We have developed an effective scheme based on the processing. In this scheme, image compression and
operations for compressed datum are utilized for large scale processing. We have applied the scheme to a
solution for prime factorization. It has been verified that the solution is much effective in prime factorization.

In this research, we apply the scheme to the traveling salesman problem (TSP). TSP is one of the NP complete
problems and some methods for this problem has been reported the research filed of optical signal processing.2, 3

Especially, this research is inspired by the solution presented in Ref.3

In our solution, firstly, 2D SIMD pattern processing for the TSP is designed. In the processing, two kinds
of image data are prepared as inputs. One shows a set of path for touring. Information on one path is coded a
row vector. Elements in a vector data are binary formats. A set of vectors are aligned in column direction and
converted to a 2D discrete image to represent all touring. The other also indicates distance between nodes. A
bit pattern of distance between two nodes is coded as row datum. The datum is converted binary row patterns.
Then, whole sets of the binary patterns are aligned in column direction. As a result, a 2D binary image is
prepared. By cross correlation between the prepared images, a set of pathlength is obtained. The tour with the
minimum path length is extracted from post pattern processing.

Section 2 summarizes a scheme for SIMD pattern processing with image compression. Section 3 describes a
principle to solve the TSP. Section 4 shows a proposed solution of the TSP and estimates the solution.
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2. SIMD PATTERN PROCESSING WITH IMAGE COMPRESSION

2.1. 2D SIMD processing

2D SIMD pattern processing has inherently been studied in digital optical computing. Recently, we have pro-
posed a scheme based on the pattern processing. In the scheme, massive data processing equivalent to 2D
pattern operations in accordance with optical array logic (OAL). OAL is one of the paradigm for digital optical
computing.1

In OAL, input and output are given as 2D discrete images. Pixels on these images are binary formats. Let
us consider that ai,j , bi,j , and ci,j show the values at (i, j) pixels on the two input and the output images, the
contents of operations are represented as Eq. (1).

ci,j =
L∑

m=−L

L∑

n=−L

fm,n(ai+m,j+n, bi+m,j+n) (i, j = 1, ..., N) (1)

In Eq. (1), fm,n denotes a content of the operation. A basic format of fm,n is given as a logical operation
between neighborhood pixels. Figure 1 describes typical examples of basic operations. (a), (b), and (c) in this
figure depict NOT, AND, XOR operations, respectively. Also, (d) and (e) in the figure shows pattern shift and
pattern expansion. These are examples of operations with neighborhood pixels.

A sequence of these basic operations can treat some solutions of parallel programing. Recently, we have
studied on a procedure for prime factorization.4 In the procedure, image size required for prime factorization
grows exponentially in bit length of a target integer. To solve such a problem, we have proposed a effective
scheme for SIMD pattern processing. In this scheme, some operations equivalent to parallel programming of 2D
SIMD processing is executed with less processing costs by use of image compression.

A brief procedure of the proposed scheme is shown in Fig. 2. A method for data compression is applied to
input images. With this operation, information on an input image is represented as a set of datum. Sets of input
datum are operated by a sequence of elemental gates, and output datum are obtained. Finally output images
are given by the decoding process.
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Figure 1. Basic operations in 2D pattern processing: (a) AND, (b) XOR, (c) NOT operations, (d) pattern shift, and (e)
pattern expansion.
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Figure 2. Diagram of the basic concept of SIMD pattern processing
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Figure 3. Schematic diagram of the encoding.

This scheme requires a lossless compression because output images should be completely reconstructed as
final results. Moreover, elemental gates equivalent to operations as described in Fig .1 should be constructed to
implement the processing designed as parallel programming in 2D pattern processing.

2.2. A encoding (decoding) and basic operations for compressed datum

A method for the proposed scheme have been developed in our previous work.5 This method is applied to an
algorithm for prime factorization. We also employ this method for the TSP. The procedure of the method is
explained as following.

Figure 3 shows an example to generate a coded datum. 2D patterns in an input image are divided into a set of
column data before encoding. Two kinds of datum defined as Wj and Bj are prepared in the data compression.
Wj consists of a set of i′s satisfied with Eq. (2).

ai−1,j = 0 ∩ ai,j = 1 (2)
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Figure 4. Schematic diagram of a XOR gate: (a) a relation between input and output patterns, (b) the relation between
corresponding compression datum.

Here, the element ‘0’ is added at the first element in the Wj if a0,j is ‘0’. On the other hand, the contents of Bj

are given as a set of i’s satisfied with Eq. (3).

ai−1,j = 1 ∩ ai,j = 0 (3)

We have presented NOT, AND, and XOR gates. The principle of the XOR operation is explained. In the
simple pattern processing, this operation is defined as

ci,j =

{
0 if ai,j = bi,j

1 other.
(4)

A relation between parts of input images and that of the output one is shown in Fig. 4. (a) and (b) in this figure
indicate data flows of the gate in both image and coression domains, respectively. For simplicity, only patterns
of one coloumn are extracted from 2D images. From Fig. 4, output patterns are inverted at an i’th row if i is
satisfied with the following equation.

((ai,j−1 �= ai,j) ∩ (bi,j−1 = bi,j)) ∪ ((ai,j−1 = ai,j) ∩ (bi,j−1 �= bi,j)) (5)

Figure 5 shows a procedure of the XOR gate for compressed datum. First process is generation of a sequence
from input datum. This sequence includes all elements in the input datum. Moreover, these elements are sorted
in the sequence. Next, if there are the same elements in the sequence, such elements are deleted. This is because
such a set of the elements shows that both input images are inverted at the same pixels. Third process, as
described in Fig. 5, odd elements in the sequence and even ones are output as OWj and OBj , respectively.
Procedures for NOT and AND gates are explained in Ref.5

3. TRAVELLING SALESMAN PROBLEM

Fgiure 6 shows an example of a graph for the TSP. This example consists of four nodes and the weight values
between cities are asymmetric. The purpose of the TSP is to derive the shortest tour through all nodes. Con-
sidering that the number of nodes is N , (N − 1)! tours are given as candidates of the desired path. Therefore, 6
tours should be investigated as described in Eq. (6).
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aIWj={..., aIWj[x], ...}
aIBj={..., aIBj[x], ...}

bIWj={..., bIWj[y], bIWj [y+1], ...}

bIBj={..., bIBj[y], bIBj [y+1], ...}

P’ ={..., aIWj[x],  bIWj[y], bIBj[y], aIBj[x], bIWj [y+1], bIBj 

P’ ={..., bIBj[y], aIBj[x], bIWj [y+1], bIBj [y+1], . ...}

OWj={..., bIBj[y], bIWj [y+1], ...}

1. Generate an intermediate sequence

        2. Delete the same elements

        3. Output a set of datum

    - odd elements in P’ : OWj,        even elements in P’ : OBj

OBj={..., aIBj[x], bIBj [y+1], ...}

Figure 5. A procedure for an XOR gate.
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Figure 6. An example of graph in the TSP at N = 4.
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T 1 : node1 → node2 → node3 → node4 → node1
T 2 : node1 → node3 → node4 → node2 → node1
T 3 : node1 → node4 → node2 → node3 → node1
T 4 : node1 → node4 → node3 → node2 → node1
T 5 : node1 → node2 → node4 → node3 → node1
T 6 : node1 → node3 → node2 → node4 → node1 (6)

Here, length of these tours are represented as Eq. (7).

T 1 : l1 = w1,2 + w2,3 + w3,4 + w4,1

T 2 : l2 = w1,3 + w3,4 + w4,2 + w2,1

T 3 : l3 = w1,4 + w4,2 + w2,3 + w3,1

T 4 : l4 = w1,4 + w4,3 + w3,2 + w2,1

T 5 : l5 = w1,2 + w2,4 + w4,3 + w3,1

T 6 : l6 = w1,3 + w3,2 + w2,4 + w4,1 (7)

In the above equation, wi,j shows weight vaule from the node i to the node j.

The solution presented in Ref.,3 a mathematical procedure is reported. The weight vectors are defines as Eq.
(8).

w = [w1,2 w1,3 w1,4 w2,1 w2,3 w2,4 w3,2 w3,1 w3,4 w4,2 w4,3 w4,1]
T (8)

Informations on the tours shown in Eq. (6) is also represented as a 2D matrix b as shown in Eq. (9).

b =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 0 0 0 1 0 0 1
1 0 0 0 0 1 0 1 0 0 1 0
0 1 0 0 0 1 1 0 0 0 0 1
0 1 0 1 0 0 0 0 1 1 0 0
0 0 1 0 1 0 0 1 0 1 0 0
0 0 1 1 0 0 1 0 0 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎦
(9)

From Eqs. (8) and (9), a set of length of all tours is derived with Eq. (10).

l = b · w =

⎡

⎢⎢⎢⎢⎢⎢⎣

w1,2 + 0 + 0 + 0 + w2,3 + 0 + 0 + 0 + w3,4 + 0 + 0 + w4,1

w1,2 + 0 + 0 + 0 + 0 + w2,4 + 0 + w3,1 + 0 + 0 + w4,3 + 0
0 + w1,3 + 0 + 0 + 0 + w2,4 + w3,2 + 0 + 0 + 0 + 0 + w4,1

0 + w1,3 + 0 + w2,1 + 0 + 0 + 0 + 0 + w3,4 + w4,2 + 0 + 0
0 + 0 + w1,4 + 0 + w2,3 + 0 + 0 + w3,1 + 0 + w4,2 + 0 + 0
0 + 0 + w1,4 + w2,1 + 0 + 0 + w3,2 + 0 + 0 + 0 + w4,3 + 0

⎤

⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎣

w1,2 + w2,3 + w3,4 + w4,1

w1,2 + w2,4 + w3,1 + w4,3

w1,3 + w2,4 + w3,2 + w4,1

w1,3 + w2,1 + w3,4 + w4,2

w1,4 + w2,3 + w3,1 + w4,2

w1,4 + w2,1 + w3,2 + w4,3

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

l1
l2
l3
l4
l5
l6

⎤

⎥⎥⎥⎥⎥⎥⎦
(10)

4. A SOLUTION FOR THE TSP WITH 2D SIMD PATTERN PROCESSING

In this section, we show the proposed method for the TSP. At first, two kinds of images are prepared for
input data corresponding to the matrix b and the vector w. Figure 4 shows a schematic diagram of the image

Proc. of SPIE Vol. 7442  74420B-6



1 0 0 0 1 0 0 0 1 0 0 1

1 0 0 0 0 1 0 1 0 0 1 0

0 1 0 0 0 1 1 0 0 0 0 1 

0 1 0 1 0 0 0 0 1 1 0 0

0 0 1 0 1 0 0 1 0 1 0 0

0 0 1 1 0 0 1 0 0 0 1 0

(a)

1 
2
6
3
2
1
4
1
4
2
1
3

001
010 
110
011
010
001
100
001
100
010
001
011

(b)

Figure 7. Image representations for the matrix b (a) and the weight vectors w (b).

representations. Conversion for the matrix b is simple. An (m, n) element in the matrix b is coded at (m, n)
pixel in one input image. In the image representation for w, bit patterns of the weight values are considered.
Here Eq. (11) shows a generalized form of matrix operations for the TSP.

l = b · w =

⎛

⎜⎜⎜⎜⎜⎜⎝

b0,0 b1,0 b2,0 b3,0 b4,0 b5,0 b6,0 b7,0 b8,0 b9,0 b10,0 b11,0

b0,1 b1,1 b2,1 b3,1 b4,1 b5,1 b6,1 b7,1 b8,1 b9,1 b10,1 b11,1

b0,2 b1,2 b2,2 b3,2 b4,2 b5,2 b6,2 b7,2 b8,2 b9,2 b10,2 b11,2

b0,3 b1,3 b2,3 b3,3 b4,3 b5,3 b6,3 b7,3 b8,3 b9,3 b10,3 b11,3

b0,4 b1,4 b2,4 b3,4 b4,4 b5,4 b6,4 b7,4 b8,4 b9,4 b10,4 b11,4

b0,5 b1,5 b2,5 b3,5 b4,5 b5,5 b6,5 b7,5 b8,5 b9,5 b10,5 b11,5

⎞

⎟⎟⎟⎟⎟⎟⎠
·

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w1,2

w1,3

w1,4

w2,1

w2,3

w2,4

w3,2

w3,1

w3,4

w4,2

w4,3

w4,1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎝

b0,0w1,2 + b1,0w1,3 + . . . + b11,0w4,1

b0,1w1,2 + b1,1w1,3 + . . . + b11,1w4,1

b0,2w1,2 + b1,2w1,3 + . . . + b11,2w4,1

b0,3w1,2 + b1,3w1,3 + . . . + b11,3w4,1

b0,4w1,2 + b1,4w1,3 + . . . + b11,4w4,1

b0,5w1,2 + b1,5w1,3 + . . . + b11,5w4,1

⎞

⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎝

A0,0 + A1,0 + . . . + A11,0

A0,1 + A1,1 + . . . + A11,1

A0,2 + A1,2 + . . . + A11,2

A0,3 + A1,3 + . . . + A11,3

A0,4 + A1,4 + . . . + A11,4

A0,5 + A1,5 + . . . + A11,5

⎞

⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑(N−1)!−1
i=0 Ai,0∑(N−1)!−1
i=0 Ai,1∑(N−1)!−1
i=0 Ai,2∑(N−1)!−1
i=0 Ai,3∑(N−1)!−1
i=0 Ai,4∑(N−1)!−1
i=0 Ai,5

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11)
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Figure 8. Block diagram for derivation of Ai,j .

In this eqaution, Ai,j shows bi,j ×w′
i where w′

i is an ith element in w. In our method, a set of Ai,j is derived.
Figure 4 describes a flow of the derivations process. At t = T , AT,j is obtained from j = 0 to (N −1)!. Horizontal
patterns of an ith column in A(T ) correspond to AT,j shown in Eq. (11). Operations for summations described
in Eq. (11) are executed with the sequence for addition presented in our previous work.5 Finally, the tour with
the minimum costs is extracted with specific 2D pattern operations.

We implement the proposed method on a personal computer and verify the method of network models
with small nodes. Figure 4 describes the relations between processing time and the number of nodes. Simple
2D pattern processing which does not use image compression is also estimated to compare with the proposed
solution. As results of comparison, it is confirmed that proposed solution is useful for the TSP. From Fig. 4, the
larger the number of node is, the more effective the solution is. However, the processing time grow exponentially
in the solution. We should modify the procedure to make the solution more effective.

5. SUMMARY

We have proposed a solution for the TSP. The solution is based on a scheme for SIMD pattern processing with
image compression. Note that this research is inspired by an optical method reported by N. T. Shaked.3 Image
representation for graph data in the the TSP is constructed. In the representation, two kinds of images are
generated. One image is to describe all tours and the other is for weight vectors between nodes. We have
designed a procedure of 2D pattern process and the scheme with image compression is applied to the procedure.
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Figure 9. Relations between processing time and the number of nodes.

We have implemented and estimated the procedure to show usefulness of it. As results of estimation, it is verified
that the proposed scheme is effective to solve the TSP.
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