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ABSTRACT

The coherence of a laser signal propagating through a turbid me-
dium deteriorates due to scattering, affecting the performance of un-
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derwater coherent systems. The loss in coherence due to the scatter-
ing has been evaluated from the autocorrelation function obtained
with an interoferometer followed by digital signal processing. © 1993
John Wiley & Sons, Inc.

l. INTRODUCTION

The coherence properties of narrow spectral linewidth laser
signals have proved to be of great importance in imaging,
communications, optical sensing, and measurements. How-
ever, for applications in a medium with suspended particles,
such as ocean waters, the coherence characteristics change
due to the scattering of light, impairing the performance of
optical systems. Image processing techniques based on the
difference between the temporal coherence of the unscattered
laser signal and the strong background illumination including
scattered signal can achieve a large degree of image enhance-
ment [1].

The laser beam in line-of-sight propagation is always a
mixture of the incident and scattered light. The total field is
almost coherent for a short distance from the transmitter since
scattering is significant. At a greater distance, however, the
total field becomes less coherent due to scattering, although
the field collected at a narrow receiving angle is predominantly
coherent. At a large distance, when the main beam has been
significantly attenuated due to scattering and absorption, the
total field approaches total incoherence. Both singly and mul-
tiply scattered radiation is of importance for optical systems
in which the transmitter and receiver are widely separated.
The actual amount of received forward-scattered power de-
pends on the properties of the medium, receiver area, angular
field of view, and the beam characteristics.

To assist in characterizing the coherence properties of a
laser beam, the instantaneous scattered field can be regarded
as the superposition of waves scattered from the individual
scattering centers. This scattered field therefore fluctuates in
response to the motion of the scatterers. The detection
method used in a particular experiment depends on the time

scale of these fluctuations. Filter methods are used
relatively rapid molecular dynamic processes, that i
that occur on a time scale faster than about 10~ sec. O
mixing or heterodyning methods are usually used
cesses that occur on time scales slower than about 10
[2]. The scattered signal from particles of size com
or larger than the laser signal wavelength shows a
effect due to the Brownian motion of the particles an
bulence in ocean waters. In the study reported in this ¢
the coherence times of the unscattered laser signal along
the scattered field, and that of the scattered field onl

been evaluated from the autocorrelation function, ol
using a Mach-Zehnder interferometer followed by di
nal processing. The coherence time of the laser beam
been measured in air using a Michelson interferometer

Il. EXPERIMENTAL PROCEDURE

The modified Mach-Zehnder interferometric system.
ranged as shown in Figure 1. The reference beam is
by () and propagates through air. The second (affected
propagates through a 1.2-m water path with suspen
ticles. As the affected team exits the tank, it conta
parts: (1) a central beam without any appreciable §
and (ii) the scattered signal around this central beam
first experiment both the parts (that is, the central unsca
beam plus the scattered light up to angle ¥ = 2.4°¢
optical axis) are collected by a lense and heterodyne
the reference beam using a photomultiplier tube that
current output signal proportional to the light inten
the second experiment, the central beam is blocked a
the scattered light is collected and heterodyned with {
erence beam. '

The heterodyned output current is connected to a
oscilloscope that provides a convenient means for dij
the current signal. The signal is digitized into 1028
points at 8-bit resolution and is stored in the oscil

Pin-hole

BS1 . g % Mirror
He Ne Laser = j /
Water Tank  Affected Beam
A-O Modulator
Photomultiplier
Tube
Mirror
Reference Beam
BS2
Signal
Processing
System

Figure 1 Mach-Zehnder interferometer
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y. The data from the digital oscilloscope are trans-
1o another computer for further signal processing.

TERMINATION OF COHERENCE TIME

the interferometric system the output current of the
nultiplier can be expressed as

Ef + E3 + 2E\E; cos[(Q — wp)t
+0,() - 0,(], (1)

 E; and E, are the field amplitudes of the reference
and the affected beam, respectively, ®,, and ©, are the
m phase shifts of the affected and reference beams,
gtively, and wj, is the random frequency shift due to the
er effect introduced by the water path [4]. The esti-
‘autocorrelation function is

R(7) = (gt + 7)ig (1)), (2)

e the angular brackets indicate time averaging. The es-
ed autocovariance from Eq. (2) is

C(1) = (it + Dif(0) — 3, (3)

€3 is the average value of the square of the current i (1)
the time interval of interest.

i¢ random Doppler shift due to turbulence and the
inian motion of the suspended particles, wy, is assumed
ve a Gaussian probability density distribution with vari-
o°. The variance o’ is a function of wavelength of ra-
on, path length, medium quality, temperature, and tur-
ce conditions, etc. Also in Eq. (1), assuming ©, =
(), it can be shown that the autocovariance function is
and is expressed as

()

E} - Ej cos(Q7) exp(—o272/2)
C.(7) cos({27), (4)

e C,(7) is the envelope of C(7).
ie coherence time is defined as [2]

_ [~ C()
Tc = J;] C.(0) dr. (3)

ituting Eq. (4) into Eq. (5) and simplifying.

7= 1250

ue of the covariance function envelope C,(7) at 7. is
C(t = 1.250) = 0.456C,(0). (6)

shows that the coherence time 7. corresponds to the time
the envelope of the covariance function is 0.456 of
gak value C(7 = 0). To compute C(7) from experimental
esof iy over a time T, i, is sampled and stored as N discrete
es. Thus, the sampling interval is At = T/N, and the
ple time can be expressed as t = n At, where n is an
er index ranging from 0 to N — 1. The discrete corre-
n parameter 7 can similarly be expressed as k At, where
“an integer index. With this notation and converting

the integral to a sum, the autocorrelation function in discrete
form is

N-1
R(k Ar) = %{ z ig(n At) - ig(n At + k Ar). (7

n=0

The corresponding autocovariance function in discrete
form is

N-1
C(k At) = R(k A1) — % > i¥(n At). (8)

n=0

Using this equation the covariance function is computed and
graphed. The coherence time 7. is computed based on Eq.
(6) using an extrapolation technique.

IV. EXPERIMENTAL DATA AND RESULTS

Measurements of the heterodyned output current for deter-
mining the autocorrelation function were made with 0 = 80
MHz, T = 20 nsec, and N = 1028. The index & in Eq. (8)
is arbitrary but must be chosen such that k., At < N Ar or
knae < N. A value of K = 100 was used. The calculated
autocorrelation functions for the scattered signal only, and
the scattered field plus the central laser beam, are graphed
in Figures 2(a) and 3(a), respectively. The corresponding au-
tocovariance functions are graphed in Figures 2(b) and 3(b).
The peak value of autocovariance function, C(0), is the cal-
culated value for k = 0. This value is multiplied by 0.456 to
establish the value at which 7. is to be determined. Since the
time corresponding to 0.456C(0) may not align with a k At,
it is necessary to perform an interpolation between the two
nearest k At points. The computed values of coherence time
7. and length /. are tabulated in Table 1. For comparison the

R(kat)

1.00 =T

0.00 50.00 100.00 150.00 200.00

k At (nano sec.)

(b) ©.16

0.14

0.12
0.10
0.08

Clkat)

0.06 =
0.04
0.02

0.00 = e
0.00

-0.02 — T
5.00 10.00 15.00 20.00

k At (nano sec.)

Figure 2 (a) Autocorrelation function versus k At for scattered
signal only. Signal duration T = 20 usec, At = 2 nsec. (b) Auto-
covariance function versus k At for scattered signal only. Signal du-
ration T = 20 usec, Ar = 2 nsec
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Figure 3 (a) Autocorrelation function versus k Ar(7) for scattered
signal plus direct laser beam. Signal duration T = 20 usec, At = 2
nsec. (b) Autocovariance function versus k At(7) for scattered signal
plus direct laser beam. Signal duration T = 20 usec, At = 2 nsec

TABLE 1 Coherence Time and Coherence Length

Laser Signal

o Direct (Michelson

nly "

Seatters Beamscattering Interferometer)

cattering

7, (nsec) . (cm) 7. (nsec) [ (cm) 7, (nsec) 1. (cm)
1.6 48 1.9 57 =9.0 =270.0

coherence length of the laser measured with a Michelson in-
terferometer in the air is also given in Table 1.

V. CONCLUSIONS

In this article an interferometric technique followed by digital
signal processing has been used to determine the loss in co-
herence due to scattering in simulated ocean waters. Com-
paring the results tabulated in Table 1, it is noted that the
coherence length of the laser signal in air as measured using
a Michelson interferometer is on the order of 270 cm. In a
water medium, the coherence length of the scattered signal
reduces to =48 cm, whereas the coherence length of scattered
plus unscattered signal is between these two values. This is
to be expected, since the direct unscattered beam contributes
to the collected light and has greater coherence length.
Clearly, scattering through water has a significant effect on
coherence length. Therefore, the design of underwater co-
herent systems for imaging and other applications needs to
consider the loss in coherence.
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