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In this paper we attempt to motivate, define, and resolve the question “What is the
effect of dissipation on quantum tunnelling?” The question is of particular interest in
the context of tunnelling of a macroscopic variable such as the trapped flux in a
SQUID, where we show that it is crucial to resolve it in the context of tests of the
validity of quantum mechanics at the macroscopic level, but it is also relevant to
various microscopic tunnelling situations. We define the question as follows: Suppose
we have a system, which has a metastable minimum and whose quasiclassical
equation of motion in the region near the minimum is given by

MG + g +8V/0q = Feu(0),

where the potential V(g) and friction coefficient # are regarded as experimentally
determined quantities (and the energy dissipated irreversibly per unit time is simply
17¢*). How does the tunnelling behaviour of such a system at 7 = 0 differ from that of
one obeying a similar equation, with the same potential ¥(¢) and mass M, but with
friction coefficient # equal to zero?

We start by arguing that provided any one degree of freedom of the environment is
only weakly perturbed by the motion of the system, then at 7=0 it is always
possible, without any loss of generality, to represent the environment as a bath of
harmonic oscillators; moreover, if the damped equation of motion is indeed of the
above form, then (barring, possibly, certain apparently pathological cases) it is
possible to choose the system-bath coupling to be linear in the (suitably chosen)
oscillator coordinates and a function only of the system coordinate (i.e., of the form
> ;Fi(g) x;). In particular this is always possible for the important case of adiabatic
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coupling. In certain cases (which we refer to as.cases of “strictly linear” dissipation)
it is possible further to restrict F;(g) to be linear in g. In addition to this linear
coupling, the interaction may also introduce an extra term (‘‘counterterm™) in the
effective potential V{g) felt by the system, which is just such as to cancel unphysical
frequency shifts, etc., produced by the linear term. We discuss this point, which we
believe to have caused some confusion in the recent literature, in some detail; in
particular, we show that such a counterterm arises automatically both when the
dissipative coupling is of the electromagnetic type realised, e.g., in a SQUID and
when it is the correction to the zeroth-order adiabatic (Born—Oppenheimer)
description.

We next apply a variant of the “instanton” technique well known in particle
physics to calculate the zero-temperature tunnelling rate out of the metastable
minimum. By integrating out the environment variables explicitly, we can represent
this rate in the form of a functional integral involving only the system variable g(7)
but with the effective action containing an interaction term which is nonlocal in
(imaginary) “time.” (The method is checked by applying it to the exactly soluble
problem of a damped harmonic oscillator). As in the nondissipative case, the result
for the tunnelling rate I can be written, in the WKB limit, in the form

I'=A exp —B/h,

where B is the effective action evaluated along the “quasiclassical” path g(r) in the
inverted potential, and A represents the effect of fluctuations around this path. The
effect of dissipation is always to suppress the tunnelling, and in the strictly linear case
the values of A and B are unique functions, for a given V{(g), of the phenomenological
dissipative coefficient 7. In the more general case the corresponding function of #
gives a lower limit on the tunnelling rate. We carry out a quantitative analysis of the
general formula for the physically important case of strictly linear dissipation in a
cubically anharmonic potential; in this case we show that the correction to the
“undamped”™ exponent B can be written

AB = ®(a) nq;, o = n/2Mw,,

where 7 is the phenomenological friction coefficient, w, the frequency of small
oscillations around the metastable minimum, and g, the distance the (undamped)
system would have to travel “under the barrier.” The dimensionless factor @(a) is
always of order 1; we find its exact forms in the limit of weak and strong damping
and put stringent limits on it for the intermediate case. We also obtain the form of the
prefactor A in the strong-damping limit, where it is proportional to a**w,, and give a
prescription for calculating it more generally. We generalize our results to the case of
nonlinear and frequency-dependent friction. We discuss the limits of validity of our
results and some related problems concerning quantum coherence in a dissipative
system, and outline possible future lines of development.
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1. INTRODUCTION

In discussions of the conceptual foundations of quantum mechanics, a crucial role
is played by the so-called “quantum measurement paradox”—formulated in its most
spectacular and best-known form by Schrédinger [1] as the Cat Paradox.' This
paradox arises because it is the general belief that there is no natural limitation to the
realm of validity of quantum mechanics, so that it should in principle describe the
behaviour of macroscopic bodies such as Geiger counters and cats as well as that of
electrons and atoms. Yet it is a curious fact that if one asks what is the experimental
evidence that quantum mechanics does apply on the scale of macroscopic bodies, and
in particular that linear superpositions of states corresponding to macroscopically
different properties can actually exist in nature, then at least until very recently the
answer was that there was none. Thus, the most fundamental problem of modern
physics, over which philosophers as well as physicists have puzzled for decades,
actually rests on an extrapolation which is largely experimentally untested.

Suppose then that we wish to look for ways of testing this extrapolation. An
obvious way to start off is to introduce the idea of a macroscopic coordinate. There
are many macroscopic systems in nature for which it is possible to separate off one
or more coordinates which are recognizably “macroscopic” (cf. below), such as the
centre-of-mass coordinate, and which moreover have the property that they are only
weakly coupled to the other, microscopic degrees of freedom. For example, the
centre-of-mass coordinate of a body falling freely in a uniform gravitational field is
completely decoupled from the relative coordinates of the atoms composing it. In
other cases, although the original coupling may be quite strong, the microscopic coor-
dinates respond adiabatically to the macroscopic motion and hence the effective
coupling which results is weak. In either case, to a first approximation the
Lagrangian may be separated into a term referring only to the macroscopic coor-
dinate X and the corresponding velocity and another term, possibly adiabatically
dependent on X, which refers to the microscopic coordinates and velocities. If now we
make the extrapolation mentioned above, we can quantize the motion of X in the
usual way and in fact write down for it a standard (closed) Schrddinger equation

oY Rt 'Y

i (X, 0) = = 5o o + VX, 1) WX 1) (L.1)

Here the macroscopic variable X need not necessarily have the significance of a
geometrical coordinate, nor the parameter M that of a physical mass: cf. below. Now,
in general, “appreciably” different values of X will correspond to macroscopically
distinguishable states of the system; so, if the wave functions ¥(X, ¢) which occur

' The argument of the first few paragraphs is developed in greater detail in a previous paper by one of
us [2]. This paper discusses, inter alia, the widespread misconception that the validity of quantum
mechanics on the macroscopic scale (in the sense required to generate the Cat paradox) is demonstrated
by the so-called “macroscopic quantum phenomena” (Josephson effect, flux quantization, etc.) seen in
superconductors and superfluids.
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under physically attainable conditions extend over “appreciable” regions of X, we
should in principle expect to be able to observe interference effects between
macroscopically distinguishable states and hence to confirm (or refute) our
extrapolation of quantum mechanics.

An immediate objection is that interference effects are typically associated with
single quantum states and are blurred out by any thermal effects which populate
more than one or two energy eigenstates appreciably; but since for a macroscopic
system the spacing of energy levels is very tiny, there will be a large amount of
thermal disorder even at the lowest temperatures conceivably attainable, and hence
we shall never be able to see macroscopic interference effects in the sense envisaged.
This objection is not correct. It is of course true that if we consider a// the energy
levels of a macroscopic system, they will usually be very closely spaced; however, to
the extent that we can neglect the coupling between the macroscopic and microscopic
degrees of freedom, the wave function ¥(X, ¢) simply multiplies the wave function of
the microscopic coordinates, so that it is only the spacing of the levels described by
(1.1) which is relevant. This need not necessarily be small, even for a macroscopic
system; for example, if X is not a geometrical coordinate but the flux through a
simple LC-circuit, then the level spacing is equal to 4w, where w = (LC)™"? is the
resonant frequency of the circuit. With currently attainable circuit parameters it is
not difficult to make this spacing large compared to the thermal energy at readily
attainable temperature, so that the circuit should certainly be in its quantum-
mechanical groundstate. This argument relies crucially on the assumption that we can
to a first approximation neglect the coupling between the macroscopic and
microscopic degrees of freedom; the validity of this approximation, and the
corrections to it, are in a sense just the subject of this paper.

Suppose then that we have our macroscopic system at a low enough temperature to
neglect thermal blurring of interference effects, how are we to look for such effects?
That is, how can we verify that the system is behaving in a characteristically
quantum-mechanical manner? For reasons given elsewhere |2]| we believe that the
most promising phenomenon to look for is that of quantum tunnelling. Here it is
necessary to make an important distinction. The phenomenon we shall be considering
in this paper is the macroscopic analog of the tunnelling of an alpha particle out of a
nucleus, or of an electron out of an atom in a strong electric field. It is not the
macroscopic analog of phenomena such as the inversion resonance of the ammonia
molecule, the Josephson effect in superconductors or Bloch waves in a metal, which
involve the system tunnelling coherently between two or more degenerate or nearly
degenerate potential minima. From our point of view the crucial difference is that in
the former type of phenomenon the phase relationship between the amplitudes for
being on different sides of the barrier(s) can be neglected, since once outside the
barrier the system never comes back and “interferes with itself;” for the latter type of
phenomenon, on the contrary, it is crucial to take it into account. To avoid confusion

? Although even this may not be quite as obvious as it seems, for example, for a superconductor very
far below its transition temperature {3].
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we shall refer to the latter type of phenomenon as quantum coherence; the subject of
this paper, quantum tunnelling, refers to the case where a system decays from a
metastable state into a continuum. Although the techniques developed in this paper
are quite general and are applicable equally to both types of phenomenon, we believe
that in the context of the verification of quantum mechanics on the macroscopic scale
the experimental relevance of the two is quite different. In fact, in our opinion the
observation of quantum tunnelling on the macroscopic scale is, in principle at least,
feasible with existing cryogenic and experimental techniques (and has indeed been
reported by several groups—see below); by contrast, the observation of quantum
coherence on the macroscopic scale seems probably at best a long-term prospect. A
discussion of the reasons for this belief, and of the relation between the two types of
phenomenon, has been given elsewhere |2]; see also the brief remarks in Section 6 of
the present paper.

In looking for a suitable system in which to try to observe macroscopic quantum
tunnelling we should impose a number of desiderata. First, the system in question
must have a metastable state which is separated from a more stable continuum (or
near-continuum: see Section 6) of states by a free energy barrier. Moreover, the
points at which the system “enters” and “exits from™ the barrier should correspond to
macroscopically distinguishable® states. (There are of course many common
situations (e.g., the a-decay of a nucleus within a Geiger counter) where a quantum
tunnelling event leads to a macroscopic change in the system, but we should not want
to call such cases examples of macroscopic quantum tunnelling). Second, the
frequency of small oscillations around the equilibrium position w, should be fairly
high, in order that it should be possible to satisfy the condition hw,> kT with
attainable temperatures T this is because we wish to be able to identify any tran-
sitions which occur as unambiguously due to quantum tunnelling rather than thermal
nucleation. Since the thermal escape rate is proportional to w, exp —V/k, T (with V,
the barrier height) while the quantum tunnelling rate can be written (see Section 2) in
the form const. exp —aV,/hw, with a2 1, the above criterion follows. Third, the
barrier height should not be too great, otherwise the lifetime of the metastable state
will be unobservably long; if, for example, we assume w,~ 10" sec ™', then Vy/k,
should not be more than about 40°K (which is a rather small energy even on the
atomic scale!) Fourth, it is highly desirable that the essential parameters, in particular
the barrier height, should be experimentally variable, that there should be a direct
means of registering when a transition has occurred and that noise in the system
studied should be low. Finally, it is very important that one should be able to
measure the parameters of the system by experiments describable in purely classical
terms.

Of the various possible physical systems which might be proposed as candidates,
the one which satisfies the above conditions best is probably an (rf’) superconducting

* We will not enter here into the vexed question of what precisely one means by “macroscopically

distinguishable™—a concept which in any case has no sharp borderline; in any specific practical case we
feel this is unlikely to cause difficulty.
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interference device (SQUID), that is, a superconducting ring interrupted by a
Josephson junction (see, e.g., [4]). Indeed, it was suggested many years ago [5] that
quantum tunnelling would be the dominant transition mechanism in such a system at
sufficiently low temperature. In this case, the macroscopic variable of interest is the
flux @ trapped in the ring. The “potential energy”™ of such a system is described to a
first approximation by the expression (see, e.g., [6])

(-9,

V) ="

— 1, ®,cos(2nP/D,). (1.2)

Here L is the self-inductance of the ring, 7 the critical current of the Josephson
junction, @, = h/2e the flux quantum and @, the externally imposed flux through the
ring, which in the present context we shall treat as a c-number parameter controllable
at will by the experimenter. The first term is the electromagnetic energy arising from
the finite self-inductance of the ring, while the second is the phase-locking energy
associated with the junction. If the parameters satisfy the condition 2zLI /&, > 1,
then the curve U(®) has at least one metastable minimum for at least some values of
®,, and by suitable manipulation of @, it is possible to “trap™ the SQUID in this
metastable state; by further variation of @, the metastable minimum can be made
unstable. Indeed, the normal mode of operation [4] of a standard r/ SQUID involves
repeated trapping and release of the flux by means of variation of @, . In addition to
the “potential energy” term (1.2), there is also in the Hamiltonian a “kinetic energy™
of the form §C<I'>2 which is due to the finite capacitance C of the Josephson junction:
it is evident that C plays the role of the particle mass in the dynamical problem.
Since the problem is now completely isomorphic to that of a simple one-dimensional
mechanical system, we expect there to exist a macroscopic wave function ¥(®) for
the trapped flux governed by the Schrodinger equation (1.1) (with the substitutions
X @, V(X)- U(®P), M- C). In particular, we expect quantum tunnelling to occur
out of the metastable potential walls. The rate of such tunnelling can be calculated (at
first sight at least) by the standard WKB approximation |5, 7] and evidently depends
strongly on the parameters L, I., and (especially) C; for the values of these
parameters typical of a strongly hysteretic rf SQUID we expect the rate to be
appreciable only when @, is close to the value needed to make the metastable state
classically unstable (see [7]). It should be noted that under these conditions the shape
of the potential in the region where tunnelling occurs is well represented by a
quadratic-plus-cubic form (ax” —fx?); this is why, in carrying out quantitative
analyses in this paper, we have concentrated on this form of potential. The width of
the barrier through which the system has to tunnel is then considerably less than a
flux quantum (0 - 1, might be typical) but still large enough for the entry and exit
points to correspond to macroscopically distinguishable states—at least by our and,
we suspect, most people’s definition. For less strongly hysteretic SQUIDs such as
that used in the experiments reported in [8] the entry and exit points can differ by an
amount of order @,. In either case the other desiderata are reasonably well satisfied,

595/149/2-10
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so that such a systemn seems to be a good place to look for macroscopic quantum tun-
nelling.

A closely related system which is also a candidate [9] is a single Josephson
junction biassed by a fixed external current I,. In such a case the relevant
“macroscopic” variable is the phase difference ¢ of the Cooper pair wave function
across the junction, and the Hamiltonian conventionally used to describe its
behaviour is composed of a “potential energy” (the so-called “washboard potential™)

104)0 IC(DO
2r ¢ 2n

Ulp) =— cos ¢ (1.3)

and a “kinetic energy” 3C(®,/27)* ¢*. Comparing (1.3) with (1.2), it is tempting to
regard the current-biassed junction as simply the limit of a SQUID with infinite self-
inductance, with the correspondence @ — (®,/2n)¢, @,/L —I,. However, there is a
subtle point of difference. Two neighbouring local minima of the potential (1.2) are
distinguished by the value of the flux @ threading the ring, which is a perfectly
physical and measurable quantity. On the other hand, two neighbouring minima of
(1.3) are distinguished only by the fact that ¢ differs by 2x; since, however, ¢ is the
phase of a wave function, it is only defined modulo 27 anyway. Thus, while it is very
reasonable to believe the classical equations of motion derived from (1.3) (which can
in fact be derived equally well by alternative methods) the physical meaning of the
equation itself is somewhat problematical. (This difficulty is of course not peculiar to
Josephson junctions; it occurs equally if we were to try to describe, for example, the
motion of a mechanical pendulum driven by a constant external torque by the
Hamiltonian (or Lagrangian) technique). We believe that this ambiguity is not a
problem in the context of quantum tunnelling provided that this occurs when I is
close to the critical current I, {as is normally the experimentally relevant situation);
in this case the values of ¢ involved in the tunnelling process itself extend over a
range much smaller than 27, so that the variable is unambiguously defined over this
region. In this case one should be able to take over the SQUID predictions directly
by the above correspondence. However, one should be much more sceptical about
using this correspondence in any cases where the phase tunnels through a difference
of the order of 2.

A question may be raised concerning the validity of applying quantum mechanics
to “classical” equations which themselves arise from characteristically quantum
effects. For example, the potential energy (1.2) involves the flux quantum @, = h/2e
and is, in the last analysis, a consequence of the quantization of electronic angular
momentum. Similarly, in a current-biassed junction the tunnelling variable ¢ is itself
the phase of a quantum-mechanical wave function. We feel that, at least as regards
the SQUID, there is no special difficulty here: the fact that we have to start from a
classical equation which itself contains quantum effects is in no way peculiar to this
case. For example, in discussing a diatomic molecule one is accustomed to write
down classical equations of motion for the nuclei; these involve a potential energy
which itself arises from characteristically quantum effects involving the electronic
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energy levels and, in principle at least, should contain the quantum constant A. Subse-
quently, one may quantize these equations themselves to get the vibrational levels.
Similarly, in the case of a magnetic medium one may start from a classical
description in terms of an energy density depending on the local magnetization, and
subsequently quantize this, even though one knows that the origin of parts of the
energy density is a characteristically quantum-mechanical exchange effect. It seems to
us that the only difference in the case of the SQUID is that the dependence on 4 is
particularly simple and hence obvious, whereas in the other cases it often gets buried
in more or less phenomenological constants. Turning to the case of a current-biassed
junction, we can say that provided we are content to regard this as simply the limit of
a SQUID with infinite self-inductance (cf. above) there is no problem. If we do not
wish to take this point of view, the matter is a little more delicate. In fact, the
question of how far it is legitimate to treat the phase of a wave function as a
quantum-mechanical operator has received considerable discussion in the literature,
though largely in the context of the difficulties encountered when the number of
particles involved is small: see especially [10]. In our case the number of Cooper
pairs is very large, so these particular difficulties do not arise. In fact, to the extent
that we neglect the current flow into and out of the system (i.e., effectively consider
two isolated bulk superconductors connected by a Josephson junction) the situation is
formally identical to the case of tunnelling between two different bands in a single
bulk superconductor. This problem was considered in [11], where arguments were
given for treating the relative phase as a quantum-mechanical operator in the limit
N — 0. While these arguments are not wholly rigorous, and should moreover ideally
be generalized to the case of practical interest, when the bulk superconductors are not
isolated, we believe that they are adequate for the purposes of the present discussion.

There have recently been a number of experiments to look for macroscopic
quantum tunnelling both in SQUIDs |8, 12, 13] and in current-biassed junctions
[14-17]. The experiments on current-biassed junctions usually identify the tunnelling
event by the onset of the finite-voltage state (corresponding to the onset of “rolling™
in the washboard potential (1.3)); in the SQUID experimeats the Leiden group
{8, 12] monitored the trapped flux directly, while the authors of |13] claimed to
deduce the occurrence of tunnelling from the behaviour of the tank circuit current-
voltage characteristic of a SQUID operated in the standard r/ mode. One of us has
commented briefly elsewhere [18] on some of these experiments.

Apart from SQUIDs and junctions, there are a number of other systems whose
behaviour has recently been interpreted as possibly evidence for the quantum
tunnelling of an essentially macroscopic variable. These include charge density waves
in quasi-one-dimensional conductors [19-21] (cf. also [22]), the vortex—antivortex
complex in two-dimensional superconducting films [23] and the photon field in a ring
laser [24]. Yet other systems have been studied theoretically [25-27], but as far as
we know there are as yet no relevant experiments. For the purposes of the present
paper it is most convenient to bear in mind primarily the case of a SQUID; this has
the advantages that the tunnelling variable is unarguably macroscopic and can be
monitored directly, and, most important, that at least for certain types of junction the
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classical dynamics is believed to be well understood and the parameters can be
obtained rather directly from purely classical experiments.

We now turn to the question which is the central motivation of this paper. As far
as we are aware, all work in this area previous to our own |7, 28] has explicitly or
implicitly described the tunnelling system by a wave function and used the standard
microscopic techniques such as the WKB approximation to calculate the tunnelling
rate. Thus, the macroscopic nature of the tunnelling variable does not enter the
problem explicitly at all. Yet in fact there is a crucial difference between these
macroscopic systems and the well-known examples (field ionization, Stark effect, etc.)
to which techniques such as the WKB approximation are routinely applied: namely,
macroscopic systems are inherently dissipative. To put it differently, a macroscopic
system by its very nature always experiences a complex interaction with its
environment, one consequence of which is that it continually exchanges energy with it
and can in no way be considered as isolated. In particular, insofar as its motion can
be described classically, there is always a term in Newton's equation corresponding
to the dissipation of energy. To be sure, this characteristic is not exclusive to
macroscopic systems: a microscopic system which undergoes tunnelling also interacts
with its environment, but in most cases the interaction is sufficiently weak to be
ignored or treated as a small perturbation (for example, the coupling to the radiation
field in the field-ionization problem). By contrast the dissipation in macroscopic
tunnelling systems such as SQUIDs may be very strong: the typical rf SQUID used
for practical magnetometry is overdamped. Another important difference is that even
in the minority of microscopic tunnelling systems where the coupling to the
environment is important (such as the case of electron or defect tunnelling in solids,
where the coupling to the phonon modes can be very strong), one usually has a good
a priori knowledge of the appropriate coupling Hamiltonian, or at least of its prin-
cipal features. (cf. [29]). In many macroscopic systems, on the other hand, we are
ignorant of the detailed mechanism of dissipation and are reduced to describing its
effects by phenomenological coefficients of friction, viscosity or similar quantities.
For example. it is conventional (and apparently compatible with most of the
experimental data) to describe large classes of SQUIDs by the so-called “resistively
shunted junction” (RSJ) model |6]. This model assumes that the Josephson junction
is shunted by a phenomenological “normal” resistance R,, whose origin is often
unknown in detail. As a result, the classical equation of motion of the trapped flux
takes the form

. . oU
“lp 4 — 1.4
C+R; b+ 220, (1.4)

where U(®) is given by Eq. (1.2).

It is clear that until we know the effect which the dissipation is likely to have on
the quantum tunnelling behaviour of macroscopic systems, we cannot interpret the
results of existing or projected experiments as evidence for, still less against, the
extrapolation of quantum mechanics to the macroscopic scale (8,15]. Thus, the
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fundamental question to which we address ourselves in this paper is: What is the
effect of dissipation on quantum tunnelling? While the question is not necessarily
exclusive to the macroscopic context, we shall think primarily of this case in our
analysis. In the present paper we shall confine ourselves to the limit of zero
temperature. Moreover, in the main body of the paper we concentrate on the simplest
case, that of frequency-independent linear dissipation (see Eq. (2.8)); generalizations
are given at the appropriate points. For pedagogic purposes we work explicitly in
terms of a simple mechanical model for which the macroscopic variable has the
significance of a geometrical coordinate; the transposition of the results to a SQUID
described by Eq. (1.4) is, however, trivial (see Conclusion).

It should be stressed that the question we have just posed, namely, “What is the
influence of dissipation on quantum tunnelling?”” has no clear meaning, and therefore
no unique answer, if posed in isolation from a context such as the one just given. In
Section 2 we shall specify the precise meaning given in this paper to the question
(which we believe to be the meaning most relevant to all or almost all experimentally
realistic cases), and will subsequently conclude that the answer to the question, when
taken in this sense, is that dissipation always tends to suppress tunnelling. However,
we are emphatically not making the claim that the incorporation of any dissipative
mechanism anywhere in the neighbourhood of a system will suppress the tunnelling
of any variable: such a claim could be refuted by totally trivial counterexamples.
(For example, it is intuitively obvious that if in a SQUID part of the bulk supercon-
ducting ring is replaced by a thin filament with a critical current considerably less
than that of the junction, then the “dissipation™ so provided will be accompanied by
an increase in the tunnelling rate. See also the discussion of the “anomalous™ type of
case in Appendix C).

We emphasize that we are not interested, in the bulk of the present paper, in the
effect of dissipation on quantum coherence, an effect we shall refer to for brevity as
“environmental detuning.” (We do make some brief remarks about it in Section 6.)
This latter question is closely related to the problem of the effect on quantum
coherence of its “observation” by, or interaction with, the environment, which has
had considerable discussion in the literature in particular contexts such as NMR (“T,
relaxation”) and impuriton states in solids (“dynamical destruction of the band”
[30]) and has been recently treated in general terms in [31, 32]. One of us has given
elsewhere [2] a discussion of this topic in the context of macroscopic quantum
coherence. It is also important to emphasize that in this paper we calculate the tofal
rate of tunnelling out of the metastable groundstate, without making a distinction
between “elastic” processes in which the environment remains in its groundstate and
“inelastic” ones in which it is excited, (see especially the discussion following
Eq. (4.11)).

The plan of the paper is as follows: In Section 2 we set up the problem, briefly
review the standard results for tunnelling in an isolated system and discuss the precise
meaning of the question “What is the influence of dissipation on tunnelling?” In
Section 3 we formulate a model for the dissipation mechanism which is sufficiently
general to cover all cases likely to be of practical interest, whether the original
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coupling of the system to the environment was weak or not (in the latter case, we
have adiabatic coupling as discussed above). We also give a discussion of the
“frequency renormalization” effect (see below). Section 4 is the heart of the paper:
using a technique borrowed from particle physics, with appropriate developments, we
derive a general expression (Eq. (4.27)) for the effective action in a damped system
and hence an expression (4.30) for the tunnelling rate of the system out of a
metastable minimum. Section 5 presents a quantitative analysis of the expression for
the tunnelling rate for the physically important case of cubic anharmonicity: we
obtain exact expressions for the effective bounce exponent in the limit of weak and
strong damping, and upper and lower limits on it for the general case. We also find
the dependence of the prefactor on damping in the strong-damping limit, and estimate
the constant. In Section 6 we examine the physical interpretation and limits of
validity of our results and mention some outstanding problems. Section 7 is a brief
conclusion. There are four appendices®: A discusses in detail the correct form of the
Lagrangian for systems with electromagnetic (or adiabatic) coupling, B tests our
general formalism on the exactly soluble problem of the damped harmonic oscillator,
C justifies the form of system-environment interaction postulated in Section 3, and D
proves some purely mathematical results needed in Section 5.

There are two points, neither of them directly connected with quantum tunnelling,
on which the reader may feel that we have gone into excessive and tedious detail. One
is the question of justification (Appendix C) of the harmonic-oscillator bath represen-
tation used for the environment (in Eq. (5) of our previous work 28] and Eq. (3.5) of
the present paper). Our aim here is to show that this is not in fact merely a “model,”
that is, a simplified version of the real situation which is expected to show the main
qualitative features, but (at least at zero temperature) is actually a quite general and
exact description (barring possible pathological counterexamples) of any situation in
which the environment is only weakly perturbed by the motion of the system. We
have little doubt that once the ground is firmly established, it will be possible to
short-circuit the rather laborious procedure of Appendix C and Section4 by
appropriate formal analytic continuation techniques (cf. [29]); however, for this first
venture into more or less unknown territory, it seems wise to attempt a derivation as
explicit and complete as possible.® The second point on which we have laboured
(Section 2 and Appendix A) is the question of the “frequency renormalization™ effect
described in Section 2, and in particular why it does not occur for systems such as
SQUIDs. The reason is as follows. Although we ourselves, possibly with the benefit
of hindsight, would regard the qualitative result that dissipation of the kind
considered in this paper tends to suppress quantum tunnelling as almost obvious
intuitively, there are by now at least three papers [33-35] in the literature which
claim to have demonstrated the precise opposite, and similar claims have also been
expressed in conference discussions, etc. We believe that most, if not all, of the

* The reason for the present order of the Appendices is purely historical. The logical order is C. A, B,
D.

* Those who regard Eq. (3.2) as sufficiently plausible to need no detailed justification might well wish
to skip the somewhat turgid arguments of Appendix C.
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arguments advanced in favour of such claims have been based on a misunderstanding
of the frequency-renormalization phenomenon, and in particular of when it does and
does not occur, and have therefore devoted a considerable amount of space to a
discussion of it, in the hope of clearing up this point once and for all. It may save the
reader time if we remark that the basic question boils down to this: Suppose we take
a simple LC-circuit and connect a piece of (normally resistive) wire with zero induc-
tance in parallel with the capacitor. Then (a) does the resistor shift the natural
resonance frequency of the circuit (other than by the usual substitution w,—
Vv wi—y* etc.)? (b) if it does not, how do we guarantee that our microscopic model
of the resistor and its coupling to the rest of the circuit reflects this fact? Those who
find the answer to question {a) sufficiently obvious that they regard a discussion of
(b) as superfluous and tedious (a view with which we have considerable sympathy)
might wish to skip the relevant parts of Section 2 and the whole of Appendix A.
The core results of this paper (that is, the essential content of Section 2, most of
Sections 3 and 4, and Appendix A) were given in our earlier letter |28, for want of
space in some cases without derivation.® (See also |7].) Parts of the present paper
which go substantially beyond the results stated in [28] include the discussion of the
adiabatic case (Appendix C), the whole of the quantitative analysis of Section 5, the
discussion of the limits of validity of our theory (Section 6) and the generalization to
nonlinear dissipation (Section 4 and Appendix C). The application to SQUIDs has
been discussed by one of us in a conference contribution |18] and has been used in
the analysis of some of the recent experiments [12, 16, 17]; it has also been applied
by Kurkijarvi to a discussion of the ultimate sensitivity of a SQUID magnetometer
[36]. Finally, a recent criticism [34] of our work has been refuted elsewhere [37].

2. FORMULATION OF THE PROBLEM

We shall be interested in this paper in the following problem. At zero temperature
we have a system which is characterized by some principal coordinate g and is
subject, inter alia, to a c-number external potential V(gq) which has a single
metastable minimum at a point which we arbitrarily choose as the origin of g; the
zero of potential is chosen to lie at the bottom of this metastable minimum, i.e.,
V(0) = 0. The system in question may be (but need not necessarily be) macroscopic,
and the coordinate g need not have the significance of geometrical position; for
example, in the case of a SQUID ¢ would represent the magnetic flux trapped in the
ring (see Introduction). We assume that the potential V{(q) is fairly smooth and has
the general form shown in Fig. 1; note in particular that ¥(g) is taken to be negative
for all points g > gq,, where g, is the “exit point” of the system from the barrier (i.e.,
the nonzero value of ¢ for which ¥(q) =0 (Fig. 1)). The object of this assumption is

¢ However, the distinction between “quasi-linear” and “strictly linear™ dissipation (see Section 2) was
not made in |28], and the statements made there about the generality of our result should be read with
this in mind.



386 CALDEIRA AND LEGGETT

V(q)
v,
i°\8
=~ q
FiG. 1. The form of potential V(g) considered in our calculation.

to guarantee that once the system has left the metastable well, it will have no
probability amplitude for returning there in any finite time, so that we can neglect
*quantum coherence” effects in the sense defined in the Introduction. (Whether this
assumption is justifiable for any specific physical system of interest is a different
question and is discussed in Section 6).

Throughout this paper we shall use language appropriate to the case where g is a
real geometrical coordinate and has associated with it a mass M; in that case the
Lagrangian of the system as described so far is simply

L(g, §)=iMg* — V(q). (2.1)

In most cases where g is not a geometrical coordinate, the Lagrangian can still be
written in the form (2.1) provided that M is understood as the appropriate parameter
(e.g., in the case of a SQUID ring it is the capacitance of the Josephson junction).
We denote the frequency of small oscillations around the metastable minimum by w:

wo= M Hd*V/dg), o] (2.2)

and assume for the moment that the height V, of the barrier (Fig.1) is large
compared to fwy,, so that the WKB approximation is applicable to the tunnelling
behaviour of the system as described so far. For future reference we now summarize
the results of using this approximation for the isolated system.

If the system is known to be initially localized in the metastable potential well,
then the probability per unit time that it escapes from the well is given by the
standard formula

Py=Ag,exp —By/h,  Ay=Cow(By/2nh)""?, (2.3)
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where B, is the WKB integral

B,=2 j: (2MV(q))" dg (2.4)

and C,is a dimensionless constant of order unity which depends on the shape of the
potential V(q) and can be calculated by any of a number of standard methods.
Corrections to Eq.(2.3) are at most of relative order Aw,/V,, and in almost all
situations of practical interest in the present context it is the exponential factor which
is likely to dominate the tunnelling behaviour, particularly when we are interested in
the dependence of tunnelling rate on some external control parameter (such as the
externally imposed flux in a SQUID). A case of particular interest is that of a
“quadratic-plus-cubic™ potential, which is likely to describe many of the systems of
interest to us in the regime where tunnelling is appreciable (see Introduction)

V(q)=%Mwéq2—/3q’E% Vo i (5—0)2— (%)32. (2.5)

where g, = 3$Mw;/B is the coordinate of the “exit point.” For such a potential it turns
out {7] that

36V,

B, = g Co= (60)”2- (2.6)

5 w,

We now wish to enquire how the presence of dissipation affects the probability of
tunnelling. It is necessary to formulate the precise question we wish to answer rather
carefully. If we were treating the motion of the system classically using Eq. (2.1), we
would of course produce an equation of motion of the form

. dV
Mg +—‘—1;~—Fm(t), (2.7)

where for generality we have added a time-dependent “external” potential —gF,,.(f) to
the Lagrangian (2.1). Equation (2.7) is, of course, by Ehrenfest’s theorem also true as
an operator equation in quantum mechanics; however, in general it is not very infor-
mative, since when we take its expectation value (indicated by pointed brackets) we
cannot identify (0V/dq) with (9V/2q),_ 4, Nevertheless, because of our assumptions
that the potential V(g) is reasonably smooth and that the inequality V,>» #w, is
satisfied, we may reasonably infer that this identification is indeed approximately
valid; therefore a quantum-mechanical system, whether trapped in the metastable well
or with sufficient energy to surmount the barrier, will have an expectation value
(q(¢)) of its coordinate which approximately satisfies the classical equation of motion
(2.7). (Naturally, effects which vanish in the limit # — 0, such as tunnelling itself, are
neglected in this approximation.) The (possibly hypothetical) system which behaves
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in this way will form, as it were, the reference system with which our real-life
(damped) system will be compared.

The real-life system, then, is assumed to obey in the region in question not
Eq. (2.7) but a damped quasiclassical equation of motion of the form

M + ng + (dV/dg) = F o (0). (2.8)

(Note that F,,,(¢) is a “true” external force, i.c., such that the work done per unit time
is simply ¢F,(f) and the power dissipated is correspondingly #¢>. In the more
general case n = 7(q) this condition needs to be explicitly specified; see Appendix C.)
More precisely, the expectation value of the coordinate operator is assumed to satisfy
(2.8) (with 0V/dq interpreted as (6V/0q),_ - as above). That the system does indeed
obey Eq.(2.8), and the value of the (g-independent) friction coefficient », is
something which in any particular case must be inferred from experiment; for most
cases of practical interest there are standard ways of doing this. In writing (2.8) we
have made the simplest possible assumption, namely, that the frictional force is
simply proportional to velocity, and we shall carry this assumption through the bulk
of this paper; however, the generalization to nonlinear dissipation (given by a
damping term of the form #(g)q) is very straightforward and is given at appropriate
points in the text. The generalization to the case where the dissipation involves higher
time derivatives is also mentioned at appropriate points.

Thus, the object of this paper is to compare the tunnelling rate of a system
described (under appropriate conditions) by the damped quasi-classical equation of
motion (2.8) with that of the reference system described by the undamped Eq. (2.7).
It cannot be too strongly stressed that in making the comparison the potential V(q) is
assumed to be the same in the two cases (cf. below). This is our definition of the
meaning of the question “What is the effect of dissipation on quantum tunnelling?”
We suspect that the recent controversy about the sign of the effect (see Introduction)
may have been at least partly due to the lack of such a generally agreed definition. It
is appropriate, therefore, to digress for a moment at this stage to see why there is a
problem.

In the next section we are going to introduce dissipation into the behaviour of our
system by coupling it to a sufficiently complex environment. Now, if we start with an
isolated system and introduce terms in the Lagrangian (or Hamiltonian) which
couple it to its environment, then in general we will produce a mechanism of
dissipation and also other effects. For example, in the simple case in which both
system and environment are simple harmonic oscillators, most forms of coupling
(and in particular a coordinate—coordinate coupling) will shift the natural oscillation
frequency of the system; in quantum-mechanical terms this is just the familiar level-
repulsion effect. More generally, we shall find (cf. Section 4) that such coupling tends
among other things to renormalize the original potential ¥(g); in particular, if the
coupling is linear in the system coordinate (the case of primary interest in this paper)
V(q) acquires an extra (negative) term 1M dw?q?, where the negative quantity 4o’
plays the role of a correction to the squared small-oscillation frequency w?. Such
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renormalization effects can be very large, and if |dw?| > w§ can even render the
original metastable potential minimum unstable; in some microscopic tunnelling
systems they can play a very important role (cf. [29]). We refer to these effects as
“frequency-renormalization™ effects (in a more general context ‘“potential renor-
malisation” might be a better term).

Now, whether the frequency-renormalization phenomenon does indeed occur as a
real physical effect depends crucially on the nature of the physical system considered.
This question has of course really nothing to do with tunnelling as such, and to
emphasize this we shall illustrate the point with two systems which both perform
small oscillations around a stable equilibrium position. Consider first an example
which is not strictly macroscopic but is well suited to our purpose, the interaction of
a collective degree of freedom in a nucleus with the single-particle modes. The
simplest description of such an interaction is by a term of the general form
2.; Fi(q) x;, where x; is some coordinate associated with the single-particle mode ;.
Clearly this type of coupling will not only provide a dissipation mechanism for the
“system” but will also shift its natural frequency: in particular the effect of those
parts of the “environment” (most of it) which have natural frequencies large
compared to @, may be taken into account by supposing that they adjust
adiabatically to the system and thereby lower the effective restoring force, i.e., the
quadratic term in the potential energy. Note that in general there is no simple
relationship between this “frequency renormalisation” and the damping constant,
although of course there are the usual Kramers—Kronig relations between the real and
imaginary parts of the complete frequency-dependent system response. In this case
the frequency-renormalization effect has a real physical significance.

Now consider a simple LC-circuit; to avoid irrelevant problems we assume that it
is constructed entirely of superconducting materials and is at zero temperature. It will
execute small undamped harmonic oscillations of the current (or flux) with frequency
w, = (LC)~"2. Suppose now that we connect in parallel with the capacitor a piece of
wire made of normal metal of finite conductivity. In elementary electrical engineering
terms, we would naturally describe the effect of this element by assigning to it a
phenomenological resistance R; we might, depending on the details of the geometry,
also have to assign to it its own inductance and/or capacitance, but these are
irrelevant to the point at issue and we shall assume they are zero. (More generally,
we might have to describe the wire by a complex frequency-dependent impedance
Z(w); our assumption is that Z(w) is real and equal to a constant R for a range of
frequencies w, large compared to w,. The ensuing statements are true to lowest
nontrivial order in w,/w., cf. Appendix A.) Then the standard elementary circuit
calculation shows that the equation of motion of the circuit (where for later
convenience we take as our basic variable the magnetic flux @ passing through it) is
modified to

CP + &/R + &/L =0. (2.9

Hence the effect of incorporating the resistive element in the circuit is to give the
resonance frequency an imaginary part and also, in the case of under-critical
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damping, to shift its real part (downwards). This shift, however, should be carefully
distinguished from the one occurring in the above case of the nucleus; unlike the
latter, it is entirely determined by the phenomenological dissipative coefficient (here
R) and does not require any modification of the “potential” term in the Lagrangian
(here ®*/2L). Thus, on elementary physical grounds we do ot in this case expect the
coupling of the circuit to the dissipative element to result in a “frequency-
renormalization effect” as we have defined the term. It follows, of course, that in
choosing an effective Lagrangian to describe the coupling of the “system” (circuit) to
the “environment” (resistor) we must take care to ensure this result. Actually, it turns
out that a sufficiently careful analysis of the standard Lagrangian technique as
applied to electromagnetic interactions will automatically guarantee this, and we
carry out such an analysis in Appendix A.

Another case in which we do not, on physical grounds, expect a frequency-
renormalization effect to occur is that of adiabatic coupling. That is, if we start from
the dynamics of a system interacting strongly with its environment but described by
the zeroth-order adiabatic approximation (which allows no dissipation), and then add
as the dissipation-producing interaction the terms omitted in this approximation, then
we would expect that these terms do not lead to a frequency-renormalization effect,
since any such effect should aiready have been taken into account in the zeroth-order
approximation. We shall demonstrate explicitly in Appendix C that this expectation is
correct (to lowest nontrivial order in the departure from adiabaticity).

We see, therefore, that the question “How is quantum tunnelling affected by
dissipation?” is not necessarily equivalent to the question “How is quantum
tunnelling affected by the interaction with the environment which produces the
dissipation?” In considering the latter question it may, depending on the physical
nature of the system considered, be necessary to take into account frequency-
renormalization effects. Since it is the first question we wish to consider in this paper,
it is convenient to be able to treat all cases in a unified way, irrespective of whether
or not they show physical frequency-renormalization effects (which in many
macroscopic cases of practical interest are likely to be experimentally unobservable
even if they occur). The obvious way to do this is to treat the V(g) which appears in
Eq. (2.1) not as the original “bare” potential V,(q) seen by the isolated system, but as
the renormalized potential, that is the quantity V,(g)—3M|dw’|q’> (or the
appropriate nonlinear generalization, see Appendix C). In cases where there is no
physical frequency-renormalization effect, then obviously V(g)=V,(gq). Conse-
quently, our restrictions concerning smoothness, barrier height, etc. should always be
understood as referring to the renormalized potential.

To sum up, we wish to compare the tunnelling characteristics of a system whose
quasiclassical dynamics is given by the damped equation of motion (2.8) with those
of a reference system described by (2.7), for the same potential function V{(q), (and,
of course, the same mass) irrespective of whether or not the potential seen by the real
(dissipative) system contains a contribution from frequency-renormalization effects.

There is, however, one respect in which our formulation of the problem is still
ambiguous. What, precisely, do we mean by the statement that Eq. (2.8) holds “under
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appropriate conditions?” Evidently it should hold provided that the characteristic
frequency of motion of the system (as driven by the external force, if necessary) is
sufficiently low. But this is still not quite unambiguous, for the following reason.
Generally speaking the dissipative mechanism will have associated with it not only
some characteristic frequency w_ (see next section) but also some characteristic
velocity v,. We shall see in Appendix C that certain kinds of dissipative mechanism
produce reactive terms in the equation of motion (2.8) which are of order
(w/w)(v/v,)*. However low w, these terms will become important if v (or the
amplitude g) is large enough. Thus, if g denotes a typical amplitude of the motion
and w a typical frequency, it is necessary to distinguish two (in general, different)
statements: (a) that for fixed ¢ we can find an @ small enough that (2.8) holds
without appreciable correction, (b) that we can find an w small enough that (2.8)
holds for any g without appreciable correction. (Statement (b) of course implies (a)
but not vice versa.) We shall refer to cases (a) and (b) as cases of “quasi-linear”
dissipation and of “strictly linear” dissipation, respectively. (Strictly speaking, of
course, one should talk of a quasi-linear/strictly linear dissipative mechanism, since
the lowest-order terms which distinguish the two cases are reactive in nature.) Since
these terms are of a different form from those occurring in the original undamped
equation of motion (2.7) (i.e., they cannot in general be mimicked by an adjustment
of the potential ¥(g)) the two cases are in principle experimentally distinguishable.
However, there may well be some cases of physical interest in which it is in practice
possible to verify condition (a) but not condition (b): i.e., we can always verify that
the dissipative mechanism is quasi-linear, but not necessarily that it is strictly linear.
As we shall see, the principal quantitative results of this paper, and in particular
Eq. (4.27), if taken as equalities, are valid only for strictly linear dissipation: for the
case where the dissipation is quasi-linear but not strictly linear we get related
inequalities (Section 4). Fortunately, for a reason we shall see at the end of Section 3,
the condition of strict linearity (or an equivalent condition) does hold, at least
approximately, for most of the cases currently of practical interest.

It may be helpful to conclude this section by posing a few questions we should like
to answer:

{1) Does the dissipation increase or decrease the tunnelling probability?

(2) Is the effect uniquely determined (for a given potential V(g)) by a single
parameter, the friction coefficient #, or is it model-dependent?

(3) What is the asymptotic formula for the factor by which the tunnelling
probability is multiplied in the weak-damping limit (7/Mw,— 0)?

(4) What is the corresponding formula in the heavily overdamped limit
(n/Mwy,— ©)?

In the next two sections we shall set up a method of answering all these questions.
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3. DESCRIPTION OF THE MECHANISM OF DISSIPATION

In our statement of the problem, we have demanded that the (experimentally
verified) equation of motion of our system in the quasiclassical metastable regime
should be given by Eq. (2.8). We then wish to ask, how does a quantum system
described by this dissipative quasiclassical equation of motion behave with respect to
quantum tunnelling? To answer this question we must clearly have some description
of dissipation in a quantum-mechanical system.

The quantization of a dissipative system moving in a stable potential is of course a
very old problem and has been tackled on a number of levels (cf. [38]). In the first
place, there have been many attempts to write down modified Schrédinger equations
or the equivalent for the system by itself, without explicit reference to any external
agency. Examples of such approaches are the time-dependent Hamiltonian theory of
Kanai [39], the nonlinear Schrodinger equation used by Kostin |40] and Yasue |41]
and the complex quantization procedure of Dekker |42]. These descriptions are
usually justified a posteriori by demonstrating that they reproduce known results for
certain special cases such as the harmonic oscillator in the limit of weak damping;
however, their theoretical foundations are sufficiently unclear that we feel it would be
unwise to use them in the present context, which is about as far as it is possible to get
from that limit. If, then, we reject such quasi-phenomenological descriptions of the
system in isolation, it follows that we must enquire explicitly into the physical
mechanism of dissipation. Here again there are (at least) two possible approaches (cf.
{43, p. 1995]). On the one hand, we could consider the environment as acting on the
system by means of random forces which are specified in some statistical manner.
Such a description is of course very widely used in classical statistical mechanics, in
the form of the Langevin equation or related equations, and there have been a number
of attempts (see [44]) to apply it also to dissipative quantum systems: see especially
the work of Koch ef al. [45]. The alternative approach, which we shall use in this
paper, is to regard the “system” and its environment as together forming a closed
system (the “‘universe,” as we shall denote it for present purposes) which can be
described by a Lagrangian er Hamiltonian, to solve (in principle!) for the motion of
the whole and to derive from this solution a description of the properties of the
system (which, of course, would now more properly be called a subsystem). In this
picture the phenomenon of dissipation is simply the transfer of energy from the single
degree of freedom characterising the “system” to the very complex set of degrees of
freedom describing the “environment;” it is implicitly assumed that the energy, once
transferred, effectively disappears into the environment and is not recovered within
any time of physical interest (i.., one treats the mathematical existence of Poincaré
recurrences as physically irrelevant). Formally, one assumes that the number of
degrees of freedom of the environment tends to infinity; this assumption is implicit in
the replacement of sums by integrals which we shall carry out without further
comment at appropriate stages in the calculation. Such an approach to quantum
dissipation is of course already widely used in various areas of physics, notably in the
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theory of damping of electromagnetic radiation in a cavity [46] and of deep inelastic
collisions of nuclei [47].

It is necessary, then, to formulate an explicit Lagrangian for the interacting system
and environment in such a way that Eq. (2.8) will result in the appropriate limit.
Since, as discussed in the Introduction, we do not always in practice know very much
about the physical mechanism of dissipation, it is desirable that the model should be
as general as possible subject only to the condition that it generates Eq. (2.8) when
required. However, to make the subsequent calculations tractable it is necessary to
impose one important restriction on it, namely, that any one environmental degree of
JSfreedom is only weakly perturbed by its interaction with the system. For most cases of
interest, at least when the system variable is macroscopic, this assumption is
physically reasonable; in that case the environment is usually also (geometrically)
macroscopic and the interaction of the system with any one environmental degree of
freedom is generally proportional to the inverse volume, while the characteristic
energy of such a degree of freedom is volume-independent. Naturally, the wave
functions of the environment may be extremely strongly perturbed by the system over
a local region (as in the case of a body moving in a liquid, for example); but this can
usually be handled by means of the adiabatic approximation, and the effective
residual coupling which is due to the corrections to adiabaticity (see below) then
usually does have the required property |47]. It cannot be over-emphasized that the
condition that any one environmental degree of freedom is only weakly perturbed in
no way implies that the interaction is “weak™ from the point of view of the system
(which interacts with a very large number of degrees of freedom); indeed it is quite
compatible with very strong damping.

Now, the motion of any physical system & which is only weakly perturbed around
its equilibrium state can always be adequately represented (at T=0 at least) by
regarding that system as equivalent to a set of simple harmonic oscillators. Since this
point has been given considerable discussion in the literature (see, in particular, (47,
Sect. 2]) we shall not spend time on it here, but relegate the details to Appendix C.
There we show that the most general type of Lagrangian we need to consider is
obtained by adding to (2.1) first the unperturbed Lagrangian of the “environmental”
oscillators, namely,

Loee=N (3mx] — mwlx}) (3.1)
J

and secondly an interaction term which may be taken without loss of generality
(barring pathological cases: see Appendix C) to be of the form’

L= __\; Fi(q) x; + @(q) (3.2)

J

7 Strictly speaking @ can also be a function of p- This possibility introduces only trivial
complications and for the sake of simplicity of presentation we ignore it here.
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where the function @(g) may depend on the details of the oscillator spectrum (i.e., on
the m; and w;) but not on their dynamical variables x;, ;.

The function @(q) is related to the question of cancellation of the frequency (or
potential) renormalization mentioned in Section 2. To see this, we assume for the
moment that @(g) is zero and ask what is the minimum value of the potential energy
of the “universe” (system plus environment) which can be attained for given g.
Clearly to attain this minimum we need to set x;=F,(q)/m;w! for all j, and the
resulting “effective potential” ¥ (g) is then given by®

Verla) = V(@) — X Fi(g)/ 2m;w]. (3.3)

J

In the special case F;(g) oc g (cf. below) this is equivalent to a negative shift dw? in
the (squared) frequency of small oscillations of the system as described in Section 2.
If now we include in the interaction Lagrangian (3.2) a nonzero @(gq) given by

P(g)= -1 Fi(@)/2m;w]. (34)

J

then the effect is, trivially, simply to cancel this effect and reduce V,{(q) to V(q), i.e.,
we ensure that the system cannot lower its potential energy below the original
uncoupled value by moving off the ¢ axis in the many-dimensional space whose axes
are ¢ and the x;’s.

In all cases of physical interest we either find that @(q) is given by the expression
(3.4) or that it is zero. The first situation arises where there is no physical frequency
(or potential)-renormalization effect; we show in Appendix A that this is so for elec-
tromagnetic coupling of the type found (e.g.) in SQUIDs, and also in the case of
adiabatic coupling which is formally identical to it. The second situation is charac-
teristic of cases where the frequency-renormalization effect is real, e.g., the nuclear
physics example discussed in Section 2. Nevertheless, for the reason discussed in
Section 2 it is convenient also in this case to add a term of the form (3.4) to L,,,
while subtracting it from the “unperturbed” Lagrangian (2.1); in this way we achieve
our goal of comparing damped and undamped systems for the same observable
potential (or frequency).

Thus, the most general Lagrangian with which we need to deal when considering a
system weakly coupled (in the sense specified above) to its environment and whose
phenomenological equation of motion is (2.8) is of the form

L=3M¢*—V(g)+3 : (m,sz _mjw}xf)
j

—‘:Fj(q)xj—SFf(q)ﬂmjw}. (3.5)

7 K

¢ In a nuclear-physics context this is often known as the “adiabatic potential.”
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The calculations of Section 4 go through for any Lagrangian of this general form (see
the end of that section). However, to render the results useful we clearly have to
know something about the distribution of the quantities m;, w;, and F{g). In
considering any specific physical system we can, in principle, approach this problem
in either of two ways. »

First, we might have sufficient confidence in a particular microscopic model of the
system in question to feel sure we know the relevant parameters a priori. Such a
situation might, for example, arise in the case of tunnelling transitions in a ring laser,
where the interactions should be obtainable directly from quantum electrodynamics,
or in an ideal oxide-layer Josephson tunnel junction, where the resistive mechanism is
intrinsic and believed to be well described in terms of Bogoliubov quasiparticles |48].
In such cases the problem reduces to transforming the known Lagrangian into a
representation of the form (3.5).

The second possibility—which is the one emphasized in our formulation of the
problem in Section 2—is that we might have a phenomenological description of the
classical motion of the system, without necessarily having a particular microscopic
model as the basis for it. In this case the interesting question is whether this
knowledge of the classical motion will determine the parameters entering L to the
extent necessary to make useful predictions about tunnelling rates. (We shall see
below that the answer is yes.) Of course intermediate cases are also possible: we
might have a classical phenomenological description plus some constraints on
possible microscopic models. An example is the case of a SQUID with its Josephson
junction physically shunted by a normally resistive piece of wire: here we have one
important piece of a priori knowledge, namely, that the coupling to the resistor must
be linear in the flux (see Appendix A), i.e.. that in (3.5) we can put F(q)=qC;; on
the other hand we certainly do not know the C;'s, m/’s, and w/s in detail except
insofar as they enter the (experimentally measurable) resistance.

Let us therefore ask what constraints are imposed on the choice of the parameters
m;, w;, and Fi(q) in (3.5) by a knowledge that the classical motion of the system is
governed by a dissipative equation of the form (2.8) (the case of more general
dissipative equations is mentioned below). This question is discussed in Appendix C,
with the following conclusions. If we know that the dissipative mechanism is
quasilinear but not that it is strictly linear (see the end of Section 2), then the only
constraint we can impose is the relation

n 1 (oF\’
A N (_._j> (5(a)-a).):;7 (3.6)
2+ mw; \ dq /

for w < w,, where w, is the characteristic frequency at which the phenomenological
equation (2.8) begins to break down, and # is the phenomenological friction coef-
ficient appearing in (2.8). Equation (3.6) is compatible with (e.g.) a distribution of
F{g)'s which are each individually of very short range in g; certainly they need not
be linear in g. If on the other hand we require that the dissipation be strictly linear,
we find that we must have

S95/149/2-11
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Fi(q)=qC; 3.7)

so that (3.6) then becomes a constraint on the spectral density J(w) defined by

n

J(w)57: (C}/m;w)) 6w — w)), (3.8)
namely,
J(w) =nw. (3.9)

We will see in the next section that while the constraint (3.9} is sufficient to
determine the exact tunnelling rate, the weaker constraint (3.6) is adequate only to
determine a lower bound on it. Naturally, there are cases where we can assert (3.7),
and hence (3.9), not because we know from experiment that the dissipation is strictly
linear but because of some a priori knowledge of the interactions involved: see, e.g.,
the SQUID example discussed above. Since (3.7) (with (3.6)) implies strictly linear
dissipation as well as vice versa, we shall refer to such cases also as cases of strictly
linear dissipation.

The simple classical dissipative equation of motion (2.8), with its single amplitude-
and frequency-independent friction coefficient 7, is of course by no means the most
general classical equation which can describe dissipation. In the most general case
there is little® that can be usefully said about the parameters entering the Lagrangian
(3.5). However, it is worth considering a case which, while not the most general
possible, is nevertheless considerably more general than (2.1), namely, that in which
the coefficient 7 is allowed to depend on amplitude: # = n(g). For this case we show
in Appendix C that the parameters are constrained by a relation which is the obvious
generalization of (3.6)

LANEE (ﬂ)z - 0
2 = mjw} oq o(w w_l) n(g). (3.10)

The special case of a “separable” interaction, namely, one satisfying the condition

Filg)=Cf(@) (3.11)

with f(g) independent of j, is of particular interest. In Section 4 we shall show that if
(3.11) is satisfied, we can derive an exact expression for the tunnelling rate in terms
of n(q); if it is not, we can derive only a lower bound (this result exactly parallels
what happens in the linear case).

In the rest of this paper we shall concentrate primarily on the case of strictly linear

’* More accurately, there is plenty we can say but it is too complicated to be worth saying (cf.
Appendix C).
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dissipation, i.e., the case in which (3.7) holds. In other words, we shall usually take
as our Lagrangian the specific form of (3.5) obtained by inserting (3.7)

L(g, ¢ {xj’ Xh)= %qu —Vig)+ % E mj(sz - wjzsz)
i
—q Y Cpx;— M 4w’ g, (3.12)

7

where the “frequency shift” Aw? (cf. Section 2) is defined by

M 4w = =N Cif2m0}. (3.13)

J

Moreover, we shall usually assume that the dissipation is not only strictly linear but
also frequency-independent in the region of interest for tunnelling (see Section 4), i.e.,
that Eq. (3.9) holds for all frequencies of interest to us.

It might at first sight be thought that the model so defined is of rather limited
interest. We believe, however, that in the context of the real-life macroscopic quantum
tunnelling problem it will cover the vast majority of cases of interest to us. Let us
consider separately the question of strict linearity (i.e., Eq. (3.7)) and of frequency-
independence (Eq. (3.9)). With regard to the first, we note (a) that in many cases (cf.
the examples quoted above) we know from general a priori considerations that the
coupling must indeed have the form (3.7), and (b) that even when it does not, we
often know enough about it to be sure that, under the conditions of a real-life
tunnelling experiment, Eq. (3.7) is not a bad approximation. To illustrate the latter
point, let us consider an ideal tunnel oxide Josephson junction. According to the
standard microscopic model of such a system [48],'° the dissipation in this case
arises from the normal quasiparticles present, and depends on the phase difference A
of the condensate on the two sides of the junction because the parameters of the
Bogoliubov transformation which defines the quasiparticle eigenstates are periodic
functions of the condensate phase. Thus, quite independently of the details of the
formulation of the problem in the language of Eq. (3.5) (which is, indeed, not an
entirely trivial operation) we expect that the quantities F;(q) will have a range in g
(i.e., 4¢) which is of order (say) n/2. Since most experiments to look for macroscopic
quantum tunnelling in Josephson systems have operated'' (and are likely to continue
to operate) in a regime such that the width of the potential barrier U(dg) (Eq. (1.3))
along the Ay axis is small compared to 1, we see that to approximate the true
coupling by the linear form (3.7) should involve little error. As to the question of
frequency-independence, we note that we can very often state on the basis of

' Of course for the T =0 case studied in this paper this model predicts zero dissipation. The ensuing
remarks therefore apply, strictly speaking, only to a possible finite-temperature generalization of our
results.

"' We note that experiments to look for macroscopic quantum coherence in such systems, if they are
ever to have any chance at all of success, will almost certainly have to operate in this regime; see |2,
Sect. 51.
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experiments conducted in the classically accessible regime that the relevant coefficient
(junction conductance, etc.) is approximately independent of frequency; and that in
any case the modification to our results necessary to allow for frequency-dependence
is trivial (see Section 4) and should not affect them qualitatively. Thus, while we shall
give results for more general cases, we make no apology for concentrating from now
on primarily on the model described by Egs. (3.7) and (3.9).

4. A FORMULA FOR THE TUNNELLING RATE

Our principal goal in this section is to calculate, for a system described by the
Lagrangian (3.12), the rate of tunnelling out of a metastable minimum of the
potential ¥{g). In principle it should be possible to do this by any of a variety of
methods; for example, some features of the results may be straightforwardly obtained
by application of the “many-dimensional WKB method” [50] (see end of this
section). However, the most convenient method for our purposes is a generalization
of the “instanton” technique which was originally formulated, in the context of a
discussion of classical thermodynamic metastability, by Langer [51] and has been
applied to the calculation of the decay of metastable states in field theory by Stone
[52], Callan and Coleman [53], and many subsequent authors. We will therefore
start with a brief review of the use of the technique for noninteracting systems; the
discussion follows closely the paper of Callan and Coleman (53], to which the reader
is referred for further details (see also [54]).

We consider a one-dimensional system described by a coordinate g(r) and a
Lagrangian '

L =3iM¢* —V(g), (4.1)

where we assume that there are no velocity-dependent forces in the problem. The
potential ¥(g) is assumed to have a local minimum, taken as zero of potential, at the
point g = 0. It can be shown (see, e.g., Feynman and Hibbs [55, Sect. 10.2]) that the
density matrix

P(q: 97 B) =" wi(q;) wa(g,) exp —BE, (4.2)

n

(where as usual f~' is Boltzmann’s constant times the temperature) can be
represented as a path integral

parai =" za@ew (- Lota.d)dn), 43)

q0)=q;
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where 7= B4 and the “Euclidean” Lagrangian L.(g, §), which in the present case is
identical to the Hamiltonian, is given by

Le(g, )= IMq* + V(g). (4.4)

As is explicitly indicated in Eq. (4.3), the path integral runs over all paths taken by
the coordinate g as a function of the (imaginary) “time” r which leave the point g, at
time zero and arrive at g, at time 7. By taking the limit 7— co in Eq. (4.3) we obtain
an expression for the wave functions and energy of the groundstate. Although
formula (4.3) is quite general, we shall consider for the moment only the special case
9;=4,=0.

In the semiclassical limit (# — 0) the functional integral is dominated by the paths
for which L,(q, g) is an extremum. These are precisely the paths which describe the
allowed motions of the classical particle in the inverted potential ¥(q) = —¥(q). If the
local minimum at ¢ = 0 were an absolute minimum, then the only possible “classical”
path for which ¢{0) = ¢q(T) =0 would be the trivial one in which the particle sits at
the origin for all 7. The small fluctuations around this path then give the correct
expression for p(0, 0: T), namely,

p(0,0: T) = |yo(0) exp —, T/2, (.5)

where w, is the small oscillation frequency; the exponential incorporates the effect of
the finite ground-state energy, fiw,/2.

If the local minimum of V(g) at ¢ =0 is not an absolute minimum (see Fig. 1),
then a second type of classical path in the inverted potential ¥(q) is possible; this is
the type called a “bounce” (instanton) by Callan and Coleman, in which the particle
starts to roll off the local maximum of ¥ at r =0, moves across to the point g = g,
(which corresponds to the exit point B in Fig. 1), turns around there and returns by
time 7T to the origin. We note that such a classical motion is still possible in the limit
T - oo because the point g =0 is a local maximum of ¥(g); at the beginning and end
of the motion g(r) approaches zero exponentially. (That is, if we shift the origin of
time so that q(0)=gq,, then for large || we have g(r) = const exp —w, |7|.) Such a
“bounce” type of trajectory corresponds not to a minimum but to a saddlepoint of the
Euclidean action, and it therefore contributes a small imaginary part to the
groundstate energy (for the argument on this point, see Callan and Coleman |53]). If
B denotes the action of the bounce in the limit T — oo, that is,

B= J‘iooo LE(qC‘(T)’ q.CI(T)) d’l', (4‘6)

where ¢g(r) denotes the classical bounce trajectory, then the formula for the
tunnelling decay rate I" derived in this way reads

I'=4""*(B/2nh)"* exp(—B/h) X (1 + 2(h)), (4.7)
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where 4, a quantity with the dimensions of (frequency)?, is the ratio of two deter-
minants and does not contain #; in general it is of order w, . We do not elaborate
these results further here as they will emerge later as a special case of the results to
be derived below.

We shall now generalize this technique to the problem of interest to us. For
simplicity we shall deal explicitly with the case of strictly linear friction (the
extension to the more general case is straightforward and is given at the end of this
section); we therefore start from the Lagrangian (3.12), that is,'

L=3MG* = V(q)+ Y (1ma¥s — 1M, e x,)

—q N C,x, — 1M |4w*| ¢’ (4.8)

[23

where the “frequency shift” Aw? appearing in the last term is given by Eq. (3.13). As
discussed in Section 2, the potential V(g) is assumed to have a local minimum, taken
as the zero of potential, at the origin and to become zero again at some finite value g,
of g, beyond which it is always negative. We define the density matrix of the
“universe” (system plus environment) by

P(Gis X0l Grs AXart: BY =N W@ (%001 Wil 1Xost) exp —BE, (4.9)

(where x,;, x,, are “initial” and “final” values of the coordinate x,,) and the reduced
density matrix of the system by

K(q;.q,: ) EJ II dx PG> 1Xaih: 4y {xqit: B). (4.10)

a

Thus, introducing T = B4 as above, we have

K@ 4 T) = [ 105 N v @ 1%0il) Valdy, 1x0i) exp(—E, T/R). - (4.11)
41 n

It is clear that, as in the one-particle case, the imaginary part of the grounddstate
energy will give the tunnelling rate out of the metastable state, and may be obtained
from a study of K(0,0: T) in the limit 7— co. It must be strongly emphasized that,
despite what one might at first sight be tempted to infer from the form of (4.10), the
tunnelling rate so calculated is the fotal rate of tunnelling out of the metastable
groundstate, irrespective of whether the tunnelling results in real excitation of the
environment or not (i.e., whether the process is “elastic” or “inelastic”).

Because the Lagrangian (4.8) contains no velocity-dependent terms, the full density

12 To avoid possible notational confusion we now label the different degrees of freedom of the
environment by the Greek subscript «.
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matrix (4.9) can be written as a path integral in the usual way, and hence X can be
written

~q(T)

=qy Xa(T)=Xai
K@pa:T)=[Tdx | 2a@]]] Zx,(0)
a “q(0)=g; a “Xa 0=y
T
xexp (—f Lolavds b, %) de/n). (4.12)
0

where the “Euclidean” Lagrangian is given by

L(@ G x5 X D) = 1MG* + V(@) +1 Y m, (g + wixg)

+q Y Cox, +1M |40’ |q". (4.13)

[+4

Now, as the result of the fact that only linear and quadratic powers of x, and X,
occur in the Lagrangian, the functional integrations over the paths {x,(r)} and then
the integrations over the coordinates {x,,} can be performed in closed form. The
procedure, while somewhat tedious, is of course entirely straightforward and we
simply quote the standard result ({56, p. 82]: put if.=Cq)

de,. [xm:xj Dx(t) exp — L ng [im(x? + w’x?) + xCq(7)] drl =Q(T)

Cx(0)=x; h 0 S
C* T T g(r)g(r’)cosh w(t— 1| — T/2)2

— g ' .
+4mhw.(o T.(O f sinh @T/2 |

=1(0)exp (4.14)

where 7(0) is the value of the expression for C = 0, which by Egs. (4.3) and (4.2) is
just 3 cosech wT/2. This expression can be formally simplified somewhat if we agree
to define ¢(7) outside the range 0 < t < T by the prescription'® g(z + T) = g(r); then
Eq. (4.14) becomes

i <00 s
T) =1 cosech(wT, / —wjT—1 e
O(T) = 3 cosech{wT/2) exp 4mth_m dt JO drexp(—w |t —17'|)g{1) g(z")
(4.15)
Substituting this result into (4.12), we find
an=g;
K(q;, q,: T) = K|(T) Zq(t)(exp —So/h) exp A/A, (4.16)

q(0) =gq;

'* We note, although it is not important for the present problem. that this introduces some
complications when we wish to apply Eq. (4.23) to calculate K(g,.q,: ) for g, # q,; cf. Appendix B.
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where
Ky(T)=[] (4 cosech w, T/2), (4.17)
Solg()) = jo $MG® + V(g)} dr, (4.18)
A[q(t)]—J‘ ‘Mszqz(r)dr+\ ) prm jL dr’ Hdr
X exp(—w, |7 —1']) q(r) q(t') ;. (4.19)
The form of A4|q(r)| can be simplified if we use the identity
a(7) a(?') = Ha* () + ¢°(') — (q(r) — q(r"))*}. (4.20)

Substituting this into (4.19), we integrate the term in ¢°(z) over r and vice versa.'*
Then, using Eq. (3.13), we see that these two terms exactly cancel the first term in A.
Thus, we obtain

A=—1 (OO dr’ J:dra(r—r’){q(r)—q(r’)}z, (4.21)

v —00

where the quantity a(r — t’) is defined by

CZ
a(r—r’)sv—‘;—exp —w, |t—1']

7 4m(1 a
1 ,x
E——J J(w)exp(—w |t —1'|)dw >0 (4.22)
2n Jy

with the spectral density J(w) defined by Eq. (3.8). Thus, finally, the reduced density
matrix of the system can be written in the fairly compact form

K@ g D=KoD) [ D4(s) exp(~Sala@)/m). (4.23)

q{0)=q;

'* Since Eq. (4.19) is not formally symmetric with respect to interchange of t and 7’, it is easiest to
perform this maneouvre by going over to the form of (4.19) obtained from the explicitly symmetric
expression (4.14) rather than (4.15).
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where the effective action S, [q(7)] is given by the expression
T © T )

Seala@] = | (3M¢* + V@) dr 3| dr'| dra-1)la0) (@) @424)
0 -0 Y

with the positive quantity a(r — 7’) given by (4.22).

The result (4.23), with the definitions (4.24) and (4.22), is applicable to a wide
range of problems connected with tunnelling (or more generally classically forbidden
behaviour) in a dissipative system. We emphasize again that in evaluating the double
integral in (4.24) it is necessary to bear in mind that g(r) is to be continued outside
the range O 7 < T by the prescription g(r + T') = q(r); thus, in general considerable
care must be taken in going to the limit 7— oo. This point is essential when we
evaluate K(g;,q,: T) for g; and/or g, nonzero (cf. Appendix B, where this is shown
explicitly for the case of the damped simple harmonic oscillator). Fortunately, in the
case of a bounce, where g(7) tends to zero sufficiently fast at both ends of the interval
07 <T (cf. below), the additional terms arising from the region outside this
interval tend to zero as T tends to infinity: we will therefore be able to take the limit
T — oo without any problem. We note at this point that a result somewhat similar in
appearance to (4.24) has been given in the work of Sethna |29].

From Eqgs. (4.22)-(4.24) we can immediately draw one important qualitative
conclusion: since a(r —1') is positive definite, the contribution of the last term in
(4.24) is always positive and therefore, to the extent that the tunnelling probability is
dominated by the saddlepoint value of (4.24) (i.e., in the WKB limit—see below) the
existence of dissipation always tends to suppress tunnelling.'* Note that this result is
completely independent of the form of the spectral density J(w). This answers the
first question posed in Section 2.

To proceed further we need to invoke the assumption that the characteristic
frequency scale w, (see Section 3) over which the spectral density J(w) is equal to the
low-frequency form nw to a good approximation is much larger than the charac-
teristic frequencies of the problem. In the present context the relevant characteristic
frequency is the inverse of the “bounce time” (characteristic length of the bounce); in
the next section we shall define this quantity more precisely and show that for the
cubic potential explicitly considered there it is of order w, ' and yw * for the under-
damped and overdamped regimes, respectively. It is clear that similar order-of-
magnitude estimates will be valid for any potential V(g) whose shape is not too
pathological. Thus, for a macroscopic system (and for some microscopic systems
also) the condition is likely to be very well fulfilled. As an example, J(«w) might have
the Drude form
nw

J ="
(@) 1 + w?t}

(4.25)

"* It is at first sight tempting, but incotrect, to conclude more generally that K(g;.q.: T) is always
smaller for the damped system than for the undamped one. This is connected with both the choice of
zero of energy and the normalization of the functional integral, which fortunately we do not need to go
into here.
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and the condition is then obviously fulfilied provided that wg ' is much greater than
the Drude relaxation time 7,,.

It is now evident that the main contribution to the last term in Eq. (4.24) will come
from values of |7 — 7’| which are of the order of the bounce time: the region of small
|t —1'| gives no specially important contribution, since a(r — ') tends to a finite
value's for |z —t'| - 0. It then follows that for the purpose of evaluating (4.24) it is
legitimate to replace a(r — ') by its asymptotic form for “large” |7 — z’|; that is, we
put

1

| G . .
a(r — tl)E—ﬁfo J(w)e @t dng;JO nwe ™" " dw

n 1
=ﬁ(t——_t’—)2' (4.26)

The error incurred by substituting (4.26) into (4.24) will be at most of the order of
wy/w,, where w, is the characteristic scale of structure of J(w). It is easy to convince
oneself (cf. Section 5) that in the context of the tunnelling problem this substitution
does not lead to any divergences. In the more general case, and in particular if we
wish to calculate K(g;, q,: T) for g; # q,, we may find that it leads to a logarithmic
divergence in certain integrals (cf. Appendix B); in any such case we must of course
return to the true form of a(r — ¢') (or J(w)), which in general will be equivalent to
cutting off the integral at an upper limit of order w,. Subject to this proviso, it is easy
to see that the substitution (4.26) is quite generally valid (not just in the context of
the tunnelling problem) provided only that T is not too small compared to wq '; the
relevant characteristic “times” in the functional integral are then automatically of
order w; ' or greater. We note that after the substitution (4.26) the whole functional
integral, and hence a fortiori the tunnelling probability, is a function (apart from the
mass M and potential ¥{(g)) only of the friction coefficient #; this answers the second
question posed in Section 2. (It should be stressed, however, that this feature is
peculiar to the strictly linear case: cf. below).

With the above provisos, therefore, the effective action which enters the functional
integral (4.23) is given by the simple expression

T OO T _ N2
Sentan =] g + v s+ [ an | MOZEIL )

From here on the argument runs closely parallel to that developed by Callan and
Coleman [53] for the undamped case. First, we can verify explicitly that substitution
of (4.27) in (4.23) gives the same result for the density matrix in the harmonic region

'* Actually, for the simple Drude model (4.25) the quantity o(r — t') diverges as In |7 — r’| for small
values of its argument. This divergence clearly does not invalidate the argument, since it is integrated
over.
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near the metastable minimum at g =0 as is given by more elementary arguments;
this is done in Appendix B, where it is shown that for g;+# g, it is essential to take
account of the periodicity condition g(r + T) = q(r). Secondly, we can establish the
existence of a “bounce” solution as in the undamped case; this follows simply from
the fact that for sufficiently small g(r) all the terms in the effective action g(z) are
positive and increasing functions of ¢, while for large ¢ the quantity S, can be made
negative and arbitrarily large by staying long enough in the region g > g,, where the
potential is negative. Thus, there must be at least one saddlepoint separating the two
types of solutions; this is the “bounce.” (A formal proof of the existence of a bounce
is given for the quadratic-plus-cubic potential in the next section.) As in the
undamped case, the bounce solution must satisfy an “‘equation of motion” which now
contains a term noniocal in time
o _ !
M= 1 [ ar (@) —a(r) (4.28)
og  ml_ (r—1")

where the integral is to be interpreted as its principal value. We see that the function
q(r) is symmetric around the value of t at which it reaches its maximum amplitude.'’
Let us now specialize to the case g, = g,= 0, let T become very large and redefine the
origin of time to lie at 7/2 (so that those integrals in (4.27) which are not infinite in
range run from —7/2 to T/2). Consider a single bounce which has its centre (point of
maximum amplitude) at 7 =0. We expect intuitively that “most of” the bounce will
be contained in a region of time around =0 which is of order w; ', y~' or some
combination of them (y = n/2M): this expectation is confirmed in the next section.
For large | 7| the bounce amplitude does not fall off exponentially as in the undamped
case; in fact it can be seen from (4.28) that in this limit we have

q(r) = Cqo/wir?, (4.29)

where the dimensionless coefficient C is of the order of 7 times the “length™ of the
bounce. Fortunately, this difference has no great effect on the problem provided we
are prepared to let T become arbitrarily large: in particular, the contribution to the
integral over dr in (4.27) from the region |t| > T/2 (where, we recall g(r) has to be
continued periodically) is negligible in this limit, so that we can let ¢(r) equal zero for
|| > T/2 without appreciable error.

Now consider the possibility of a series of bounces between —7/2 and T/2 with
widely separated centres. There is now a further difference with the undamped case:
not only does g(r) approach zero between the bounces only as a power law, not
exponentially, but there is an effective “attractive potential™ between two bounces
which is proportional to the inverse square of the distances between their centres; this
arises from the last term in (4.27). Again, fortunately nothing is lost by ignoring this

"7 This is not immediately obvious from (4.28) itself: it follows, however, when we minimize S as a
functional of the Fourier transform g(w) (cf. next section).
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effect and treating the bounces as forming a noninteracting “dilute gas.” To see this,
let us consider for convenience the case where y and w, are of the same order of
magnitude, so that the “length” of the bounce is of order w, ' (the generalization is
straightforward). Then the contribution to the action (4.27) of the interaction'® of
two bounces whose centres are separated by 7, where wy'<t< T, is of order
—B/wlt?, where B is the action of an isolated bounce. On the other hand the mean
“density” p of bounces on the 7 axis (defined by the statement that the contribution of
n bounces to the functional integral (4.27) is proportional to (p7)"/n!) is seen from
the formula below to be of order w,(B/2n#)"? exp —B/A; it is, in fact, nothing but the
tunnelling rate I', to within factors of order unity. Thus the bounces do indeed effec-
tively form a dilute gas, with mean spacing of order "~ '. Thus the correction to the
functional integral due to the inter-bounce interaction is at most of order I'/w,
relative to the “free” contribution: since this factor is at most of the order of the
exponentially small quantity e ~#/% it must for consistency be neglected in the WKB
limit. '®

Thus, the situation is for all practical purposes exactly analogous to that which
holds in the undamped case, the sole difference being that the action of a single
bounce contains the additional nonlocal term in # (Eq. (4.27)). From here on we can
simply take over the argument of Callan and Coleman [53]; all considerations
relating to the summation over multi-bounce configurations, analytic continuation of
the expressions into the complex plane, etc., are identical to those for the undamped
case. (The details are given in [7}). The final result for the decay rate I' is the
following:

I'=A exp(—B/h), (4.30)
where the bounce exponent B and prefactor A are given by the following expressions:

B= f MG + V(g)} dr + %J: dr [io dr’ (3(—?:—‘:({—)) s

where the integral is evaluated along the “‘classical” bounce path, that is, for the
function ¢(r) which satisfies the conditions g{(—o0)=g(c0)=0 and corresponds to
the saddlepoint value of the right-hand side of (4.30) (regarded as a functional of
g(z)). (In the limit # — 0, this trajectory is just that corresponding to classical motion
in the inverted potential ¥(q) = —V(q)). The prefactor A is given, to lowest order in
h, by the expression

1/2

: (4.32)

A = (BJ2mh)"? (de‘ 2 )

det’ &,

'® That is, the term arising from the last term in (4.27).
¥ It should be carefully noted that these arguments are nor valid in the case of a discussion of
quantum coherence (see Section 6).
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where the differential operators 920, %, are given, respectively, by

. (D n o= 9@ —g@) .,
Foq(r) = (—W+w5)q(r)+mj_w—(r—_—r,—)i—dr, (4.33)

> d? o _ ’
“iq(r) = (— o +M"V"[qcl(r>l)q(r)+i[ @ —at’)

——dr’. (4.34
Mo, (1) oo @34

Here q.(7) is the classical bound path as described above, the integral is to be taken
as its principal part, and the prime in Eq. (4.32) indicates that the zero eigenvalue,
which corresponds to the uniform translation of the bounce along the t axis, is to be
omitted. Equations (4.30)-(4.35) constitute, in principle, the solution to our problem.
We will now generalize these results to an arbitrary Lagrangian of the form (3.5).
The calculation proceeds exactly as above, the only difference being that the quantity
C;q is everywhere replaced by F;(q). The equation analogous to (4.24) is
T Nes -T
Swla(@] = M+ V@) dr+3| | dezig@l  (439)
. w

where

—wjilt—1’|

.e
Zlgm]=>
T Amjw;

{Fig(r)) — Fq(x'))}™ (4.36)

This result, while quite general, is not of much interest unless we can relate the
parameters of the model to some simple dissipative coefficient. Let us therefore
specialize to the case, discussed in Section 3, where the dissipation is adequately
described by a coefficient n(g). Most generally, the relation between the parameters
and #n(g) is given by Eq. (3.10). In the special case of a “separable” interaction
‘Eq. (3.11)) we can use (3.10) to express Z|[g(7)| uniquely in terms of #(g)

-q(r’

Z[q(r)] :%jT,)z [J )n‘”(q)dq] - (4.37)

a(1)

So in this case the result for the effective action is a simple generalization of
Eq. (4.27) obtained by the replacement

e - a1 =" @y ag] (438)

q(t)
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In the general case there is no unique relation between the quantity Z{g(r)] and the
low-frequency friction coefficient #(g). However, by using the obvious inequality

I

; mjﬁ)? 3w — w;){Fi(q(r)) —F,-(q('r’))}2

q(t") 1 AF \? 172 2
e () s
ng ["T mjwf oq ( i) 9

_ 2 (J,q(m 1/2( d )2 (@.39)
7 U n\g)aq .

we see that Eq. (4.37) constitutes an upper limit on Z|g(7)|. Thus we can make the
general statement that an upper limit on the effective WKB exponent B, and hence a
lower limit on the tunnelling rate, is given by the inequality

N

" ‘i di'(r—1') °

Y — o -

.o ) 1
B < ‘ dT{%qu + V(g)} + A

Y —w

-q(t’) . )
[ " () day

“q(T)

(4.40)

with the integral being taken as always along the “bounce” (saddlepoint) path which
makes it an extremum. The inequality (4.40) becomes an equality only if the
interaction is separable (i.e., if (3.11) holds).

The case of linear dissipation is clearly a special case of the above. We see that
expression (4.31) constitutes an exact expression for the bounce exponent if and only
if the dissipation is strictly linear; in the more general (quasilinear) case it constitutes
only an upper limit. Hence, the calculations of the next section, which are based on
Eq. (4.31), will give in this case only a lower limit on the tunnelling rate. (An upper
limit is clearly given by the WKB expression calculated without account of damping,
since Z|g(r)] is obviously positive). Naturally, if we have a specific microscopic
model for the nonseparable interaction, we can obtain an exact expression for B as a
function of the parameters of the model by direct substitution into (4.36). The impor-
tance of the general result (4.40), however, is that it guarantees us that, provided the
classical dissipative behaviour can indeed be described by a single coefficient #(q),
then no mechanism of this dissipation, however complicated, can lower the tunnelling
rate below a value which is calculable directly in terms of this coefficient. The
implications of this are noted in Section 7.

Everything we have said above generalizes very trivially to the case where # is
frequency-dependent (provided it is amplitude-independent). For example, in the
strictly linear case all we have to do is to replace the simple expression (4.26) for
a(r —7') by the more general form obtained from (4.22) when J(w) is given by
wn(w). The more general case can be discussed similarly: it is not worth writing out
the explicit expressions here.
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Finally, since the techniques used in the derivation of Egs. (4.30)-(4.34) are not
yet universally familiar, it is worth remarking that, as already observed by Sethna
[58], many of the features of these results can actually be seen rather directly by
using the conceptually simpler “many-dimensional WKB” approach. In such an
approach the complete “universe” is visualized as tunnelling along the easiest path in
the many-dimensional space whose axes are ¢ and the x,, and the exponent B/% in
the tunnelling formula is given by the expression

B/h=h"" j [2MV(q, x,)| " ds, (4.41)

where the integral is taken between the origin and the nearest point in the many-
dimensional space for which V' again becomes zero, and ds is an appropriate metric
in the space (ds’=dg* + 3 (m,/M)dx}). One interesting feature is that once we
have incorporated the counter-term (3.4) in the potential, the actual minimum value
of V attained on any hyperplane of constant g is the same as for the isolated system
(but of course occurs for x, # 0); the reduction of tunnelling by dissipation can
therefore be viewed as arising entirely from the fact that the path length in the many-
dimensional space is increased, It is of course possible to derive the formula (4.31) by
this method: what we have to do is to note that the value of B/A given in (4.41) is
simply the minimum value of the action taken over any path which goes from the
origin to the barrier edge and back, take the functional derivative of the action with
respect to the x,’s and use the resulting equation to eliminate them. (See Sethna
[58].) The resulting expression for the action is then equivalent to (4.31). However, it
seems to us that there is a rather subtle point in this manceuvre: the expression (4.31)
(or Sethna's Eq. (4.9)) only seems to result if we impose boundary conditions
(x,=0) on the x, at the beginning and end of the bounce, not at the turning point.
(If we were to do the latter, we would apparently get a more complicated expression).
Thus, we are implicitly allowing the x, to take any values when ¢=g,. not
necessarily the values which actually bring the system out of the barrier. That this
manceuvre gives the right answer appears to be connected with the special properties
of harmonic oscillators, and we believe it may be a little dangerous to try to
generalize it to other problems (such as the quantum coherence problem, see
Section 6) without thorough examination. For this and other reasons we feel that the
method developed in this section, though based on perhaps less familiar techniques,
may be simpler to apply in general.

5. ANALYSIS oF THE GENERAL FOrRMULA

In this section we shall carry out, as far as possible, a quantitative analysis of the
formula (4.30) which gives the tunnelling rate in the presence of dissipation. Since in
the WKB limit (which is the only limit in which the formula is valid anyway) the
influence of dissipation is overwhelmingly through the bounce exponent, we shall
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devote most of our effort to the analysis of the quantity B (Eq. (4.31)) and discuss
the prefactor 4 more briefly and less generally. Obviously it would be possible to
obtain completely quantitative values of B as a function of damping by solving the
Euler-Lagrange equation resulting from the variation of (4.31) numerically, but we
shall see that we can get a great deal of insight into its general behaviour by purely
analytic means. For definiteness we shall carry out the analysis explicitly for a
quadratic-plus-cubic potential of the form (2.5), which is likely to be the case of
prime interest for macroscopic systems; however, the generalization to the case where
the anharmonic term is of the form ¢", n any integer greater than 2, is completely
straightforward, and we can then if required use the results obtained to set bounds on
the tunnelling rate for a general potential (cf. below).
It is convenient to introduce the following dimensionless quantities:

Uu=w,, (5.1a)

z(u) = q(u)/q,, (5.1b)
a=n/2Mw, = y/w,, (5.1¢)
o{z(u)} = Sertq(r)}/3Mw,y 45, (5.1d)
b(a)=B/iMw,q}. (5.1e)

Then the dimensionless bounce b(a) is the saddlepoint value of the quantity

z(u)—z(u’)) :

u—u'

o

a{z(u)} ]Cc du 3 <£>2 + (zz—z3)€ +_Z-J

—on du du 'l—r o au’ (

— o

(5.2)

subject to the boundary conditions z(0) = z(c0 ) = 0. We notice that any excursion to
negative values of z can only increase the value of g, so it is convenient to impose the
condition z{u) > 0 explicitly.

Let us define z, as the maximum value attained by the function z(x); in the limit
a =0 it follows from the definition (5.1b) that z, is 1, and it is obvious (cf. below)
that for a > 0 we have z;, > 1. Then we write

z(u) =z, fwu) =z, f (1), t = wu, (5.3)
where the quantity w is for the moment arbitrary. We also introduce the positive

dimensionless quantities (4 and B bear no relation to the prefactor 4 and bounce
exponent B):

lri=| OOOO (dfydry* dt, (5.4a)

Br=[ rwa (5.4b)
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Cl/ EJ flad, (5.4¢)

Dlf] E%jio dsz dt’ (f—(t—zgjjﬁ)z (5.4d)

From its definition the function f(t) must satisfy the inequalities 0<f(#) < 1;
moreover, it will become obvious from what follows (and the trivial inequality
C < B) that no interest attaches to functions f(¢) for which any of the quantities
(5.1a)-(5.1d) fail to exist, so we confine ourselves to functions for which 4,..., D are
well defined. We note that the combinations

x[f]=B*C-¥4AB)"*, (5.5a)
Alf])=DAB) ' (5.5b)

are invariant under changes of length and time scale separately, as of course are any
combination of them. Substituting (5.3) and (5.4) into (5.2), we obtain

0(zg, w, 4, B,C,D) = z}(wA + 0 'B + aD) — 0 'Cz]. (5.6)

Evidently, for any given choice of w and f(¢), ¢ will have a maximum at the value

zo=3w(wd + w ‘B + aD)/C (5.7)
and this value is
o,|lw.f] = +w*(wd + 0™ 'B + aD)*/C*. (5.8)

Now, we know that for a =0 the functional (5.8) is bounded below by a value
corresponding to the undamped bounce. Since all the quantities in (5.8) are positive,
it is therefore immediately clear that for a # O this functional is bounded below and
thus attains a minimum value. The point at which this value is attained corresponds
to a saddlepoint of the functional 6{z(w)} and hence gives the bounce trajectory.’® It
follows immediately from these considerations that the bounce b(a) is a
monotonically increasing function of a, as we should expect.

The ensuing analysis is simplified if we work in terms of the scale-invariant quan-
tities k[ /] and A[f] defined in Eq. (5.5), and introduce also the notation

tan 6 = ad|f]/\/5. (5.9)

We minimise the functional (5.8) with respect to w and eliminate the resulting value

’® This argument of course cannot exclude the possibility of more than one saddlepoint (in which
case the one corresponding to minimum ¢ would dominate).

595/149/2-12
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of w. After some straightforward algebra we obtain for the functional o4/ so
defined

32
000[f1—25\/§K[f]F(0) (5.10)
Fo) = (1+ 3 sin 6)° (5.11)

“(1+sinf)cos b’

The dimensionless bounce b(a) is then the absolute minimum of g,,|f] as a
functional of f. What we have done is effectively to choose the “time scale” of the
bounce w~' to have its best value; once this is done the variation of gy, with the
“shape” of the bounce, that is with the form of the function f; is fairly weak. It should
be noticed, however, that the notion of a time-scale is not well defined until we
impose some normalization on the function f; a natural choice is to set B = 1, which
is equivalent to the condition

w™! EJ 22(u) du/z}. (5.12)
For the moment, however, it is convenient to leave the normalization arbitrary;
clearly nothing depends on this, since according to Egs. (5.9)-(5.11) 0, is a function
only of the invariants k| /| and A[f], which do not depend on the normalization.

In the limit of zero damping we know of course the exact form of the function f(¢)
(namely, sech’¢) and can compute all the quantities (5.4) (see Appendix D). The
relevant value of k is 51/5/6, and the resulting value of the dimensionless bounce
exponent b is

b(0) = b, = L& (5.13)

Since according to (5.10)—(5.11) in this limit the function f(f) must minimize x{f}, it
follows that for general f we have

klf]125V/5/6. (5.14)

To proceed further we need the following inequalities, which are proved in
Appendix D:

F(#) > (125/32) tan 6, (5.15)
1 +3tan K FA)K 1+ tané, (5.16)
x| f1A[f] > 8x/9. (5.17)

To obtain a lower limit on b(a) which is valid for ail « and reduces to b, for ¢ - 0 we
combine the first of the inequalities (5.16) with (5.14) and (5.17) to obtain

1287
—a. .1
bla) > by + 555 @ (5.18)
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Another general limit, which is stronger for large a (and tends to the exact result in
the limit @ — o0) is

b(a)>%”—a. (5.19)

To obtain an upper limit on b{(a), we need only choose some plausible trial form of
J(¢) and substitute the values of k and A obtained from it into Egs. (5.9)—(5.11). Some
relevant forms of f(¢) are tabulated in Appendix D together with their values of x and
A. In the limits of weak and strong damping we know the exact limiting forms of the
bounce trajectory (the first and second functions in the table in Appendix D, respec-
tively). In each case we obtain results exact to the next order by evaluating the
“perturbation” (that is, the terms in a,,[f] of order a in the weak-damping and of
order a7 in the strong-damping limit) along the limiting trajectories. In this way we
obtain

b(a)=b, + 4853) a+ 0(a?) (a—0) (5.20)
and
b(a)=—§§7ia+—2—97—z~a“+0(a‘3) (@~ o). (5.21)

These two forms of f(¢), or others (cf. Appendix D) can be inserted into Egs. (5.9}
{(5.11) to give general upper limits. We notice in particular the limit obtained by using
the strong-damping form and the second inequality of (5.16)

2567 +2247:
a.
225/10 225

b(a) < (5.22)

Finally, returning to dimensional variables, we can summarize the above results by
saying that the correction AB to the WKB exponent B arising from damping is of the
general form

4B = ®(a) nq3, (5.23)

where the dimensionless function @(a) (the quantity called 4 or ¢(a) in our earlier
paper [28]) is always of order 1, has the exact value 12¢(3)/n* for weak damping and
the exact value 27/9 for strong damping (in accordance with the conjecture made in
our earlier work [28]), and for intermediate values of a can be bracketed in the way
described above. In Fig. 2 we show the asymptotic values of and the bounds on b(x)
obtained above as well as some typical values obtained from trial functions.

Before leaving the subject of the semiclassical bounce we should discuss the
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upper limit (5.22)
~ e lower limit (5.1 9)
e foWer limit (5.18)
exact asymptotes (5.20) and (5.21) -I'I
ry variational upper bounds using trial function e
° " " W (e
+ " u “ " w i sech? t

ol 1
° ! 2

Qq—

FiG. 2. Limits on the dimensionless bounce b(a).

question of its length and “time” scales. Quite generally we find that the
maximization with respect to z, and the minimization with respect to w carried out
above leads to the results

4 B /1+1sind
el L Sl .24
%0 5C<1+sin9) (5-24)
B" 1/2
w= ET) (sec 8 —tan 8). (5.25)

The length scale z, is unambiguously defined; it is the maximum excursion in the
damped bounce relative to that in the undamped one. However, as remarked above,
the definition of w requires some normalization of f(¢); let us choose B = 1. Then,
using the inequalities

(1+2tanf) ' sec—tan 6 (1 +tan §) ™! (5.26)

we see that w is of order A ~"2[F(0)]~*. From (5.10) and (5.15) we then have for the
“time-scale” T, = 2n/w and length scale z, the order-of-magnitude estimates

2y~C~Y, Ty~ C(a). (5.27)

For weak or moderate damping we clearly have C ~ I, so the length and time scales
are of the same order as for the undamped bounce. In the limit of strong damping we
can use the exact solution (f(¢) = (1 4 £*) ™', see Appendix D); then we find that z, is
$ and T, is (D/104)=a/5n. Going back to dimensional units, we find that the
bounce path g(r) in this limit has the form

g(t) = (4/3) g,

- W. (5.28)
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Thus, even in the limit of very strong damping the spatial excursion in the bounce
trajectory is still finite; however, the time scale diverges as the “slow” relaxation time
y/wi. We have not proved explicitly that the behaviour of z, and T}, as a function of
a is monotonic, but this seems extremely probable.

We now turn more briefly to the analysis of the prefactor 4 in the expression
(4.30) for the tunnelling rate I'; 4 is given by Eq. (4.32). In the ensuing analysis it is
convenient to take the total time region T allowed for the bounce to be very large but
finite, thereby allowing (where necessary) an expansion of ¢(r) as a Fourier sum
rather than an integral, and to take the limit 7 - oo at the end of the calculation. It is
also convenient to take, as above, the centre of the bounce to lie at t=0. We note
that while we are required to continue g(r) periodically outside the region —717/2
1< T/2 by the prescription g(r+ T)=g(r) (or, alternatively, to use a more
complicated form of the last term in (4.33) and (4.34)), the physical problem is also
constrained by the boundary conditions q(7/2)=g(—7/2) =0. We shall, however,
assume that the value of 4 is negligibly affected if we simply omit these boundary
conditions. The physical justification for this is that in calculating the factor A we are
comparing fluctuations about the bounce path with those about the trivial path
g(r) = 0; since the two paths differ only in a time region of order T, (see above),
where T,/T - 0, any extra freedom arising from the behaviour near the boundaries
(r=+T/2) should cancel out in the final result.>' In the following we will also, where
convenient, take complex Fourier transforms even though g(r) is physically
constrained to be real; working with sine and cosine transforms would of course give
the same results but is more cumbrous.

Since we are most interested in the strong-damping limit, it is convenient to
introduce the dimensionless time variable r=w,7/2a. We denote the frequency
conjugate to ¢ by w. Then the operation of summing over the states allowed by the
periodic boundary conditions goes over into an integral according to the prescription

v,
~  2n

[do  (@=w,T)2a) (5.29)

Let us denote the dimensionless classical bounce trajectory, measured in units of g,,
by §.(¢). Then we can write Eq. (4.30) in the form

A = (B/2rk)'? K17, (5.30)
where the dimensionless factor K is given by

det H,

det’(Hy+ V) |’ (53D

Here the operators H, and ¥ (so denoted to help one’s intuition by analogy with a

*' 1t should be observed that this argument would not necessarily go through if we were comparing
the fluctuations around the damped path with those around the undamped one.
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scattering problem) are defined, in the representation whose basis is normalized plane
waves with frequency w, by the relations

Hyy, (@)= (1 +|o|+ 0/4e®) yw), (5.32)
= Vo-oigpe)d, (5:33)

with
V(w)=— 7377 J: . e dt. (5.34)

The quantity V(w) depends on « because the bounce trajectory g,,(¢) is a function of
a (both in scale and in shape). The prime in Eq. (5.31) denotes, as always, that the
zero eigenvalue is to be omitted.

Consider the spectrum of the operator H, + V. We know that it has one’? negative
eigenvalue 4,, with associated eigenfunction y,(w), which corresponds to the steepest
descent from the saddlepoint in function space, and one zero eigenvalue, with eigen-
function y, = const wV(w), corresponding to uniform translation of the bounce along
the time axis. It may or may not have other “bound state” (discrete) eigenvalues
lying between O and 1, but in any case will certainly have a quasi-continuous
spectrum (i.e., with spacing vanishing as 2" in the limit 2 — co) starting at 4 = 1.
In the states of the quasi-continuous spectrum the effect of ¥ is of order £ ™' relative
to that of H,.

Using the relation In(det 4) =Tr(In A), we write the logarithm of the factor K
(Eg. (5.31)) in the form

In K = (w, |In Hy| w,) + (, |ln1-70] w,) — In |4,

. L (5.35)
+ Tr(In Hy) — Tr*In(H, + V).

Here the operator In H, is defined by its matrix elements (In(1 + |w| + w?/4a?)) in
the w-representation, in which it is diagonal, and the double prime on the trace
indicates that it is taken over the (infinite-dimensional) subspace orthogonal to y,
and y,. If now we work in the representation defined by the eigenfunctions of
H, + V, then for all states 7 of the continuous spectrum we can make the replacement

Wolln Hol v, — (W, | In(Hy + V) v,y = —(w, |Hy 'Vl w,). (5.36)

(The legitimacy of this manoeuvre may be verified by noting that the second term is
just InA, and writing 4, explicitly as a bilinear form in w,(w).) If, therefore, we
define the guantity

Co= N Kl Aol —n A+ (GIHs VI, (5.37)
(0</{,-<1)

22 That there is no more than one follows from the fact that the zero eigenvalue corresponds to an
eigenfunction with a single node (cf. [50]).
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where the sum over j runs only over the bound states with 4; > 0 (if any), and take
into account that Hy 'Vy, = —y,, we can rewrite (5.35) in the form

InK =Dya)—TrH;'V, (5.38)
where the quantity Dg(a), which depends only on the bound-state spectrum, is given

by o
Dy(a) = (In I:I0>o +(In go>1 —Injdgl + Co+ (Hy'V)— L. (5.39)

The unrestricted trace which appears in (5.38) can be evaluated directly in the w-
representation

A © dw
TrH 'V=V(0
rid, ( )J.—oo 1+|w|+w2/4a2
3 | - (5.40)
o0 a+\/a —
=—— G, (1) dt X 1n( ) a>1
IR0 i) @21

with a similar easily calculable expression for a < 1. (cf. Egs. (29) of Appendix B).
Substituting (5.40) in (5.38) and the latter in (5.30) we finally obtain the prefactor A
in the tunnelling rate.

In the limit @ — oo this programme can be carried out explicitly. Using Eq. (5.28),
we see that the expression (5.40) reduces simply to 8 In 2a. The quantity D, does not
depend on « in this limit and is estimated in Appendix D to be about —1 - 5. Thus the
final expression for 4 in this limit is

A = 4(exp(D, /2)) a’wy(B/2rh)"%. (5.41)
Bearing in mind that B is related to its “undamped” value B, by a factor (57/6)a, (cf.

Egs. (5.20)-(5.21)) and using Egs. (2.3) and (2.6)), we can therefore finally relate 4
to the “undamped” prefactor 4, by

AjAdy=ca’?,  c=(2me/9)"2 (5.42)
Thus in the limit of strong damping (y— c0) the prefactor is proportional to
¥"?wy "% For intermediate damping we can obtain approximate values of the

prefactor by substituting approximate forms of §,,(¢) in (5.40).

In conclusion, we note that the techniques of this section, although specifically
applied to a problem where the potential is of the form (2.5), can obviously be
straightforwardly adapted to any potential of the more general form

V(g)=1iMwiq* — Aq". (5.43)

(However, the argument which leads to the inequality (5.17)—see Appendix D—does
not have a straightforward generalization to this case, and it would be necessary to
find other ways of limiting the quantity x4 if we wish to produce a general lower limit
on b(a)). Moreover, since it is easy to show that if the condition ¥,(g) > V,(g) holds
for all g, then the tunnelling rate in ¥, is less than that in V, (cf. Eq. (4.27)), we can
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obtain bounds on the rate for any potential which is everywhere bounded by two
potentials of the type (5.43). It is, however, essential to appreciate that it is not
sufficient for the bounds to hold everywhere “under the barrier,” that is, to the left of
the point B in Fig. 1; in the damped case the system is still in some sense in the
tunnelling regime beyond the point B. Once must also be careful not to assume that
sharp cutoffs can be put on otherwise smooth potentials without drastic effects: see
the discussion of the “truncated harmonic oscillator” in the next section.*

6. DISCUSSION

We now turn to the physical interpretation of the results presented in this paper. A
simple way of summarizing them qualitatively is to say that in a damped system the
tunnelling probability can be written in the form

P ocexp — const(Vy /hw.q), (6.1)

where w, is an effective frequency of the system which varies from the undamped
frequency w, for weak damping to a quantity of the order of the “slow” relaxation
frequency wj/y for strong damping (cf. |59, 60]). Thus, the effect of damping is to
increase the WKB exponent by a factor of order (1 + y/w,). There are a number of
ways of interpreting this result intuitively.

First, we note that for a simple damped harmonic oscillator the groundstate
probability density can always be written in the form (see Appendix B)

p(q) = const exp — q*/2(q*), (6.2)

where the mean-square displacement (g®) is given by Eq. (B.28), that is,
h
D= \ 6.3
& Mo, S/w,) (6.3)

where the expression f(y/w,), given by Eq. (B.29), tends to 1 for small y and for large
y is proportional to (w,/y) In(y/w,). Now, we might suppose that to estimate the
order of magnitude of the effect of damping on tunnelling it is legitimate to replace
the true barrier by a “model” potential which has its small-g (harmonic) form up to
some (y-independent) cutoff g, of the order of the true barrier width g, and then
drops away discontinuously to a negative value. It is now tempting to argue that the
tunnelling probability for the model potential is simply proportional to the value of
p(q4) calculated for the simple oscillator, so that the WKB exponent is g;?/2{g*) with
{q*) given by Eq. (7.3); and that therefore the exponent for the real problem should

* Note added in proof. The method given in this section to calcuiate the prefactor A(a) is not quite
correct, in that (5.36) omits a term (In{y, |H,| w,) — (¥, |In Hy| w,>) which may in general be of the
same order as those kept. This does not affect the a-dependence for strong damping but does change the
numerical factor. A numerical computation of 4(a) has recently been carried out by L.-D. Chang and S.
Chakravarty, who have also obtained more accurate values of the exponent B: we thank them for helpful
discussions on this point.
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be given by the same expression to within a constant of order unity. Such an
argument evidently gets the leading-order effect right but for strong damping
underestimates the true suppression of the exponent by a factor of order [In(y/w,)] .
At first sight this seems to contradict the theorem stated at the end of Section 5
concerning the monotonic dependence of the tunnelling probability on potential, since
if we choose g, > 4g,/3 the model potential is greater than the true one for all values
of g which are reached by the (true) instanton trajectory. The fallacy lies in the
assumption that the tunnelling probability for the model potential is proportional to
the quantity p(g;) calculated for the simple oscillator. In fact, consider a potential of
the form const. {(g/q;)* — (¢/g,)"} of which the model potential can be considered to
be the limit as n— oo. The larger the value of n, the steeper the last part of the
instanton trajectory and the faster the system will tend to move along it. For the
undamped system, this accelerated motion cannot increase the total action beyond the
value it would have for a smoother potential, but for the damped system it can and
does increase the effective action (4.29), because of the last term. To the extent that
this last, steep part of the trajectory contributes significantly, the quantity p(g})
(which is essentially determined by the rest of the trajectory) clearly badly
underestimates the suppression factor. These remarks suggest more generally that for
a damped system it may be a very bad approximation to replace the true potential by
one which has a discontinuity—at least unless special care is taken in handling the
latter.

A second way of looking at our results is in terms of the formal quantum theory of
measurement. A well-known feature of the latter is that any “measurement” of a
quantum system projects its state on to the relevant eigenfunction of the measured
quantity and hence may inhibit its evolution. In our case we can regard the
environment as subjecting the system to repeated position measurements. Now,
intuitively speaking, the frequency with which the position is measured to within an
accuracy of the order of the zero-point excursion (#/2mw,)"’? is of the order of the
relaxation time from the first excited state to the groundstate, that is, of order y~'.
(This crude argument can of course be made more precise.) If the system is
repeatedly examined to see whether it is within the zero-point limits, then by the usual
arguments (see, e.g., |31]) its probability of propagating outside them, and hence of
tunnelling, will be reduced. Thus we should expect the “observation” by the
environment to suppress tunnelling appreciably as soon as the frequency y of this
observation becomes comparable to the natural propagation frequency, that is to
wy—a result which agrees qualititatively with Eq. (6.1). An advantage of this way of
looking at the problem is that we can see immediately that quantum tunnelling may
be a very much more difficult phenomenon to suppress than quantum coherence (see
Section 1), since the relevant time scale for the latter is many orders of magnitude
longer. To be concrete, let w, be as above the characteristic frequency of small
oscillations, which to within a factor of order unity is the “attempt frequency” for
penetrating the barrier. The actual tunnelling rate w, (whether expressed in terms of
an amplitude or a probability) is smaller relative to w, by an exponential factor.
Quantum coherence, in the sense in which it is defined in the Introduction, requires
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that the system propagate undisturbed (hence unobserved) for a time comparable to
w; ! (cf. [31,32]); quantum tunnelling, as we have just seen, merely requires that it
be unobserved for the much shorter time w;'. Thus, the existence of quantum
tunnelling in a given system (macroscopic or otherwise) is no guarantee that that
system will also show quantum coherence. For further details of the argument see |2,
Sect. 5].%°

Next let us examine the question of the limits of validity of our results. It is
essential to our argument as formulated that the system, once it has tunnelled through
the barrier, has no appreciable probability of returning and interfering with itself, and
this is guaranteed if the potential beyong the exit point is everywhere negative as
assumed in Section 2. While this is a relatively realistic description of the potential
felt by (e.g.) an a-particle tunnelling out of a nucleus, there are many cases of
practical interest on both the microscopic and the macroscopic scale where the
tunnelling is between two finite wells. (In particular this is always the case for a
SQUID). The question then arises, under what circumstances can we apply our
results to such a case?

Intuitively speaking, we should expect it to be a sufficient condition to be able to
treat the lower well as effectively unbounded if the probability of the system being
reflected at the far end and returning to the barrier with sufficient energy to get back
into the metastable state is negligible. To be more quantitative, it is certainly
sufficient that it should have lost in the process of going to and fro across the lower
well an energy comparable to the effective zero-point energy of the metastable state.
For weak or moderate damping this quantity is of order Aw,/2, while for heavy
damping it certainly cannot be greater than a quantity of order Ay/2. Suppose for
definiteness that the lower well is approximately harmonic in shape, with oscillation
frequency w, and classical relaxation time 7,, and let the energy (relative to the
bottom of the lower well) with which the system emerges from the barrier be of order
Nhw  ; thus, N is large to the extent that the motion in the lower well is semiclassical.
Then it is easy to see that the energy lost in transit across the lower well is of order
Nhz; ', and correspondingly a sufficient condition to treat it as infinite is, for weak or
moderate damping in the upper well

N2 w,1,. (6.4)

For strong damping in the upper well this condition should be replaced by ¥ 2 y1,,
which for most practical cases (y ~ 7; ') is simply the condition for the motion in the
lower well to be semiclassical. Actually this condition may well be too stringent.
Suppose that w, is much less than w,, as may well be the case in practice. (In
particular, it will often be the case for a highly hysteric £ SQUID, since the effective

23 In making this argument quantitative it is of course essential to bear in mind that the spectrum of
environment fluctuations which couple to the system (the spectrum of “observations™) may itself be
frequency-dependent. For this reason, while the last two sentences on p. 96 of [2] are correct, the second
sentence on p. 97 is somewhat misleading (the quantity y is not in fact 1/2CR). In fact, the question of
quantum coherence in the case considered in this paper (J(w) <« w) is quite subtle (cf. [61, 62]); we hope
to discuss it elsewhere.
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w, is then the average “harmonic” frequency of the potential (1.2) ignoring the
sinousoidal corrugations, that is (LC)™'?, whereas w, involves the much larger
term (I,0,/C)"%.). Now, it is easy to show, for a simple harmonic oscillator
potential, that coherence between a wave packet newly emerging from the barrier
(treated in this context as a phenomenological J-function source of particles) and one
which has made one double transit of the well is destroyed as soon as N is large
compared to w,7,. Since our calculation of the tunnelling probability is affected by
reverse transitions only to the extent that they are coherent with the original process,
it follows that the possibly weaker condition

N2w,r, (6.5)

is also a sufficient condition for the validity of our results. In most cases of practical
interest both the conditions (6.4) and (6.5) are satisfied.

It should be emphasized that the fulfilment of the criteria (6.4) and/or (6.5)
merely justifies the general technique used in Section 4 of this paper; it does not, in
itself, guarantee that an instanton path actually exists. In fact, in view of the results of
Section 5 for the specific case of a cubic potential (see especially Eq. (5.28)) we see
that an instanton path may well not exist if the lower well is insufficiently deep
relative to the upper one; crudely speaking, we need that the depth of the lower well
relative to the upper should be comparable to the height of the barrier. In the case
wy <y < V,/h this is a more stringent condition than (6.4) or (6.5); nevertheless, in
most practical cases it is again usually well fulfilled.

Finally we examine briefly the question of corrections to the WKB approximation.
As is well known, for an undamped system the condition for validity of this approx-
imation is that the barrier height ¥, should be large compared to Aw,. This is,
roughly speaking, equivalent to the statement that the zero-point fluctuation
amplitude should be small compared to the barrier width, or that the WKB exponent
should be large compared to unity. Whichever of the latter formulations we use, it is
clear that for a damped system the relevant criterion becomes V> hw,, and in
particular that for the overdamped limit it is only necessary that ¥, > hw?/y. Hence
if the WKB approximation is good for an undamped system, it is certainly good for
the corresponding damped one. In particular it should be good for almost all systems
which are likely to show macroscopic-scale tunnelling.

Thus, the theory developed in this paper should cover the overwhelming majority
of systems which can be used experimentally to investigate macroscopic quantum
tunnelling. The minority of cases which violate one or more of the above conditions,
in particular cases where the relative depth of the two wells is small compared to the
barrier height (cf. [8]) is of course also of considerable interest, as are the much more
common examples where this situation occurs on the microscopic scale (e.g., the case
of defect tunnelling in solids [29]). Such cases can obviously be handled by suitable
application of the general formulae developed in Section 4, in particular Egs. (4.23)
and (4.27), but the subject is clearly too large to discuss here. However, it is worth
making one remark to illustrate the fact that dissipation can actually modify the
behaviour qualitatively. Suppose that we are interested in quantum coherence in the
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sense defined in the Introduction, that is, in the behaviour of a particle moving
between two equivalent minima. For an undamped system the relevant calculation in
the instanton formalism is standard (see, e.g., [54]) and involves considering a
trajectory in which the particle leaves one well at r = —co and ends up in the other at
7= 00; that is, effectively, half a bounce. Suppose for definiteness the damping is
weak: then, at first sight at least, it should be possible to a first approximation to
neglect it when considering the instanton trajectory ¢(r). If, having done this, we then
treat the last term in (4.27) as a perturbation, then the contribution of this term
diverges logarithmically; consequently, we should expect the coherence behaviour to
be qualitatively different from that of the undamped system—a result which is indeed
found by phenomenological treatments of the “detuning” effect (see, e.g., [31]). Note
that this effect appears only because the spectral density J(w) (Eq. (3.28)) is propor-
tional to w in the low-frequency limit; it has no analog, for example, in the case of
defect tunnelling in solids [29], where J(w) is proportional to w®. (In the language of
quantum measurement theory, we are considering the case where the frequency of
observations which effectively localize the system on one side or other of the barrier
is proportional to the tunnelling frequency w, in the limit w, — 0, whereas in the
defect case it tends to zero faster than ¢, in this limit. We hope to discuss this and
related questions in the future.

To conclude this section we briefly outline some generalizations and problems for
further work. In the bulk of this paper we have considered the case of strictly linear
frequency-independent dissipation. The generalization to the quasilinear and
nonlinear cases is fairly trivial and is given at appropriate points. To obtain the
generalization to frequency-dependent dissipation, we simply use Eqs. (4.24) and
(4.22) with the appropriate form of J(w) (or the analogous quantity, see Eq. (3.6)).
Provided only that J(w) is proportional to  in the limit w — 0, and for w — oo falls
off sufficiently fast (J(w)< constw ", n>0) to ensure the convergence of the
expression (3.13) for the frequency shift dw?, then the results are qualitatively
unchanged and can be crudely expressed by replacing # in Eq. (5-23) by an effective
friction coefficient for frequencies of the order of the characteristic bounce frequency
(i.e., w, in the weak-damping case and w¢/y in the strong-damping case). (cf. [16]).

A somewhat less obvious generalization is to the case of dissipation in a field
theory (cf. [27]), where the dissipative mechanism may involve spatial gradients of
the fields. We are confident that a generalization of the method of this paper to this
case is possible in principle, but have not at the time of writing constructed one.
Another important question concerns the generalization of the results of this paper to
finite temperatures. While for an undamped system the crossover between quantum
tunnelling and classical thermal barrier hopping takes place, as the temperature is
raised, at a temperature of the order of Aw,/ky, it is very plausible, in view of the
results given in Appendix B, that for a heavily damped system the crossover should
taken place at a much lower temperature, of order [60] hw{/yk,. However, it is
clearly highly desirable to constract a detailed quantitative theory of tunnelling in
damped systems at finite temperature, Finally there is the complex of questions,
mentioned above, associated with the finite extent of the lower well and with quantum
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coherence effects—questions which, while primarily of interest in the context of
microscopic tunnelling systems, may in certain special circumstances also be relevant
to the macroscopic case. We are currently working on some of these problems.

7. CONCLUSION

In this paper we have attempted to motivate, define, and discuss the question:
What is the influence of dissipation on quantum tunnelling? Specifically, we have
studied the quantum tunnelling behaviour of a system whose semiclassical dynamics
is given by the dissipative Eq. (2.8), or a generalization of this. Our main conclusions
are as follows: (1) The presence of dissipation always tends to suppress quantum
tunnelling. (2) In the case of strictly linear dissipation (or more generally of a
separable interaction), the suppression factor can be uniquely related to the
phenomenological dissipation coefficient: in the general case a lower limit on this
factor can be similarly related to it. (3) In the experimentally important case of
strictly linear dissipation in a potential with cubic anharmonicity, the dominant part
of the suppression factor can be written in the form exp — @(a) ng; /A, where 7 is the
dissipation coefficient, g, the distance to be traversed under the barrier, and ®(a) is a
function of order 1 which we can estimate as explained in Section 5.

To the extent that the behaviour of a given rf SQUID in the classical regime can be
adequately described by the resistively shunted junction (RSJ) model, our results can
be trivially transposed to it by the replacements ¢— @, V(gq)- U(®), M- C,
n—0,=R;"'. Our results can also be transposed if we assume that the correct
description of the SQUID is some simple generalization of the RSJ model, e.g., such
as to incorporate a nonlinear or frequency-dependent normal conductance a,. To go
beyond this assumption would require an explicit discussion of the justification (for
(a possibly generalised) Eq. (1.4), which in turn would lead us into detailed questions
concerning the microscopic model of the junction, etc. These questions are unlikely,
in our opinion, to affect the general nature of the results concerning the influence of
dissipation on tunnelling, and are sufficiently technical that we have not attempted to
discuss them here.

Finally, it should of course be emphasized that all the calculations of this paper
have been carried out within the conventional framework of quantum mechanics, that
is, under the assumption that this framework can indeed be extrapolated to the
macroscopic scale in the sense discussed in the Introduction. Should it eventually
turn out that for a particular type of physical system quantum tunnelling is not
observed under conditions where the theory predicts it should be, no doubt the most
obvious inference would be that the calculations, or the model on which they are
based, are wrong; however, an alternative inference, which it would be unwise to
exclude totally a priori, would be that quantum mechanics cannot in fact be
extrapolated in this way.

In the course of this research, which has extended over the last four years, we have
had many fruitful discussions with many colleagues both at the University of Sussex
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also grateful to John Bardeen for communicating to us his work on the related
problem of tunnelling of charge density waves in quasi-one-dimensional solids, and
Allen Goldman for suggestions concerning possible quantum tunnelling of the
vortex—antivortex complex. We thank A. Widom and T. D. Clark for a preprint
which induced us to elucidate the question of the “anomalous” cases mentioned in
Appendix C. We are particularly grateful to Gabriel Barton for a critical reading of
the first draft of the manuscript and helpful comments on it. One of us (AJL)
gratefully acknowledges the hospitality of the Laboratory of Atomic and Solid State
Physics at Cornell University during April 1980, when an important part of this work
was done; the other (AOC) acknowledges financial support from CAPES (Coor-
denecao de Aperfeicaomento de Pessoal de Nivel Superior) and from the Royal
Society under the exchange agreement with CNPq (Conseilho Nacional de Desen-
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APPENDIX A:
FORM OF THE LAGRANGIAN FOR ELECTROMAGNETIC SYSTEMS

In this appendix we shall discuss a point which, while basically a matter of
elementary classical Lagrangian electrodynamics, nevertheless seems capable of
causing a certain amount of confusion in discussions of the effect of dissipation on
quantum tunnelling. It concerns the correct choice of Lagrangian in the case where,
with the “natural” choice of coordinates for the problem, the coupling is by velocity-
dependent forces. The most obvious example of such a problem is in electromagnetic
problems, for example in a SQUID, where the basic variable, the magnetic flux, is
coupled to a quantity with the dimension of electric current. However, a similar
situation arises in the general case of adiabatic coupling, since as we see in
Appendix C this can be made isomorphic to the electromagnetic problem.

We start with some very simple considerations concerning velocity-dependent
forces in general. Let us imagine a system described by coordinates x, y whose scale
is chosen in such a way that the Lagrangian becomes

Ly=im( +5%) — V(x,y). (A1)
We now add to this a velocity-dependent term of the form
AL | = exy. (A.2a)

Because addition of a total time derivative to the Lagrangian changes the classical
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equations of motion not at all (and the quantum-mechnical transition amplitudes only
trivially) we may equally well replace (A.2) by either of the equivalent forms

AL, = —exy (A.2b)
AL, = % Gy — xp). (A.2¢)
Going over to the Hamiltonian formalism in the usual way, we see that the

Hamiltonian of the system can be wtitten in any of three equivalent forms
corresponding to (A.2—A.4), respectively,

H, =——(p"2_mgy)2 +—5—’%+ V%),
(9, — ex)’ , (A.3a)
H2=~"”2—m~+—%+ Vix, v),
(p.—y/2)" | (p,+ex/2)} (A:39)
H,= 3 + I + V(x,y)
, (A.3c)
=H, +%+%ﬁ(x2 + %),

where H, is the Hamiltonian derived from (A.1) and L, = (xp, — yp,) is the angular
momentum in the xy plane. The most natural physical interpretation of Egs.
(A.3a)-(A.3c) would of course be as a decription of a charged particle moving in the
plane under the influence of a magnetic field perpendicular to the plane.

If the Hamiltonian H, represents an anisotropic harmonic oscillator, that is, if

Vix,y)=1m(wix’ + w3y?)  (w, # w, in general), (A.4)

then it is very straightforward to diagonalize the Hamiltonian (A.3b) (most easily by
carrying out first a canonical transformation which interchanges the roles of p and
Py and then a simple rotation of coordinates), and to check that the value of the
mean-square displacement x? is decreased relative to its value for H, alone, quite
independently of the ratio of w, and w,. Since the exponential tail of the wave
function is determined entirely by {(x?), it follows that the whole probability
distribution is shrunk up by comparison with the unperturbed state (cf. Appendix B).
If now we consider a tunnelling problem, where, let us say, the escape is in the x
direction and is obtained by adding to (A.4) a suitable function of x (e.g., —Ax",
n > 2), then it is intuitively obvious that the effect of the magnetic field, or more
generally of a velocity-dependent coupling of the type (A.2), will be to depress the
tunnelling probability (at least in the WKB limit)?* Thus the results which we are

* This result can be made quite rigorous in the special case w, = w,, since the conversion of —Ax" to
—A(x? + v*)"" giving a spherically symmetric problem, cannot decrease the tunnelling rate.
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about to obtain by a more roundabout route in this appendix and Section 4 are
physically very reasonable (cf. also the remarks in Section 6).

We now turn to explicit consideration of electromagnetic coupling. In what follows
it is helpful to remember that in practice it will be the electromagnetic coordinates
(flux, etc.) which are the analog of the principal coordinate g used in the text of the
paper, and the particle-like coordinates (positions, currents, etc.) which are the analog
of the environment; thus the situation is the reverse of that of, say, an atom
interacting with the electromagnetic radiation field in a cavity.

Consider first the case of a simple one-dimensional harmonic oscillator with a
charge e which interacts with the electromagnetic field. It is consistent for present
purposes to set p =V - A =0 (cf. below). If x(¢) denotes its coordinate and E(¢f)=
—0A(t)/ot the electric field, its classical equation of motion will be

e 0A(1)

. 2 __ <
X(t) + wox = v (A.5)

In the present context it is important to describe correctly not only the influence of
the field on the particle but also that of the particle on the field. Strictly speaking of
course, the latter is described by a vector potential A(rf) which obeys the usual
equation (in units such that c=1)
5 'A .
VA — o = —j(r, 1) (A.6)

and is subject to certain boundary conditions (imposed, for example, by the walls in
which the system is enclosed). However, for present purposes it is adequate to ignore
these complications and treat A(s) in (A.5) as the vector potential (strictly, its
component along the direction of the particle motion) averaged over a region large
compared to the scale of particle motion; in that case is sufficient to require®’ that the
equation of motion should be given by

2

A
?ze.f(l), (A7)

where, for simplicity, we have considered a region of unit volume.
We now require a Lagrangian L(g;, ¢,: t) such that the Lagrange equations for the
various generalized coordinates g;, namely,

d (L\ oL
i ()

ZY =20 A8
a4, aq; ( )

¥ We emphasize that it is very straightforward to handle the problem taking into account the spatial
variation of A. The effect would be simply to add a “potential energy” proportional to A’ to the
Lagrangian, where A is now the amplitude of the relevant normal mode. The only reason we do not do
so is to avoid obscuring the very simple point made here.
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should reproduce equations (A.5) and (A.7). First we must choose our generalized
coordinates. One of them we shall always take in the present discussion to be the
vector potential 4(¢), and the “natural” choice of the other is the particle coordinate
x(¢). With these choices we find the standard textbook Lagrangian (see, e.g., [63])

, A’
L(x,%:A,A)=1im '2—§mw§x2+7+ex'A. (A.9)

If we prefer to use a Hamiltonian formulation, we get by the standard prescriptions
the form (where p, = 0L/0%, p, =0L/0A)

H:ﬁ(px—eA)z+§pf,+%mwf,xz. (A.10)
Naturally, . had we chosen, we could have used a Lagrangian with a coupling term
—exA rather than exd; then the functional form of the Hamiltonian expressed in
terms of the new canonical momenta (which are of course different from the above
ones) would be different: cf. the earlier discussion.

Now suppose that for some reason it is convenient to choose the second quantity
g,(t) which is to play the role of “coordinate” in our Lagrangian formalism to be
directly related, not to the particle position x{¢) but to its velocity v(¢) = £(¢). It is
tempting simply to take our original Lagrangian (A.9) and try to re-express it in
terms of v(¢) and its derivative. However, this is incorrect; in general, even if such a
re-expression is possible, such a procedure does not result in the correct Lagrangian,
i.e., if v(r) is treated as a “coordinate” and inserted into (A.8) with L given in this
way, the correct equations of motion (A.5) and (A.7) do not result. This is because
Lagrange’s equations, while invariant under ordinary coordinate transformations. are
not (unlike Hamilton’s equations) invariant under contact transformations which mix
the g, and g, together {63]. Instead we must proceed as follows. Introduce a quantity
() defined by

YO = wq (%) + eA(t)/m) (A.11)

which will now play the required role of coordinate g;. In terms of this variable the
required equations of motion (A.8) and (A.7) take the form (we differentiate (A.5)
once)

F=—wy(y —ed(t)/mw,) (A.12)

A = ewy(y — eA(t)/mw,) (A.13)
The sole criterion for the choice of a Lagrangian function of y, ¥, 4, and A4 is that

insertion of it in Egs. (A.8), with g, =4, g, =y, should yield Egs. (A.12) and (A.13).
It is easy to verify that a possible choice is

eA )2

1 52 142 1 2z
=My’ + 347 = smwg | y —
mw,

(A.14)

S95/149/2.13



428 CALDEIRA AND LEGGETT

It is further easily verified that the Hamiltonian obtained from (A.14), when
expressed (with the aid of the equations of motion) in terms of x, X, etc., is identical
to the form (A.10)—as indeed we should expect, since the Hamiltonian formalism is
invariant under contact transformations. The crucial point is that if we wish to use as
our “coordinate” for the purposes of the Lagrangian formalism a quantity related to
the particle velocity, then the coupling of such a term to the electromagnetic field
must include not only a linear term (~pA) but also a quadratic term —e*4*/2m,
which is equivalent to a positive addition to the harmonic potential energy.

It is now relatively straightforward to extend the argument to cases of real physical
interest. Consider for example, as in Section 2, a simple LC-circuit made out of
superconducting materials. If we choose as our basic “coordinate” the flux @
threading the self-inductance of the circuit, a suitable “free” Lagrangian L, to
describe its behaviour is

N U
L(®, $) = CP* — @™, (A.15)

Now imagine that we connect a piece of normal metal (resistor) in parallel with the
capacitor. The microscopic expression for the correction to the Lagrangian which we
would write down in ordinary electrodynamics is

AL = J.j(r) A(r)dV, (A.16)

where j(r) =) ,ev;0(r —r,;) is the electric current density operator of the electrons
(labelled by subscript i)} in the resistor, and the integral is taken over its volume. If /
denotes the distance along the resistor, then (A.16) can be rewritten

AL = [A - dl1,(D), (A.17)

where I,(I) is the current flowing across a surface in the wire perpendicular to dl at
point I. Neglecting plasma effects, we can say that 7,(I) will be independent of /, and
moreover the integral [ A - dl is, apart from a constant which is of no interest to us
and can be eliminated by a suitable choice of gauge, equal to the total flux @
threading the circuit.?® (This follows because the exclusion of electric fields from the
interior of the superconducting wires ensures that A is constant in them.) So we can
rewrite AL in the simpler form

AL =1,9, (A.18)
26 We assume that the resistor is not so far from the capacitor that retardation effects are appreciable.

This is certainly true for the RSJ model of a SQUID, where the “resistor” is not a separate element but
is built into the junction itself.
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where I, is the current flowing through the resistor. It is also possible, if we wish, to
define a charge Q, by the equation

Q. = [{1,(t") ar’ (A.19)

and then we can rewrite AL in the equivalent form (apart from a total time
derivative)

AL =—Q,®. (A.20)

Now, provided we are prepared to treat /, as a quantity whose dynamics we
somehow know a priori, (A.18) (or (A.20)) is a perfectly satisfactory interaction term
in the Lagrangian. Indeed, adding it to (A.15) and writing down the Lagrange’s
equation for @ yields immediately the required circuit equation

Cod—1I,+®/L=0. (A.21)

If we were now to invoke the normal phenomenological equation for the resistor,
namely, Ohm’s law, we would of course reduce this to

CP+0,9+d/L=0, (A.22)

where o, is the normal conductance of the resistor. However, our goal is to justify
this result (or equivalently Ohm’s law) from a microscopic Lagrangian which
includes the resistor degrees of freedom explicitly. To do this it is convenient to take
the quantity Q, (Eq. (A.19)) and express it in terms of the normal coordinates of the
resistor Q, as was done in Section 3 (As in that section, we implicitly assume here
that the motion of the flux will perturb the resistor sufficiently weakly that the
response is linear). Naturally, in the presence of impurity scattering, phonons, etc. the
physical interpretation of the Q, is likely to be very complicated; nevertheless we can
write quite generally

~

Qn = E: Car Qa‘ (A‘23)

If, therefore, we wish to treat as “coordinates” the quantities Q, themselves (the
“natural” choice), then the correct form of the Lagrangian is that derived from
(A.18), that is

AL=®N'C. 0, (A.24)

o

If on the other hand we wish to use as “coordinates” quantities with the dimensions
of current and thereby avoid explicitly velocity-dependent couplings, then the
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argument developed above for the simple harmonic oscillator goes through almost
verbatim: the simplest choice is the quantity

x,=w;'0,+C,®/m,) (A.25)

(where m,_ is the “mass” of the normal mode as discussed in Section 3) and the
correct form of the Lagrangian is now (C, =w,C,)
L=14C*— /2L + N {im 5L — im,wlx]}

a

(A.26)
~oNC, x, —

a

1\ 2
2 ‘\_| Ca/mawa

a

in agreement with (3.5). Thus, correct treatment of the electromagnetic coupling
automatically introduces a counter-term of the form (3.4) which eliminates the
unphysical frequency-renormalization effects which would otherwise occur. The
argument can clearly be generalized to more complicated cases such as that of a
SQUID in the RSJ model quite trivially: all we need do is to add to (A.15), and
hence to (A.26), the extra Josephson locking energy. Moreover, we see that since the
case of adiabatic coupling is formally identical to that of electromagnetic coupling
(see the discussion in Appendix C), the counter-term must be included in this case
also.

We finally comment on two related points. First, the quantity J(w) (Eq. (3.8)) is in
this case, not surprisingly, nothing other than the imaginary part of the resistor
current—current correlation function ({/,:1,))(w). In fact, using the fact that @ in
Eq. (A.25) is a c-number with respect to the environmental oscillator states and
denoting by |a) the first excited stated of the oscillator labelled a, we find

Im<<1n In>>(w)E T[: |<0 ‘In| n>|2 5(En _EO - ﬁw)

n

=2 2 G010, a)f 6w — w,)

= Z ‘—-‘ﬂ C¢21 KO |xa} a>|2 6((’0 - wn)
m C?

=——\’ e — = . .
7> moo, dw—w,)=J(w) (A.27)

Thus for small w we have a relation analogous to (3.9)
J(w)=0,0, (A.28)

where o, is the conductance of the shunt.
Second, we may ask how the above analysis applies to the case of a supercon-
ducting shunt, a case in which we certainly do expect a frequency shift: in this case,
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as the phenomenological equations show, there is a kinetic inductance m/N,, e’ which
is effectively in parallel with the electromagnetic inductance L (as can be seen by
redrawing the circuit appropriately); here, N, is the number of superconducting
electrons per unit area of the shunt. Thus the frequency shift is positive in this case
(1/L - 1/L + N,e*/m). In the context of our discussion this is a case where the
assumption of smoothness of the function J(w) is spectacularly violated: the quantity
™ 'J(w) has in fact a delta-function singularity at w =0, and this leads to a negative
real part of K(w) in (C.35) which produces the required shift.

Finally, we note that everything we have said in this appendix generalizes very
simply to the case of nonlinear damping: see Appendix C.

The patient reader who has persevered thus far may well feel that in this appendix
we have managed to make a mountain out of a molehill. After all, it is perfectly easy
to treat the problem of coupling of the flux to a resistor (and to demonstrate the
absence of a frequency shift if the resistor is normal) by using the conventional
Lagrangian or Hamiltonian formalism without making the rather exotic choice of
“coordinate” embodied in Eg. (A.25). The reason we have nevertheless gone through
the above argument explicitly is twofold. First, it is convenient to be able to use, as
we do in Section 3, a formalism which deals in a unified manner with a general
coupling which leads to dissipation, irrespective of whether or not this coupling also
produces a physical frequency shift. Second, while the normal choice of Lagrangian
coordinates is perfectly convenient for work in “real time,” it is somewhat incon-
venient when we intend to carry out a Wick rotation as in Eq. (4.3), since it will
mean that even after this transformation the argument of the exponent in the
functional integral is not real.

APPENDIX B: ThHE DaMPED SiMPLE HARMONIC OSCILLATOR

In this Appendix we shall establish the form of the thermal equilibrium density
matrix of the damped harmonic oscillator by a simple and direct method, and then
compare the results with those obtained by using the formalism of this paper.?” We
assume, as always, that the dissipation arises from a (strictly) linear coupling to a
bath of environmental “oscillators,” i.e., that the appropriate Lagrangian is given by
Eq. (3.12) with V(g) = $Mw}q*. As we have argued in Section 3, this assumption is
very much less restrictive then it looks. The purpose of this appendix is, first, to
check the method of this paper against an exactly soluble model and in particular to
reinforce further the identification of the quantity o™ 'J(w) with the
phenomenological friction coefficient #, and secondly to provide some results which
help us to guess the likely temperature-dependence of the escape probability (cf.
Section 6).

27 The question of frequency shifts is ignored in this Appendix: thus, w, is always the renormalized
frequency.
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The (reduced) thermal density matrix for the oscillator is defined by Egq. (4.11),
that is,

K@i, B)= [ ] dx, wi@is (%) valdys (xa1) exp — BE, (B.1)

where = (kz6) ", 0 being the real (physical) temperature. (In this appendix, unlike
Section 4, we will keep f finite unless otherwise stated). Now, the Lagrangian (3.7) is
bilinear in ¢ and the x_, and hence can in principle be exactly diagonalized. The
resulting energies of the universe are the sums of the energies of the normal modes,
whose coordinates y; are related to g, and the x, by some linear transformation;
moreover, the thermal density matrix is the product of the density matrices for each
normal mode which have the standard form (see [56, p. 51])

1/2
= (e N N -
p(yj’ yj)_ (27‘[71 sinh ﬂﬁvj> exp g 2A sinh ,Bhvj

X [(¥} + y;?) cosh BAv; — 2y, v} | ¢ (B.2)

where v, is the oscillation frequency of the jth normal mode and u; its “mass.” The
only point we need to note about Eq. (B.2) is that the exponent is of Gaussian form
and symmetric with respect to the interchange of y; and y;. Since g and the x,’s are
related to the y; by some linear transformation, it follows from the properties of
Guassian integrals that K(g;, q,: f) is also Gaussian and symmetric with respect to
interchange of g; and g;. Introducing the “centre-of-mass™ and “relative” variables
X=1(q,+49)/2. £=q,—q,, we see then that the most general allowable form of

KX, & p) is
KX, & B)=Coexp—3(A7'X* +ul’), (B.3)

where the coefficients C,, A, and u are functions both of § and of the parameters of
the problem. To determine the form of A and g we can use the following simple
argument. We first note that these two quantities are nothing but the thermal mean-
square values of coordinate and (apart from a constant) momentum

(g = j XK(X, 0: B) dX = A, (B.4)
(p*)= [ ax [ dp p* [ exolipg/m) K(X, & ) dé = 1w, (B.5)
where we used the normalization condition

(KX, 0:p)dx =1. (B.6)
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On the other hand, we may obtain expressions for (g°) and (p®) in terms of the
parameters of the model, as follows. As is well known, the response of the (quantum-
mechanical expectation value of the) coordinate of a simple (undamped) harmonic
oscillator is identical in classical and quantum mechanics, and.therefore the response
function y(w) = (6x/6F),, is identical in the two cases. Applying this theorem to the
true eigenmodes of the system and then performing the linear transformation to ¢ and
the x_, we conclude that the response function y,(w) for the system variable ¢ may
itself be calculated by classical arguments. But we know that the classical equation of
motion is simply (2.8) with V(q) = {Mw24*, and hence’*

1
- M@~ w? — 2iyw)

Xq (y=n/2M). (B.7)
But, by the fluctuation-dissipation theorem we have

NS _:_ [ coth(Bhes/2) Tm y,(w) deo (B.8)
Y0

and hence, identifying (g*) with A as above,

h fo ( coth(Bhw/2) 2yw (B.9)

TMnl, (@ 0) 1 4wl
The expression is convergent at the upper limit as it stands, and can be evaluated
explicitly in the low- and high-temperature limits (cf. below).

In a similar way, since the momentum response function y,(w) is related to y (w)
by

1) = Mo’y (») (B.10)

we find the result

p M J-OO coth(fhw/2) 2yw
0

owh y (0] — b)) + 4y’ (B.11)
Unlike (B.9), this expression is logarithmically divergent. The physical reason for this
is that the phenomenological Eq.(2.8) has been implicitly assumed to apply for
arbitrarily short times, whereas in reality there will be some “microscopic” time
beyond which the inertia of the environment, etc., will come into play (cf. [57,
Chap. 2]). To put it another way, the assumed form (3.9) of the environment spectral
density is not valid to arbitrarily high frequencies (see the discussion in Appendix C).
Thus we must introduce some form of high-frequency cutoff on the integral in (B.11)
which takes effect for w ~ w_, and its value is then of the order of y In(w,/w,) or
7In(w,/y) according as the damping is weak or strong. (This assumes fhw, > 1: cf.
below).

8 Qur convention for the definition of response functions follows that of Pines and Nozi¢res |64].
apart from a minus sign.
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We now turn to an alternative derivation of some of the above results using the
formalism employed in the body of the paper. Apart from the prefactor, the reduced
density matrix is given exactly by the expression

K(q:, 93 B) = K(x, ; B) = const exp — S (4, 453 B)/ %, (B.12)

where S, is the “action” (4.31) evaluated along the classical path which starts at g,
at “time” zero and ends at g, at . Let us take a Fourier transform of the path g(z),
writing

g@) =Y g,e,  w,=2mm/p. (B.13)

n

Then one easily varifies that

Se =82 iM(w; + wg + 2y |w,)) g, (B.14)

n

Now, any path ¢(r) leaving g, at time zero and arriving at g, at time § can be decom-
posed into the sum of a “symmetric” part g,(r) which goes from (g, + q,)/2 = X back
to X, and an “antisymmetric™ part g,(r) which runs from (g, — q,)/2=¢&/2 to —&/2. It
is obviouus from (B.14) that the action of the original path is just the sum of those
due to the two paths separately, and moreover that these contributions are propor-
tional to X2 and &, respectively. Hence we can immediately write (renaming T as f5)

K(x, & B) = const exp — {4’ 'X? 4 ' &, (B.15)

where the constants 1’ and u’ are to be determined from the action of the symmetric
and antisymmetric paths, respectively.

The determination of A’ is straightforward. The symmetric path is determined by
minimizing expression (B.14) subject to the boundary condition ¢(0) = g(ff) = X. This
gives

g9, =K(w; + wj+2y|w,[) ", (B.16)
where

K=X/N (0l +wi+2y|w,))™". (B.17)

n

Substituting (B.16) back into (B.14) and comparing the result with (B.15), we can
make the identification

h 1

PURLOS :
M 5w, + w5+ 2y |w,]

(B.18)
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By rewriting the expression (B.9) in the equivalent form

h © dw 1
= B.19
A Mn Im J,_wwﬁ—w2~2iyw (exp,b’w— 1) (B.19)

and evaluating the integral by contour integration,”” we see that A =1’ as we should
expect.

The determination of u’ is slightly more delicate because of the discontinuity of the
antisymmetric path at the ends of the region of integration. For convenience we shall
first shift the origin of the “time™ axis so that this region is —8/2 < t < #/2. Then we
replace the boundary conditions g(8/2) = —g(—f/2) = &/2 by the stipulation that g(r)
is periodic with period § plus the condition

q<ﬁ;8>—q(—w;w)=é (B.20)

where ¢ is a small positive quantity which will be allowed to tend to zero at the end
of the calculation. It is evident that these conditions produce a “semiclassical” path
which is smooth throughout most of the region of integration but has a steep part at
the ends (with slope ~&/¢) which in the limit € » O tends to a straight line.

We now proceed as above by minimizing the action (B.14) subject to the boundary
condition (B.20). This leads to the result

iL sin(w,€/2) .
— (=t ] n , B.21
where the Lagrange multiplier L is determined by
L= 5/2 [E sin’(w,&/2)/(w} + w? + 2y \w,,|)]
" (B.22)

=¢/Q(e),

where we note that Q(¢) is proportional to ¢ in the limit ¢ - 0. Substituting (B.21)
back into (B.14), we find

Sa=1BME/Q(e) (B.23)

so that §, diverges as ¢~ in the limit ¢ — 0. It is clear that this divergence is entirely
due to the “steep” parts of the path; in fact, we easily verify that in this limit the
expression  becomes exactly the contribution of the straight line

?’ Recall that the sum in (B.18) involves all #, whereas a contour in the upper half-plane will include
only positive n.
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q(t) = —(&/e)(r — B/2), (|7 — B/2)| < &/2), namely, $M¢&*/e. This contribution should
clearly not be counted in the physical action which enters (B.12). If we write

06 =5 ac 106 (e-0) (B.24)

then the explicit expression for 4 is

2
A=Y

w
1-— " B.25
; ( wi+w5+2V|wn|) (8.23)

and the physical action is 3M¢°4. Substituting this in (B.12) and comparing with
(B.15), we find

MB! w?
=N ] — " . B.2
=T -,,-< w§+w3+2ylwnl) (8.26)

A suitable contour integration of (B.11) (where we must remember that part of the
“contour at infinity” will contribute a finite amount) shows that u’ = u. Thus the
method of this paper yields the correct expression for the complete groundstate
density matrix of the damped harmonic oscillator, as of course it must. It is
interesting to note that while the contribution to the kinetic-energy term which arises
from the discontinuity of g(r) at the ends of the region of integration is spurious as
discussed above, the contribution of the “damping” term (i.., the last term in (4.27))
from this discontinuity®® is real and is indeed necessary to ensure the correct
logarithmic divergence of (B.11) at the upper limit. (More realistically, of course, the
(t —7')~? behaviour of the integrand of this term is cut off at a value of |z —'| of
the order of w;!, thereby producing a large but finite value of the integral as
discussed in connection with (B.11)).

Finally we comment briefly on the temperature-dependence of the quantities 4 and
u (see Eq. (B.3)). First, using the familiar Kramers—Kronig and longitudinal sum
rules for Imy (w) (see, e.g.,. Noziéres and Pines [64] we see that in the high-
temperature limit where coth(ffw/2) tends to 2/Bkw, A tends to (BMw?) ™', and u
tends to M/AB; thus in this limit the density matrix becomes (writing the temperature
(kpB)~'as )

(B.27)

1 (Mw; ky OM
K(X,ézﬁ)zconstexp-y( Wo x2 | X8 éz)

k, 0 PE

independently of the degree of damping. It should be noted, however, that whereas 1
achieves essentially its asymptotic form for k8> hwi/y In(y/w,) (cf. below), u does

’® That is, the contribution from the regions close to the discontinuity on opposite sides. where g(t’)
is different by ~¢ from ¢(z).
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not do so until k6 > fy In(w, /7). In the zero-temperature limit the integral (B.9) can
be evaluated explicitly and we find

= @)= f@)  (@= oy (B.28)
where 5
. a
f(a)——\/: [1——7z—tan ﬁ], agl. (B.29a)
1 o+ -1
= — — |, > L B.29b
fla)= \/~1 —In \/Ej : a> ( )

We note that f(a) attains the value 2/z for a =1 and for large « has the asymptotic
form (2/7a) In 2a. Thus the probability density distribution of the oscillator in coor-
dinate space is severely narrowed in the overdamped limit, while the corresponding
momentum distribution is broadened.

A final question of interest concerns the order of magnitude of the temperature at
which the form of A changes over from the zero-temperature value (B.29) to the high-
temperature form (8Mw}) . In the underdamped limit this temperature is obviously
of order fiw,/ky; in the overdamped limit we see by studying the contribution to the
integral (B.9) from the regions w < w/y, wi/y < w <7y, and w > y, respectively, that
the crossover temperature is of order ((hw;/kzy)In(y/w,)). That is, for a highiy
damped system the crossover to a classical description of the density distribution
takes place at a much lower temperature than for the corresponding undamped
system,

APPENDIX C:
THE COUPLING MECHANISM IN A DISSIPATIVE SYSTEM

In this appendix our goals are (1) to make plausible the statement that the
Lagrangian (3.5) can be taken as the most general description necessary for a
dissipative system obeying Eq. (2.8) (or the generalization to a g-dependent #) (2) to
justify Eq. (3.6) (or Eq.(3.10)) which relates the parameters of the model to the
phenomenological friction coefficient (3) to elaborate somewhat the distinction made
in Section 2 between “quasi-linear” and “strictly linear” dissipation. The first two
parts of this programme, at least, to some extent duplicate or parallel various results
already in the literature (cf. in particular [47]) and at first sight might even seem
rather pointless, since in almost all cases of current practical interest in the context of
the tunnelling problem one knows a priori, on the basis of some specific model, that
the system-environment interaction is indeed of the form (3.2) (and indeed in many
cases that it is of the “strictly linear” form (3.7)). However, since one of the goals of
the present work is to put us in a position to infer as far as possible the effects of
damping on tunnelling from a knowledge of the phenomenological quasiclassical
equations alone, we feel there is some point in exploring how far these equations
constrain the possible coupling mechanism.
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We consider a system described in terms of a variable ¢ whose classical equation
of motion is of the form

. oV ,
M4 +n(q)d + Tl Fo(t), (C.1)

where we have allowed the friction coefficient # to be amplitude-dependent but not,
for the moment, to depend on frequency. It is to be emphasized that F.,(¢) in
Eq. (C.1) is taken to be a “true” force which acts on the system alone (and not, for
example, also on the dissipative mechanism); to be precise, the total work done per
unit time by the external force is taken to be simply ¢F.,.(¢). Equivalently, we can
say that the rate of dissipation of energy by the system into its environment is given
by the expression #(q) ¢*. Although at first sight this might seem obviously true, it is
desirable to be quite explicit about it, for the following reason: It is in fact possible to
construct examples of tunnelling problems*! in which the energy dissipated into the
environment is not proportional to the squared velocity ¢> of the tunnelling
coordinate ¢, but to some other quantity, e.g., to the squared rate of change of the
momentum conjugate to ¢. In such cases it may be possible formally to cast the
equation of motion of the tunnelling variable in the form (C.1), but only at the
expense of replacing F,,,(f) on the right-hand side by a quantity which, although a
given function of time controlled by the experimenter, is not a “true” force is the
sense specified above. Moreover, such cases have the anomalous property that (at
least in the examples we have studied) the (pseudo) “friction coefficient” #5(g)
appearing in Eq. (C.1) is actually negative over much of the tunnelling region. It is
therefore quite reasonable to expect that even the qualitative effect of dissipation in
such cases may be quite different [65] from that obtained in this paper (cf. the results
of Appendix B: for the case of a simple damped harmonic oscillator, dissipation
proportional to ¢® increases the mean square momentum (p’) and conversely
dissipation proportional to p? increases (g)). Although this “anomalous™ case may
possibly be relevant to some systems which can be studied in the future in the context
of macroscopic quantum tunnelling, it does not appear to be relevant to any system
of current practical interest and we therefore explicitly exclude it from consideration
in this paper;*? we hope to consider it elsewhere in the future.*

We now turn to the justification®® of the “oscillator-bath™ representation of the
environment used in Section 3. We make essential use, here, of the condition that the
environment & is only weakly perturbed by the motion of the system (though we will

*! We thank A. Widom and T. D. Clark for a preprint |65] which, by explicitly constructing such a
model problem, induced us to elucidate this point.

2 Note that in the case of linear friction such explicit exclusion is redundant.

33 The ensuing considerations refer only to the 7=0 case relevant to the work of this paper. The
finite-temporation case needs separate discussion.

* Note added in proof. A paper on tunnelling in the presence of arbitrary linear dissipation, which
includes the “anomalous™ case as a special case, is currently in preparation for submission to Physical
Review B.
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gventually make a considerable generalization of this). Let the coordinates (not
necessarily one dimensional) of & be collectively denoted £, and let its Hamiltonian
when isolated be H,. The eigenfunctions (&) satisfy the equation

How (&) =E,v,(&). (C.2)

Let the interaction of & with an external agency described by some set of coordinates
g be given by some real function V of & g and their conjugate momenta, and define

Vam(Ps ) = [ W6 (P, 4.Pes €) &) dE = V5,(P. q). (C.3)

where p is the momentum conjugate to ¢ and p, that conjugate to {. We suppose now
that the following condition is satisfied for all relevant values of p and g:

VP> @)/ (E, — E, )| ~ e < 1. (C.4)

If the system & then starts in its groundstate, the probability of a process in which n
factors of V enter will be proportional to 7. Hence, if we neglect terms of order &
and higher, the only matrix elements we need be concerned with are the elements V;.
We define Hermitian operators X; and j; in the space of the eigenfunctions () by
their matrix elements

(F1£,10)=01£,] jy = (h/2m;,)'", (C.5a)

all other elements zero,

<j|ijlO>=*<01pj‘j>:imjwj<j|xj‘0>* (C.5b)

all other elements zero, where w;= (E; — E,)/h and the “masses” m; are arbitrary.
We now add, for each index j, a (possibly fictitious) infinite set |n;), n =0, 1, 2,..., of
oscillator states: in this notation the groundstate of & is a product of |0,), and the
states called j above are now denoted |1;)T1,,;|0,). The operators £; and j; are
extended into the new space so constructed by assigning to them the conventional
oscillator matrix elements ((n; + 1]£;| n;) = (n, + 1)'/* (4/2m;w,)'/?, etc.). We also
construct an effective Hamiltonian

- Y H 1 )
Hog=) (p—’+—m,w}x}). (C.6)

Finally we add to H, an interaction Hamiltonian of the form

Hiyo=—N (F(p,q) %+ G(p.q) B, (C.7)
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where

2mw; \'"?
Fj(p,q)E( 2 j) Re Vjo(p’Q)a

1/2
6. 0)= (e ) 1m V(o0 )

JT
Since the matrix elements of H;, and the eigenvalues of H,, reproduce the true
matrix elements V,,(g) and true energy level differences E, — E, for all “singly
excited” states, the combination A, + H;,, will generate the correct dynamics of the
system to the extent that double excitation is negligible. It is only to the extent that
this condition holds that the response of & will be linear in the external perturbation,
so we can say that for our purposes the replacement of the true Hamiltonian by that
appropriate to a set of harmonic oscillators is effectively equivalent to the assumption
that the response of the environment to the perturbation exerted by the “system™ is
linear (or more precisely, that the response to a classical perturbation whose
magnitude is less than or equal to the maximum value of the interaction function
H,,(p., q) obtained for values of p and g of interest in the tunnelling problem, is
linear). Whether or not this condition holds for any specific physical system
considered is of course a matter for detailed argument in each case; however, it
should again be stressed that the condition of linearity of environment response is
quite different from (and much weaker than) the condition of weak damping—just as
the fact that a beam of light may be almost totally absorbed in a gas by no means
implies that nonlinear effects have to be taken into account.

In Eq. (C.7) we have kept only terms of first order in the environment variables.
Should we also keep (a) terms of second and higher order (b) terms of zeroth order?
With regard to (a), this is a somewhat delicate question. Consider, for example, a
term of the form

H,’nt N7 Ujj,(q) XX (C.9)

Jj’

If such a term exists, it will have an effect comparable to the original effective
Hamiltonian H,; (Eq. (C.6)) and will in general lead to a considerable rearrangement
of the environment levels. Thus the weak-coupling condition is not satisfied and in
such a case the adiabatic approximation must be used (see below). Thus for the
moment we omit terms of the second and higher order. On the other hand terms of
zeroth order in p; and x; may exist in the coupling (as, for example, in the case of
electromagnetic coupling, where g is magnetic flux or something similar: see
Appendix A), and will then influence the motion of the system, generally by changing
either the effective potential or the effective mass or both. Thus we should generalize
the interaction Hamiltonian slightly to read

Hip=—Y (F(p.q) %+ G(p.q) ;) + (P, 9), (C.10)
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where the form of ¢ may depend on the parameters (m;, w;, F(pq), G,(pq)) of the
environment but not on the dynamical variables p;, x;.

It would no doubt in principle be quite possible to proceed with all our tunnelling
calculations on the basis of a general Hamiltonian of the form (C.10). However, the
Lagrangian (3.5) is so convenient that it is useful to see under what assumptions
(C.10) can be reduced to (3.5) (or the equivalent Hamiltonian). The reasoning here
will be plausible rather than totally rigorous: we suspect that rigorous proofs
probably can be constructed for at least some of the statements made below, but they
are likely to be extremely tedious and there seems little point in trying to produce
them here.

We first observe that the phases of the excited-state wave functions (&) relative
to the groundstate are arbitrary, and hence (in view of Egs. (C.5)) the choice of the
variables x; and p; contains an element of freedom. Moreover, in all cases of physical
interest the variable g has a definite parity under the operation of time reversal (TR).
Let us then use the above freedom to choose the “coordinate™ x; to have the same
parity under TR as g; p; then automatically has the opposite parity. Since the
interaction Hamiltonian (C.10) must be invariant under TR, it then immediately
follows that if g is even, F;(pq) must be an even function of p and G; an odd one.
(with no restrictions on their g-dependence). If g is odd, on the other hand, F; must be
an odd function of g and G, an even one, with no restriction on the p-dependence.
Further symmetries of the system may constrain the functions F; and G, further: e.g.,
if parity is conserved and g is odd under both TR and space reflection (as, for
example, in the case of magnetic flux), then F(G;) must be even (odd) in p.

The ensuing argument is somewhat delicate. It is based on the fact that, in general,
any dependence of the F; or G, on p is liable to produce a form of dissipation which
cannot be cast in the form #(g) ¢>. This can be seen, for example, by considering the
simple case F; =0, G;= C; p. Indeed, at first sight it is tempting to argue that F ap)
and G,(gp) must be functions of g only, in which case it would follow immediately
that in the case where symmetry constrains G, to be an odd function of p, as above,
G;= 0, and the form (3.5) is established. This is actually rather too simple. To obtain
a more convincing argument we introduce the notation

(mw)~"* (F; + im;w,G,) = R,e'?, (C.11)

where R; is real. We then evaluate the second-order perturbation-theoretic expression
for the energy dissipated by the system into its environment, taking the system
dynamical variables p(r) and g(f) to be given functions of time and writing for the
Fourier components F,, = | F[p(1), q(t)] e*'dt the relations F, = (iw) ' [F], =
(i)™ {(OF | 0p)p + (OF/2q)¢), etc. (For the details of the operations involved, cf.
below.) In general this procedure gives us terms in the dissipation which are of the
form #(g) ¢*, but also nonvanishing terms involving p and its derivatives. A necessary
(though not sufficient) condition for these to be convertible into terms of the form
n(g) ¢* is that the system satisfies the relation

p=Mg (C.12)
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to within some function which, while it need not vanish identically, is guaranteed to
be zero for any forced motion of the environment. The function in question is, of
course, from Hamilton’s equations just aﬁint/ép (where any contribution from
@(p.q) can be ignored, since it simply renormalizes the effective mass). The
condition that &H,,,/0p be zero for any forced motion of the environment yields, after
a little algebra, the condition

©  do' .
| = 0'K\(p, g @) + 0K (p, g: )} =0 (C.13)
0 W —w
where
olé,
Ki(p.gw)=> ——R; (p.q)d(w—w)), (C.14a)
T~ 2 op
_\ , 60,
K,(p.q:w)=> R; 7})— (p,q) 6(w — w;). (C.14b)
J

Barring, possibly, some sort of pathological conspiracy between the behaviour of the
R; and 6, in different frequency regions, Eq. (C.13) implies

K\(p,g:w)=K,(p.q:w)=0 (C.15)

for all p, g, and w. Evidently the most natural way to satisfy (C.15) is to set each of
the F;(pq) and G,(pq) individually independent of p for all g. It then immediately
follows from the considerations of the above paragraph that G, = 0 if g is either even
under TR or odd under both TR and space reflection. This covers most of the cases
of practical interest.

We cannot, of course, absolutely exclude the possibility that the F; and G, depend
individually on p in such a way that Eq. (C.15) is satisfied (or, in cases satisfying
neither of the above invariance coditions, that G; is some nonzero even function of g).
However, the above argument suggests that any such dependence would have to be
rather pathological in nature (and, we suspect, might well be further restricted, if not
totally excluded, by further arguments along the same lines). Thus, while we have no
rigorous proof that the Lagrangian (3.5) is the most general which can give rise to
the equation of motion (C.1), we feel that we have made it sufficiently plausible to
use that Lagrangian as a basis for the work of this paper.

It should be noted that the argument leading to Eq. (C.12) above rests essentially
on the fact that the quantities C;, m;, w; characterizing the environment do not
already contain the phenomenological viscosity explicitly. Were this not the case,
then the replacement of Eq. (C.12) by a relation of (for example) the form

p=Mq+nq (C.16)

would in principle be acceptable, since the w-dependent relationship between the
Fourier components of p(¢) and ¢(¢) could be cancelled by a suitable distribution of
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the environment spectral density, etc. Such a case would arise, for example, if we take
an adiabatic-type coupling (cf. below) of the form

2
A, = (p —}; C_,-p,-) /2M—p2/2M (C.17)

J

and reduce it to the form (C.10) by incorporating the terms bilinear in the p; in the
(so-called) “unperturbed” Hamiltonian of the environment. The point is that the
resulting description does not conform to the conditions specified above, since the
environment is now already strongly perturbed by the interaction (in fact, the relevant
spectral densities will now contain the damping # explicitly). While such a procedure
may be relevant to the “anomalous” type of problem mentioned above, in the case of
the canonical problem dealt with in this paper Hamiltonians of the form (C.17) are
much more simply handled by another method: see below.

We next discuss how to incorporate into our scheme the important case of a
system whose interaction with its environment is well described by the adiabatic
approximation. In such a case let ¢ and ¢ represent, respectively, the “slow” degree of
freedom and the collection of “fast” degrees of freedom; in the context of a
macroscopic wave function description (see Introduction) these will be the
macroscopic and microscopic coordinates, respectively. Let us schematically indicate
a typical frequency of the slow degree of freedom by w, and that of the fast degrees
of freedom by w,; then by hypothesis we have w,/w,.< 1. To zeroth order in the
small parameter w,/w, the energy eigenfunctions have the form

¥4, &) = 0ulq) x:(&: ), (C.18)

where the functions y,(¢: q) satisfy a Schrodinger equation in which g enters as a
parameter

(T©) + V(& q) 2:(& 9) = U(@) xulé: q). (C.19)

where f’(é) schematically represents the (g-independent) kinetic-energy or similar
terms in the “fast” Hamiltonian. The functions ¢,,(g) are solutions of the equation

h* 2%
—WEITWLUI((‘I)_EM 9ulq) =0, (C.20)

where M is the coefficient of 1§* in the Lagrangian and may or may not have the
significance of a physical mass (see Introduction). The functions ¥,,(g, &) = |ik) form
a complete orthonormal set, and the correction 4H to the Hamiltonian arising from
the terms neglected in the zeroth-order adiabatic approximation (which is of order
wy/w,) can be expressed in terms of its matrix elements in this basis

595/149/2-14
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AT A
(ik |48\ jly= — 5 [ dq [ de

3 &
205(q) 7 0,(q) X q) %x,(é: q)

a-
+ 0}(q) 0;(q) X (& q)Wx,(é: q);. (C.21)

Now we note a special feature of the adiabatic approximation as applied to
macroscopic systems: The microscopic states y,(g) which are coupled together by 4H
are in general different only in the behavicur of a small fraction (~1/N) of the
macroscopically many particles involved. As a consequence, the effective potential
U,(g) felt by the macroscopic degree of freedom g depends on the “microscopic”
-index k only to order 1/N, and so the states ¢, (q) are effectively independent of .
This simplifies the ensuing formulae considerably. We contruct a linear operator
K (g) in the space spanned by the functions y,(¢: g) by giving its matrix elements in
this basis:

R . 0
kIR @D = [t ) (<) s ) e (©22)

The operator so defined is Hermitian and is parametrically dependent on g. Since it is
a linear operator and the basis set y,(£ q) is complete for given g, it follows after a
little algebra that the perturbation terms (3.15) can be written

G |4H| 1) = 5 6 pR o) + Ru@p + (R @) ) (C23)

where as usual
o L0
1pli)=[or(@) (~in ) 0@ da (C24)

and we have written for clarity (k |K(g)|[) = K,(q), etc. Thus the total Hamiltonian
can be written

-1 5 )
A =50 (p + K@) + U@) + Henys (€.25)

where H,, is an operator which refers exclusively to the “environment”
(microscopic) coordinates ¢ and K(q) is another operator on these coordinates which
is parametrically dependent on g. The cross-term in brackets is symmetrized as in
(C.23). Apart from a factor of the coupling constant (—e) the expression (C.25) is
formally identical to the familiar Hamiltonian of a charged particle interacting with
an electromagnetic vector potential in one dimension.

* For clarity in the next few lines we put circumflexes on those qualities (only) which are operators
with respect to the microscopic coordinates ¢
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The argument that the environment can be treated as a set of harmonic oscillators
now proceeds similarly to that given above for the weak-coupling case, with the
operator K now playing the role of the system-environment interaction. If the Born—
Oppenheimer expansion is to be a good approximation as we are assuming, then we
can argue, as above, that as regards the term linear in K we need only the matrix
elements of K between the ground and excited states, and that these can be put in
one—one correspondence with oscillator matrix elements. If as above we choose the
environment coordinates x; to have the same parity under time-reversal as g, then
since K is not a function ofp the only possible form of K linear in the environment
variables is

K(@)=Y K(q) p; (C.26)

i

Suppose we insert this expression in Eq. (C.25). Is it guaranteed to give the term in
K? correctly? Here we invoke again the fact that, in view of the macroscopic nature
the system, the microscopic states y,(q:¢) differ only in the behaviour of a smalil
number of particles. To the extent that this is so, the approximation

(k |K* )= (k|K|OXO0|K|]) (C.27)

should be well justified, and we substitution (C.26) is legitimate. Thus we finally end
up with an adiabatic Hamiltonian of the form

A=— (p+ Y K0 p,) +U(g)+ A, (C.28)

7 [P+
of which (C.17) is a special case. Here H,,, has the standard oscillator form (C.6).

It is now straightforward to show (most simply, though not most elegantly, by the
procedure m;w;x; 2 p;, addition of a total time derivative to the Lagrangian to give
an interaction term proportional to the X;, and use of the procedure of Appendix A)
that the description (C.28) is canonically equivalent to the Lagrangian (3.5), with
Fi(q) given by

F(@) = (mw)* | K(a")dg" (C.29)

Thus the case of adiabatic coupling may be treated—albeit perhaps somewhat
artificially—as a special case of our formalism, and the automatic occurrence of the
counter-term in Eq. (3.5) indicates that in this case there is no physical frequency
shift, as indeed we should expect.

The upshot of the above rather messy and inelegant argument is that for all prac-
tical purposes we can take the Lagrangian for our problem without loss of generality
to be given by Eq. (3.5), that is,
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L=3MG*—V(g)+ 3> mfx} —wlx] )—VF(q)x
J

- Y F@)/2mw}, (C.30)
J
where, as in the main text, we shall abbreviate the last term as M dw’q’. We now
enquire what constraints are imposed on the parameters of the model by the
condition that the motion of the system is to obey the phenomenological damped
equation (C.1). For orientation we first discuss the separable linear case
(F{(q) = C;q) and prove Eq. (3.6), that is,

¢

J(w)=

}_ 3w — w;) = no. (C.31)
J

2 m;w;

It is straightforward to verify that the condition (C.31) must hold if a classical
treatment of the Lagrangian (C.30) is to produce the equation of motion (2.8).
Adding to (C.30) a term gF,,.(¢) to describe the action of a possible external force,

we obtain the equations of motion

av .
qu—g-l—Mszq-i—Fext(t)—‘\_ C;x;, (C.32)
7
m;x;=—mwix;,— C,q. (C.33)

Taking the Fourier transforms of Egs. (C.32)-(C.33), eliminating the x; and using
(C.30), we find that the Fourier transform g(w) of the system trajectory satlsﬁes the
equation

~Mw’q(w) = (%qK) (©) + Foul®) + K(@) g(@), (C.34)

where
CZ

mw(w —w?)’

(C.35)

We now make the crucial assumption {cf. above) that for all values of w of in{erest
for the problem under consideration the spectrum of the environmental oscillators
may be treated as continuous. Defining as above

n c?
J(w)=—2—§r 30— @) (C.36)
we have
2w? (» J(w')dw’
(o)== J o (C.37)
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Now, to get agreement with the Fourier transform of the phenomenological equation
(2.8) we need the conditions Im K(w) = nw, Re K(w)=0 to hold for all values of
interest. (To define the imaginary part of K we attribute, as usual, an
infinitesimal positive imaginary part to w.) The first condition obviously requires the
relation (C.31) to hold for all relevant values of w. Let us assume that (C.31) in fact
holds to a good approximation for values of w much less than some characteristic
frequency w, of the environment. (For example, in a metal w. might be of the order
of the inverse Drude relaxation time.) Then the real part of K(w), for small w, is
easily seen to be of order nw?/w,, that is, smaller by a factor w/w, than the
imaginary part. Thus, provided that all the relevant values of w are small compared
to w,, this term will be negligible and the effect of the coupling to the dissipative
mechanism (environment) will simply be to modify the classical equation of motion
in a way described by the friction coefficient # (as in Eq. (2.8)). (Any frequency-
renormalization effect has already been taken into account when V{(q) is taken to be
the renormalized potential). In the more general case it is clear that the imaginary
part (J) and real part of K(w) are, respectively, the real and imaginary parts of the
complex frequency-dependence admittance describing the dissipative element, which
can in principle be obtained from experiment.

What are the “relevant” values of the frequency w? We shall see in Section 5 that
for a lightly damped system the frequencies of importance in the tunnelling rate are of
the order of the classical small-oscillation frequency w,, while for the heavily over-
damped case they are of the order of the “slow” relaxation frequency wi/y
(y=n/2M). Thus, if the condition w < w, is fulfilled for the undamped system it is
certainly fulfilled for the same system subject to arbitrarily heavy damping. Actually,
it is characteristic of macroscopic systems that the typical frequency of the
macroscopic coordinate is very much lower than the frequencies of the environment
which provides the dissipation, so that our condition is usually very well fulfilled.**
Were this not so, the whole long-established tradition of describing macroscopic
behaviour by simple phenomenological equations involving frequency-independent
friction coefficients, conductivities, etc., would of course be ill-founded.

Naturally, it is trivial to extend the above results, if necessary, to cases where the
relevant system frequencies are not negligibly small compared to w,: all that is
necessary is to equate J(w) to the imaginary part of the appropriate impedance Z(w).
Of course in such cases we expect the real part of K(w) to be nonzero.

We now return to the general case, in which F(g) is not necessarily linear in g. We
might as well handle immediately the case in which n may be amplitude-dependent
(though we assume that it is frequency-independent). We will establish a relation
analogous to (C.31), namely,

4 1 OF\?
ng)=—=—Y\ (——’) Mw —w,). C.38
2~ mal \ oq ( i) ( )

** It is possible that it may break down in some Josephson junctions (or SQUIDS), where the
capacitance is small and the small-oscillation frequency therefore high. If so, the the classical equation
(2.8) has to be generalized.
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This generalization of (3.24) is almost intuitively obvious, since we would expect
quite generally that the *local” friction coefficient should be related to the
correlations of the local fluctuating forces, which are proportional to the gquantities
0F;/0q. To establish (C.38) formally we proceed as follows: First, we derive from the
Lagrangian (C.30), with the interaction term and the counterterm as given, equations
of motion for g and the x;, and eliminate the latter. This gives the following equation
for ¢

1 oF, 922
> S (1) 27T 0l
6q 17

M) = — %qi () + Foult) - FEla0) (C39)

T
where &? is shorthand for the operator d*/dt®. We can rewrite the last term in the

form

ﬂl

oo | B a0, (C40)

We now take the Fourier transform of (C.40) and try to equate it to that of a
phenomenological dissipative term of the form n(g)4. To get an exact equality we
require the relation

| O oF; oF; iw'
=\ I i} _ zZi 0" —————  (C.41
@l =X 0r] do (aq)(w W'+ ) Zl @ - Sy (€A

which must hold for arbitrary w”. We first examine the part of this expression which
comes from the pole of the expression iw’/(w; — w'?). This is, if interpreted in the
usual way,

Sjlma) Lood <a;;)(w w+w)(@81;)(w —w")

X {dw;— ')+ d(w; + w')}. (C.42)

2

By changing the variable of integration in (C.42) to w” — w’ and using the fact that
this expression must (to get agreement with (C.41)) be independent of w”, we see that
it is legitimate to replace the w’ in the d-functions by any (sufficiently small)
frequency whatever. The integral over w’ is then a simple convolution, and a Fourier
transformation back to the time variable immediately yields the condition (C.38). We
note carefully that so far we have seen nothing to suggest that a purely linear
dissipation (7(g) = n = const) cannot be obtained from a general (nonseparable)
interaction of the form (C.30).

Now, however, we consider the rest of the expression (C.41), which comes from
the principal part of the integral over w’. It is convenient to consider for definiteness
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the special case w =0 and to introduce the function (which is of course in general a
function of the particular trajectory g(¢f) we are considering)

OF,
(32) @
Then the equation of motion of g, in Fourier-transformed form, acquires an extra
term 4n,,.4,,., where 4n,_,.. is defined by

L1
K(C,Z)EL S

J et

dw,—z). (C.43)

T (C.44)

—idn,. = 9& dcfw dz

In the special case of a linear separable interaction of the type (3.7), K({) is propor-
tional to 4(¢) and (C.11) just gives back the reactive linear term of order nw?/w,
mentioned above. Let us, however, consider the more general case. If K({, z) has
structure on a scale ~w, with respect to z, then in general we will get a term of order
nw?/w, which, barring accidents of cancellation, will be nonlinear, (cf. below), and if
w, < w, will be larger than that obtainable from the “optimum” assumption that the
scale of variation of K({, z) in z is the same as that of its integral over { (which is
essentially #(z)), i.e., the microscopic frequency w, mentioned in Section 3. Let us
therefore make this “optimum” assumption, namely, that K({ z) is essentially
constant, (equal to K({)) with respect to z for z S w,: and let us further consider the
case in which w” is much less than w, (though not zero). Now, the principal part
integral over z will in general be of order w_ '(1 + O({*/w?) + ---). The (-integral
then gives

—i 4, ~ ;" [ KO+ o")(1 + const fwl + ). (C.45)

The terms independent of w” vanish because K({) from its definition is an even
function of {. The term in w” coming from the 1 in the brackets gives a linear
reactive term of the same form as that coming from (C.37). The first nonlinear term
comes from the {* term in the bracket: it is proportional to the expression

" 2z
2 CKO) 4 (C.46)
w w

C

c

Now, the integral of K({) over ( is proportional to the friction coefficient n, so that
we can write this term as

noo 2

w
~ (C.47)

(41,1, = const n

<

where @ is the typical frequency represented in K({). Suppose that the typical
velocity of the system is v and the typical range of the interaction potentials F (q) is
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a. Then, clearly, the quantity & is of order v/a, and finally, the first nonlinear term
due to the dissipative effects, which is reactive in nature, is of order n(w/w.)(v?/v?),
where v.=w_.a is a typical velocity associated with the dissipative mechanism.
Hence for any finite frequency, however small, it will eventually become important if
we let the amplitude of motion (hence the velocity) become large enough. This
completes the demonstration that the only form of interaction compatible with strictly
linear dissipation (or, more precisely, with strictly linear effects of the dissipative
mechanism) is the separable form (3.7).

The above considerations may take on a little more flesh if we consider a specific
model for the nonseparable interaction. Let us, for example, consider the following
model, which might serve as a crude model for certain types of friction between solid
surfaces (through not for conventional “sliding friction™)

Fi(q)=b;exp — (g —R))*/a]. (C.48)

where the sites R; are randomly distributed along the ¢ axis and the frequencies w; of
the oscillators associated with them are uncorrelated to the parameters b, a;, and R,
{which may or may not be correlated with one another). For such a model we can of
course evaluate the quantity K({, z) in a closed form and demonstrate the truth of
Eq. (C.47), where & ~ v/d (a is a typical value of the a/’s).

Let us summarize the results of this appendix. First, in the context of the probiem
of interest to us, as defined in the second paragraph, we find that barring possible
rather pathological cases (which we have not been able to exclude rigorously but
have argued are unlikely to be relevant in real life) the most general Lagrangian we
ever need to consider is (3.5). Second, we have shown that in the most general case
the parameters of the model are constrained by the relation (C.38) (or more generally
(3.10)). The case of linear dissipation #{q) =7 is a special case of this. Third, in the
special case of strictly linear friction we have shown that F,(g) must have the
separable form gC;. It should be emphasized once more that in most practical cases
of current interest the considerations of this appendix are superfluous, since one can
establish the form of the coupling directly from some microscopic model.

APPENDIX D:
SOME MATHEMATICAL RESULTS NEEDED IN SECTION 3

We first prove the results (5.15)-(5.16) concerning the function

(1 +(3/2)sin )’

FO=smdtess O<I<H2 (D-1)

Consider the quantity
G(#) = (1 + sin 8)* cos 6|F(9) — 1] (D.2)
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and write it in the form

G(0)=(1+%sin9)3—(1+sin9)3+(1+sin0)2(1+sin0—cosﬁ)
$sin 0143 sin @+ 15sin’ 6] + (1 +sin6)> (1 +sinf—cosh). (D.3)

Now the expression in the square brackets is evidently bounded below by (1 + sin §)*
and above by 13 (1 + sin@)’; similarly, the expression (1 + sin § — cos §) is bounded
below and above by sin # and 2 sin 8, respectively. Thus we have

3 sin (1 + sin 8)* < G(6) < & sin G(1 + sin §)* (D.4)
from which it follows immediately that
1+3tan 0K FO) K1+ Ftan b (D.5)

as stated in the text (Eq. (5.16)). Finally Eq. (5.15) may be obtained directly from the
fact that the expression

(14 2sin8)° — L% sin 6(1 + sin 0)? (D.6)

is, as easily demonstrated, positive everywhere in the range 0 < 6 < /2.
We now turn to the inequality (5.17). We define Fourier transforms by the
prescription

f@)=@n " 7 ) expl-ion) dr (D.7)

Then the quantities (5.4) are given by the expressions
i=[" o'l do, (D.8a)
F=[ 11 do, (D.8b)
C=n™| dof do'|" durf@) @)@+ +o), (D)
b=2[" jollfw) do. (D.84)

We immediately see (though it is not needed for present purposes) that a simple
Schwarz inequality yields A = D/(4B)"? £ 2.
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We now proceed to demonstrate the inequality (5.17), that is,
k(f]A|f]=DB*/C? > 8xn/9. (D.9)

By exploiting the symmetry of the expression (D.8¢c), we can rewrite it in the form

~ 6 @ o0
Cmrm |, do || do' @) 0= 0)
< \/62_7[ JO‘L dw JO"O dow’ [ f() | f(@)|f(w+ o) (D.10)

(where the inequality follows from the fact that f(w)=/*(—w)). We now apply a
simple Schwarz inequality to produce the result

6
Vv
(l/Z

2n
. §JOOC de;]OO do' | f(w+ ") S
6

ll/2

2

€<

[ do | dorl @) 1f(@)

B \ -0 00 ( s f 1/2 ( )
— do| do'|flo+ o' . D.11
V%4 2 (Jo J0 oA ) |

The double integral J in the braces may be evaluated by rotating the axis in the
w — ' plane through 45°. This gives

&

1 o0 w
Jzyj_xd)"fo dx|f(X)|2=~[0 x|f(x) dx = (D.12)

and hence

~ 3 o~

C<———BD'? (D.13)
N

from which the inequality (D.9) follows immediately. We note that for the inequality

to become an equality, f(w) must be real (implying an f(¢) symmetric around ¢ = 0)

and must satisfy the condition

fo+o)=f(w)flw) (0w >0) (D.14)

This immediately implies that f(w) = exp — const |w|, which in turn implies that the
form of f(¢) is (1 +¢*)~". That this function does indeed yield an extremum of the
quantity kA can be verified by noting that when suitably scaled (cf. Eq. (5.28)) it
solves the Euler—Lagrange equation corresponding to (5.2) in the limit a — oo. (In
view of Eqs. (5.9)~(5.11) and (5.16), this is evidently equivalent to minimizing xA).
We tabulate for reference (Table I) the values of the scale-invariant quantities x, 4,
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TABLE 1|
Function f k| f] AL S KA

1 sech? t 5\/5/6 18/5 {3y’ 75¢(3)/2°

2 (14" 81/9/2 V2 871/9

3 et 9/4 4/n 9/n

and xA for three functions which give, respectively, the minima of the functional
000l /] (Eq. (5.10)) for very small and very large a and a reasonably good value for
a~ 1.

Finally, let us calculate the value of Dy(a) given by Eq.(5.39) in the extremely
overdamped regime (@ — o0). In order to do this we need to know all the bound states
of the operator H,, + V' (see (5.32)—(5.34)) with §,,(¢) = $(1 + ). In other words, we
need to solve the following eigenvalue problem in the w-representation

(L+|ohy,@) =2 e oy, (@) do'’ = Ay, (@), (D.15)
-G
where we have dropped terms of order a ™ ".
We list below the normalized eigenfunctions and eigenvalues we have found which
can be shown to satisfy (D.15) by direct substitution.

Eigenfunction Eigenvalue

wo(w)=(5+§ﬁ)m[(”f)ﬂwl]ew, o (125),

vi(w) =2 we™ ', 4, =0,

e [ e e

As one can see, we could find only one bound state apart from y(w) and v,(w).
This has eigenvalue lying between 0 and 1 and, consequently, must contribute to C,
defined by (5.37). Whether y,(w) is the only eigenfunction with 0 < A < 1 is still an
open question. Although we have not proved this result we shall take it for granted
for the present calculation. Therefore, we can write Dy(a) as

2
Dy(a)= N (InHy), —1In|de| = 1nd,— 1+ (Hy ')+ (H,'P),. (D.16)

n=90

The matrix elements of the operators In H, and H; 'V can be easily evaluated in
the w-representation as

WAy, = [ doin(i + o) yi) (D.17)
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and

<ﬁo—ll}>n=-2j dw‘i/—'f%) e v ey (w)dw'. (D.18)

Then, inserting (D.17), (D.18), and the tabulated values of y,(w) and 4, in (D.16)

we get

DO=—1+2j dwIn(l + 0)e (2 — 4w + 6w’ |
0

—4j do(1+w) e [l +w—w’+20°]. (D.19)
0

Now, defining
n

« d
L"(l)EJO doIn(1 + @) e~ 0" = (~1)" 25 Ly(d)

Aw dn

"= (=1)" 5 4, (4),

e¢] e‘
A,,(A):JO doo
and noticing that L(1)=A1""4,(1) (which follows from an integration by parts of
Ly(4)) we can write D, as

Dy=—Y + 19¢%E,(2),

where E,(x) is defined as [66]
@ 5!
El(x)zj "’—[-dz (x > 0).

This function is tabulated in many mathematical tables (see, for example, [66]) and
the final result for D, reads

Dy~ —1.5.
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