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Abstract—An analysis is made of the process whereby diffusion effects can cause the precipitation
of grains of a second phase in a supersaturated solid solution. The kinetics of this type of grain
growth are examined in detail. Some grains grow, only to be later dissolved; others increase in size
and incorporate further grains that they encounter in so doing. This latter phenomenon of coalescence
is discussed in a new “kinetic’’ approximation. Formulae are given for the asymptotic grain size
distribution, for the number of grains per unit volume and for the supersaturation as a function of
time. The effects of anisotropy, strain, crystalline order and the finite size of the specimen are
allowed for. It is pointed out that for a material that can be said to be * with vac~
ancies’’, the discussion can be applied to the vacancies as solute “‘atoms’’ which cluster together to
form internal cavities. The practical case of a real, finite crystal is here important, because the
vacancies can in general also escape to the surface. A special analysis is made of this example, and the

results are applied to the theory of sintering.

1. FORMULATION OF THE PROBLEM

IN A supersaturated solid solution, diffusion effects

may bring about the formation of grains of a new

phase. Two stages of this process may be distin-

guished. In the first, concentration fluctuations

produce nuclei of the new phase, which grow

directly from the supersaturated medium. The

second stage may be considered to begin when the
grains thus formed have reached an appreciable size
and the degree of supersaturation of the matrix has
become very slight. In such circumstances the
determining process is that of coalescence, i.e. the
growth of large grains of the new phase by the
incorporation of small ones. Fluctuation effects
play a negligible part in the second stage, as new
nuclei, to be of any importance, would need to be
of macroscopic proportions.

The kinetics of this coalescence process are con-
sidered in what follows, Some years ago, T'opEs(%:2)
discussed a similar phenomenon and correctly
arrived at various qualitative conclusions. Un-
fortunately his quantitative argument is in error

* Translated by R. D. LowpE.
t A similar problem has also been considered by
GreenwooD(®) but not to the same extent.
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and the results contain meaningless logarithmic
divergencies. A satisfactory solution was first given
in our paper of 1958,(4) in which the mode of arrival
of the system at the asymptotic distribution of
grain sizes was analysed in detail. The results of
this earlier study are rederived herein by a rather
different method, using the more accurate “kinetic
approximation” which allows the stability of the
asymptotic solutions to be examined. We also con-
sider the effect on coalescence of various factors
such as anisotropy and internal strain.

In the first instance we shall simplify matters by
ignoring anisotropy and considering the grains to
be spherical. The actual shape of real grains may
be taken into account by adjusting certain numer-
ical constants in the relevant formulae,

Fundamental equations

If C, is the concentration of the saturated
solution, and « = (2¢/kT)0C,, is a parameter
containing the inter-phase surface tension ¢ and
the atomic volume v of the solute, the equilibrium
concentration Cr at the boundary of a grain is
related to the grain radius by the usual formula:

Cg = Cot %. (1)
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‘The degree of supersaturation is small, so that
C—-Cy= A <£1, and for the present we may
ignore the interaction between grains since their
dimensions are small compared with the mean
distance between them. Then the diffusion current
of solute across the grain boundary is given, per
unit area, by*

] gac @(C' C) 9(‘5 ar.)
i ";a}—l,_ﬁ TR @) atlk
‘The radius R of the grain therefore varies with
time ast

@

‘Thus for every value A of the supersaturation there
exists a critical radius R, = o/A with which a
grain is in equilibrium with the solution. If
R > R, the grain grows, if R < R, it dissolves.
‘This obvious mechanism also explains why large
grains can ‘“‘devour’ small ones by incorporation.
Both A and R, themselves vary with time.
Writing Ao for the initial supersaturation,
Reo = a/Ag for the initial critical radius, and
T = R3,/«D, we now go over to dimensionless re-
duced magnitudes
: R t
P Réo,

Dropping the prime on ¢, we obtain

dp3
. afBn),
dt X .

(©)

in which x(¢) is a dimensionless critical radius such
that x(0) = 1. We now introduce a function
Jf(p? t) which within a factor 47 is the volume
distribution function of the grains, and the rate
Vr = dp?/dt of growth of the grains in dimension

* The equation contains the stationary value 0C/dr of
the concentration gradient at the grain boundary. It is
easily shown that this procedure is valid if the initial
Supersaturation is small (Ap < 1).

t If the grains are aspherical, but in the later stages of
the process grow in such a way as to preserve their
shape due to an anisotropy in «, then equation (2) and all
quantitative deductions from it remain correct so long as
R is interpreted as (3 [47)1/3, with V the grain volume,
and a, « and & are modified to the extent of numerical
factors depending on the shape in question.

space. The unknown functions f(p3, t) and x() may
be determined as follows: from the equation of con-
tinuity in dimension space,

& é
¥ e =0

s (4)

while from the conservation of matter

Qo = Ao+qo = A+q.

Qo is the total initial supersaturation, making
allowance through a term go for the volume of
material initially in the grains. We have

q = 4=RS, [ /¢ dg?.
0

Bearing in mind that ¥ = Ag/A, it follows that

A o0
L=t [fpdagh,

g )
K = $mR3,0;1.

A normalization to unit volume has here been per-
formed, so that

n = deps
0

is the number of grains per unit volume. It follows
that the distribution function F(p, #) over the
dimension p is related to f(p3, ¢) by

F(p, 1) dp = [f(p® 1) dp?,

F(p, 1) = 3p%f(p? 1).

2. TIME VARIATION OF THE CRITICAL DIMEN-
SIONS AND THE ASYMPTOTIC FORM OF THE
DISTRIBUTION FUNCTION IN HYDRODYNAMIC
APPROXIMATION

Along an axis in dimension space representing
grain volume, the point p3 (which apart from a
factor #7 is the volume of some given grain) moves
according to the following prescription. Points to
the left of x3(f) accelerate to the left, until on
reaching the origin they fall out of consideration,
the grain having completely dissolved. Points
initially to the right of #3(¢) accelerate at first to the

Le.
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right; but as the degree of supersaturation falls,
- #8(¢) increases and successively overtakes points
~ that in the first instance were to the right of it.
After being overtaken, such points begin to move
in the opposite direction and finally also disappear
into the origin. The motion is throughout regular
in the sense that the initial order of a set of points is
preserved,

Canonical form of the equations
Both the form of equation (3) and the physical
meaning of x(¢) suggest that it would be more
natural to express equations (3)~(5) in terms of a
reduced volume
o8
z T x0)=1
that compares p3 with the critical volume 3,
Moreover, as 7 -+ o0, A —0, so that x(t) — co;
thus x(¢) may be used as a measure of time. It now
appears that (3), (4) and (5) take on canonical form
if time is introduced through the variable

r = Inad(t) )

and a new volume distribution function ¢ is em-
pleyed such that

#(z, 7) dz = f(p%, 1) dp®. ®)

Using (6), (7) and (8), equations (3), (4) and (5)
become respectively

(6)

% @
i * 5;4"’(3: y) =0, 9
B o ds) = A=)
R ¥ 4 )
L (10)
favagt et
Ao -
1 =-—e 84+ke | ¢z, 1)z dz,
Qo 6“ l (11)

Plimr=0=fo(2), alr-0=p% l

If the solution of (10) under the initial condition
2|r=0 = y be written 2(y, 7), then (11) may be

expressed in terms of the initial distribution func-
tion fy(2) thus:

| farndy. (12)

Ao
T S T
0 ) .

Here yo(7) is the solution of z[yg(7), 7] = 0, i.e.
the lower limit of the range of starting volumes
appropriate to grains that are still undissolved at
time 7.

The asymptotic solution

As it will be shown that ¢(z, 7) is asymptotically
independent of fy(y), the unknown functions are
now ¢(z, 7) and (7).

The supersaturation A(f) decreases monotonic-
ally with time, and therefore 1/2(t) does the same,
There are therefore only three possibilities for the
asymptotic behaviour of y(7) as 7-» o0, viz.
y{(7) —> 00, 0 or constant. We shall show that the
first two do not apply.

(i) () = o0 as 7 — oo, In this case, ¥3(¢) varies
more slowly than ¢. The ultimate number of grains
per unit volume is associated with a rate dz/dr > 0,
which implies

s :
f #(z, 7)x dz > const. (13)
0
The amount of matter in grain form at 7 -> 0o will
therefore be

q > cunst.efm <0,
so that (11) is not satisfied.
(ii) y(7) -0 as 7— o0, i.e. x%(#) varies more

quickly than #. At sufficiently large times the
solution of (10) in this case is

dz
&; = (2lB-1y—2=T —y(1)—2,

z=yeT—eT j eryl(+) dr'.
0

From the condition 2[yo(7), 7] = 0,

y A

yolr) = [ enr)ar = 3u(z);
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the amount of matter in grain form at ~ — o0 is

a o0
g=¢ f folyw(y ) dy < [ fol3)y g
v, lr) 3t TS0
Thus equation (12) cannot be satisfied [nor indeed
equation (11)].
. It follows that y(r) must tend asymptotically to
some constant value yg, and this we now proceed
to determine, together with the asymptotic form of
&(s, 7). We first remark that at such times as y(f)
may be put constant in equation (9), the general
solution of {9) is

$(z,7) = x(r+4)

»

2z, y)
with

b= [g¥my)ds,
0

g(z’ ?) — "‘"‘(’1 ?)»

and y an arbitrary function. Substituting this
result into (11) it will be seen that if the first part
is to be asymptotically time-independent, ¥ must
have the form

x(t+i) = A etriih),
Thus ¢(z, 7) must tend asymptotically to
Pz, 1) = eT®(2, y).
So far we have examined only the asymptotic
dependence of ¢ on 7. We now turn to the deter-

mination of y, for which we write out the asymp-
totic forms of equations (3)-(11):

a®-  do
—¢+D(S,y)'}; +'~D-—-;= 0; (15)

d

dz o ol
= o (s, 7) = (318—1)y—z, with y = const;
(16)
[+ ]
{ =« f Dz da. (17)
0

¥xamination of equation (15) shows that to satisfy
(17), ®(=, ¥) can be different from zero only in the

ultimate phase of change of z; for otherwise
@
[ @sas
0

would be logarithmically divergent, irrespective of
the detailed nature of ®, For such a solution to
exist and to be continuous and finite over the
whole range of changing 2, it would appear suffici-
ent that @ and its first derivative go to zero at some
point # = 3 and beyond this point join onto a
constant zero. Solutions of this type can formally
be found, and correspond to values of y > yq.

}

vizpd 0

Fic. 1.

However, in Section 3 it will be shown that these
solutions are unstable when the encounters be-
tween different grains are taken into account. It
turns out that the only stable solution is that for
which @(z, y) and all its derivatives go to zero at
2, so that to the right of g the solution is identic-
ally zero. Further inspection of equation (15) now
shows that the stable solution corresponds to a
value of y = yp such that the rate of change
o(z, yo) has a second order zero at z = 2. Using,
therefore, the conditions

i’(x:YD)ZO’
dv
—_— =0’
dzlg ez,
we find
27 27
Saditca . Lol s aa
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The present reemlts may be interpreted in the
light of Fig. 1, which shows ¢(z, y) as a function of
2 for various values of y. If y < yy, the representa-
tive points of all grains move to the left and dis-
appear into the origin. The grains in existence at
any given time comprise asymptotically a volume
distribution in the form of an infinitely long
“tail” to the initial distribution function, falling
off with z faster than 2-2; therefore, the total
amount of material in grain form tends to zero:

Fo1
y dy
J'G""’"

v,ir)

g~ y.(r]-oﬂor
T -0

~ instead of to a constant value. If on the other hand
v > yq, all grains to the right of a point 2z; move
. towards the point 23, with the result* that

g~ e [ fd)a(y,7) dy

a
e [ foly)za dy
~ const, & —— ¢O,
T =200

(18)

By, 1) —5gr 2 ¥ > #]
this again contradicting the conditions of the

problem. Thus only the case y = yo remains valid.
®(z, yo) has the form

: 1
Ae ¥z, 5 XS X~ 352
E{zv o)

0, 2z z=21
(19)

: ‘ﬁ{z! y0) =

in which

&(z,70) = —v(z,70) 2 0; (20)

* Even if m(z yo) = 0 for = = z; at the outset, the
encounters between grains treated in Section 3 produce
grains in the region = > 21, to which this conclusion then
applies.

= 41n(e1124 3)+ fIng—219)+

" Jg(izyn

+(1—-3a18)1— In(332-52%);  (21)
K1 300 4 Qo
g T @R (111) p 223’;'
frte
- g{'gn 70)
Higher approximations

From a general point of view, we have found
#(z, 7) and y(7) only in the zero approximation,
this being the most interesting in practice, More .
accurate expressions for these quantities are de-
rived i the appendices. Here we remark only that
in the accurate equation y = yy, all points lying to
the right of the point of contact 2o = 27 and mov-
ing to the left are found to be unable to pass across
ap; they are, 8o to speak, “caught” there with the
result that the quantity of matter

2~ oS ®
and equation (11) cannot be satisfied. The con-
clusion is that y(7) tends to yo from below:

Ye) = pll—)],  r) 0.

It follows that the “leakage’ across zg of points
approaching 2; from the right takes place more and
more slowly with the passage of time, the exact
rate depending on 2, which like y(7) itself must be
determined from equation (11) and the equation of
motion (10).

In the next approximation, ¢(2, 7) is not zero to
the right of the “blocking’ point 2o, but is some
function governed by the initial distribution func-
tion fo{z). However, as 7 — o, it is increasingly
dominated by its infinitely long tail and its total
contribution in equation (11} tends to zero. We
now see that in the region of the blocking point 2,
every initial distribution function is transformed
into a unique universal function, 29 becoming a
sink for points with 2 > 2; and a source for points
with 2 < 2o. (The latter set of points have their
sink at the origin.)
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The results summarised

The basic results of this section may now be
written out explicitly, The complete volume dis-
tribution function has the form

eV
Aem——— = a(t)p(z,70), = < %o
ﬂz' yo) - g(z’ yo)

0, z23
(22)
where
[- -]

n(z) = [ $a7)dz = A

0

(23)

is the number of grains per unit volume, and

s
g(z ) '}’ﬂ)

0;

2z, v0) =

oo

(i

0

2,01

w
- = 382-5/8¢ - (1/84-3)~7/3(3 — 51/8)-11/3 exp — (1 — §a1/3),

oo )ds = [pay)ds=1)
L]
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is the probability that a grain shall have a reduced
volume between z and z+dz. Fig. 2 shows
2*(213, y0) = p(3, y0) . (dz/d31/3), the probability
that a grain has mean dimension between 21/3 =
(R/x) and (R/x)+d(R/x), as a function of 21/3,
Further, from the fact that

dz o1 1)

— z.—y = —

ay

we find
2181

&(z,v0)

Zo
s1R-1 = f eV dz = [ygleva]% = 0,

. (25)
from which it follows that

5= 21 = x(1). (26)

2o

(24)

To obtain the distribution function relating to the
absolute dimension p of the grains, we need only
replace z in (22) by [p?/x3()] and divide by

x3(t) = #t. 27)

Inserting the original parameters, and remember-
ing that according to (26), = R3/R3, we obtain

f(RS, ) = n()p(RIR)RS,
n(t) = BQoR-3 = Zt-1, with
B =022 B=2%a)},

(28)

Rs

= %g&f.

If measurements are to be made on a section of the
material it is convenient to transform the volume
distribution function ®(z, v) into a distribution
function over the apparent dimension r of the
grains as revealed on the surface of the section.




THE KINETICS OF PRECIPITATION FROM SUPERSATURATED SOLID SOLUTIONS 41

Writing / = (r/x), this latter function is defined by
Li=yr
F(l,7)dl = O(r,7)dr; D(r,7) = —F(—-. 'r)
x \x

and is easily shown to be

27,8

FU,7) =2 f &=, ﬂ[(?)g—l]%a

i
i

(see Fig. 3).

3& 0,50}~
2lc
s

025

2

o] 05 1,0 15
Fie. 3.

The degree of supersaturation at time Z is given
by
21\ 2/3 T\1/3
AQt) = -‘-Ai = (—) Ap - (—) = At-1/3, (29)
x(1) 3 t
with
A = (@PBE D).
Range of validity of the formulae
The above formulae completely determine the
asymptotic distribution as a function of grain

dimension and time. As shown in the appendix,
they are valid when

1 €72 = (In2®)?2 = Y[In(R/R0)?, R > Ru.

In this inequality, Rg = afAg is the initial
critical radius for coalescence, corresponding to the
starting supersaturation Ag. It will be realised that

if at the outset the mean grain dimensions are of
the order of the critical size (K ~ Reo), then this
latter dimension must appear in the condition.
However, if Ko > Reo, then the first stage of
development consists in a growth of grains directly
from the solution, which goes on until the degree
of supersaturation has so fallen that the eritical
radius has caught up with the mean grain size
(R1 ~ Ry); thereafter, strictly speaking, coal-
escence supervenes, In this case, R plays the part
of an initial dimension. The critical size is governed
not only by the initial supersaturation, but also by

ﬁ’

A ————

F
Fic. 4.

the number of grain nuclei (where this can be con-
sidered a fixed quantity). Thus if there are to
begin with Tip nHCICi, and Ry > Rdl = o:on,
growth from the solution takes place until

4 _

-3 = :1'1_0 .

3 no
In this first stage,

fg = 2D(Do— 4o R3) = z.fmg[l = (g),]’

1
and this development occupies a time
t ~ Ri?/Do.

The initial processes of the second stage (coal-
escence) have a characteristic time

to ~ R%/ Do ~ 11(R1/Reo)

when, as in the situation discussed, Ry > R, i.e.
to > t1. Fig. 4 shows schematically the mean
dimensions as a function of time for this case.
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Influence of other effects

We have so far ignored a number of second-
order effects such as that of grain shape, crystalline
order, and the elastic strain that results from a
difference between the specific volumes of the
grains and the matrix. These matters are examined
in detail in a companion paper in the Journal of
Solid State Physics,'®) in which we show that the
qualitative conclusions of the present study are
unaffected.

For instance, if the grains initially have a
variety of shapes, we find that at sufficiently great
times the only shape to survive is the most favour-
able one, which gives the greatest growth rate, All
the conclusions of this Section still apply in the
asymptotic situation.

Again, if the growth of a grain produces an
elastic deformation of its surroundings, there will
be an effect on the diffusion rate. We find®) that
this may be taken into account merely by replacing
Cy, & and a by certain effective values:

2 = 28

Cp = Cue?; o' = qe?;

respectively, where

- [22], )

1
fl= !eﬂ' dz;

P (1+o)[ii,‘]c_o V(M,)z

T (+o)+2u(l—o) T\ V)"

Here &1 is the elastic energy per atom in the
grain, &y the same quantity in the surroundings;
E is Young’s modulus, and #n = Ey/Eq; o is
Poisson’s ratio; ¥ is the volume per atom in the
grain, and AV the difference between the volumes
per atom of the grain and the surrounding medium.

The possibility of order in the atomic arrange-
ment we allow for in the case where the energy
required to jump an atom from one. sublattice to
the other is rather large, so that there can be said to
exist two essentially unrelated diffusion fluxes. The
flux of particles to the grain is then treated exactly

as above, exbept that 9 is further replaced by

291 D;

gl S50
o D1+ Do

the suffixes 1 and 2 referring to the individual sub-
lattices separately. :

These second-order effects, therefore, call for
no more than a re-expression of certain parameters
in the theory. They do not alter the asymptotic
grain size distribution function or influence its
stability; our present solution, therefore, is
universal.

']

3. ENCOUNTERS BETWEEN GRAINS, IN KINETIC
APPROXIMATION

Equations (1) and (3) are characteristic resulis
of applying the “hydrodynamic” approximation to
our problem, while equation (10) expresses the
rate of volume change {dz/dr) = —g(=, 7) at any
time as a function of the mean supersaturation
A(7). These equations, however, make no allow-
ance for the concentration gradient near a grain
that is in a state of changing volume. In fact, due to
local variations of concentration the rates of
volume change are not exactly equal to the mean
value ~g,

The complication thus introduced can be over-
come, using the idea of “encounters’” between
grains. An encounter is a situation in which two or
more grains find themselves separated by a distance
that is less than their mean linear dimension, and
either unite directly or at least undergo a diffusion
interaction. The discussion may be said to in-
troduce a “kinetic approximation”,

In the treatment of Section 2, the stable
asymptotic volume distribution was derived by an
argument which revolved round the leaking of
representative points z across a blocking point
3 = 27. Now encounters have the effect of
carrying representative points across this barrier,
and so the whole problem of their influence on the
asymptotic distribution must be examined closely.
This is true even if the over-all supersaturation is
small and encounters are a rare phenomenon.

Treatment of encounters

In the ordinary physical space of the material
we take the origin of coordinates in the middle of
some chosen grain and use a reduced position
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vector § = r/R.(t). Although the centres of the
other grains are fixed in the lattice, the fact that
R,(f) — oo means that in reduced coordinates all
grains draw closer together and move radially
towards the selected one. Of course, the majority
of the grains disappear before reaching the origin
and do not have encounters.

We also employ a reduced distribution function
fand a reduced grain density 4" which refer to a
unit of volume such that {3 = 1. They are related
to the earlier quantities ¢ and #n through:

f= Ri(.t)qs = e"¢,
N = R¥t)n = en.

Since practically the whole excess of the dissolved
material eventually collects into grains such that
n ~ e7, # approaches a constant value as
¢t —> 0. It follows that the probability per unit time
of an encounter in a reduced unit of volume be-
comes time-independent, Writing the number of
encounters, per unit time per reduced volume unit,
between grains of dimension in the range 2 to
2+ dz and grains of dimension &’ as

v = f(3)p(= 2)/(2) dz,

an encounter-probability distribution  function
(=, 2') is defined.

p(%, 2') may be expressed in the form p =
w(z, &')/7e, wWith 7¢ a characteristic time for en-
counters, and @(z, 2') a reduced volume centred
around a grain 2, over which the interaction with
one of the grains 2’ may be held to occur. It is not
difficult to show that to order of magnitude,
w A 2+3, i.e. is given by the over-all reduced
volume of the two grains. 7, must be of the order
of unity, inasmuch as all the parameters are of the
order of unity both in the initial condition
2|, = 0 = %o and in the equation

dz _
A
that describes the dissolution of the lesser grain.

When two grains meet, the greater of them
absorbs the lesser, and their total volume is ap-
proximately conserved. A certain fraction of the
material may in fact go back into solution, but it
will be obvious that nothing is essentially changed
if we ignore this detail. For if the effects of en-
counters are to be allowed for, the first approximate

equality in (18) must contain a term corresponding
to the total “encounter integral”

So =730 [ wla—3, 2)f (e—)f (2) dx' —
0

/() f w(z, ')/ () d'}. (30)
o

(The factor 4 is necessary, because without it each
encounter would be reckoned twice,) Taking ad-
vantage of the fact that w(z, 2') is symmetric with
respect to a transposition of its arguments, it is
easy to show that although the number of grains
is reduced by encounters, the volume is conserved:

J. Spdzg = -1-;1} ff(z) dz J- w(z, 2')f(2) dz’;
0 0 0

Jf,z dz = 0.

The distribution function

Returning for the moment to equation (17), it
will be observed that f is dependent on the small
parameter 1/x. To bring out more clearly its
dependence on the small parameter Oy we intro-
duce the function

D= af.
Using this variable, a complete set of equations
controlling the system can now be written out with

full allowance for encounters. The equations have
the asymptotic form:

a
""(I'F(zr y)+{p 2id _je
dz

3o
4n

1-:1[} J. w(z—2', 2")P(z—3")D(2') dz’ —
9

(=) J‘ (s, 2 )(2') ds'}, (31)
0
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o]
1= [@xds, y=const. (3
U]

They may be solved by successive approximation,
using the fact that %, is small.

At this point we may usefuily notice that both
from the analysis of Section 2 and directly from
physical arguments one must expect that the new
considerations reduce y below yg. For in the terms
of the earlier discussion, grains that are carried

Fo(z) =

0,

across the barrier-point 29 by encounters have a
non-zero probability of leaking back, and this
implies ¥ < yo. We shall now show that the zero-
order approximation is equivalent to taking the
solution of (31) without the first part and with
y = v, and that this is equation (19). Indeed, the
solution of the homogeneous equation with y < yp
does not satisfy (32), as

!@xdz

is then logarithmically divergent.

If ¥ > ye, a solution may be constructed that is
continuous and has a continuous first derivative
over the whole range of 2, and which is different
from zero only for 2 < 2). g(z,7) = 0 for 2 = 21
and 29, 23 > 21, otherwise

-]
_[ibxdz
/]

will diverge at 3. In the neighbourhood of z = 2,
d(z, y) behaves like

(7 —21) 1 C0/P072:H1) = (g zy) T Npyd—H1),

} [ wla— =, 7)0o(a—2)Oo(x') dz’ — Bo(z) [ (s, ¥)Po(2) d,
0 o

so that for (3y¢)~2+ya > ¥ > ya a solution of the
type mentioned is possible; it is, however, unstable
in respect of the first term in equation (31), since
in the next higher approximation it is

eV

e [P e axy

and diverges at 2 = 23. This also shows that (19) is
the only stable solution of (15).

Taking, therefore, (19) as the zero-order solu-
tion, the encounter inteégral becomes

@z, '}’) =

300
F[ P} = Se[ Oz, y0)] = = 1H0(=), (33)

2 £ 229

z>23’o

(I)ﬂ - “bo(zi ?0)-

The method of successive approximation must
consist in refining the value of

d
— Do+ @1 = —F [Do],
dz

1= | ®zda.
!
In general this will lead to

d
— @pop+ 0y = — £ s[‘hn-l.]s
dz

[+ e]
1:j¢,,wdx,
1]

&n = g(2,v®), (34)
so that

)2 Db 4 g e¥ dz};
L= m{f'- ‘I [@o(2, v0)] ’
the convergence of

f‘bzdz
0
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requires ¢ = 0. A refined value of y is found from
the condition

The desired solution of (34) is accordingly
2z,

@(.a', 7) e

0,

z

'ﬁ —~ jg—l(zl ?0) dz.
0

(35) may be confirmed without difficulty if one
remembers that f(z, y) and its first derivative go to
zero at 3 = 2%y, so that the first equation in (34) is
satisfied over the whole range of z.

Explicitly, we have shown that in first approxi-
mation

300

=, A

P

)

30, e

These formulae take into account the fact that
where Ay <€ 1, ¢ increases sharply in the
neighbourhood of 25 and thereafter varies
smoothly, with ¥*(z, ¥) = (2, yg); in this condi-
tion A = §n($Ay/[yo)~1/2. It follows that where
2z > 3, f(2) ~ Qo. There is, of course, a smooth
transition between the two regions & < % and
2 > 20.

Vg1 J' SO, yo)]ev dz’,

2z
A j eV* So(2') de’;
%

e maa ke | e sz s

The next approximation to the distribution
function may be obtained by substituting (36) back
into the encounter integral; by iteration, the
distribution function can be determined to any
desired accuracy.

(35)

Dependence on the initial supersaturation

It is interesting to see that if in each interval
nz < 2 < (n+1)2p we retain only the terms in
the lowest power of Oy, the solution may be written

(@) = Qsin - (). (37)

2 < 3

(36)

20 < 3% <25

z‘>2:ro

¢(2) in (37) can be determined within each interval ;
for instance, in the range 0 < z < 23p we deter-
mined it above, Physically, this type of dependence
on Qg may be traced to the fact that the number of
grains of magnitude 2 is continually augmented by
the agglomeration of smaller grains having total
volume 25-+2p = 3.

The form of (37) makes it apparent that to an




46 : I. M. LIFSHITZ and V. V., SLYOZOV

order of accuracy Qy, the principal contribution in
equation (34a) comes from the distribution func-
tion in the region z < 2. Using this fact, we can

determine the asymptotic dependence of Ay on Qg
as follows:
3Q0
4

1=

Za
2
771460 f Vo (9)
2

Now because y = yo—Ay differs little from yq,
(38) may be rewritten

3Q0

1= 771404 j v )dz, (39)

4. THE EFFECT OF CRYSTAL BOUNDARIES,
AND THE THEORY OF SINTERING

The supersaturated crystal studied in Sections
1-3 was by implication unrestricted in size, and
therefore contained no gross diffusion currents on
g macroscopic scale. If we now remove the con-
dition of over-all spatial uniformity, the problem is
altered. The most important practical example of
this more complicated situation is provided by an
interphase boundary between the solution and
some other phase, which might be, for instance, a
crystal of pure solute, or more generally perhaps a
crystal of the same phase whose precipitation is
being-¢onsidered. At such a boundary, the super-
saturation A|; - ¢ = 0 and macroscopic diffusion
currents exist,

Vacancies.

An important special case is that of a crystal
supersaturated with vacancies, in which our dis-
cussion can be applied to the vacancies as solute
“atoms” which cluster together to form cavities
playing the part of eur grains. If such a crystal has

free surface, two eompeting processes will take
place. Far from the surface, cavities will grow and
coalesce according to the scheme developed in the
earlier sections; on the other hand, near the border
the cavities will tend to dissolve and the vacancies
to diffuse to the surface. (The surface can be re-
garded as a cavity of infinite radius.) This dis-
lodgment of cavities is also connected with the
phenomenon of sintering.

In the remainder of this section we often refer
expressly to the particular example of vacancy
diffusion, although it is to be understood that the
results are equally applicable to the mibre general
case of a supersaturated solution.

Alowance for the crystal surface

Consider the situation in a half-space. Equation
(3) for the grain growth and the distribution func-
tion (4) will still apply, and so will their equivalents
(9) and (10). However, the conservation law
Q¢ = A+¢ that underlies equations (5) and (12)
must be replaced by a diffusion equation. Each
point of coordinate / is now a source or sink of
intensity &g/ot, and ¢ is now g(/, ) because the
cavities are on the whole dissolving. The complete
set of equations is properly

-—( +o =9,

Ao =10, (41
e fi=o (41)

g = wx¥(r) [ fo(s)aly, 7) dy,
Y,l7)
2
_—

Tagy’

in which z(y, ?) satisfies (10) and itself determines
the form of A(/, 7).

It will be remembered from Section 2 that the
analysis led to a unique law for the decay of
supersaturation [equation (29)]:

= A1,

2[3’0(3")’ 7] =0,

This means in principle that if the asymptotic fall
of the supersaturation were to be in some way
retarded, however slightly, a process of limitless
grain growth would set in and ¢ co. Alter-
natively, an indefinitely small artificial increase in
the rate of decay below the #3/3 law must fairly
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(39) gives

quickly result in the total dissolution of all grains
(g = 0). The mechanism of sintering is obviously
related to this fact, and at least asymptotically
must admit of the following discussion.

Reduction of the problem
There are, asymptotically, three fairly sharply
defined regions in a supersaturated half-space:

(a) the farthest from the boundary, in a range
I3 < I < oo, Here the influence of the boundary is
negligible, and as with an infinite medium the
supersaturation is given by (29);

(b) a region &y < I < /p in which the cavities
(grains) have a general tendency to dissolve; and

(c) the region 0 < / < / in which there are no
cavities (grains) at all, but an over-all diffusion of
vacancies to the side.

The limiting distances ;i(¢) and K(f) are situated
well inside the crystal, and the skin layer that is
free from cavities thickens continually.

Strictly speaking, equations (41) and (42) should
be applied only to the intermediate region
iy < 1 < lp. However, it will be shown below that
(la—h)/l € 1. For a first approximation we shall
accordingly, consider an average depth {(i) =
3(h+13), and by imposing some suitable boundary
condition at { shall evaluate its magnitude and the
vacancy concentration in the surface layer
0 < I < (). For this purpose the intermediate
region may effectively be replaced by a source of
strength Qo(dl/dt) at {, beyond which all the excess
vacancies may be said to be in the cavities. Then
we may say:

A _PA
—_—=9—; (43)
at o
Bico=0,  Almgp=At"15
o az
P— = Qo—. +4
BI 1= QO df ( )

A solution of (38) is now required subject to the
condition A|; = p = 0. On seeking it in the form

0

A= an(t)lv,

n=1

Prau(?) 1d
e 2{2::+1)I ~2a

Before imposing the other two boundary condi-
tions it is helpful to notice that «;(¢) is the flux of
particles at the surface:

u_l(t) = G —

Asymptotically, therefore, it must be a decreasing
function of time, which suggests using the
asymptotic form ay(f) = B/ts, (s > 0). Application
of (42) now yields

s(s+1) ... (s+n)
;o nz.-o( he (9:) @n+1) Sl
As will appear shortly, [23(2) is o(2), that is to say

()t ——> 0.

it follows that at large ¢ the principal term in (45)
is that with n = 0;

Bl
A=—=all)l (46)

Substituting now (41) into (39) we find
al = A1,

and therefore
R Dat)L/3
{= 31’*(%)2’39”8 = m( Q},L ;
A= )‘t-ua:/; e *ﬂQ&B«IR}( _@g)-—%}-’!;
m = S =2, )

Orders of magnitude
It remains to determine the width of the inter-
mediate region. By (43),
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where Tg is the time required to dissolve the
largest grain to be found on the boundary at time 2.
Now Rmax = $Re, and R® ~ #2, A simple calcula-
tion shows that in the equation of motion (10),
vy = 3(dt/dx3) < 2% < y¢. The largest grain has
2o = 22, and we deduce that it dissolves in a time
Tq == it. Thus

8 1
—g' ~ 6.
By the same token,
8 1
x>’ “9)
and
| EE = : >1, (50)
L 301

with L the mean distance bgtween grains. Con-
sequently
8> L>R.

Although, therefore, the intermediate region is
much thinner than the surface layer its width is
considerably greater than both the mean cavity
size and the mean distance between cavities
(grains). The assumptions we made for equations
(43) and (44) are therefore justified post facto.

The characteristic times associated with equa-
tion (47) are the same as those for the asymptotic
equations describing coalescence in an infinite
medium.

A further restriction

If the discussion for a half-space is now taken
over to a specimen of finite size, as of course in
practice, it must be realized that there is another
condition to satisfy. For example, consider 2 plate-
shaped layer of thickness a. Three characteristic
times may be defined: that for the escape of vac-
ancies to the surface, Ty ~ ¢%/%; that for the
growth of cavities from solution, T3 ~ R1%/2A¢ (as
shown in Section 2); and the characteristic time for
coalescence, Te ~ R3/Pa. For our picture to
apply, To must necessarily be much greater than
Te, so that a® > R3/a; the inequality is written in
this form because the mean cavity dimensions must
be those appropriate to the situation after coal-
escence has set in, i.e. R > R;. In the opposite

limiting case, when Ty € T3, the vacancies are lost
to the surface before cavities can be formed with
any appreciable probability. In the intermediate
situation where a2 ~ R3/a, the exact course of
events will be heavily influenced by the initial
distribution function and is not amenable to a
general discussion.

5. SUMMARY

1. An investigation is made of the way in which,
in a supersaturated solid solution, grains of a new
phase grow as the result of diffusion processes.
The final stage of the process is examined in
particular. A critical dimension x ig determined
such that large grains having dimension p > x
grow at the expense of small ones with p < x.

2. Atlarge times # the critical dimension x tends
asymptotically to depend on time as {13, The
degree of supersaturation correspondingly falls
as 13 and the number of grains as 1.

3. A detailed picture of the law of grain growth
is provided by the distribution function of grain
dimensions. With the passage of time this distri-
bution approaches a certain universal function
[equations (22-24)] irrespective of the initial
distribution. This function is remarkable in that the
tail of the distribution towards infinity has disap-
peared, leaving a maximum grain size one-and-a-
half times the critical dimension (pmax = $x).

4, The effects of anisotropy and of the non-
spherical nature of the original grain nuclei, like
the effect of internal strain set up during the decay
of the supersaturated solution, can all be taken
into account simply by the use of “‘effective’”
parameters in place of certain quantities in the
expression for the critical size, The form of the
distribution function is unaffected by these con-
siderations,

5. The process herein demonstrated for the
coalescence of grains can also be applied to the
study of “‘crust sintering”. Each microscopic
cavity in a specimen before sintering may be
regarded as a crystal composed of vacancies. The
cavities near the surface tend to dissolve as a
result of their vacancies moving outwards to the
boundary of the specimen, while in the depth of
the material a process of coalescence goes forward
essentially as in an infinite medium. The thickness
of the “‘crust” increases with time as { ~ 7173
[equation (47)].

- .._*.e_ --1




R

THE KINETICS OF PRECIPITATION FROM SUPERSATURATED SOLID SOLUTIONS 49

APPENDIX 1. AN ACCURATE EXPRESSION FOR
THE ASYMPTOTIC BEHAVIOUR OF ¥(t)

As shown in Section 2, y(7) <y, so that we may

‘write it
(1) = yo[l —€(7)].
«(r) may be determined from the equation of motion

(10):
dz

— = (B-Ip(1)—2
dr

= —(31/3—32)%(21/3+3)—dyoe¥(7).

‘The latter term on the right has been so written because
it is important only near # = zo = 4Z. Put now for con-
venience = = y® Near 2 =320 or u=up =% the
equation becomes

du %
— = —ju— FP— i),
dr
Changing variable to y = (z—%)/e(7) we may write this:

gl
3 ay 2343
2 edr ¥ 2 dar
For the same reasons as those given in the text, the
existence of a stable solution requires that in this ap-
proximation there should be a “blocking’’ point on the =

axis and that the rate of change of = should have a second
order zero at this point. This yields

d(le) 2 %) 3
dr ; ol -

472
from which

T —> 03

3

dy
E?ln__* r—#v(3)P

Evidently dy/dr does have a second order zero at the
blocking point ¥ = yg = §4/3.
It is now apparent that at sufficiently great times,

A7) = vl —=37).

The expression for the blocking point has been refined to

a8 = 34V (3)e(r) = 3+

By continuing with this procedure, an asymptotically
agcurate expansion for y(7) can be derived:

A7) = 3"53 = ”“{ 42 [H (1n]-r)2(1+ )]}

and correspondingly

a8 = -3:[1+ (1+ )]

4(In 22

The expansions may be broken off at any point at which
the succeeding term is sufficiently small; in particular,
the basic approximations ¥(7) = yo and x® = (4/g)t are
justified if
72 = (Inx®)2 = (In %t)z > 1.

The fractional correction to yo decreases swiftly with
time, so that the first approximation becomes more and
more accurate. It is a rather curious fact that the be-

haviour of the solution near the blocking point neverthe-
less continues to depend on just this correction.

APPENDIX 2. THE DISTRIBUTION FUNCTION
IN THE REGION z > zp, AND IN THE
NEIGHBOURHOOD OF zo

(i) Introduce the variable

= fg(z)

and notice that as 2 — o0, g(2) - 2z and z — ¥, ie.
2x% — g7t¥, The form of the distribution function to the
right of 2o must be related to the initial distribution

Jfo(p®) over pB:
x(m+9) — fo(p®)e(p®) — fo(zx3)2a®.

This being the case, we may determine the distribution
function for z > z¢ from

x(m+4) = foleT¥)emt?,

or,

$(z,7)

= fo(e*V)ertVg1(3).

Because
J’ Jolz)z dx
0

exists, fo(z) falls off certainly faster than 22, and in fact
normally is exponential in 2. It follows that in the zero-
order approximation, the volume probability density to
the right of 29 is zero. For

P(z, 1-) - ;é._(._(_):)_ * fo(ef+\fr)g2ff+|ﬂg—yﬁ‘g—l(z)
= fo(p)p%Vg~Y(2) =0

(= 8”"—;:;" o0).

Of course, the probability density is non-zero to the left
of zo.
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(ii) To derive a more accurate distribution function in
the vicinity of 2 = 3¢ = 47

Write again for convenience z = 29, Near 2o the
equation of continuity may be expressed as

¢
—51_-—+E¢g(u) = 0;

gu) = —§u—3P—1¥),
1) = §r2.
Chenging the variable to
¥y = =3
$(u, 7) du = f(y,In7)dy
of é

e %-fs'(y) =0,

&) = (y—1>
‘The solution must be of the form

faf[ln(-pgfr'm 43']],
‘We now observe that

yields

®
T+ f Y u) du > 7 el ay
0

£ > gy e S,
given that 1 » [#—2 > €¥(7). In fact

v+ [0 du = 7{1 - (-1
0

= 1‘{1 -.y"l) = relauyndy,

Moreover at the same point # = /% the original distri-
bution function must be given in zero order approxima-
tion by

f._.

A
= W exp —{r—[§(z— I}

from which we at once obtain
f= Ag—l(-y)f eJ o dy g—7 exp fg—ddy,
(iii) To show that as T > @, the integral contribution

from the neighbourhood of z¢ becomes negligibly small.
The quantity of material accounted for in this region is

Zotd
qs = x° f bz dx = zge™ny(7);
2,2
FS ]
ar)= [ $ds, 18> )
z,~8

Now from the equation of continuity,

z,+.!

dity
—— = (2, T)g(z”

= Ae=7 e~Wt—8) = fo7 g8/2 G-m'

because to the right of 29 the distribution is in the form
of an infinitely long drawn out tsil, which may be
ignored. Thus

ng = Ae T g~ (3/2) 8141 B,
gy = A e @281 Ber,

Evidently B must be zero, since matter must be con-
served. Consequently the amount of material represented
in the vicinity of zpas r — 00 is

= ~(3/8) &-1/s e 1
ge=Ae e 0
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