
ANNALS OF PHYSICS 149, 374-456 (1983) 

Quantum Tunnelling in a Dissipative System 

A. 0. CALDEIRA 

Institute de Fisica “Gleb Wataghin” Universidade Estadual de Campinas, 
Cidade Uniuersitaria, Barao Geraldo. 13-100 Campinas, Sao Paula, Brazil 

AND 

A. J. LEGGETT* 

School of Mathematical and Physical Sciences, 
University of Sussex. Falmer, Brighton BNl 9QH, England 

Received July 22, 1982; revised December 20. 1982 

In this paper we attempt to motivate, define, and resolve the question “What is the 
effect of dissipation on quantum tunnelling ?” The question is of particular interest in 
the context of tunnelling of a macroscopic variable such as the trapped flux in a 
SQUID, where we show that it is crucial to resolve it in the context of tests of the 
validity of quantum mechanics at the macroscopic level, but it is also relevant to 
various microscopic tunnelling situations. We define the question as follows: Suppose 
we have a system, which has a metastable minimum and whose quasiclassical 
equation of motion in the region near the minimum is given by 

where the potential V(q) and friction coefficient q are regarded as experimentally 
determined quantities (and the energy dissipated irreversibly per unit time is simply 
~4’). How does the tunnelling behaviour of such a system at T = 0 differ from that of 
one obeying a similar equation, with the same potential V(q) and mass M, but with 
friction coefficient rj equal to zero? 

We start by arguing that provided any one degree of freedom of the environment is 
only weakly perturbed by the motion of the system, then at T = 0 it is always 
possible, withour any toss of generality, to represent the environment as a bath of 
harmonic oscillators; moreover, if the damped equation of motion is indeed of the 
above form, then (barring, possibly, certain apparently pathological cases) it is 
possible to choose the system-bath coupling to be linear in the (suitably chosen) 
oscillator coordinates and a function only of the system coordinate (i.e., of the form 
Cj Fj(q) xj). In particular this is always possible for the important case of adiabatic 
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coupling. In certain cases (which we refer to ascases of “strictly linear” dissipation) 
it is possible further to restrict Fj(q) to be linear in q. In addition to this linear 
coupling, the interaction may also introduce an extra term ((‘counterterm”) in the 
effective potential V(q) felt by the system, which is just such as to cancel unphysical 
frequency shifts, etc., produced by the linear term. We discuss this point, which we 
believe to have caused some confusion in the recent literature, in some detail; in 
particular, we show that such a counterterm arises automatically both when the 
dissipative coupling is of the electromagnetic type realised, e.g., in a SQUID and 
when it is the correction to the zeroth-order adiabatic (Born-Oppenheimer) 
description. 

We next apply a variant of the “instanton” technique well known in particle 
physics to calculate the zero-temperature tunnelling rate out of the metastable 
minimum, By integrating out the environment variables explicitly, we can represent 
this rate in the form of a functional integral involving only the system variable q(r) 
but with the effective action containing an interaction term which is nonlocal in 
(imaginary) “time.” (Th e method is checked by applying it to the exactly soluble 
problem of a damped harmonic oscillator). As in the nondissipative case, the result 
for the tunnelling rate r can be written, in the WKB limit, in the form 

r = A exp -B/h, 

where B is the effective action evaluated along the “quasiclassical” path q(r) in the 
inverted potential, and A represents the effect of fluctuations around this path. The 
effect of dissipation is always to suppress the tunnelling, and in the strictly linear case 
the values of A and B are unique functions, for a given V(q), of the phenomenological 
dissipative coefficient v. In the more general case the corresponding function of q 
gives a lower limit on the tunnelling rate. We carry out a quantitative analysis of the 
general formula for the physically important case of strictly linear dissipation in a 
cubically anharmonic potential: in this case we show that the correction to the 
“undamped” exponent B, can be written 

LIB = @(a> as;, u = ‘1/2Mul,, 

where q is the phenomenological friction coefficient, w0 the frequency of small 
oscillations around the metastable minimum, and q,, the distance the (undamped) 
system would have to travel “under the barrier.” The dimensionless factor @(a) is 
always of order 1; we find its exact forms in the limit of weak and strong damping 
and put stringent limits on it for the intermediate case. We also obtain the form of the 
prefactor A in the strong-damping limit, where it is proportional to CX~‘~~+,, and give a 
prescription for calculating it more generally. We generalize our results to the case of 
nonlinear and frequency-dependent friction. We discuss the limits of validity of our 
results and some related problems concerning quantum coherence in a dissipative 
system, and outline possible future lines of development. 
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1. INTRODUCTION 

In discussions of the conceptual foundations of quantum mechanics, a crucial role 
is played by the so-called “quantum measurement paradox”-formulated in its most 
spectacular and best-known form by Schrodinger [ 1 ] as the Cat Paradox. ’ This 
paradox arises because it is the general belief that there is no natural limitation to the 
realm of validity of quantum mechanics, so that it should in principle describe the 
behaviour of macroscopic bodies such as Geiger counters and cats as well as that of 
electrons and atoms. Yet it is a curious fact that if one asks what is the experimental 
evidence that quantum mechanics does apply on the scale of macroscopic bodies, and 
in particular that linear superpositions of states corresponding to macroscopically 
different properties can actually exist in nature, then at least until very recently the 
answer was that there was none. Thus, the most fundamental problem of modern 
physics, over which philosophers as well as physicists have puzzled for decades, 
actually rests on an extrapolation which is largely experimentally untested. 

Suppose then that we wish to look for ways of testing this extrapolation. An 
obvious way to start off is to introduce the idea of a macroscopic coordinate. There 
are many macroscopic systems in nature for which it is possible to separate off one 
or more coordinates which are recognizably “macroscopic” (cf. below), such as the 
centre-of-mass coordinate, and which moreover have the property that they are only 
weakly coupled to the other, microscopic degrees of freedom. For example, the 
centre-of-mass coordinate of a body falling freely in a uniform gravitational field is 
completely decoupled from the relative coordinates of the atoms composing it. In 
other cases, although the original coupling may be quite strong, the microscopic coor- 
dinates respond adiabatically to the macroscopic motion and hence the effective 
coupling which results is weak. In either case, to a first approximation the 
Lagrangian may be separated into a term referring only to the macroscopic coor- 
dinate X and the corresponding velocity and another term, possibly adiabatically 
dependent on X, which refers to the microscopic coordinates and velocities. If now we 
make the extrapolation mentioned above, we can quantize the motion of X in the 
usual way and in fact write down for it a standard (closed) Schrodinger equation 

Here the macroscopic variable X need not necessarily have the significance of a 
geometrical coordinate, nor the parameter M that of a physical mass: cf. below. NOW, 
in general, “appreciably” different values of X will correspond to macroscopically 
distinguishable states of the system; so, if the wave functions Y(X, t) which occur 

’ The argument of the first few paragraphs is developed in greater detail in a previous paper by one of 
us 121. This paper discusses, inter alia, the widespread misconception that the validity of quantum 
mechanics on the macroscopic scale (in the sense required to generate the Cat paradox) is demonstrated 
by the so-called “macroscopic quantum phenomena” (Josephson effect, flux quantization. etc.) seen in 
superconductors and superfluids. 
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under physically attainable conditions extend over “appreciable” regions of X, we 
should in principle expect to be able to observe interference effects between 
macroscopically distinguishable states and hence to confirm (or refute) our 
extrapolation of quantum mechanics. 

An immediate objection is that interference effects are typically associated with 
single quantum states and are blurred out by any thermal effects which populate 
more than one or two energy eigenstates appreciably; but since for a macroscopic 
system the spacing of energy levels is very tiny, there will be a large amount of 
thermal disorder even at the lowest temperatures conceivably attainable, and hence 
we shall never be able to see macroscopic interference effects in the sense envisaged. 
This objection is not correct. It is of course true that if we consider all the energy 
levels of a macroscopic system, they will usually be very closely spaced;* however, to 
the extent that we can neglect the coupling between the macroscopic and microscopic 
degrees of freedom, the wave function !P(X, t) simply multiplies the wave function of 
the microscopic coordinates, so that it is only the spacing of the levels described by 
(1.1) which is relevant. This need not necessarily be small, even for a macroscopic 
system; for example, if X is not a geometrical coordinate but the flux through a 
simple LC-circuit, then the level spacing is equal to hw, where o = (LC)-I’* is the 
resonant frequency of the circuit. With currently attainable circuit parameters it is 
not difficult to make this spacing large compared to the thermal energy at readily 
attainable temperature, so that the circuit should certainly be in its quantum- 
mechanical groundstate. This argument relies crucially on the assumption that we can 
to a first approximation neglect the coupling between the macroscopic and 
microscopic degrees of freedom; the validity of this approximation, and the 
corrections to it, are in a sense just the subject of this paper. 

Suppose then that we have our macroscopic system at a low enough temperature to 
neglect thermal blurring of interference effects, how are we to look for such effects? 
That is, how can we verify that the system is behaving in a characteristically 
quantum-mechanical manner? For reasons given elsewhere [2 ] we believe that the 
most promising phenomenon to look for is that of quantum tunnelling. Here it is 
necessary to make an important distinction. The phenomenon we shall be considering 
in this paper is the macroscopic analog of the tunnelling of an alpha particle out of a 
nucleus, or of an electron out of an atom in a strong electric field. It is not the 
macroscopic analog of phenomena such as the inversion resonance of the ammonia 
molecule, the Josephson effect in superconductors or Bloch waves in a metal, which 
involve the system tunnelling coherent/>, between two or more degenerate or nearly 
degenerate potential minima. From our point of view the crucial difference is that in 
the former type of phenomenon the phase relationship between the amplitudes for 
being on different sides of the barrier(s) can be neglected, since once outside the 
barrier the system never comes back and “interferes with itself;” for the latter type of 
phenomenon, on the contrary, it is crucial to take it into account. To avoid confusion 

* Although even this may not be quite as obvious as it seems. for example, for a superconductor very 
far below its transition temperature [31. 
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we shall refer to the latter type of phenomenon as quantum coherence; the subject of 
this paper, quantum tunnelfing, refers to the case where a system decays from a 
metastable state into a continuum. Although the techniques developed in this paper 
are quite general and are applicable equally to both types of phenomenon, we believe 
that in the context of the verification of quantum mechanics on the macroscopic scale 
the experimental relevance of the two is quite different. In fact, in our opinion the 
observation of quantum tunnelling on the macroscopic scale is, in principle at least, 
feasible with existing cryogenic and experimental techniques (and has indeed been 
reported by several groups-see below); by contrast, the observation of quantum 
coherence on the macroscopic scale seems probably at best a long-term prospect. A 
discussion of the reasons for this belief, and of the relation between the two types of 
phenomenon, has been given elsewhere [ 21; see also the brief remarks in Section 6 of 
the present paper. 

In looking for a suitable system in which to try to observe macroscopic quantum 
tunnelling we should impose a number of desiderata. First, the system in question 
must have a metastable state which is separated from a more stable continuum (or 
near-continuum: see Section 6) of states by a free energy barrier. Moreover, the 
points at which the system “enters” and “exits from” the barrier should correspond to 
macroscopically distinguishable3 states. (There are of course many common 
situations (e.g., the u-decay of a nucleus within a Geiger counter) where a quantum 
tunnelling event leads to a macroscopic change in the system, but we should not want 
to call such cases examples of macroscopic quantum tunnelling). Second, the 
frequency of small oscillations around the equilibrium position w,, should be fairly 
high, in order that it should be possible to satisfy the condition z1~,, + k, T with 
attainable temperatures T; this is because we wish to be able to identify any tran- 
sitions which occur as unambiguously due to quantum tunnelling rather than thermal 
nucleation. Since the thermal escape rate is proportional to w,, exp -V,/k,T (with V, 
the barrier height) while the quantum tunnelling rate can be written (see Section 2) in 
the form const. exp -aV,/hw, with a 2 1, the above criterion follows. Third, the 
barrier height should not be too great, otherwise the lifetime of the metastable state 
will be unobservably long; if, for example, we assume w0 - 10” set-‘, then V,/k, 
should not be more than about 40’K (which is a rather small energy even on the 
atomic scale!) Fourth, it is highly desirable that the essential parameters, in particular 
the barrier height, should be experimentally variable, that there should be a direct 
means of registering when a transition has occurred and that noise in the system 
studied should be low. Finally, it is very important that one should be able to 
measure the parameters of the system by experiments describable in purely classical 
terms. 

Of the various possible physical systems which might be proposed as candidates, 
the one which satisfies the above conditions best is probably an (rf) superconducting 

’ We will not enter here into the vexed question of what precisely one means by “macroscopically 
distinguishable”-a concept which in any case has no sharp borderline; in any specific practical case we 
feel this is unlikely to cause diff%xlty. 
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interference device (SQUID), that is, a superconducting ring interrupted by a 
Josephson junction (see, e.g., [4]). Indeed, it was suggested many years ago [5] that 
quantum tunnelling would be the dominant transition mechanism in such a system at 
sufficiently low temperature. In this case, the macroscopic variable of interest is the 
flux 0 trapped in the ring. The “potential energy” of such a system is described to a 
first approximation by the expression (see, e.g., [6]) 

(y(Q) = (@ - @A’ 
2L 

- I, Q. cos(2n@/@,). 

Here L is the self-inductance of the ring, I, the critical current of the Josephson 
junction, Q0 = h/2e the flux quantum and @x the externally imposed flux through the 
ring, which in the present context we shall treat as a c-number parameter controllable 
at will by the experimenter. The first term is the electromagnetic energy arising from 
the finite self-inductance of the ring, while the second is the phase-locking energy 
associated with the junction. If the parameters satisfy the condition 27cLI,/@, > 1, 
then the curve V(@) has at least one metastable minimum for at least some values of 
@,, and by suitable manipulation of @.r it is possible to “trap” the SQUID in this 
metastable state; by further variation of Qx the metastable minimum can be made 
unstable. Indeed, the normal mode of operation [4] of a standard rf SQUID involves 
repeated trapping and release of the flux by means of variation of 4jx. In addition to 
the “potential energy” term (1.2), there is also in the Hamiltonian a “kinetic energy” 
of the form $Cd,’ which is due to the finite capacitance C of the Josephson junction; 
it is evident that C plays the role of the particle mass in the dynamical problem. 
Since the problem is now completely isomorphic to that of a simple one-dimensional 
mechanical system, we expect there to exist a macroscopic wave function !P(@) for 
the trapped flux governed by the Schrodinger equation (1.1) (with the substitutions 
X + @, V(X) --t U(Q), M -+ C). In particular, we expect quantum tunnelling to occur 
out of the metastable potential walls. The rate of such tunnelling can be calculated (at 
first sight at least) by the standard WKB approximation [S, 71 and evidently depends 
strongly on the parameters L, I,, and (especially) C; for the values of these 
parameters typical of a strongly hysteretic rf SQUID we expect the rate to be 
appreciable only when Qx is close to the value needed to make the metastable state 
classically unstable (see [ 71). It should be noted that under these conditions the shape 
of the potential in the region where tunnelling occurs is well represented by a 
quadratic-plus-cubic form (ax’ -,8x3); this is why, in carrying out quantitative 
analyses in this paper, we have concentrated on this form of potential. The width of 
the barrier through which the system has to tunnel is then considerably less than a 
flux quantum (0 . lQp, might be typical) but still large enough for the entry and exit 
points to correspond to macroscopically distinguishable states-at least by our and, 
we suspect, most people’s definition. For less strongly hysteretic SQUIDS such as 
that used in the experiments reported in [8] the entry and exit points can differ by an 
amount of order QO. In either case the other desiderata are reasonably well satisfied. 

595/149/Z-10 
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so that such a system seems to be a good place to look for macroscopic quantum tun- 
nelling. 

A closely related system which is also a candidate [9] is a single Josephson 
junction biassed by a fixed external current I,. In such a case the relevant 
“macroscopic” variable is the phase difference v, of the Cooper pair wave function 
across the junction, and the Hamiltonian conventionally used to describe its 
behaviour is composed of a “potential energy” (the so-called “washboard potential”) 

(1.3) 

and a “kinetic energy” +C(@,,/~X)* $*. Comparing (1.3) with (1.2), it is tempting to 
regard the current-biassed junction as simply the limit of a SQUID with infinite self- 
inductance, with the correspondence @ + (@,,/27r)(~, @JL + I,. However, there is a 
subtle point of difference. Two neighbouring local minima of the potential (1.2) are 
distinguished by the value of the flux @ threading the ring, which is a perfectly 
physical and measurable quantity. On the other hand, two neighbouring minima of 
(1.3) are distinguished only by the fact that cp differs by 27~; since, however, rp is the 
phase of a wave function, it is only defined modulo 271 anyway. Thus, while it is very 
reasonable to.believe the classical equations of motion derived from (1.3) (which can 
in fact be derived equally well by alternative methods) the physical meaning of the 
equation itself is somewhat problematical. (This difficulty is of course not peculiar to 
Josephson junctions; it occurs equally if we were to try to describe, for example, the 
motion of a mechanical pendulum driven by a constant external torque by the 
Hamiltonian (or Lagrangian) technique). We believe that this ambiguity is not a 
problem in the context of quantum tunnelling provided that this occurs when Z0 is 
close to the critical current I, (as is normally the experimentally relevant situation); 
in this case the values of p involved in the tunnelling process itself extend over a 
range much smaller than 27c, so that the variable is unambiguously defined over this 
region. In this case one should be able to take over the SQUID predictions directly 
by the above correspondence. However, one should be much more sceptical about 
using this correspondence in any cases where the phase tunnels through a difference 
of the order of 271. 

A question may be raised concerning the validity of applying quantum mechanics 
to “classical” equations which themselves arise from characteristically quantum 
effects. For example, the potential energy (1.2) involves the flux quantum a0 = h/2e 
and is, in the last analysis, a consequence of the quantization of electronic angular 
momentum. Similarly, in a current-biassed junction the tunnelling variable q is itself 
the phase of a quantum-mechanical wave function. We feel that, at least as regards 
the SQUID, there is no special difficulty here: the fact that we have to start from a 
classical equation which itself contains quantum effects is in no way peculiar to this 
case. For example, in discussing a diatomic molecule one is accustomed to write 
down classical equations of motion for the nuclei; these involve a potential energy 
which itself arises from characteristically quantum effects involving the electronic 
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energy levels and, in principle at least, should contain the quantum constant h. Subse- 
quently, one may quantize these equations themselves to get the vibrational levels. 
Similarly, in the case of a magnetic medium one may start from a classical 
description in terms of an energy density depending on the local magnetization, and 
subsequently quantize this, even though one knows that the origin of parts of the 
energy density is a characteristically quantum-mechanical exchange effect. It seems to 
us that the only difference in the case of the SQUID is that the dependence on h is 
particularly simple and hence obvious, whereas in the other cases it often gets buried 
in more or less phenomenological constants. Turning to the case of a current-biassed 
junction, we can say that provided we are content to regard this as simply the limit of 
a SQUID with infinite self-inductance (cf. above) there is no problem. If we do not 
wish to take this point of view, the matter is a little more delicate. In fact, the 
question of how far it is legitimate to treat the phase of a wave function as a 
quantum-mechanical operator has received considerable discussion in the literature, 
though largely in the context of the difficulties encountered when the number of 
particles involved is small: see especially [lo]. In our case the number of Cooper 
pairs is very large, so these particular difficulties do not arise. In fact, to the extent 
that we neglect the current flow into and out of the system (i.e., effectively consider 
two isolated bulk superconductors connected by a Josephson junction) the situation is 
formally identical to the case of tunnelling between two different bands in a single 
bulk superconductor. This problem was considered in [ 111, where arguments were 
given for treating the relative phase as a quantum-mechanical operator in the limit 
N-, 00. While these arguments are not wholly rigorous, and should moreover ideally 
be generalized to the case of practical interest, when the bulk superconductors are not 
isolated, we believe that they are adequate for the purposes of the present discussion. 

There have recently been a number of experiments to look for macroscopic 
quantum tunnelling both in SQUIDS 18, 12, 131 and in current-biassed junctions 
[ 14-17 ]. The experiments on current-biassed junctions usually identify the tunnelling 
event by the onset of the finite-voltage state (corresponding to the onset of “rolling” 
in the washboard potential (1.3)); in the SQUID experiments the Leiden group 
18, 121 monitored the trapped flux directly, while the authors of [ 131 claimed to 
deduce the occurrence of tunnelling from the behaviour of the tank circuit current- 
voltage characteristic of a SQUID operated in the standard rf mode. One of us has 
commented briefly elsewhere [ 181 on some of these experiments. 

Apart from SQUIDS and junctions, there are a number of other systems whose 
behaviour has recently been interpreted as possibly evidence for the quantum 
tunnelling of an essentially macroscopic variable. These include charge density waves 
in quasi-one-dimensional conductors [ 19-2 1 ] (cf. also [ 22]), the vortex-antivortex 
complex in two-dimensional superconducting films [23] and the photon field in a ring 
laser 1241. Yet other systems have been studied theoretically [25-271, but as far as 
we know there are as yet no relevant experiments. For the purposes of the present 
paper it is most convenient to bear in mind primarily the case of a SQUID; this has 
the advantages that the tunnelling variable is unarguably macroscopic and can be 
monitored directly, and, most important, that at least for certain types of junction the 
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classical dynamics is believed to be well understood and the parameters can be 
obtained rather directly from purely classical experiments. 

We now turn to the question which is the central motivation of this paper. As far 
as we are aware, all work in this area previous to our own [7, 281 has explicitly or 
implicitly described the tunnelling system by a wave function and used the standard 
microscopic techniques such as the WKB approximation to calculate the tunnelling 
rate. Thus, the macroscopic nature of the tunnelling variable does not enter the 
problem explicitly at all. Yet in fact there is a crucial difference between these 
macroscopic systems and the well-known examples (field ionization, Stark effect, etc.) 
to which techniques such as the WKB approximation are routinely applied: namely, 
macroscopic systems are inherently dissipative. To put it differently, a macroscopic 
system by its very nature always experiences a complex interaction with its 
environment, one consequence of which is that it continually exchanges energy with it 
and can in no way be considered as isolated. In particular, insofar as its motion can 
be described classically, there is always a term in Newton’s equation corresponding 
to the dissipation of energy. To be sure, this characteristic is not exclusive to 
macroscopic systems: a microscopic system which undergoes tunnelling also interacts 
with its environment, but in most cases the interaction is sufficiently weak to be 
ignored or treated as a small perturbation (for example, the coupling to the radiation 
field in the field-ionization problem). By contrast the dissipation in macroscopic 
tunnelling systems such as SQUIDS may be very strong: the typical rf SQUID used 
for practical magnetometry is overdamped. Another important difference is that even 
in the minority of microscopic tunnelling systems where the coupling to the 
environment is important (such as the case of electron or defect tunnelling in solids, 
where the coupling to the phonon modes can be very strong), one usually has a good 
a priori knowledge of the appropriate coupling Hamiltonian, or at least of its prin- 
cipal features. (cf. [29]). I n many macroscopic systems, on the other hand, we are 
ignorant of the detailed mechanism of dissipation and are reduced to describing its 
effects by phenomenological coefficients of friction, viscosity or similar quantities. 
For example, it is conventional (and apparently compatible with most of the 
experimental data) to describe large classes of SQUIDS by the so-called “resistively 
shunted junction” (RSJ) model [6]. This model assumes that the Josephson junction 
is shunted by a phenomenological “normal” resistance R,, whose origin is often 
unknown in detail. As a result, the classical equation of motion of the trapped flux 
takes the form 

(l-4) 

where U(@) is given by Eq. (1.2). 
It is clear that until we know the effect which the dissipation is likely to have on 

the quantum tunnelling behaviour of macroscopic systems, we cannot interpret the 
results of existing or projected experiments as evidence for, still less against, the 
extrapolation of quantum mechanics to the macroscopic scale [ 8, 15 ]. Thus, the 
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fundamental question to which we address ourselves in this paper is: What is the 
effect of dissipation on quantum tunnelling? While the question is not necessarily 
exclusive to the macroscopic context, we shall think primarily of this case in our 
analysis. In the present paper we shall confine ourselves to the limit of zero 
temperature. Moreover, in the main body of the paper we concentrate on the simplest 
case, that of frequency-independent linear dissipation (see Eq. (2.8)); generalizations 
are given at the appropriate points. For pedagogic purposes we work explicitly in 
terms of a simple mechanical mode1 for which the macroscopic variable has the 
significance of a geometrical coordinate; the transposition of the results to a SQUID 
described by Eq. (1.4) is, however, trivial (see Conclusion). 

It should be stressed that the question we have just posed, namely, “What is the 
influence of dissipation on quantum tunnelling ?” has no clear meaning, and therefore 
no unique answer, if posed in isolation from a context such as the one just given. In 
Section 2 we shall specify the precise meaning given in this paper to the question 
(which we believe to be the meaning most relevant to all or almost all experimentally 
realistic cases), and will subsequently conclude that the answer to the question, when 
taken in this sense, is that dissipation always tends to suppress tunnelling. However. 
we are emphatically not making the claim that the incorporation of any dissipative 
mechanism anywhere in the neighbourhood of a system will suppress the tunnelling 
of any variable: such a claim could be refuted by totally trivial counterexamples. 
(For example, it is intuitively obvious that if in a SQUID part of the bulk supercon 
ducting ring is replaced by a thin filament with a critical current considerably less 
than that of the junction, then the “dissipation” so provided will be accompanied by 
an increase in the tunnelling rate. See also the discussion of the “anomalous” type of 
case in Appendix C). 

We emphasize that we are not interested, in the bulk of the present paper, in the 
effect of dissipation on quantum coherence, an effect we shall refer to for brevity as 
“environmental detuning.” (W e d o make some brief remarks about it in Section 6.) 
This latter question is closely related to the problem of the effect on quantum 
coherence of its “observation” by, or interaction with, the environment, which has 
had considerable discussion in the literature in particular contexts such as NMR (“T, 
relaxation”) and impuriton states in solids (“dynamical destruction of the band” 
1301) and has been recently treated in general terms in [31,32]. One of us has given 
elsewhere 121 a discussion of this topic in the context of macroscopic quantum 
coherence. It is also important to emphasize that in this paper we calculate the total 
rate of tunnelling out of the metastable groundstate, without making a distinction 
between “elastic” processes in which the environment remains in its groundstate and 
“inelastic” ones in which it is excited, (see especially the discussion following 
Eq. (4.11)). 

The plan of the paper is as follows: In Section 2 we set up the problem, briefly 
review the standard results for tunnelling in an isolated system and discuss the precise 
meaning of the question “What is the influence of dissipation on tunnelling?” In 
Section 3 we formulate a mode1 for the dissipation mechanism which is sufficiently 
genera1 to cover all cases likely to be of practical interest, whether the original 
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coupling of the system to the environment was weak or not (in the latter case, we 
have adiabatic coupling as discussed above). We also give a discussion of the 
“frequency renormalization” effect (see below). Section 4 is the heart of the paper: 
using a technique borrowed from particle physics, with appropriate developments, we 
derive a general expression (Eq. (4.27)) for the effective action in a damped system 
and hence an expression (4.30) for the tunnelling rate of the system out of a 
metastable minimum. Section 5 presents a quantitative analysis of the expression for 
the tunnelling rate for the physically important case of cubic anharmonicity: we 
obtain exact expressions for the effective bounce exponent in the limit of weak and 
strong damping, and upper and lower limits on it for the general case. We also find 
the dependence of the prefactor on damping in the strong-damping limit, and estimate 
the constant. In Section 6 we examine the physical interpretation and limits of 
validity of our results and mention some outstanding problems. Section 7 is a brief 
conclusion. There are four appendices4: A discusses in detail the correct form of the 
Lagrangian for systems with electromagnetic (or adiabatic) coupling, B tests our 
general formalism on the exactly soluble problem of the damped harmonic oscillator, 
C justifies the form of system-environment interaction postulated in Section 3, and D 
proves some purely mathematical results needed in Section 5. 

There are two points, neither of them directly connected with quantum tunnelling, 
on which the reader may feel that we have gone into excessive and tedious detail. One 
is the question of justification (Appendix C) of the harmonic-oscillator bath represen- 
tation used for the environment (in Eq. (5) of our previous work 1281 and Eq. (3.5) of 
the present paper). Our aim here is to show that this is not in fact merely a “model,” 
that is, a simplified version of the real situation which is expected to show the main 
qualitative features, but (at least at zero temperature) is actually a quite general and 
exact description (barring possible pathological counterexamples) of any situation in 
which the environment is only weakly perturbed by the motion of the system. We 
have little doubt that once the ground is firmly established, it will be possible to 
short-circuit the rather laborious procedure of Appendix C and Section 4 by 
appropriate formal analytic continuation techniques (cf. [29]); however, for this first 
venture into more or less unknown territory, it seems wise to attempt a derivation as 
explicit and complete as possible. ’ The second point on which we have laboured 
(Section 2 and Appendix A) is the question of the “frequency renormalization” effect 
described in Section 2, and in particular why it does not occur for systems such as 
SQUIDS. The reason is as follows. Although we ourselves, possibly with the benefit 
of hindsight, would regard the qualitative result that dissipation of the kind 
considered in this paper tends to suppress quantum tunnelling as almost obvious 
intuitively, there are by now at least three papers 133-351 in the literature which 
claim to have demonstrated the precise opposite, and similar claims have also been 
expressed in conference discussions, etc. We believe that most, if not all, of the 

4 The reason for the present order of the Appendices is purely historical. The logical order is C. A. B. 
D. 

’ Those who regard Eq. (3.2) as suff?ziently plausible to need no detailed justification might well wish 
to skip the somewhat turgid arguments of Appendix C. 
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arguments advanced in favour of such claims have been based on a misunderstanding 
of the frequency-renormalization phenomenon, and in particular of when it does and 
does not occur, and have therefore devoted a considerable amount of space to a 
discussion of it, in the hope of clearing up this point once and for all. It may save the 
reader time if we remark that the basic question boils down to this: Suppose we take 
a simple LC-circuit and connect a piece of (normally resistive) wire with zero induc- 
tance in parallel with the capacitor. Then (a) does the resistor shift the natural 
resonance frequency of the circuit (other than by the usual substitution co-* 
I,/- etc.)? (b) if it d oes not, how do we guarantee that our microscopic model 
of the resistor and its coupling to the rest of the circuit reflects this fact? Those who 
find the answer to question (a) sufficiently obvious that they regard a discussion of 
(b) as superfluous and tedious (a view with which we have considerable sympathy) 
might wish to skip the relevant parts of Section 2 and the whole of Appendix A. 

The core results of this paper (that is, the essential content of Section 2, most of 
Sections 3 and 4, and Appendix A) were given in our earlier letter 1281, for want of 
space in some cases without derivation.6 (See also [7].) Parts of the present paper 
which go substantially beyond the results stated in [ 28 1 include the discussion of the 
adiabatic case (Appendix C), the whole of the quantitative analysis of Section 5, the 
discussion of the limits of validity of our theory (Section 6) and the generalization to 
nonlinear dissipation (Section 4 and Appendix C). The application to SQUIDS has 
been discussed by one of us in a conference contribution [ 18 1 and has been used in 
the analysis of some of the recent experiments [ 12, 16, 17 1; it has also been applied 
by KurkijIrvi to a discussion of the ultimate sensitivity of a SQUID magnetometer 
[36]. Finally, a recent criticism [34] of our work has been refuted elsewhere [ 371. 

2. FORMULATION OF THE PROBLEM 

We shall be interested in this paper in the following problem. At zero temperature 
we have a system which is characterized by some principal coordinate q and is 
subject, inter alia, to a c-number external potential V(q) which has a single 
metastable minimum at a point which we arbitrarily choose as the origin of q; the 
zero of potential is chosen to lie at the bottom of this metastable minimum, i.e., 
V(0) = 0. The system in question may be (but need not necessarily be) macroscopic, 
and the coordinate q need not have the significance of geometrical position; for 
example, in the case of a SQUID q would represent the magnetic flux trapped in the 
ring (see Introduction). We assume that the potential V(q) is fairly smooth and has 
the general form shown in Fig. 1; note in particular that V(q) is taken to be negative 
for all points q > qo, where q,, is the “exit point” of the system from the barrier (i.e., 
the nonzero value of q for which V(q) = 0 (Fig. 1)). The object of this assumption is 

6 However, the distinction between “quasi-linear” and “strictly linear” dissipation (see Section 2) was 
not made in 1281, and the statements made there about the generality of our result should be read with 
this in mind. 
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FIG. 1. The form of potential V(9) considered in our calculation 

to guarantee that once the system has left the metastable well, it will have no 
probability amplitude for returning there in any finite time, so that we can neglect 
“quantum coherence” effects in the sense defined in the Introduction. (Whether this 
assumption is justifiable for any specific physical system of interest is a different 
question and is discussed in Section 6). 

Throughout this paper we shall use language appropriate to the case where 4 is a 
real geometrical coordinate and has associated with it a mass M; in that case the 
Lagrangian of the system as described so far is simply 

L(q, 4) = @4tj* - V(q). (2.1) 

In most cases where q is not a geometrical coordinate, the Lagrangian can still be 
written in the form (2.1) provided that A4 is understood as the appropriate parameter 
(e.g., in the case of a SQUID ring it is the capacitance of the Josephson junction). 
We denote the frequency of small oscillations around the metastable minimum by w,,: 

(2.2) 

and assume for the moment that the height V, of the barrier (Fig. 1) is large 
compared to hw,, so that the WKB approximation is applicable to the tunnelling 
behaviour of the system as described so far. For future reference we now summarize 
the results of using this approximation for the isolated system. 

If the system is known to be initially localized in the metastable potential well, 
then the probability per unit time that it escapes from the well is given by the 
standard formula 

P, = A, exp -BJA, A, = C,c0,(B,/2~fi)“~, (2.3) 
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where B, is the WKB integral 

B, E 2 
I 

% (2MV(q))“’ dq (2.4) 
0 

and Co is a dimensionless constant of order unity which depends on the shape of the 
potential V(q) and can be calculated by any of a number of standard methods. 
Corrections to Eq. (2.3) are at most of relative order hw,/V,, and in almost all 
situations of practical interest in the present context it is the exponential factor which 
is likely to dominate the tunnelling behaviour, particularly when we are interested in 
the dependence of tunnelling rate on some external control parameter (such as the 
externally imposed flux in a SQUID). A case of particular interest is that of a 
“quadratic-plus-cubic” potential, which is likely to describe many of the systems of 
interest to us in the regime where tunnelling is appreciable (see Introduction) 

(2.5) 

where q. = #lw$j3 is the coordinate of the “exit point.” For such a potential it turns 
out [ 71 that 

B =36v, 
0 

5 wo' 

Co = (60)‘:‘. (2.6) 

We now wish to enquire how the presence of dissipation affects the probability of 
tunnelling. It is necessary to formulate the precise question we wish to answer rather 
carefully. If we were treating the motion of the system classically using Eq. (2.1) we 
would of course produce an equation of motion of the form 

(2.7) 

where for generality we have added a time-dependent “external” potential -qF,,,(t) to 
the Lagrangian (2.1). Equation (2.7) is, of course, by Ehrenfest’s theorem also true as 
an operator equation in quantum mechanics; however, in general it is not very infor- 
mative, since when we take its expectation value (indicated by pointed brackets) we 
cannot identify (aV/aq) with (i?V/aq)4=C9j. Nevertheless, because of our assumptions 
that the potential V(q) is reasonably smooth and that the inequality V, 3 ho, is 
satisfied, we may reasonably infer that this identification is indeed approximately 
valid; therefore a quantum-mechanical system, whether trapped in the metastable well 
or with sufficient energy to surmount the barrier, will have an expectation value 
(q(t)) of its coordinate which approximately satisfies the classical equation of motion 
(2.7). (Naturally, effects which vanish in the limit A + 0, such as tunnelling itself, are 
neglected in this approximation.) The (possibly hypothetical) system which behaves 
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in this way will form, as it were, the reference system with which our real-life 
(damped) system will be compared. 

The real-life system, then, is assumed to obey in the region in question not 
Eq. (2.7) but a dumped quasiclassical equation of motion of the form 

M4’ + ~4 + (dV/dq) = F,,,(t). (2.8) 

(Note that F,,,(t) is a “true” external force, i.e., such that the work done per unit time 
is simply @‘,,,(t) and the power dissipated is correspondingly ~4’. In the more 
general case q = q(q) this condition needs to be explicitly specified; see Appendix C.) 
More precisely, the expectation value of the coordinate operator is assumed to satisfy 
(2.8) (with aV/aq interpreted as (aV/8q)4z(,,, as above). That the system does indeed 
obey Eq. (2.8) and the value of the (q-independent) friction coefficient q, is 
something which in any particular case must be inferred from experiment; for most 
cases of practical interest there are standard ways of doing this. In writing (2.8) we 
have made the simplest possible assumption, namely, that the frictional force is 
simply proportional to velocity, and we shall carry this assumption through the bulk 
of this paper; however, the generalization to nonlinear dissipation (given by a 
damping term of the form v(q)Q) is very straightforward and is given at appropriate 
points in the text. The generalization to the case where the dissipation involves higher 
time derivatives is also mentioned at appropriate points. 

Thus, the object of this paper is to compare the tunnelling rate of a system 
described (under appropriate conditions) by the damped quasi-classical equation of 
motion (2.8) with that of the reference system described by the undamped Eq. (2.7). 
It cannot be too strongly stressed that in making the comparison the potential V(q) is 
assumed to be rhe same in the two cases (cf. below). This is our definition of the 
meaning of the question “What is the effect of dissipation on quantum tunnelling?” 
We suspect that the recent controversy about the sign of the effect (see Introduction) 
may have been at least partly due to the lack of such a generally agreed definition. It 
is appropriate, therefore, to digress for a moment at this stage to see why there is a 
problem. 

In the next section we are going to introduce dissipation into the behaviour of our 
system by coupling it to a sufficiently complex environment. Now, if we start with an 
isolated system and introduce terms in the Lagrangian (or Hamiltonian) which 
couple it to its environment, then in general we will produce a mechanism of 
dissipation and also other effects. For example, in the simple case in which both 
system and environment are simple harmonic oscillators, most forms of coupling 
(and in particular a coordinate-coordinate coupling) will shift the natural oscillation 
frequency of the system; in quantum-mechanical terms this is just the familiar level- 
repulsion effect. More generally, we shall find (cf. Section 4) that such coupling tends 
among other things to renormalize the original potential V(q); in particular, if the 
coupling is linear in the system coordinate (the case of primary interest in this paper) 
V(q) acquires an extra (negative) term fMAco2q2, where the negative quantity Au* 
plays the role of a correction to the squared small-oscillation frequency IX:. Such 
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renormalization effects can be very large, and if ldw* / > 0: can even render the 
original metastable potential minimum unstable; in some microscopic tunnelling 
systems they can play a very important role (cf. [29]). We refer to these effects as 
“frequency-renormalization” effects (in a more general context “potential renor- 
malisation” might be a better term). 

Now, whether the frequency-renormalization phenomenon does indeed occur as a 
real physical effect depends crucially on the nature of the physical system considered. 
This question has of course really nothing to do with tunnelling as such, and to 
emphasize this we shall illustrate the point with two systems which both perform 
small oscillations around a stable equilibrium position. Consider first an example 
which is not strictly macroscopic but is well suited to our purpose, the interaction of 
a collective degree of freedom in a nucleus with the single-particle modes. The 
simplest description of such an interaction is by a term of the general form 

CjFj(S) h x,, w ere xj is some coordinate associated with the single-particle mode j. 
Clearly this type of coupling will not only provide a dissipation mechanism for the 
“system” but will also shift its natural frequency; in particular the effect of those 
parts of the “environment” (most of it) which have natural frequencies large 
compared to wO may be taken into account by supposing that they adjust 
adiabatically to the system and thereby lower the effective restoring force, i.e., the 
quadratic term in the potential energy. Note that in general there is no simple 
relationship between this “frequency renormalisation” and the damping constant, 
although of course there are the usual Kramers-Kronig relations between the real and 
imaginary parts of the complete frequency-dependent system response. In this case 
the frequency-renormalization effect has a real physical significance. 

Now consider a simple LC-circuit; to avoid irrelevant problems we assume that it 
is constructed entirely of superconducting materials and is at zero temperature. It will 
execute small undamped harmonic oscillations of the current (or flux) with frequency 
wg = (LC) “*. Suppose now that we connect in parallel with the capacitor a piece of 
wire made of normal metal of finite conductivity. In elementary electrical engineering 
terms, we would naturally describe the effect of this element by assigning to it a 
phenomenological resistance R; we might, depending on the details of the geometry, 
also have to assign to it its own inductance and/or capacitance, but these are 
irrelevant to the point at issue and we shall assume they are zero. (More generally, 
we might have to describe the wire by a complex frequency-dependent impedance 
Z(w); our assumption is that Z(w) is real and equal to a constant R for a range of 
frequencies o, large compared to o,,. The ensuing statements are true to lowest 
nontrivial order in w~/w~, cf. Appendix A.) Then the standard elementary circuit 
calculation shows that the equation of motion of the circuit (where for later 
convenience we take as our basic variable the magnetic flux @ passing through it) is 
modified to 

Csii $ d/R + Q/L = 0. (2.9) 

Hence the effect of incorporating the resistive element in the circuit is to give the 
resonance frequency an imaginary part and also, in the case of under-critical 
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damping, to shift its real part (downwards). This shift, however, should be carefully 
distinguished from the one occurring in the above case of the nucleus; unlike the 
latter, it is entirely determined by the phenomenological dissipative coefficient (here 
R) and does not require any modification of the “potential” term in the Lagrangian 
(here @*/2L). Th us, on elementary physical grounds we do not in this case expect the 
coupling of the circuit to the dissipative element to result in a “frequency- 
renormalization effect” as we have defined the term. It follows, of course, that in 
choosing an effective Lagrangian to describe the coupling of the “system” (circuit) to 
the “environment” (resistor) we must take care to ensure this result. Actually, it turns 
out that a sufficiently careful analysis of the standard Lagrangian technique as 
applied to electromagnetic interactions will automatically guarantee this, and we 
carry out such an analysis in Appendix A. 

Another case in which we do not, on physical grounds, expect a frequency- 
renormalization effect to occur is that of adiabatic coupling. That is, if we start from 
the dynamics of a system interacting strongly with its environment but described by 
the zeroth-order adiabatic approximation (which allows no dissipation), and then add 
as the dissipation-producing interaction the terms omitted in this approximation, then 
we would expect that these terms do not lead to a frequency-renormalization effect, 
since any such effect should already have been taken into account in the zeroth-order 
approximation. We shall demonstrate explicitly in Appendix C that this expectation is 
correct (to lowest nontrivial order in the departure from adiabaticity). 

We see, therefore, that the question “How is quantum tunnelling affected by 
dissipation?” is not necessarily equivalent to the question “How is quantum 
tunnelling affected by the interaction with the environment which produces the 
dissipation?” In considering the latter question it may, depending on the physical 
nature of the system considered, be necessary to take into account frequency- 
renormalization effects. Since it is the first question we wish to consider in this paper, 
it is convenient to be able to treat all cases in a unified way, irrespective of whether 
or not they show physical frequency-renormalization effects (which in many 
macroscopic cases of practical interest are likely to be experimentally unobservable 
even if they occur). The obvious way to do this is to treat the V(q) which appears in 
Eq. (2.1) not as the original “bare” potential V,(q) seen by the isolated system, but as 
the renormalized potential, that is the quantity V,(q) - $I4 ldto2/ q2 (or the 
appropriate nonlinear generalization, see Appendix C). In cases where there is no 
physical frequency-renormalization effect, then obviously V(q) = V,(q). Conse- 
quently, our restrictions concerning smoothness, barrier height, etc. should always be 
understood as referring to the renormalized potential. 

To sum up, we wish to compare the tunnelling characteristics of a system whose 
quasiclassical dynamics is given by the damped equation of motion (2.8) with those 
of a reference system described by (2.7), for the same porential function V(q), (and, 
of course, the same mass) irrespective of whether or not the potential seen by the real 
(dissipative) system contains a contribution from frequency-renormalization effects. 

There is, however, one respect in which our formulation of the problem is still 
ambiguous. What, precisely, do we mean by the statement that Eq. (2.8) holds “under 
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appropriate conditions?” Evidently it should hold provided that the characteristic 
frequency of motion of the system (as driven by the external force, if necessary) is 
sufficiently low. But this is still not quite unambiguous, for the following reason. 
Generally speaking the dissipative mechanism will have associated with it not only 
some characteristic frequency w, (see next section) but also some characteristic 
velocitql v,. We shall see in Appendix C that certain kinds of dissipative mechanism 
produce reactive terms in the equation of motion (2.8) which are of order 
(w/o,)(v/v,)*. However low w, these terms will become important if u (or the 
amplitude q) is large enough. Thus, if q denotes a typical amplitude of the motion 
and o a typical frequency, it is necessary to distinguish two (in general, different) 
statements: (a) that for fixed q we can find an OJ small enough that (2.8) holds 
without appreciable correction, (b) that we can find an o small enough that (2.8) 
holds for any q without appreciable correction. (Statement (b) of course implies (a) 
but not vice versa.) We shall refer to cases (a) and (b) as cases of “quasi-linear” 
dissipation and of “strictly linear” dissipation, respectively. (Strictly speaking, of 
course, one should talk of a quasi-linear/strictly linear dissipative mechanism, since 
the lowest-order terms which distinguish the two cases are reactive in nature.) Since 
these terms are of a different form from those occurring in the original undamped 
equation of motion (2.7) (i.e., they cannot in general be mimicked by an adjustment 
of the potential V(q)) the two cases are in principle experimentally distinguishable. 
However, there may well be some cases of physical interest in which it is in practice 
possible to verify condition (a) but not condition (b): i.e., we can always verify that 
the dissipative mechanism is quasi-linear, but not necessarily that it is strictly linear. 
As we shall see, the principal quantitative results of this paper, and in particular 
Eq. (4.27), if taken as equalities, are valid only for strictly linear dissipation: for the 
case where the dissipation is quasi-linear but not strictly linear we get related 
inequalities (Section 4). Fortunately, for a reason we shall see at the end of Section 3, 
the condition of strict linearity (or an equivalent condition) does hold, at least 
approximately, for most of the cases currently of practical interest. 

It may be helpful to conclude this section by posing a few questions we should like 
to answer: 

(1) Does the dissipation increase or decrease the tunnelling probability? 

(2) Is the effect uniquely determined (for a given potential V(q)) by a single 
parameter, the friction coefftcient q, or is it model-dependent? 

(3) What is the asymptotic formula for the factor by which the tunnelling 
probability is multiplied in the weak-damping limit (~/MO, -+ O)? 

(4) What is the corresponding formula in the heavily overdamped limit 
w~ql--t 03 )? 

In the next two sections we shall set up a method of answering all these questions, 
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3. DESCRIPTION OF THE MECHANISM OF DISSIPATION 

In our statement of the problem, we have demanded that the (experimentally 
verified) equation of motion of our system in the quasiclassical metastable regime 
should be given by Eq. (2.8). We then wish to ask, how does a quantum system 
described by this dissipative quasiclassical equation of motion behave with respect to 
quantum tunnelling? To answer this question we must clearly have some description 
of dissipation in a quantum-mechanical system. 

The quantization of a dissipative system moving in a stable potential is of course a 
very old problem and has been tackled on a number of levels (cf. [38]). In the first 
place, there have been many attempts to write down modified Schrodinger equations 
or the equivalent for the system by itself, without explicit reference to any external 
agency. Examples of such approaches are the time-dependent Hamiltonian theory of 
Kanai [ 391, the nonlinear Schrodinger equation used by Kostin [ 401 and Yasue [4 1 ] 
and the complex quantization procedure of Dekker 1421. These descriptions are 
usually justified a posteriori by demonstrating that they reproduce known results for 
certain special cases such as the harmonic oscillator in the limit of weak damping; 
however, their theoretical foundations are sufficiently unclear that we feel it would be 
unwise to use them in the present context, which is about as far as it is possible to get 
from that limit. If, then, we reject such quasi-phenomenological descriptions of the 
system in isolation, it follows that we must enquire explicitly into the physical 
mechanism of dissipation. Here again there are (at least) two possible approaches (cf. 
143, p. 19951). On the one hand, we could consider the environment as acting on the 
system by means of random forces which are specified in some statistical manner. 
Such a description is of course very widely used in classical statistical mechanics, in 
the form of the Langevin equation or related equations, and there have been a number 
of attempts (see [44]) to apply it also to dissipative quantum systems: see especially 
the work of Koch et al. (451. The alternative approach, which we shall use in this 
paper, is to regard the “system” and its environment as together forming a closed 
system (the “universe,” as we shall denote it for present purposes) which can be 
described by a Lagrangian or Hamiltonian, to solve (in principle!) for the motion of 
the whole and to derive from this solution a description of the properties of the 
system (which, of course, would now more properly be called a subsystem). In this 
picture the phenomenon of dissipation is simply the transfer of energy from the single 
degree of freedom characterising the “system” to the very complex set of degrees of 
freedom describing the “environment; ” it is implicitly assumed that the energy, once 
transferred, effectively disappears into the environment and is not recovered within 
any time of physical interest (i.e., one treats the mathematical existence of Poincare 
recurrences as physically irrelevant). Formally, one assumes that the number of 
degrees of freedom of the environment tends to infinity; this assumption is implicit in 
the replacement of sums by integrals which we shall carry out without further 
comment at appropriate stages in the calculation. Such an approach to quantum 
dissipation is of course already widely used in various areas of physics, notably in the 
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theory of damping of electromagnetic radiation in a cavity [46] and of deep inelastic 
collisions of nuclei [47]. 

It is necessary, then, to formulate an explicit Lagrangian for the interacting system 
and environment in such a way that Eq. (2.8) will result in the appropriate limit. 
Since, as discussed in the Introduction, we do not always in practice know very much 
about the physical mechanism of dissipation, it is desirable that the model should be 
as general as possible subject only to the condition that it generates Eq. (2.8) when 
required. However, to make the subsequent calculations tractable it is necessary to 
impose one important restriction on it, namely, that any one environmental degree of 
freedom is only weakly perturbed by its interaction with the system. For most cases of 
interest, at least when the system variable is macroscopic, this assumption is 
physically reasonable; in that case the environment is usually also (geometrically) 
macroscopic and the interaction of the system with any one environmental degree of 
freedom is generally proportional to the inverse volume, while the characteristic 
energy of such a degree of freedom is volume-independent. Naturally, the wave 
functions of the environment may be extremely strongly perturbed by the system over 
a local region (as in the case of a body moving in a liquid, for example); but this can 
usually be handled by means of the adiabatic approximation, and the effective 
residual coupling which is due to the corrections to adiabaticity (see below) then 
usually does have the required property [47]. It cannot be over-emphasized that the 
condition that any one environmental degree of freedom is only weakly perturbed in 
no way implies that the interaction is “weak” from the point of view of the system 
(which interacts with a very large number of degrees of freedom); indeed it is quite 
compatible with very strong damping. 

Now, the motion of any physical system P which is only weakly perturbed around 
its equilibrium state can always be adequately represented (at T= 0 at least) by 
regarding that system as equivalent to a set of simple harmonic oscillators. Since this 
point has been given considerable discussion in the literature (see, in particular, [47, 
Sect. 21) we shall not spend time on it here, but relegate the details to Appendix C. 
There we show that the most general type of Lagrangian we need to consider is 
obtained by adding to (2.1) first the unperturbed Lagrangian of the “environmental” 
oscillators, namely? 

L,,, = x (fmjif - tm,wfxj) 
j 

(3.1) 

and secondly an interaction term which may be taken without loss of generality 
(barring pathological cases: see Appendix C) to be of the form’ 

Lint = -r Fj(q) Xj + Q(q) (3.2) 

’ Strictly speaking Cp can also be a function of p. This possibility introduces only trivial 
complications and for the sake of simplicity of presentation we ignore it here. 
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where the function Q(q) may depend on the details of the oscillator spectrum (i.e., on 
the mj and wj) but not on their dynamical variables xj, ij, 

The function Q(q) is related to the question of cancellation of the frequency (or 
potential) renormalization mentioned in Section 2. To see this, we assume for the 
moment that Q(q) is zero and ask what is the minimum value of the potential energy 
of the “universe” (system plus environment) which can be attained for given q. 
Clearly to attain this minimum we need to set xi =F’,(q)/mlwf for all j, and the 
resulting “effective potential” V,,(q) is then given by’ 

(3.3) 

In the special case Fj(q) cc q (cf. below) this is equivalent to a negative shift do* in 
the (squared) frequency of small oscillations of the system as described in Section 2. 
If now we include in the interaction Lagrangian (3.2) a nonzero Q(q) given by 

Q(q) = -T FjZ(q)/hjw,f, (3.4) 

then the effect is, trivially, simply to cancel this effect and reduce V.&q) to V(q), i.e., 
we ensure that the system cannot lower its potential energy below the original 
uncoupled value by moving off the q axis in the many-dimensional space whose axes 
are q and the xj’s. 

In all cases of physical interest we either find that Q(q) is given by the expression 
(3.4) or that it is zero. The first situation arises where there is no physical frequency 
(or potential)-renormalization effect; we show in Appendix A that this is so for elec- 
tromagnetic coupling of the type found (e.g.) in SQUIDS, and also in the case of 
adiabatic coupling which is formally identical to it. The second situation is charac- 
teristic of cases where the frequency-renormalization effect is real, e.g., the nuclear 
physics example discussed in Section 2. Nevertheless, for the reason discussed in 
Section 2 it is convenient also in this case to add a term of the form (3.4) to Lint 
while subtracting it from the “unperturbed” Lagrangian (2.1): in this way we achieve 
our goal of comparing damped and undamped systems for the same observable 
potential (or frequency). 

Thus, the most general Lagrangian with which we need to deal when considering a 
system weakly coupled (in the sense specified above) to its environment and whose 
phenomenological equation of motion is (2.8) is of the form 

L = $Md2 - V(q) + f 1 (mjiT - mjcujxf) 
i 

_ \‘ Fj(q) xi - F\‘ Ff(q)/2mjwj. 
i J 

(3.5) 

* In a nuclear-physics context this is often known as the “adiabatic potential.” 
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The calculations of Section 4 go through for any Lagrangian of this general form (see 
the end of that section). However, to render the results useful we clearly have to 
know something about the distribution of the quantities mj, wj, and F,(q). In 
considering any specific physical system we can, in principle, approach this problem 
in either of two ways. 

First, we might have sufficient confidence in a particular microscopic model of the 
system in question to feel sure we know the relevant parameters a priori. Such a 
situation might, for example, arise in the case of tunnelling transitions in a ring laser, 
where the interactions should be obtainable directly from quantum electrodynamics, 
or in an ideal oxide-layer Josephson tunnel junction, where the resistive mechanism is 
intrinsic and believed to be well described in terms of Bogoliubov quasiparticles 1481. 
In such cases the problem reduces to transforming the known Lagrangian into a 
representation of the form (3.5). 

The second possibility-which is the one emphasized in our formulation of the 
problem in Section 2-is that we might have a phenomenological description of the 
classical motion of the system, without necessarily having a particular microscopic 
model as the basis for it. In this case the interesting question is whether this 
knowledge of the classical motion will determine the parameters entering L to the 
extent necessary to make useful predictions about tunnelling rates. (We shall see 
below that the answer is yes.) Of course intermediate cases are also possible: we 
might have a classical phenomenological description plus some constraints on 
possible microscopic models. An example is the case of a SQUID with its Josephson 
junction physically shunted by a normally resistive piece of wire: here we have one 
important piece of a priori knowledge, namely, that the coupling to the resistor must 
be linear in the flux (see Appendix A), i.e., that in (3.5) we can put Fi(q) = qCi; on 
the other hand we certainly do not know the Cis, mis, and wI(s in detail except 
insofar as they enter the (experimentally measurable) resistance. 

Let us therefore ask what constraints are imposed on the choice of the parameters 
mj, wj, and Fj(q) in (3.5) by a knowledge that the classical motion of the system is 
governed by a dissipative equation of the form (2.8) (the case of more genera1 
dissipative equations is mentioned below). This question is discussed in Appendix C, 
with the following conclusions. If we know that the dissipative mechanism is 
quasilinear but not that it is strictly linear (see the end of Section 2), then the only 
constraint we can impose is the relation 

for o Q wC, where w, is the characteristic frequency at which the phenomenological 
equation (2.8) begins to break down, and q is the phenomenological friction coef- 
ficient appearing in (2.8). Equation (3.6) is compatible with (e.g.) a distribution of 
Fj(q)‘s which are each individually of very short range in q; certainly they need not 
be linear in q. If on the other hand we require that the dissipation be strictly linear, 
we find that we must have 

‘45!149/2-I I 
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Fj(q) = qcj 

so that (3.6) then becomes a constraint on the spectral 

J(w) E I y (c;/mjuj) 6(w - 
J 

namely, 

J(o) = ?px 

(3.7) 

density J(w) defined by 

uj>y (3.8) 

(3.9) 

We will see in the next section that while the constraint (3.9) is sufficient to 
determine the exact tunnelling rate, the weaker constraint (3.6) is adequate only to 
determine a lower bound on it. Naturally, there are cases where we can assert (3.7), 
and hence (3.9), not because we know from experiment that the dissipation is strictly 
linear but because of some a priori knowledge of the interactions involved: see, e.g., 
the SQUID example discussed above. Since (3.7) (with (3.6)) implies strictly linear 
dissipation as well as vice versa, we shall refer to such cases also as cases of strictly 
linear dissipation. 

The simple classical dissipative equation of motion (2.8), with its single amplitude- 
and frequency-independent friction coefficient q, is of course by no means the most 
general classical equation which can describe dissipation. In the most general case 
there is little’ that can be usefully said about the parameters entering the Lagrangian 
(3.5). However, it is worth considering a case which, while not the most general 
possible, is nevertheless considerably more general than (2.1), namely, that in which 
the coefficient q is allowed to depend on amplitude: r/ = q(q). For this case we show 
in Appendix C that the parameters are constrained by a relation which is the obvious 
generalization of (3.6) 

(3.10) 

The special case of a “separable” interaction, namely, one satisfying the condition 

(3.11) 

with f(q) independent of j, is of particular interest. In Section 4 we shall show that if 
(3.11) is satisfied, we can derive an exact expression for the tunnelling rate in terms 
of q(q); if it is not, we can derive only a lower bound (this result exactly parallels 
what happens in the linear case). 

In the rest of this paper we shall concentrate primarily on the case of strictly linear 

’ More accurately. there is plenty we can say but it is too complicated to be worth saying (cf. 
Appendix C). 
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dissipation, i.e., the case in which (3.7) holds. In other words, we shall usually take 
as our Lagrangian the specific form of (3.5) obtained by inserting (3.7) 

L(q, 4: {Xjy ij}) = $Mrj’ - V(q) + 4 x Mj(i.jz -  wTxj) 

(3.12) 

where the “frequency shift” do2 (cf. Section 2) is defined by 

f&fAw’ E -‘ Cj2/2mjwj. (3.13) 

Moreover, we shall usually assume that the dissipation is not only strictly linear but 
also frequency-independent in the region of interest for tunnelling (see Section 4), i.e., 
that Eq. (3.9) holds for all frequencies of interest to us. 

It might at first sight be thought that the model so defined is of rather limited 
interest. We believe, however, that in the context of the real-life macroscopic quantum 
tunnelling problem it will cover the vast majority of cases of interest to us. Let us 
consider separately the question of strict linearity (i.e., Eq. (3.7)) and of frequency- 
independence (Eq. (3.9)). With regard to the first, we note (a) that in many cases (cf. 
the examples quoted above) we know from general a priori considerations that the 
coupling must indeed have the form (3.7), and (b) that even when it does not, we 
often know enough about it to be sure that, under the conditions of a real-life 
tunnelling experiment, Eq. (3.7) is not a bad approximation. To illustrate the latter 
point, let us consider an ideal tunnel oxide Josephson junction. According to the 
standard microscopic model of such a system [48].” the dissipation in this case 
arises from the normal quasiparticles present, and depends on the phase difference Acp 
of the condensate on the two sides of the junction because the parameters of the 
Bogoliubov transformation which defines the quasiparticle eigenstates are periodic 
functions of the condensate phase. Thus, quite independently of the details of the 
formulation of the problem in the language of Eq. (3.5) (which is, indeed, not an 
entirely trivial operation) we expect that the quantities Fj(q) will have a range in q 
(i.e., Aq) which is of order (say) z/2. Since most experiments to look for macroscopic 
quantum tunnelling in Josephson systems have operated” (and are likely to continue 
to operate) in a regime such that the width of the potential barrier U(do) (Eq. (1.3)) 
along the Acp axis is small compared to 1, we see that to approximate the true 
coupling by the linear form (3.7) should involve little error. As to the question of 
frequency-independence, we note that we can very often state on the basis of 

I0 Of course for the T= 0 case studied in this paper this model predicts zero dissipation. The ensuing 
remarks therefore apply, strictly speaking, only to a possible finite-temperature generalization of our 
results. 

” We note that experiments to look for macroscopic quantum coherence in such systems, if they are 
ever to have any chance at all of success, will almost certainly have to operate in this regime; see 12. 
Sect. 5 1. 
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experiments conducted in the classically accessible regime that the relevant coefficient 
(junction conductance, etc.) is approximately independent of frequency; and that in 
any case the modification to our results necessary to allow for frequency-dependence 
is trivial (see Section 4) and should not affect them qualitatively. Thus, while we shall 
give results for more general cases, we make no apology for concentrating from now 
on primarily on the model described by Eqs. (3.7) and (3.9). 

4. A FORMULA FOR THE TUNNELLING RATE 

Our principal goal in this section is to calculate, for a system described by the 
Lagrangian (3.12), the rate of tunnelling out of a metastable minimum of the 
potential V(q). In principle it should be possible to do this by any of a variety of 
methods; for example, some features of the results may be straightforwardly obtained 
by application of the “many-dimensional WKB method” [50] (see end of this 
section). However, the most convenient method for our purposes is a generalization 
of the “instanton” technique which was originally formulated, in the context of a 
discussion of classical thermodynamic metastability, by Langer [ 5 1 ] and has been 
applied to the calculation of the decay of metastable states in field theory by Stone 
1521, Callan and Coleman [53], and many subsequent authors. We will therefore 
start with a brief review of the use of the technique for noninteracting systems; the 
discussion follows closely the paper of Callan and Coleman [53], to which the reader 
is referred for further details (see also [54]). 

We consider a one-dimensional system described by a coordinate q(t) and a 
Lagrangian 

L = +A!@* - V(q), (4.1) 

where we assume that there are no velocity-dependent forces in the problem. The 
potential V(q) is assumed to have a local minimum, taken as zero of potential, at the 
point q = 0. It can be shown (see, e.g., Feynman and Hibbs 155, Sect. 10.21) that the 
density matrix 

P(qi, 4s: B> s x w,*(qi) ‘Vdqf) exp -DE,, 
n 

(4.2) 

(where as usual p-’ is Boltzmann’s constant times the temperature) can be 
represented as a path integral 

(4.3) 
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where T f pfi and the “Euclidean” Lagrangian L,(q, d), which in the present case is 
identical to the Hamiltonian, is given by 

(4.4 ) 

As is explicitly indicated in Eq. (4.3), the path integral runs over all paths taken by 
the coordinate q as a function of the (imaginary) “time” r which leave the point qi at 
time zero and arrive at qf at time T. By taking the limit T-+ co in Eq. (4.3) we obtain 
an expression for the wave functions and energy of the groundstate. Although 
formula (4.3) is quite general, we shall consider for the moment only the special case 
qi = qf= 0. 

In the semiclassical limit (A--t 0) the functional integral is dominated by the paths 
for which L,(q, 4) is an extremum. These are precisely the paths which describe the 
allowed motions of the classical particle in the inverted potential P(q) = -V(q). If the 
local minimum at q = 0 were an absolute minimum, then the only possible “classical” 
path for which q(O) = q(T) = 0 would be the trivial one in which the particle sits at 
the origin for all r. The small fluctuations around this path then give the correct 
expression for p(0, 0: Z), namely, 

~(0, 0: T) = I w,(O)l’ exp -o. T/2, (4.5 > 

where w. is the small oscillation frequency; the exponential incorporates the effect of 
the finite ground-state energy, hw,/2. 

If the local minimum of Y(q) at q = 0 is not an absolute minimum (see Fig. 1). 
then a second type of classical path in the inverted potential v(q) is possible; this is 
the type called a “bounce” (instanton) by Callan and Coleman, in which the particle 
starts to roll off the local maximum of P at 7 = 0, moves across to the point q = q,, 
(which corresponds to the exit point B in Fig. 1), turns around there and returns by 
time T to the origin. We note that such a classical motion is still possible in the limit 
T -+ co because the point q = 0 is a local maximum of p(q); at the beginning and end 
of the motion q(r) approaches zero exponentially. (That is, if we shift the origin of 
time so that q(0) = qo, then for large 171 we have q(r) = const exp -w. 171.) Such a 
“bounce” type of trajectory corresponds not to a minimum but to a saddlepoint of the 
Euclidean action, and it therefore contributes a small imaginary part to the 
groundstate energy (for the argument on this point, see Callan and Coleman 1531). If 
B denotes the action of the bounce in the limit T+ 03, that is, 

where q,,(r) denotes the classical bounce trajectory, then the formula for the 
tunnelling decay rate r derived in this way reads 

Z-= A- 1’2(B/27zfi)“2 exp(-B/fi) x (1 + fV)), (4.7) 
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where d, a quantity with the dimensions of (frequency))‘, is the ratio of two deter- 
minants and does not contain h; in general it is of order wo2. We do not elaborate 
these results further here as they will emerge later as a special case of the results to 
be derived below. 

We shall now generalize this technique to the problem of interest to us. For 
simplicity we shall deal explicitly with the case of strictly linear friction (the 
extension to the more general case is straightforward and is given at the end of this 
section); we therefore start from the Lagrangian (3.12), that is, I2 

L = fhfg* - V(q) + y (fm,i; - fm,w;x;) 

n 

-q~CC,x,-fM~flw2~q2, 
a 

(4.8) 

where the “frequency shift” Am2 appearing in the last term is given by Eq. (3.13). As 
discussed in Section 2, the potential V(q) is assumed to have a local minimum, taken 
as the zero of potential, at the origin and to become zero again at some finite value q,, 
of q, beyond which it is always negative. We define the density matrix of the 
“universe” (system plus environment) by 

(where xai, x,~ are “initial” and “final” values of the coordinate x,) and the reduced 
density matrix of the system by 

K(qi~qfz8)E)‘rI dx,iP(qi, (X*i):qf, {Xnj}:/O. 
a 

(4.10) 

Thus, introducing T EPA as above, we have 

K(qil Sf: T) E J [I dx,i x Vf(qi, (Xai}) v,(qf, (xai)) exp(-E,T/h). (4.11) 
rt n 

It is clear that, as in the one-particle case, the imaginary part of the grounddstate 
energy will give the tunnelling rate out of the metastable state, and may be obtained 
from a study of K(0, 0: T) in the limit T + 03. It must be strongly emphasized that. 
despite what one might at first sight be tempted to infer from the form of (4.10), the 
tunnelling rate so calculated is the total rate of tunnelling out of the metastable 
groundstate, irrespective of whether the tunnelling results in real excitation of the 
environment or not (i.e., whether the process is “elastic” or “inelastic”). 

Because the Lagrangian (4.8) contains no velocity-dependent terms, the full density 

” To avoid possible notational confusion we now label the different degrees of freedom of the 
environment by the Greek subscript u. 
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matrix (4.9) can be written as a path integral in the usual way, and hence K can be 
written 

0 
T  

X exp - L,(q, 4: ix,, -e, I) dr/h , 
0 ) 

(4.12) 

where the “Euclidean” Lagrangian is given by 

Now, as the result of the fact that only linear and quadratic powers of X, and 1, 
occur in the Lagrangian, the functional integrations over the paths (x,(r)} and then 
the integrations over the coordinates (x,~} can be performed in closed form. The 
procedure, while somewhat tedious, is of course entirely straightforward and we 
simply quote the standard result (156. p. 821: put if.= Cq) 

I 1 
.Qr‘):xi 

dXi 
‘.r(o)=xi 

G?x(r) exp - $ 
IJ 

1’ [+I(2 + I w2x2) +xCq(s)] dr\ f Q(T) 

=Z(O)exp !+&j~&joTd* 
q(r) q(f) cash w(] r - r’ ] - T/2){ 

sinh oT/2 
\’ (4.14) 

where Z(0) is the value of the expression for C = 0, which by Eqs. (4.3) and (4.2) is 
just f cosech wT/2. This expression can be formally simplified somewhat if we agree 
to define q(7) outside the range 0 < r < T by the prescription’” q(r + T) = q(r); then 
Eq. (4.14) becomes 

Q(T) = $ cosech(oT/2) exp ]&!_“, dr’ .\: dr exp(-cu 15 - r’]) q(;)q(f )I. 

(4.15) 

Substituting this result into (4.12). we find 

K(qi, 41: T) = K,(T) ,fq’T)=9’9q(r)(exp -So/h) exp A/h, 
9(O) =9i 

(4.16) 

‘I We note, although it is not important for the present problem. that this introduces some 

complications when we wish to apply Eq. (4.23) to calculate K(9,. 9,: /3) for 9, # 9r: cf. Appendix B. 
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where 

K,(T) = [I (4 cosech w, T/2), 
a 

/i [q(t)] = Jr #fdo2q2(s) dz + 
0 

X w--w, 17 - ~‘1) q(r) 4(5’) 1. 

(4.17) 

(4.18) 

(4.19) 

The form of A [q(t)] can be simplified if we use the identity 

q(r) q(f) = f{q2(7) + 4*(f) - (q(s) - 9w2\. (4.20) 

Substituting this into (4.19), we integrate the term in q*(r) over 7 and vice versa. I4 
Then, using Eq. (3.13), we see that these two terms exactly cancel the first term in A. 
Thus, we obtain 

/1 z-4 fm &‘jT dr u(r - r’){q(t) - q(f))2, (4.21) 
--cc 0 

where the quantity a(r - r’) is defined by 

a(7 - 7’) E Y‘ 
c: 

C 4m,w, 

exp--w,jr--r’j 

1 .a: 

J 271 0 
J(w) exp(-w 17 - 7’ I) do > 0 (4.22) 

with the spectral density J(w) defined by Eq. (3.8). Thus, finally, the reduced density 
matrix of the system can be written in the fairly compact form 

K(q,, qf: T) = Ko(T)/q’r)=RJ~q(r) exp(-S,,,[q(r)]/fi), 
9(0)=9i 

(4.23) 

” Since Eq. (4.19) is not formally symmetric with respect to interchange of r and 5’. it is easiest to 
perform this maneouvre by going over to the form of (4.19) obtained from the explicitly symmetric 
expression (4.14) rather than (4.15). 
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where the effective action S&q(r)] is given by the expression 

S,,&(r)] = joT ($Wj* + V(q)} dr + 5 ja dr’ jo’ dr a(z - r’){q(s) - q(f)}* (4.24) 
--co 

with the positive quantity a(r - r’) given by (4.22). 
The result (4.23), with the definitions (4.24) and (4.22), is applicable to a wide 

range of problems connected with tunnelling (or more generally classically forbidden 
behaviour) in a dissipative system. We emphasize again that in evaluating the double 
integral in (4.24) it is necessary to bear in mind that q(t) is to be continued outside 
the range 0 < r < T by the prescription q(r + r) = q(r); thus, in general considerable 
care must be taken in going to the limit T -+ co. This point is essential when we 
evaluate K(q,, q,: T) for qi and/or ‘Jr nonzero (cf. Appendix B, where this is shown 
explicitly for the case of the damped simple harmonic oscillator). Fortunately, in the 
case of a bounce, where q(r) tends to zero sufftciently fast at both ends of the interval 
0 < r < T (cf. below), the additional terms arising from the region outside this 
interval tend to zero as T tends to infinity: we will therefore be able to take the limit 
T+ co without any problem. We note at this point that a result somewhat similar in 
appearance to (4.24) has been given in the work of Sethna 1291. 

From Eqs. (4.22)-(4.24) we can immediately draw one important qualitative 
conclusion: since a(r - r’) is positive definite, the contribution of the last term in 
(4.24) is always positive and therefore, to the extent that the tunnelling probability is 
dominated by the saddlepoint value of (4.24) (‘. 1 e., in the WKB limit-see below) the 
existence of dissipation always tends to suppress tunnelling.‘” Note that this result is 
completely independent of the form of the spectral density J(o). This answers the 
first question posed in Section 2. 

To proceed further we need to invoke the assumption that the characteristic 
frequency scale w, (see Section 3) over which the spectral density J(w) is equal to the 
low-frequency form q;lw to a good approximation is much larger than the charac- 
teristic frequencies of the problem. In the present context the relevant characteristic 
frequency is the inverse of the “bounce time” (characteristic length of the bounce); in 
the next section we shall define this quantity more precisely and show that for the 
cubic potential explicitly considered there it is of order w; ’ and yw;* for the under- 
damped and overdamped regimes, respectively. It is clear that similar order-of- 
magnitude estimates will be valid for any potential V(q) whose shape is not too 
pathological. Thus, for a macroscopic system (and for some microscopic systems 
also) the condition is likely to be very well fulfilled. As an example, J(u) might have 
the Drude form 

” It is at first sight tempting, but incorrect, to conclude more generally that K(q,, qr: 7’) is always 
smaller for the damped system than for the undamped one. This is connected with both the choice of 
zero of energy and the normalization of the functional integral, which fortunately we do not need to go 
into here. 
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and the condition is then obviously fulfilied provided that WC’ is much greater than 
the Drude relaxation time ro. 

It is now evident that the main contribution to the last term in Eq. (4.24) will come 
from values of (r - 5’1 which are of the order of the bounce time: the region of small 
1 t - 5’1 gives no specially important contribution, since a(r - r’) tends to a finite 
value I6 for 17 - r’/ + 0. It then follows that for the purpose of evaluating (4.24) it is 
legitimate to replace a(7 - 7’) by its asymptotic form for “large” 17 - 7’ 1; that is, we 

Put 

rl 1 =- 
2?2 (7 - 7’)Z’ 

(4.26) 

The error incurred by substituting (4.26) into (4.24) will be at most of the order of 

~01% 1 where o, is the characteristic scale of structure of J(o). It is easy to convince 
oneself (cf. Section 5) that in the context of the tunnelling problem this substitution 
does not lead to any divergences. In the more general case, and in particular if we 
wish to calculate K(q,, qf: r) for qi # qf, we may find that it leads to a logarithmic 
divergence in certain integrals (cf. Appendix B); in any such case we must of course 
return to the true form of a(r - 7’) (or J(w)), which in general will be equivalent to 
cutting off the integral at an upper limit of order w,. Subject to this proviso, it is easy 
to see that the substitution (4.26) is quite generally valid (not just in the context of 
the tunnelling problem) provided only that T is not too small compared to o; ‘; the 
relevant characteristic “times” in the functional integral are then automatically of 
order o;’ or greater. We note that after the substitution (4.26) the whole functional 
integral, and hence a fortiori the tunnelling probability, is a function (apart from the 
mass M and potential V(q)) only of the friction coefficient v; this answers the second 
question posed in Section 2. (It should be stressed, however, that this feature is 
peculiar to the strictly linear case: cf. below). 

With the above provisos, therefore, the effective action which enters the functional 
integral (4.23) is given by the simple expression 

From here on the argument runs closely parallel to that developed by Callan and 
Coleman [S3] for the undamped case. First, we can verify explicitly that substitution 
of (4.27) in (4.23) gives the same result for the density matrix in the harmonic region 

I6 Actually, for the simple Drude model (4.25) the quantity a(r - r’) diverges as In 1s ~ T’/ for small 
values of its argument. This divergence clearly does not invalidate the argument. since it is integrated 
over. 
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near the metastable minimum at q = 0 as is given by more elementary arguments; 
this is done in Appendix B, where it is shown that for qi # qf it is essential to take 
account of the periodicity condition q(r $ 7’) = q(t). Secondly, we can establish the 
existence of a “bounce” solution as in the undamped case; this follows simply from 
the fact that for sufftciently small q(r) all the terms in the effective action q(r) are 
positive and increasing functions of q, while for large q the quantity SeFr can be made 
negative and arbitrarily large by staying long enough in the region q > qo, where the 
potential is negative. Thus, there must be at least one saddlepoint separating the two 
types of solutions; this is the “bounce.” (A formal proof of the existence of a bounce 
is given for the quadratic-plus-cubic potential in the next section.) As in the 
undamped case, the bounce solution must satisfy an “equation of motion” which now 
contains a term nonlocal in time 

(4.28) 

where the integral is to be interpreted as its principal value. We see that the function 
q(r) is symmetric around the value of 7 at which it reaches its maximum amplitude. ” 
Let us now specialize to the case qi = qf= 0, let T become very large and redefine the 
origin of time to lie at T/2 (so that those integrals in (4.27) which are not infinite in 
range run from -T/2 to T/2). Consider a single bounce which has its centre (point of 
maximum amplitude) at 7 = 0. We expect intuitively that “most of’ the bounce will 
be contained in a region of time around r = 0 which is of order w,, ‘, 1r-I or some 
combination of them (y z q/2/M): this expectation is confirmed in the next section. 
For large 171 the bounce amplitude does not fall off exponentially as in the undamped 
case; in fact it can be seen from (4.28) that in this limit we have 

q(t) z cq,/o;s*, (4.29) 

where the dimensionless coefficient C is of the order of y times the “length” of the 
bounce. Fortunately, this difference has no great effect on the problem provided we 
are prepared to let T become arbitrarily large: in particular, the contribution to the 
integral over dr in (4.27) from the region 1r1 > T/2 (where, we recall q(t) has to be 
continued periodically) is negligible in this limit. so that we can let q(s) equal zero for 
1 r 1 > T/2 without appreciable error. 

Now consider the possibility of a series of bounces between -T/2 and T/2 with 
widely separated centres. There is now a further difference with the undamped case: 
not only does q(r) approach zero between the bounces only as a power law, not 
exponentially, but there is an effective “attractive potential” between two bounces 
which is proportional to the inverse square of the distances between their centres; this 
arises from the last term in (4.27). Again, fortunately nothing is lost by ignoring this 

” This is not immediately obvious from (4.28) itself: it follows, however, when we minimize S as a 
functional of the Fourier transform q(w) (cf. next section). 
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effect and treating the bounces as forming a noninteracting “dilute gas.” To see this, 
let us consider for convenience the case where y and o0 are of the same order of 
magnitude, so that the “length” of the bounce is of order w; ’ (the generalization is 
straightforward). Then the contribution to the action (4.27) of the interaction’* of 
two bounces whose centres are separated by r, where w; i << r @ T, is of order 
-B/o:?, where B is the action of an isolated bounce. On the other hand the mean 
“density” p of bounces on the r axis (defined by the statement that the contribution of 
n bounces to the functional integral (4.27) is proportional to @T)“/n!) is seen from 
the formula below to be of order ~o,,(B/27rA)“~ exp -B/h; it is, in fact, nothing but the 
tunnelling rate r, to within factors of order unity. Thus the bounces do indeed effec- 
tively form a dilute gas, with mean spacing of order rP ‘. Thus the correction to the 
functional integral due to the inter-bounce interaction is at most of order T/w, 
relative to the “free” contribution: since this factor is at most of the order of the 
exponentially small quantity e -“‘, it must for consistency be neglected in the WKB 
limit. l9 

Thus, the situation is for all practical purposes exactly analogous to that which 
holds in the undamped case, the sole difference being that the action of a single 
bounce contains the additional nonlocal term in r (Eq. (4.27)). From here on we can 
simply take over the argument of Callan and Coleman 1531; all considerations 
relating to the summation over multi-bounce configurations, analytic continuation of 
the expressions into the complex plane, etc., are identical to those for the undamped 
case. (The details are given in [ 7)). The final result for the decay rate r is the 
following: 

r = A exp(-B/h), (4.30) 

where the bounce exponent B and prefactor A are given by the following expressions: 

where the integral is evaluated along the “classical” bounce path, that is, for the 
function q(t) which satisfies the conditions q(-co) = q(m) = 0 and corresponds to 
the saddlepoint value of the right-hand side of (4.30) (regarded as a functional of 
q(r)). (In the limit v + 0, this trajectory is just that corresponding to classical motion 
in the inverted potential P(q) s --V(q)). The prefactor A is given, to lowest order in 
z1, by the expression 

I/? ’ 

(4.32) 

I  

A = (B/27cf~)“~ 

I* That is, the term arising from the last term in (4.27). 
Iv It should be carefully noted that these arguments are nol 

quantum coherence (see Section 6). 
valid in the case of a discussion of 



DISSIPATION AND QUANTUM TUNNELLING 407 

where the differential operators &O, 6, are given, respectively, by 

(4.33) 

c&q(r) = - -$ + M-’ V”[q,,(r)j ) q(s) + & ,‘, “::‘;$‘) ds’. (4.34) 

Here qc,(z) is the classical bound path as described above, the integral is to be taken 
as its principal part, and the prime in Eq. (4.32) indicates that the zero eigenvalue. 
which corresponds to the uniform translation of the bounce along the 7 axis, is to be 
omitted. Equations (4.30)-(4.35) constitute, in principle, the solution to our problem. 

We will now generalize these results to an arbitrary Lagrangian of the form (3.5). 
The calculation proceeds exactly as above, the only difference being that the quantity 
Cjq is everywhere replaced by F’](q). The equation analogous to (4.24) is 

S,,,(q(r)] = 1; @hj* + V(q)} ds + t 1” dr’ 1; dr Z[q(7)]. (4.35) 
-‘x 

where 

Z(q(7)) s K’ e 

-wjl’-“l 

7 4mjoj (Fj(q(7)) - Fj(qC7’)) I ‘. (4.36) 

This result, while quite general, is not of much interest unless we can relate the 
parameters of the model to some simple dissipative coefficient. Let us therefore 
specialize to the case, discussed in Section 3, where the dissipation is adequately 
described by a coefficient q(q). Most generally, the relation between the parameters 
and q(q) is given by Eq. (3.10). In the special case of a “separable” interaction 
[Eq. (3.11)) we can use (3.10) to express Z[q(t)] uniquely in terms of v(q) 

Z[q(r)l= l 
-4Cf’) 2 

h(7 - 7’)’ 
t+‘*(q) ds q(T) I (4.37) 

So in this case the result for the effective action is a simple generalization of 
Eq. (4.27) obtained by the replacement 

I 
2 

rlkl(~) - qw* --) v”2W & . (4.38) 
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In the general case there is rzo unique relation between the quantity Z[q(z)] and the 
low-frequency friction coefficient q(q). However, by using the obvious inequality 

T 1 - 7 T6Cw mjoj wj)iFj(q(r)) -Fj(q(r'))12 

< !j-qy;)” [$$-q (~)‘6(-4]“‘&~ * 

2 9(r’) 2 

=- 

71 u 1 
'11'2(4) 4 q(r) (4.39) 

we see that Eq. (4.37) constitutes an upper limit on Z[q(r)J. Thus we can make the 
general statement that an upper limit on the effective WKB exponent B, and hence a 
lower limit on the tunnelling rate, is given by the inequality 

with the integral being taken as always along the “bounce” (saddlepoint) path which 
makes it an extremum. The inequality (4.40) becomes an equality only if the 
interaction is separable (i.e., if (3.11) holds). 

The case of linear dissipation is clearly a special case of the above. We see that 
expression (4.3 1) constitutes an exact expression for the bounce exponent if and only 
if the dissipation is strictly linear; in the more general (quasilinear) case it constitutes 
only an upper limit. Hence, the calculations of the next section, which are based on 
Eq. (4.31), will give in this case only a lower limit on the tunnelling rate. (An upper 
limit is clearly given by the WKB expression calculated without account of damping, 
since Z[q(t)] is obviously positive). Naturally, if we have a specific microscopic 
model for the nonseparable interaction, we can obtain an exact expression for B as a 
function of the parameters of the model by direct substitution into (4.36). The impor- 
tance of the general result (4.40), however, is that it guarantees us that, provided the 
classical dissipative behaviour can indeed be described by a single coefficient v(q), 
then no mechanism of this dissipation, however complicated, can lower the tunnelling 
rate below a value which is calculable directly in terms of this coefficient. The 
implications of this are noted in Section 7. 

Everything we have said above generalizes very trivially to the case where rj is 
frequency-dependent (provided it is amplitude-independent). For example, in the 
strictly linear case all we have to do is to replace the simple expression (4.26) for 
a(r - s’) by the more general form obtained from (4.22) when J(w) is given by 
oq(w). The more general case can be discussed similarly: it is not worth writing out 
the explicit expressions here. 
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Finally, since the techniques used in the derivation of Eqs. (4.30~(4.34) are not 
yet universally familiar, it is worth remarking that, as already observed by Sethna 
[58], many of the features of these results can actually be seen rather directly by 
using the conceptually simpler “many-dimensional WKB” approach. In such an 
approach the complete “universe” is visualized as tunnelling along the easiest path in 
the many-dimensional space whose axes are q and the xar and the exponent B/h in 
the tunnelling formula is given by the expression 

B/h = ii - l ,f [ 2MV(q, x,)] l” ds, 

where the integral is taken between the origin and the nearest point in the many- 
dimensional space for which V again becomes zero, and ds is an appropriate metric 
in the space (ds2 = dq2 + C,(m,/M) dx:). 0 ne interesting feature is that once we 
have incorporated the counter-term (3.4) in the potential, the actual minimum value 
of I’ attained on any hyperplane of constant q is the same as for the isolated system 
(but of course occurs for x, # 0); the reduction of tunnelling by dissipation can 
therefore be viewed as arising entirely from the fact that the path length in the many- 
dimensional space is increased. It is of course possible to derive the formula (4.3 1) by 
this method: what we have to do is to note that the value of B/h given in (4.41) is 
simply the minimum value of the action taken over any path which goes from the 
origin to the barrier edge and back, take the functional derivative of the action with 
respect to the x,‘s and use the resulting equation to eliminate them. (See Sethna 
[SS].) The resulting expression for the action is then equivalent to (4.31). However, it 
seems to us that there is a rather subtle point in this manceuvre: the expression (4.31) 
(or Sethna’s Eq. (4.9)) only seems to result if we impose boundary conditions 
(x, = 0) on the x, at the beginning and end of the bounce, not at the turning point. 
(If we were to do the latter, we would apparently get a more complicated expression). 
Thus, we are implicitly allowing the x, to take any values when q = qo, not 
necessarily the values which actually bring the system out of the barrier. That this 
manDeuvre gives the right answer appears to be connected with the special properties 
of harmonic oscillators, and we believe it may be a little dangerous to try to 
generalize it to other problems (such as the quantum coherence problem, see 
Section 6) without thorough examination. For this and other reasons we feel that the 
method developed in this section, though based on perhaps less familiar techniques, 
may be simpler to apply in general. 

5. ANALYSIS OF THE GENERAL FORMULA 

In this section we shall carry out, as far as possible, a quantitative analysis of the 
formula (4.30) which gives the tunnelling rate in the presence of dissipation. Since in 
the WKB limit (which is the only limit in which the formula is valid anyway) the 
influence of dissipation is overwhelmingly through the bounce exponent, we shall 
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devote most of our effort to the analysis of the quantity B (Eq. (4.31)) and discuss 
the prefactor A more briefly and less generally. Obviously it would be possible to 
obtain completely quantitative values of B as a function of damping by solving the 
Euler-Lagrange equation resulting from the variation of (4.31) numerically, but we 
shall see that we can get a great deal of insight into its general behaviour by purely 
analytic means. For definiteness we shall carry out the analysis explicitly for a 
quadratic-plus-cubic potential of the form (2.5) which is likely to be the case of 
prime interest for macroscopic systems; however, the generalization to the case where 
the anharmonic term is of the form q”, n any integer greater than 2, is completely 
straightforward, and we can then if required use the results obtained to set bounds on 
the tunnelling rate for a general potential (cf. below). 

It is convenient to introduce the following dimensionless quantities: 

U300T, (5.la) 

z(u) = 9(U)/%* (5.lb) 

a = ‘1/2Mo, = y/coo, (5. lc) 

~P(U)l = &ffMwfM%q~~ (5. Id) 

b(a) = B/jMw,q;. (5.le) 

Then the dimensionless bounce b(o) is the saddlepoint value of the quantity 

o{z(u)} = I= du 1 ($)’ + (z’ -z’) ( + ;.i’“, du IL du’ (‘(“,‘I ‘,!““) ’ 
--a % 

(5.2) 

subject to the boundary conditions z(0) = z(co) = 0. We notice that any excursion to 
negative values of z can only increase the value of o. so it is convenient to impose the 
condition z(u) > 0 explicitly. 

Let us define z0 as the maximum value attained by the function z(u); in the limit 
a = 0 it follows from the definition (5.lb) that z0 is 1, and it is obvious (cf. below) 
that for GL > 0 we have z0 > 1. Then we write 

z(u) = z(J(wu> f z,f(t), t-ml, (5.3) 

where the quantity w is for the moment arbitrary. We also introduce the positive 
dimensionless quantities (A” and B” bear no relation to the prefactor A and bounce 
exponent B): 

x[f) = f= (df/dt)2 dt, 
-m 

(5.4a) 

&f] = jm f2(t) dt, 
-cc 

(5.4b) 
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(5.4c) 

(5.4d) 

From its definition the function f(t) must satisfy the inequalities 0 <f(t) < 1; 
moreover, it will become obvious from what follows (and the trivial inequality 
c< g) that no interest attaches to functions f(t) for which any of the quantities 
(5.la)-(5.ld) fail to exist, so we confine ourselves to functions for which i,..., 0’ are 
well defined. We note that the combinations 

K[f] SE l7*p(E)“*, (5Sa) 

l[f] z B(‘ay* (5.5b) 

are invariant under changes of length and time scale separately, as of course are any 
combination of them. Substituting (5.3) and (5.4) into (5.2), we obtain 

a(zo,o,~,~,~,~)=z~(u~+w-‘~+aD”)-w~’~z~. (5.6) 

Evidently, for any given choice of CIJ andf(t), u will have a maximum at the value 

z. = $fJ(ud + 0 - ‘B + c&/c (5.7) 

and this value is 

a,[u,f] = &d(d + w-‘I7 + a6)3/~2. (5.8) 

Now, we know that for a = 0 the functional (5.8) is bounded below by a value 
corresponding to the undamped bounce. Since all the quantities in (5.8) are positive, 
it is therefore immediately clear that for a # 0 this functional is bounded below and 
thus attains a minimum value. The point at which this value is attained corresponds 
to a saddlepoint of the functional a{z(w)} and hence gives the bounce trajectory.*’ It 
follows immediately from these considerations that the bounce b(a) is a 
monotonically increasing function of a, as we should expect. 

The ensuing analysis is simplified if we work in terms of the scale-invariant quan- 
tities ~[f] and A[f] d f d e me in Eq. (5.5), and introduce also the notation 

tan B E cfA [f ]/fi. (5.9) 

We minimise the functional (5.8) with respect to w and eliminate the resulting value 

*’ This argument of course cannot exclude the possibility of more than one saddlepoint (in which 
case the one corresponding to minimum u would dominate). 

595114912 12 
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of w. After some straightforward algebra we obtain for the functional aoo[f] so 
defined 

%oLfl = ~ 32 o-1 F(4 
25 fi 

(1 + $ sin ~9)~ 
F(@ = (l + sin f?)’ cos 13’ 

The dimensionless bounce b(a) is then the absolute minimum of o,,,[f] as a 
functional ofJ What we have done is effectively to choose the “time scale” of the 
bounce w  - ’ to have its best value; once this is done the variation of uoO with the 
“shape” of the bounce, that is with the form of the functionf, is fairly weak. It should 
be noticed, however, that the notion of a time-scale is not well defined until we 
impose some normalization on the function f; a natural choice is to set B’ z 1, which 
is equivalent to the condition 

I 

.m 
w  -’ 3 z’(u) du/z:,. (5.12) 

-01 

For the moment, however, it is convenient to leave the normalization arbitrary; 
clearly nothing depends on this, since according to Eqs. (5.9~(5.11) u,,, is a function 
only of the invariants ~[f] and L[f], which do not depend on the normalization. 

In the limit of zero damping we know of course the exact form of the functionf(t) 
(namely, sech’ t) and can compute all the quantities (5.4) (see Appendix D). The 
relevant value of K is 5 G/6, and the resulting value of the dimensionless bounce 
exponent b is 

b(0) = 6, = j+. (5.13) 

Since according to (5.10)-(5.11) in this limit the function/(t) must minimize ~\.f], it 
follows that for general f we have 

To proceed further we need the following inequalities, which are proved in 
Appendix D: 

F(0) > (125/32) tan 8, (5.15) 

1 +itanB<F(@< 1 +%-tan& (5.16) 

Kb-1 Lb-1 2 87r/9. (5.17) 

To obtain a lower limit on b(a) which is valid for ail a and reduces to b, for a + 0 we 
combine the first of the inequalities (5.16) with (5.14) and (5.17) to obtain 

128~ 
0) > b. + 225 a. (5.18) 
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Another general limit, which is stronger for large a (and tends to the exact result in 
the limit a + co) is 

To obtain an upper limit on b(a), we need only choose some plausible trial form of 
f(t) and substitute the values of IC and 2 obtained from it into Eqs. (5.9~(5.1 I). Some 
relevant forms off(t) are tabulated in Appendix D together with their values of K and 
A. In the limits of weak and strong damping we know the exact limiting forms of the 
bounce trajectory (the first and second functions in the table in Appendix D, respec- 
tively). In each case we obtain results exact to the next order by evaluating the 
“perturbation” (that is, the terms in a,,[f] of order a in the weak-damping and of 
order a -’ in the strong-damping limit) along the limiting trajectories. In this way we 
obtain 

4W3) 
b(a) = 6, + 3 

II 
a + O(a’) 

and 

b(a)=+,++-a-’ + O(a-“) (a -+ co). 

These two forms off(t), or others (cf. Appendix D) can be inserted into Eqs. (5.9)- 
(5.11) to give general upper limits. We notice in particular the limit obtained by using 
the strong-damping form and the second inequality of (5.16) 

224~1 
b(a)< 256’ +=a. 

225 u/lTi 
(5.22) 

Finally, returning to dimensional variables, we can summarize the above results by 
saying that the correction LIB to the WKB exponent B arising from damping is of the 
general form 

AB = @(a) vqi, (5.23) 

where the dimensionless function @(a) (the quantity called A or q(a) in our earlier 
paper [28]) is always of order 1, has the exact value 12[(3)/n3 for weak damping and 
the exact value 2rc/9 for strong damping (in accordance with the conjecture made in 
our earlier work [28]), and for intermediate values of a can be bracketed in the way 
described above. In Fig. 2 we show the asymptotic values of and the bounds on b(a) 
obtained above as well as some typical values obtained from trial functions. 

Before leaving the subject of the semiclassical bounce we should discuss the 



414 CALDEIRA AND LEGGETT 

-r- /’ /’ 
,’ ,’ 8’ 8’ ,’ ,’ 

6- ,’ ,’ 
/’ /’ &Y 

,’ ,’ / 

/’ /’ 
A A / / 

5- /’ 
,/ ,/ , , 

/’ 
, , 

#’ 
/’ 

A,./’ 
I 

upper llnlli (5 22) upper llnlli (5 22) 
---.- lower llmlt (5 19) lower llmlt (5 19) 

lower lower llmlt llmlt (5. 16) (5. 16) 
- exact asymptotes (5.20) and (5.21) - exact asymptotes (5.20) and (5.21) 

-Ill -III 
d d Mrlatlcxl(ll upper bwnds “Sing tnal function e Mrlatlcml upper bwnds “Sing tnal function e 
0 0 ,I I, I\ II II ,I I, I\ II II ” (l+PI ” (I+PI 
+ + ,, I, I, I4 II ,I ,, I, I, I4 II ,I sechz t sechz t 

I I 2 2 

Cl--- 

FIG. 2. Limits on the dimensionless bounce b(a). 

question of its length and “time” scales. Quite generally we find that the 
maximization with respect to z0 and the minimization with respect to w carried out 
above leads to the results 

B’ 
( 1 

112 

OJ= -3 (set 8 - tan 8). 

(5.24) 

(5.25) 

The length scale z0 is unambiguously defined; it is the maximum excursion in the 
damped bounce relative to that in the undamped one. However, as remarked above, 
the definition of w requires some normalization of f(t); let us choose g = 1. Then, 
using the inequalities 

(1+2tan8))‘<sec8-tan8<(1 ftan8))’ (5.26) 

we see that w is of order A”-“2[F(0)]-1. From (5.10) and (5.15) we then have for the 
“time-scale” To E 27r/w and length scale z,, the order-of-magnitude estimates 

zo- c-1, To - ~*!~(a). (5.27) 

For weak or moderate damping we clearly have c’- 1, so the length and time scales 
are of the same order as for the undamped bounce. In the limit of strong damping we 
can use the exact solution (f(t) = (1 + t*)-‘, see Appendix D); then we find that z0 is 
4 and To is @/lOA”) = a/5n. Going back to dimensional units, we find that the 
bounce path q(r) in this limit has the form 

q(7) = 
(4/3 ) 40 

1 + (w;/2y)* 7* . 
(5.28) 
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Thus, even in the limit of very strong damping the spatial excursion in the bounce 
trajectory is still finite; however, the time scale diverges as the “slow” relaxation time 
v/w:. We have not proved explicitly that the behaviour of z0 and T, as a function of 
a is monotonic, but this seems extremely probable. 

We now turn more briefly to the analysis of the prefactor A in the expression 
(4.30) for the tunnelling rate fi A is given by Eq. (4.32). In the ensuing analysis it is 
convenient to take the total time region T allowed for the bounce to be very large but 
finite, thereby allowing (where necessary) an expansion of q(r) as a Fourier sum 
rather than an integral, and to take the limit T + co at the end of the calculation. It is 
also convenient to take, as above, the centre of the bounce to lie at r = 0. We note 
that while we are required to continue q(r) periodically outside the region -T/2 < 
r < T/2 by the prescription q(r + T) = q(r) (or, alternatively, to use a more 
complicated form of the last term in (4.33) and (4.34)) the physical problem is also 
constrained by the boundary conditions q(T/2) = q(-T/2) = 0. We shall, however, 
assume that the value of A is negligibly affected if we simply omit these boundary 
conditions. The physical justification for this is that in calculating the factor A we are 
comparing fluctuations about the bounce path with those about the trivial path 
q(r) = 0; since the two paths differ only in a time region of order T, (see above), 
where To/T+ 0, any extra freedom arising from the behaviour near the boundaries 
(r = *T/2) should cancel out in the final result.” In the following we will also, where 
convenient, take complex Fourier transforms even though q(r) is physically 
constrained to be real; working with sine and cosine transforms would of course give 
the same results but is more cumbrous. 

Since we are most interested in the strong-damping limit, it is convenient to 
introduce the dimensionless time variable t = w,r/2a. We denote the frequency 
conjugate to t by w. Then the operation of summing over the states allowed by the 
periodic boundary conditions goes over into an integral according to the prescription 

(0 = coo T/2a). (5.29) 

Let us denote the dimensionless classical bounce trajectory, measured in units of qo, 
by s’,,(t). Then we can write Eq. (4.30) in the form 

A = ~,(B,/27121)“~ K”‘, (5.30) 

where the dimensionless factor K is given by 

det fi,, 
K E det’(H, + I’) ’ 

(5.3 1) 

Here the operators g,, and f (so denoted to help one’s intuition by analogy with a 

*I It should be observed that this argument would not necessarily go through if we were comparing 
the fluctuations around the damped path with those around the undamped one. 
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scattering problem) are defined, in the representation whose basis is normalized plane 
waves with frequency w, by the relations 

a#,(w> = (1 + /WI + 02/4a2) v,(w), (5.32) 

?v,(w> = y V(w -w’: a) ly,(w’) dw’, 
J-m 

with 

The quantity V(w) depends on a because the bounce trajectory q,,(t) is a function of 
a (both in scale and in shape). The prime in Eq. (5.31) denotes, as always, that the 
zero eigenvalue is to be omitted. 

Consider the spectrum of the operator Z?, + I? We know that it has one** negative 
eigenvalue A,, with associated eigenfunction vO(w), which corresponds to the steepest 
descent from the saddlepoint in function space, and one zero eigenvalue, with eigen- 
function w, = const WY(W), corresponding to uniform translation of the bounce along 
the time axis. It may or may not have other “bound state” (discrete) eigenvalues 
lying between 0 and 1, but in any case will certainly have a quasi-continuous 
spectrum (i.e., with spacing vanishing as a-’ in the limit R + co) starting at A = 1. 
In the states of the quasi-continuous spectrum the effect of p is of order R -’ relative 
to that of A,. 

Using the relation ln(det A) = Tr(ln A), we write the logarithm of the factor K 
(Eq. (5.31)) in the form 

~~~=(~o/~~~,Iy/,)+(~,I~~~,I~,)-~~I~,I 
t Tr”(ln A,) - Tr”-ln(fi, + pi). 

(5.35) 

Here the operator In fi,, is defined by its matrix elements (ln( 1 + /o 1 + w2/4a2)) in 
the o-representation, in which it is diagonal, and the double prime on the trace 
indicates that it is taken over the (infinite-dimensional) subspace orthogonal to v0 
and vi. If now we work in the representation defined by the eigenfunctions of 
ki, + f, then for all states n of the continuous spectrum we can make the replacement 

(w, Iln % w,> - (v/, Mfi, t VII wd = -(w, Ifi37 w,>. (5.36) 

(The legitimacy of this manoeuvre may be verified by noting that the second term is 
just In A,, and writing A, explicitly as a bilinear form in v,(o).) If, therefore, we 
define the quantity 

co = y {(~~~ntii,~~)--l~~jt (jIfi,‘flj), (5.37) 

(O<Aj< 1) 

*’ That there is no more than one follows from the fact that the zerb eigenvalue corresponds to an 
eigenfunction with a single node (cf. [SO]). 
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where the sum over j runs only over the bound states with Lj > 0 (if any), and take 
into account that fi;‘fiy/, = -~j/r, we can rewrite (5.35) in the form 

lnK=D,(a)-TrZ?;‘p, (5.38) 

where the quantity D,,(a), which depends only on the bound-state spectrum, is given 
by 

D,(a)-(lnA,),+(lnA,),-In~&~+C,+(ci;’P),-1. (5.39) 

The unrestricted trace which appears in (5.38) can be evaluated directly in the W- 
representation 

Tr wp= w-4 Jrn -a, 
3 al 

(5.40) 
=-- 7c j- b(f) dt x (a> 1) 

cc 

with a similar easily calculable expression for a < 1. (cf. Eqs. (29) of Appendix B). 
Substituting (5.40) in (5.38) and the latter in (5.30) we finally obtain the prefactor A 
in the tunnelling rate. 

In the limit a + co this programme can be carried out explicitly. Using Eq. (5.28), 
we see that the expression (5.40) reduces simply to 8 In 2a. The quantity D, does not 
depend on a in this limit and is estimated in Appendix D to be about -1 . 5. Thus the 
final expression for A in this limit is 

A = 4(exp(D,/2)) a4cJ,(13/2nh)“2. (5.41) 

Bearing in mind that B is related to its “undamped” value B, by a factor (57c/6)a, (cf. 
Eqs. (5.20~(5.21)) and using Eqs. (2.3) and (2.6)), we can therefore finally relate A 
to the “undamped” prefactor A,, by 

A/A0 = ca”‘, c E (27reD0/9)“*. (5.42) 

Thus in the limit of strong damping (7 + co) the prefactor is proportional to 
yg’*o;“* For intermediate damping we can obtain approximate values of the 
prefactor ‘by substituting approximate forms of i,,(l) in (5.40). 

In conclusion, we note that the techniques of this section, although specifically 
applied to a problem where the potential is of the form (2.5), can obviously be 
straightforwardly adapted to any potential of the more general form 

V(q) = fllrio;q* - Aq”. (5.43) 

(However, the argument which leads to the inequality (5.17~see Appendix D-does 
not have a straightforward generalization to this case, and it would be necessary to 
find other ways of limiting the quantity KL if we wish to produce a general lower limit 
on b(a)). Moreover, since it is easy to show that if the condition V,(q) > V,(q) holds 
for all q, then the tunnelling rate in V, is less than that in V, (cf. Eq. (4.27)), we can 
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obtain bounds on the rate for any potential which is everywhere bounded by two 
potentials of the type (5.43). It is, however, essential to appreciate that it is not 
sufficient for the bounds to hold everywhere “under the barrier,” that is, to the left of 
the point B in Fig. 1; in the damped case the system is still in some sense in the 
turmelling regime beyond the point B. Once must also be careful not to assume that 
sharp cutoffs can be put on otherwise smooth potentials without drastic effects: see 
the discussion of the “truncated harmonic oscillator” in the next section. * 

6. DISCUSSION 

We now turn to the physical interpretation of the results presented in this paper. A 
simple way of summarizing them qualitatively is to say that in a damped system the 
tunnelling probability can be written in the form 

P cc exp - const( VO/ho,,), (6.1) 

where ~,rr is an effective frequency of the system which varies from the undamped 
frequency o,, for weak damping to a quantity of the order of the “slow” relaxation 
frequency wi/y for strong damping (cf. 159,601). Thus, the effect of damping is to 
increase the WKB exponent by a factor of order (1 + y/wO). There are a number of 
ways of interpreting this result intuitively. 

First, we note that for a simple damped harmonic oscillator the groundstate 
probability density can always be written in the form (see Appendix B) 

p(q) = const exp - q2/2(q2), (6.2) 

where the mean-square displacement (q2) is given by Eq. (B.28), that is, 

(q2) = 2;u - fW~O>~ 
0 

where the expressionf(y/w,), given by Eq. (B.29), tends to 1 for small y and for large 
y is proportional to (we/y) ln(y/w,). N ow, we might suppose that to estimate the 
order of magnitude of the effect of damping on tunnelling it is legitimate to replace 
the true barrier by a “model” potential which has its small-q (harmonic) form up to 
some (y-independent) cutoff qh of the order of the true barrier width q. and then 
drops away discontinuously to a negative value. It is now tempting to argue that the 
tunnelling probability for the model potential is simply proportional to the value of 
p(q;) calculated for the simple oscillator, so that the WKB exponent is qb2/2(q2) with 
(q2) given by Eq. (7.3); and that therefore the exponent for the real problem should 

*Note added in proof The method given in this section to calculate the prefactor A(a) is not quite 
correct, in that (5.36) omits a term (ln(w, lfi,l w,) - (w, 1 In fiOl w,)) which may in general be of the 
same order as those kept. This does not affect the a-dependence for strong damping but does change the 
numerical factor. A numerical computation of A(a) has recently been carried out by L.-D. Chang and S. 
Chakravarty, who have also obtained more accurate values of the exponent B; we thank them for helpful 
discussions on this point. 
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be given by the same expression to within a constant of order unity. Such an 
argument evidently gets the leading-order effect right but for strong damping 
underestimates the true suppression of the exponent by a factor of order [ln(~/~,,)] -l. 
At first sight this seems to contradict the theorem stated at the end of Section 5 
concerning the monotonic dependence of the tunnelling probability on potential, since 
if we choose q; > 4q,/3 the model potential is greater than the true one for all values 
of q which are reached by the (true) instanton trajectory. The fallacy lies in the 
assumption that the tunnelling probability for the model potential is proportional to 
the quantity p(q;) calculated for the simple oscillator. In fact, consider a potential of 
the form const. ((q/q;)2 - (q/q;)” ) of which the mode1 potential can be considered to 
be the limit as n -+ co. The larger the value of n, the steeper the last part of the 
instanton trajectory and the faster the system will tend to move along it. For the 
undamped system, this accelerated motion cannot increase the total action beyond the 
value it would have for a smoother potential, but for the damped system it can and 
does increase the effective action (4.29), because of the last term. To the extent that 
this last, steep part of the trajectory contributes significantly, the quantity p(q;) 
(which is essentially determined by the rest of the trajectory) clearly badly 
underestimates the suppression factor. These remarks suggest more generally that for 
a damped system it may be a very bad approximation to replace the true potential by 
one which has a discontinuity-at least unless special care is taken in handling the 
latter. 

A second way of looking at our results is in terms of the forma1 quantum theory of 
measurement. A well-known feature of the latter is that any “measurement” of a 
quantum system projects its state on to the relevant eigenfunction of the measured 
quantity and hence may inhibit its evolution. In our case we can regard the 
environment as subjecting the system to repeated position measurements. Now, 
intuitively speaking, the frequency with which the position is measured to within an 
accuracy of the order of the zero-point excursion (h/2m~0,,)“~ is of the order of the 
relaxation time from the first excited state to the groundstate, that is, of order 7-l. 
(This crude argument can of course be made more precise.) If the system is 
repeatedly examined to see whether it is within the zero-point limits, then by the usual 

arguments (see, e.g., [ 3 11) its probability of propagating outside them, and hence of 
tunnelling, will be reduced. Thus we should expect the “observation” by the 
environment to suppress tunnelling appreciably as soon as the frequency y of this 
observation becomes comparable to the natural propagation frequency, that is to 
w,-a result which agrees qualititatively with Eq. (6.1). An advantage of this way of 
looking at the problem is that we can see immediately that quantum tunnelling may 
be a very much more difficult phenomenon to suppress than quantum coherence (see 
Section l), since the relevant time scale for the latter is many orders of magnitude 
longer. To be concrete, let w,, be as above the characteristic frequency of small 
oscillations, which to within a factor of order unity is the “attempt frequency” for 
penetrating the barrier. The actual tunnelling rate CO, (whether expressed in terms of 
an amplitude or a probability) is smaller relative to CC)~ by an exponential factor. 
Quantum coherence, in the sense in which it is defined in the Introduction, requires 
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that the system propagate undisturbed (hence unobserved) for a time comparable to 
w;’ (cf. [31,32]); q uantum tunnelling, as we have just seen, merely requires that it 
be unobserved for the much shorter time ~0’. Thus, the existence of quantum 
tunnelling in a given system (macroscopic or otherwise) is no guarantee that that 
system will also show quantum coherence. For further details of the argument see [2, 
Sect. .5].23 

Next let us examine the question of the limits of validity of our results. It is 
essential to our argdment as formulated that the system, once it has tunnelled through 
the barrier, has no appreciable probability of returning and interfering with itself, and 
this is guaranteed if the potential beyong the exit point is everywhere negative as 
assumed in Section 2. While this is a relatively realistic description of the potential 
felt by (e.g.) an a-particle tunnelling out of a nucleus, there are many cases of 
practical interest on both the microscopic and the macroscopic scale where the 
tunnelling is between two finite wells. (In particular this is always the case for a 
SQUID). The question then arises, under what circumstances can we apply our 
results to such a case? 

Intuitively speaking, we should expect it to be a sufficient condition to be able to 
treat the lower well as effectively unbounded if the probability of the system being 
reflected at the far end and returning to the barrier with sufficient energy to get back 
into the metastable state is negligible. To be more quantitative, it is certainly 
sufficient that it should have lost in the process of going to and fro across the lower 
well an energy comparable to the effective zero-point energy of the metastable state. 
For weak or moderate damping this quantity is of order hw,/2, while for heavy 
damping it certainly cannot be greater than a quantity of order hy/2. Suppose for 
definiteness that the lower well is approximately harmonic in shape, with oscillation 
frequency w1 and classical relaxation time rlr and let the energy (relative to the 
bottom of the lower well) with which the system emerges from the barrier be of order 
Nho, ; thus, N is large to the extent that the motion in the lower well is semiclassical. 
Then it is easy to see that the energy lost in transit across the lower well is of order 
Nfit;‘, and correspondingly a sufficient condition to treat it as infinite is, for weak or 
moderate damping in the upper well 

NXw,r,. (6.4) 

For strong damping in the upper well this condition should be replaced by N 2 yr,, 
which for most practical cases (y - r; ‘) is simply the condition for the motion in the 
lower well to be semiclassical. Actually this condition may well be too stringent. 
Suppose that u, is much less than wO, as may well be the case in practice. (In 
particular, it will often be the case for a highly hysteric rfSQUID, since the effective 

” In making this argument quantitative it is of course essential to bear in mind that the spectrum of 
environment fluctuations which couple to the system (the spectrum of “observations”) may itself be 
frequency-dependent. For this reason, while the last two sentences on p. 96 of [ 21 are correct, the second 
sentence on p. 97 is somewhat misleading (the quantity y is not in fact 1/2CR). In fact, the question of 
quantum coherence in the case considered in this paper (J(w) cc w) is quite subtle (cf. 161.621); we hope 
to discuss it elsewhere. 
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w, is then the average “harmonic” frequency of the potential (1.2) ignoring the 
sinousoidal corrugations, that is (LC))“‘, whereas o,, involves the much larger 
term (Z,~I,/C)“*.). Now, it is easy to show, for a simple harmonic oscillator 
potential, that coherence between a wave packet newly emerging from the barrier 
(treated in this context as a phenomenological a-function source of particles) and one 
which has made one double transit of the well is destroyed as soon as N is large 
compared to OJ, t,. Since our calculation of the tunnelling probability is affected by 
reverse transitions only to the extent that they are coherent with the original process, 
it follows that the possibly weaker condition 

N;2u,r, (6.5) 

is also a suffmient condition for the validity of our results. In most cases of practical 
interest both the conditions (6.4) and (6.5) are satisfied. 

It should be emphasized that the fulfilment of the criteria (6.4) and/or (6.5) 
merely justifies the general technique used in Section 4 of this paper; it does not, in 
itself, guarantee that an instanton path actually exists. In fact, in view of the results of 
Section 5 for the specific case of a cubic potential (see especially Eq. (5.28)) we see 
that an instanton path may well not exist if the lower well is insufficiently deep 
relative to the upper one; crudely speaking, we need that the depth of the lower well 
relative to the upper should be comparable to the height of the barrier. In the case 
wO < y << V,/h this is a more stringent condition than (6.4) or (6.5); nevertheless, in 
most practical cases it is again usually well fulfilled, 

Finally we examine briefly the question of corrections to the WKB approximation. 
As is well known, for an undamped system the condition for validity of this approx- 
imation is that the barrier height I’, should be large compared to hw,. This is, 
roughly speaking, equivalent to the statement that the zero-point fluctuation 
amplitude should be small compared to the barrier width, or that the WKB exponent 
should be large compared to unity. Whichever of the latter formulations we use, it is 
clear that for a damped system the relevant criterion becomes V, + h~,~~, and in 
particular that for the overdamped limit it is only necessary that V, + fiwi/y. Hence 
if the WKB approximation is good for an undamped system, it is certainly good for 
the corresponding damped one. In particular it should be good for almost all systems 
which are likely to show macroscopic-scale tunnelling. 

Thus, the theory developed in this paper should cover the overwhelming majority 
of systems which can be used experimentally to investigate macroscopic quantum 
tunnelling. The minority of cases which violate one or more of the above conditions, 
in particular cases where the relative depth of the two wells is small compared to the 
barrier height (cf. [S]) is of course also of considerable interest, as are the much more 
common examples where this situation occurs on the microscopic scale (e.g., the case 
of defect tunnelling in solids [29]). Such cases can obviously be handled by suitable 
application of the general formulae developed in Section 4, in particular Eqs. (4.23) 
and (4.27), but the subject is clearly too large to discuss here. However, it is worth 
making one remark to illustrate the fact that dissipation can actually modify the 
behaviour qualitatively. Suppose that we are interested in quantum coherence in the 
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sense defined in the Introduction, that is, in the behaviour of a particle moving 
between two equivalent minima. For an undamped system the relevant calculation in 
the instanton formalism is standard (see, e.g., (541) and involves considering a 
trajectory in which the particle leaves one well at r = ---co and ends up in the other at 
7 = co; that is, effectively, half a bounce. Suppose for definiteness the damping is 
weak: then, at first sight at least, it should be possible to a first approximation to 
neglect it when considering the instanton trajectory q(t). If, having done this, we then 
treat the last term in (4.27) as a perturbation, then the contribution of this term 
diverges logarithmically; consequently, we should expect the coherence behaviour to 
be qualitatively different from that of the undamped system-a result which is indeed 
found by phenomenological treatments of the “detuning” effect (see, e.g., [3 1 I). Note 
that this effect appears only because the spectral density J(w) (Eq. (3.28)) is propor- 
tional to w in the low-frequency limit; it has no analog, for example, in the case of 
defect tunnelling in solids 1291, where J(w) is proportional to w3. (In the language of 
quantum measurement theory, we are considering the case where the frequency of 
observations which effectively localize the system on one side or other of the barrier 
is proportional to the tunnelling frequency w, in the limit w, --t 0, whereas in the 
defect case it tends to zero faster than w, in this limit. We hope to discuss this and 
related questions in the future. 

To conclude this section we briefly outline some generalizations and problems for 
further work. In the bulk of this paper we have considered the case of strictly linear 
frequency-independent dissipation. The generalization to the quasilinear and 
nonlinear cases is fairly trivial and is given at appropriate points. To obtain the 
generalization to frequency-dependent dissipation, we simply use Eqs. (4.24) and 
(4.22) with the appropriate form of J(w) (or the analogous quantity, see Eq. (3.6)). 
Provided only that J(o) is proportional to w in the limit w + 0, and for w + co falls 
off sufficiently fast (J(w) < const w -“, n > 0) to ensure the convergence of the 
expression (3.13) for the frequency shift Am’, then the results are qualitatively 
unchanged and can be crudely expressed by replacing r7 in Eq. (5.23) by an effective 
friction coefficient for frequencies of the order of the characteristic bounce frequency 
(i.e., w,, in the weak-damping case and wi/y in the strong-damping case). (cf. ] 161). 

A somewhat less obvious generalization is to the case of dissipation in a field 
theory (cf. [27]), where the dissipative mechanism may involve spatial gradients of 
the fields. We are confident that a generalization of the method of this paper to this 
case is possible in principle, but have not at the time of writing constructed one. 
Another important question concerns the generalization of the results of this paper to 
finite temperatures. While for an undamped system the crossover between quantum 
tunnelling and classical thermal barrier hopping takes place, as the temperature is 
raised, at a temperature of the order of Ztw,/k,, it is very plausible, in view of the 
results given in Appendix B, that for a heavily damped system the crossover should 
taken place at a much lower temperature, of order [60] fiwi/yk,. However, it is 
clearly highly desirable to constract a detailed quantitative theory of tunnelling in 
damped systems at finite temperature. Finally there is the complex of questions, 
mentioned above, associated with the finite extent of the lower well and with quantum 
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coherence effectsyuestions which, while primarily of interest in the context of 
microscopic tunnelling systems, may in certain special circumstances also be relevant 
to the macroscopic case. We are currently working on some of these problems. 

7. CONCLUSION 

In this paper we have attempted to motivate, define, and discuss the question: 
What is the influence of dissipation on quantum tunnelling? Specifically, we have 
studied the quantum tunnelling behaviour of a system whose semiclassical dynamics 
is given by the dissipative Eq. (2.8), or a generalization of this. Our main conclusions 
are as follows: (1) The presence of dissipation always tends to suppress quantum 
tunnelling. (2) In the case of strictly linear dissipation (or more generally of a 
separable interaction), the suppression factor can be uniquely related to the 
phenomenological dissipation coefficient: in the general case a lower limit on this 
factor can be similarly related to it. (3) In the experimentally important case of 
strictly linear dissipation in a potential with cubic anharmonicity, the dominant part 
of the suppression factor can be written in the form exp - @(a) vqi/h, where q is the 
dissipation coefficient, q. the distance to be traversed under the barrier, and @(a) is a 
function of order 1 which we can estimate as explained in Section 5. 

To the extent that the behaviour of a given rfSQUID in the classical regime can be 
adequately described by the resistively shunted junction (RSJ) model, our results can 
be trivially transposed to it by the replacements q + @, V(q) + U(Q), M+ C, 
v -+ a, z R;‘. Our results can also be transposed if we assume that the correct 
description of the SQUID is some simple generalization of the RSJ model, e.g., such 
as to incorporate a nonlinear or frequency-dependent normal conductance a,. To go 
beyond this assumption would require an explicit discussion of the justification (for 
(a possibly generalised) Eq. (1.4), which in turn would lead us into detailed questions 
concerning the microscopic model of the junction, etc. These questions are unlikely, 
in our opinion, to affect the general nature of the results concerning the influence of 
dissipation on tunnelling, and are sufficiently technical that we have not attempted to 
discuss them here. 

Finally, it should of course be emphasized that all the calculations of this paper 
have been carried out within the conventional framework of quantum mechanics, that 
is, under the assumption that this framework can indeed be extrapolated to the 
macroscopic scale in the sense discussed in the Introduction. Should it eventually 
turn out that for a particular type of physical system quantum tunnelling is not 
observed under conditions where the theory predicts it should be, no doubt the most 
obvious inference would be that the calculations, or the model on which they are 
based, are wrong; however, an alternative inference, which it would be unwise to 
exclude totally a priori, would be that quantum mechanics cannot in fact be 
extrapolated in this way. 

In the course of this research, which has extended over the last four years, we have 
had many fruitful discussions with many colleagues both at the University of Sussex 
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also grateful to John Bardeen for communicating to us his work on the related 
problem of tunnelling of charge density waves in quasi-one-dimensional solids, and 
Allen Goldman for suggestions concerning possible quantum tunnelling of the 
vortex-antivortex complex. We thank A. Widom and T. D. Clark for a preprint 
which induced us to elucidate the question of the “anomalous” cases mentioned in 
Appendix C. We are particularly grateful to Gabriel Barton for a critical reading of 
the first draft of the manuscript and helpful comments on it. One of us (AJL) 
gratefully acknowledges the hospitality of the Laboratory of Atomic and Solid State 
Physics at Cornell University during April 1980, when an important part of this work 
was done; the other (AOC) acknowledges financial support from CAPES (Coor- 
denecao de Aperfeicaomento de Pessoal de Nivel Superior) and from the Royal 
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APPENDIX A : 
FORM OF THE LAGRANGIAN FOR ELECTROMAGNETIC SYSTEMS 

In this appendix we shall discuss a point which, while basically a matter of 
elementary classical Lagrangian electrodynamics, nevertheless seems capable of 
causing a certain amount of confusion in discussions of the effect of dissipation on 
quantum tunnelling. It concerns the correct choice of Lagrangian in the case where, 
with the “natural” choice of coordinates for the problem, the coupling is by velocity- 
dependent forces. The most obvious example of such a problem is in electromagnetic 
problems, for example in a SQUID, where the basic variable, the magnetic flux, is 
coupled to a quantity with the dimension of electric current. However, a similar 
situation arises in the general case of adiabatic coupling, since as we see in 
Appendix C this can be made isomorphic to the electromagnetic problem. 

We start with some very simple considerations concerning velocity-dependent 
forces in general. Let us imagine a system described by coordinates x,y whose scale 
is chosen in such a way that the Lagrangian becomes 

L, = fm(.$ + 9’) - V(x, y). (A.1) 

We now add to this a velocity-dependent term of the form 

AL 1 = ~iy. (A.2a) 

Because addition of a total time derivative to the Lagrangian changes the classical 
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equations of motion not at all (and the quantum-mechnical transition amplitudes only 
trivially) we may equally well replace (A.2) by either of the equivalent forms 

AL, = --Ex$ (A.2b) 

AL, = + (iy - xi). (A.2c) 

Going over to the Hamiltonian formalism in the usual way, we see that the 
Hamiltonian of the system can be wtitten in any of three equivalent forms 
corresponding to (A.2-A.4) respectively, 

H 1 = (px - &.d2 f p: ; qx ))) 
2m 2m ” 

H, = (PY ;m&-x)2 + g + m, Y), 

H, = (Px - v/2)* + (P, + &X/2)* 
2m 2m + Vx1.Y) 

=H, +2+:$(x* +yZ), 

(A.3a) 

(A.3b) 

(A.3c) 

where H, is the Hamiltonian derived from (A.l) and L; = (xp, -yp,) is the angular 
momentum in the xy plane. The most natural physical interpretation of Eqs. 
(A.3a)-(A.3c) would of course be as a decription of a charged particle moving in the 
plane under the influence of a magnetic field perpendicular to the plane. 

If the Hamiltonian H, represents an anisotropic harmonic oscillator, that is, if 

V(x, y) = +m(uix* + w: y*) (w, # o2 in general), (A.41 

then it is very straightforward to diagonalize the Hamiltonian (A.3b) (most easily by 
carrying out first a canonical transformation which interchanges the roles of y and 
py, and then a simple rotation of coordinates), and to check that the value of the 
mean-square displacement x2 is decreased relative to its value for H, alone, quite 
independently of the ratio of w, and w2. Since the exponential tail of the wave 
function is determined entirely by (x2), it follows that the whole probability 
distribution is shrunk up by comparison with the unperturbed state (cf. Appendix B). 
If now we consider a tunnelling problem, where, let us say, the escape is in the x 
direction and is obtained by adding to (A.4) a suitable function of x (e.g., -Lx”, 
n > 2), then it is intuitively obvious that the effect of the magnetic field, or more 
generally of a velocity-dependent coupling of the type (A.2) will be to depress the 
tunnelling probability (at least in the WKB limit) 24 Thus the results which we are 

24 This result can be made quite rigorous in the special case w, = CO?, since the conversion of -Lx” to 
-I(.? + y*)“” giving a spherically symmetric problem, cannot decrease the tunnelling rate. 
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about to obtain by a more roundabout route in this appendix and Section 4 are 
physically very reasonable (cf. also the remarks in Section 6). 

We now turn to explicit consideration of electromagnetic coupling. In what follows 
it is helpful to remember that in practice it will be the electromagnetic coordinates 
(flux, etc.) which are the analog of the principal coordinate q used in the text of the 
paper, and the particle-like coordinates (positions, currents, etc.) which are the analog 
of the environment; thus the situation is the reverse of that of, say, an atom 
interacting with the electromagnetic radiation field in a cavity. 

Consider first the case of a simple one-dimensional harmonic oscillator with a 
charge e which interacts with the electromagnetic field. It is consistent for present 
purposes to set c~ = V . A = 0 (cf. below). If x(t) denotes its coordinate and E(t) = 
-&t(t)/& the electric field, its classical equation of motion will be 

e a/l(t) 
a(t)+w($x---. 

m at 

In the present context it is important to describe correctly not only the influence of 
the field on the particle but also that of the particle on the field. Strictly speaking of 
course, the latter is described by a vector potential A(U) which obeys the usual 
equation (in units such that c = 1) 

VIA - $ = -j(r, t) 

and is subject to certain boundary conditions (imposed, for example, by the walls in 
which the system is enclosed). However, for present purposes it is adequate to ignore 
these complications and treat A(t) in (AS) as the vector potential (strictly, its 
component along the direction of the particle motion) averaged over a region large 
compared to the scale of particle motion; in that case is sufficient to require” that the 
equation of motion should be given by 

where, for simplicity, we have considered a region of unit volume. 
We now require a Lagrangian L(q,, Qi: t) such that the Lagrange equations for the 

various generalized coordinates qi, namely, 

d 3L cYL 
z agi C-k- &i 

=o (A.81 

*’ We emphasize that it is very straightforward to handle the problem taking into account the spatial 
variation of A. The effect would be simply to add a “potential energy” proportional to A’ to the 
Lagrangian, where A is now the amplitude of the relevant normal mode. The only reason we do not do 
so is to avoid obscuring the very simple point made here. 
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should reproduce equations (AS) and (A.7). First we must choose our generalized 
coordinates. One of them we shall always take in the present discussion to be the 
vector potential A(t), and the “natural” choice of the other is the particle coordinate 
x(f). With these choices we find the standard textbook Lagrangian (see, e.g., 1631) 

‘2 

L(x.i:A,~)=fmi2-fmw~2+~+e~~A. (A-9) 

If we prefer to use a Hamiltonian formulation, we get by the standard prescriptions 
the form (where p, s cYL/S, pA s dL/dk) 

H = & (p, - eA)’ + ipi + $mwix2. (A. 10) 

Naturally,,had we chosen, we could have used a Lagrangian with a coupling term 
-exk rather than e&I; then the functional form of the Hamiltonian expressed in 
terms of the new canonical momenta (which are of course different from the above 
ones) would be different: cf. the earlier discussion. 

Now suppose that for some reason it is convenient to choose the second quantity 
qi(t) which is to play the role of “coordinate” in our Lagrangian formalism to be 
directly related, not to the particle position x(t) but to its uelocity v(t) = a(t). It is 
tempting simply to take our original Lagrangian (A.9) and try to re-express it in 
terms of u(t) and its derivative. However, this is incorrect; in general, even if such a 
re-expression is possible, such a procedure does not result in the correct Lagrangian, 
i.e., if v(t) is treated as a “coordinate” and inserted into (A.8) with L given in this 
way, the correct equations of motion (AS) and (A.7) do not result. This is because 
Lagrange’s equations, while invariant under ordinary coordinate transformations, are 
not (unlike Hamilton’s equations) invariant under contact transformations which mix 
the qi and gi together 1631. Instead we must proceed as follows. Introduce a quantity 
y(t) defined by 

y(t) = w; ‘(i(t) + eA(t)/m) (A.1 1) 

which will now play the required role of coordinate qi. In terms of this variable the 
required equations of motion (A.8) and (A.7) take the form (we differentiate (A.5) 
once) 

j’= -ot(y - eA(t)/mw,) (A.12) 

k’ = eo,(y - eA(t)/mo,) (A.13) 

The sole criterion for the choice of a Lagrangian function of y, j, A, and A is that 
insertion of it in Eqs. (A.8), with q, = A, q2 --y, should yield Eqs. (A.12) and (A.13). 
It is easy to verify that a possible choice is 

L = fmj’ + $2 _ Qmo; (Y-c)*. (A. 14) 
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It is further easily verified that the Hamiltonian obtained from (A.14), when 
expressed (with the aid of the equations of motion) in terms of x, i, etc., is identical 
to the form (A.lO)---as indeed we should expect, since the Hamiltonian formalism is 
invariant under contact transformations. The crucial point is that if we wish to use as 
our “coordinate” for the purposes of the Lagrangian formalism a quantity related to 
the particle velocity, then the coupling of such a term to the electromagnetic field 
must include not only a linear term (-yA) but also a quadratic term -eZA2/2m, 
which is equivalent to a positive addition to the harmonic potential energy. 

It is now relatively straightforward to extend the argument to cases of real physical 
interest. Consider for example, as in Section 2, a simple LC-circuit made out of 
superconducting materials. If we choose as our basic “coordinate” the flux @ 
threading the self-inductance of the circuit, a suitable “free” Lagrangian L, to 
describe its behaviour is 

(A.15) 

Now imagine that we connect a piece of normal metal (resistor) in parallel with the 
capacitor. The microscopic expression for the correction to the Lagrangian which we 
would write down in ordinary electrodynamics is 

AL = 
I 
. j(r) + A(r) dV, (A.16) 

where j(r) E xi ev,6(r - ri) is the electric current density operator of the electrons 
(labelled by subscript i) in the resistor, and the integral is taken over its volume. If I 
denotes the distance along the resistor, then (A.16) can be rewritten 

AL = J‘A . dl1,(1), (A.17) 

where I,(f) is the current flowing across a surface in the wire perpendicular to dl at 
point 1. Neglecting plasma effects, we can say that I,(Z) will be independent of f, and 
moreover the integral j A . dl is, apart from a constant which is of no interest to us 
and can be eliminated by a suitable choice of gauge, equal to the total flux @ 
threading the circuit.26 (This follows because the exclusion of electric fields from the 
interior of the superconducting wires ensures that A is constant in them.) So we can 
rewrite AL in the simpler form 

AL =I,@, (A.18) 

26 We assume that the resistor is not so far from the capacitor that retardation effects are appreciable. 
This is certainly true for the RSJ model of a SQUID, where the “resistor” is not a separate element but 
is built into the junction itself. 
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where I, is the current flowing through the resistor. It is also possible, if we wish, to 
define a charge Q, by the equation 

Q,(t) = j-:, I,#‘) dt’ (A.19) 

and then we can rewrite AL in the equivalent form (apart from a total time 
derivative) 

AL = -Q, 6. (A.20) 

Now, provided we are prepared to treat I, as a quantity whose dynamics we 
somehow know a priori, (A.18) (or (A.20)) is a perfectly satisfactory interaction term 
in the Lagrangian. Indeed, adding it to (A. 15) and writing down the Lagrange’s 
equation for @ yields immediately the required circuit equation 

oi-ZI,f@/L=O. (A.21) 

If we were now to invoke the normal phenomenological equation for the resistor, 
namely, Ohm’s law, we would of course reduce this to 

c~+o,~+@/L=o, (A.22) 

where u, is the normal conductance of the resistor. However, our goal is to justzyy 
this result (or equivalently Ohm’s law) from a microscopic Lagrangian which 
includes the resistor degrees of freedom explicitly. To do this it is convenient to take 
the quantity Q, (Eq. (A.19)) and express it in terms of the normal coordinates of the 
resistor Q, as was done in Section 3 (As in that section, we implicitly assume here 
that the motion of the flux will perturb the resistor sufficiently weakly that the 
response is linear). Naturally, in the presence of impurity scattering, phonons, etc. the 
physical interpretation of the Q, is likely to be very complicated; nevertheless we can 
write quite generally 

(A.23) 

If, therefore, we wish to treat as “coordinates” the quantities Q, themselves (the 
“natural” choice), then the correct form of the Lagrangian is that derived from 
(A.18), that is 

(A.24) 

If on the other hand we wish to use as “coordinates” quantities with the dimensions 
of current and thereby avoid explicitly velocity-dependent couplings, then the 
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argument developed above for the simple harmonic oscillator goes through almost 
verbatim: the simplest choice is the quantity 

x,-w;'(& +C,@/m,) (A.25) 

(where m, is the “mass” of the normal mode as discussed in Section 3) and the 
correct form of the Lagrangian is now (C, = w, c’,) 

L=+cd*-@*2/2L+ 1 (jm,$-+m,o%xi} 
a 

(A.26) 

in agreement with (3.5). Thus, correct treatment of the electromagnetic coupling 
automatically introduces a counter-term of the form (3.4) which eliminates the 
unphysical frequency-renormalization effects which would otherwise occur. The 
argument can clearly be generalized to more complicated cases such as that of a 
SQUID in the RSJ model quite trivially: all we need do is to add to (A-15), and 
hence to (A.26), the extra Josephson locking energy. Moreover, we see that since the 
case of adiabatic coupling is formally identical to that of electromagnetic coupling 
(see the discussion in Appendix C), the counter-term must be included in this case 
also. 

We finally comment on two related points. First, the quantity J(o) (Eq. (3.8)) is in 
this case, not surprisingly, nothing other than the imaginary part of the resistor 
current-current correlation function ((I,: Z,))(o). In fact, using the fact that @ in 
Eq. (A.25) is a c-number with respect to the environmental oscillator states and 
denoting by Ia) the first excited stated of the oscillator labelled a, we find 

Im((Z,: Z,))(w) = 71 z: I(0 lZ,I a2 4E, - % - Au) 
n 

=~~~~l(oIa,la)126(w-LI)~) 
a 

=~~C:./(0Ix,~a)~‘6(w-W,) 
n 

C2 7t \‘A =- 
2 : maw, 

d(u - WJ = J(w). (A.27) 

Thus for small w we have a relation analogous to (3.9) 

J(w) = (T”0.A (A.28) 

where 6, is the conductance of the shunt. 
Second, we may ask how the above analysis applies to the case of a supercon- 

ducting shunt, a case in which we certainly do expect a frequency shift: in this case, 
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as the phenomenological equations show, there is a kinetic inductance m/N, e2 which 
is effectively in parallel with the electromagnetic inductance L (as can be seen by 
redrawing the circuit appropriately); here, NA is the number of superconducting 
electrons per unit area of the shunt. Thus the frequency shift is positive in this case 
(l/L + l/L + NA e2/m). In the context of our discussion this is a case where the 
assumption of smoothness of the function J(o) is spectacularly violated: the quantity 
o-‘J(o) has in fact a delta-function singularity at w  = 0, and this leads to a negative 
real part of K(w) in (C.35) which produces the required shift. 

Finally, we note that everything we have said in this appendix generalizes very 
simply to the case of nonlinear damping: see Appendix C. 

The patient reader who has persevered thus far may well feel that in this appendix 
we have managed to make a mountain out of a molehill. After all, it is perfectly easy 
to treat the problem of coupling of the flux to a resistor (and to demonstrate the 
absence of a frequency shift if the resistor is normal) by using the conventional 
Lagrangian or Hamiltonian formalism without making the rather exotic choice of 
“coordinate” embodied in Eq. (A.25). The reason we have nevertheless gone through 
the above argument explicitly is twofold. First, it is convenient to be able to use, as 
we do in Section 3, a formalism which deals in a unified manner with a general 
coupling which leads to dissipation, irrespective of whether or not this coupling also 
produces a physical frequency shift. Second, while the normal choice of Lagrangian 
coordinates is perfectly convenient for work in “real time,” it is somewhat incon- 
venient when we intend to carry out a Wick rotation as in Eq. (4.3), since it will 
mean that even after this transformation the argument of the exponent in the 
functional integral is not real. 

APPENDIX B: THE DAMPED SIMPLE HARMONIC OSCILLATOR 

In this Appendix we shall establish the form of the thermal equilibrium density 
matrix of the damped harmonic oscillator by a simple and direct method, and then 
compare the results with those obtained by using the formalism of this paper.*’ We 
assume, as always, that the dissipation arises from a (strictly) linear coupling to a 
bath of environmental “oscillators,” i.e., that the appropriate Lagrangian is given by 
Eq. (3.12) with V(q) = fMwiq*. As we have argued in Section 3, this assumption is 
very much less restrictive then it looks. The purpose of this appendix is, first, to 
check the method of this paper against an exactly soluble model and in particular to 
reinforce further the identification of the quantity u -‘J(w) with the 
phenomenological friction coefficient q, and secondly to provide some results which 
help us to guess the likely temperature-dependence of the escape probability (cf. 
Section 6). 

27 The question of frequency shifts is ignored in this Appendix: thus. wg is always the renormalized 
frequency. 
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The (reduced) thermal density matrix for the oscillator is defined by Eq. (4.1 I), 
that is, 

K(qiy q:P) = j n dx, vn*(qi, 1x,1) w&. Ix, 1) ev -BE,, P.1) 
a 

where /I = (k,O))‘, 0 being the real (physical) temperature. (In this appendix, unlike 
Section 4, we will keep /I finite unless otherwise stated). Now, the Lagrangian (3.7) is 
bilinear in q and the x,, and hence can in principle be exactly diagonalized. The 
resulting energies of the universe are the sums of the energies of the normal modes, 
whose coordinates yj are related to q,, and the x, by some linear transformation; 
moreover, the thermal density matrix is the product of the density matrices for each 
normal mode which have the standard form (see [ 56, p. 5 11) 

P(Yj3 Yj) = 
( 2A$?*“j)1’*e~~- 1 2hZ&?hv, 

X [(Y~+y~‘2)COShPAVj-2YjYj] 3 
! 

where vj is the oscillation frequency of thejth normal mode and ,uj its “mass.” The 
only point we need to note about Eq. (B.2) is that the exponent is of Gaussian form 
and symmetric with respect to the interchange of yj and y,;. Since q and the x,‘s are 
related to the yj by some linear transformation, it follows from the properties of 
Guassian integrals that K(q,, q,.: p) is also Gaussian and symmetric with respect to 
interchange of qi and qf. Introducing the “centre-of-mass” and “relative” variables 
X= (qi + qJ2, r- qi - qf, we see then that the most general allowable form of 
fW, 55 P) is 

K(X, 5, /3) = C, exp - $(A ‘X2 + P{‘), (B.3) 

where the coefficients C,, II, and p are functions both of p and of the parameters of 
the problem. To determine the form of A and ,U we can use the following simple 
argument. We first note that these two quantities are nothing but the thermal mean- 
square values of coordinate and (apart from a constant) momentum 

(q*)=j X2K(X, 0: p) dx = A, (B.4) 

(p’) = 1 dX,f dpp* 1 exp(ip@) K(X, t: /?) dt = h*p, 03.5) 

where we used the normalization condition 

f K(X, 0: /3) dX= 1. v3.6) 
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On the other hand, we may obtain expressions for (q2) and (p’) in terms of the 
parameters of the model, as follows. As is well known, the response of the (quantum- 
mechanical expectation value of the) coordinate of a simple (undamped) harmonic 
oscillator is identical in classical and quantum mechanics, and therefore the response 
function x(w) = (6x/G), is identical in the two cases. Applying this theorem to the 
true eigenmodes of the system and then performing the linear transformation to q and 
the xn, we conclude that the response function x,(o) for the system variable q may 
itself be calculated by classical arguments. But we know that the classical equation of 
motion is simply (2.8) with V(q) s #fu~q2, and hence’” 

1 
x* = kq0.l; - co2 - 2iyo) (Y = VP0 

But, by the fluctuation-dissipation theorem we have 

(q2) = 4 1” coth(phw/2) Im x,(o) do 

and hence, identifying (q2) with 1 as above, 

coth(jSio/2) 2yw 
(co; - u2)2 + 4yw du. P.9) 

The expression is convergent at the upper limit as it stands, and can be evaluated 
explicitly in the low- and high-temperature limits (cf. below). 

In a similar way, since the momentum response function x,(w) is related to x,(w) 
by 

x,(4 = ~2~2Xgw (B.10) 

we find the result 

I 
cc coth(phw/2) 2yw 
0 (co; -co*)* + 4yw du* 

(B.11) 

Unlike (B.9), this expression is logarithmically divergent. The physical reason for this 
is that the phenomenological Eq. (2.8) has been implicitly assumed to apply for 
arbitrarily short times, whereas in reality there will be some “microscopic” time 
beyond which the inertia of the environment, etc., will come into play (cf. 157, 
Chap. 21). To put it another way, the assumed form (3.9) of the environment spectral 
density is not valid to arbitrarily high frequencies (see the discussion in Appendix C). 
Thus we must introduce some form of high-frequency cutoff on the integral in (B.ll) 
which takes effect for w  - ccc, and its value is then of the order of y ln(w,/w,) or 
y ln(w,/y) according as the damping is weak or strong. (This assumes /So, % 1: cf. 
below). 

*’ Our convention for the definition of response functions follows that of Pines and Nozitres 164). 
apart from a minus sign. 
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We now turn to an alternative derivation of some of the above results using the 
formalism employed in the body of the paper. Apart from the prefactor, the reduced 
density matrix is given exactly by the expression 

qqi, 4fi B) = w, 6 P) = const ev - sJqi, 4f; P)lh (B.12) 

where S,, is the “action” (4.31) evaluated along the classical path which starts at qi 
at “time” zero and ends at qf at ,f3, Let us take a Fourier transform of the path q(r), 
writing 

q(t) = 1 qneiwnr, w, = 2m/P. (B.13) 
n 

Then one easily varifies that 

S,I=p2:~M(w~+w~+2Ylw,l)lq,12. 
n 

(B.14) 

Now, any path q(s) leaving qi at time zero and arriving at qf at time /I can be decom- 
posed into the sum of a “symmetric” part q,(r) which goes from (qi + 4,)/2 = X back 
to X, and an “antisymmetric” part 4J.r) which runs from (qi - qf)/2 3 r/2 to -l/2. It 
is obviouus from (B.14) that the action of the original path is just the sum of those 
due to the two paths separately, and moreover that these contributions are propor- 
tional to X2 and <*, respectively. Hence we can immediately write (renaming T as /3) 

K(x, <: /3) = const exp - i {A’ - ‘X2 + P’T2 1, (B.15) 

where the constants A’ and ,u’ are to be determined from the action of the symmetric 
and antisymmetric paths, respectively. 

The determination of 1’ is straightforward. The symmetric path is determined by 
minimizing expression (B. 14) subject to the boundary condition q(0) 3 q(j?) = X. This 
gives 

(B.16) 

where 

K-X/~((wt,+o~+2yIw,l)-‘. 
n 

Substituting (B.16) back into (B.14) and comparing the result with (B.15), we can 
make the identification 

(B.18) 
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By rewriting the expression (B.9) in the equivalent form 

A=&*m j”‘ 
w2-of’-2iyw (exph- 1) -w 0 

(B.19) 

and evaluating the integral by contour integration,29 we see that ;1= A’ as we should 
expect. 

The determination of p’ is slightly more delicate because of the discontinuity of the 
antisymmetric path at the ends of the region of integration. For convenience we shall 
first shift the origin of the “time” axis so that this region is -/I/2 < r ,< p/2. Then we 
replace the boundary conditions qCJ/2) = -q(-/3/2) = ~72 by the stipulation that q(r) 
is periodic with period /3 plus the condition 

q (!+q (-LL+<, 

where E is a small positive quantity which will be allowed to tend to zero at the end 
of the calculation. It is evident that these conditions produce a “semiclassical” path 
which is smooth throughout most of the region of integration but has a steep part at 
the ends (with slope -r/s) which in the limit E -+ 0 tends to a straight line. 

We now proceed as above by minimizing the action (B.14) subject to the boundary 
condition (B.20). This leads to the result 

qn = (-l)n+’ 
iL sin(w, s/2) 

wf,+w;+2y/w,l’ 
(B.21) 

where the Lagrange multiplier L is determined by 

x sin’(w,s/2)/(0: + of + 2y Iw,]) 
1 (B.22) 

where we note that Q(s) is proportional to E in the limit E + 0. Substituting (B.21) 
back into (B.14), we find 

(B.23) 

so that S,, diverges as E- ’ in the limit E + 0. It is clear that this divergence is entirely 
due to the “steep” parts of the path; in fact, we easily verify that in this limit the 
expression becomes exactly the contribution of the straight line 

29 Recall that the sum in (B.18) involves all n. whereas a contour in the upper half-plane will include 
only positive n. 
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47) = -(D)(r - P/2), (I 5 - P/2) I G E/2), namely, fM<*/a. This contribution should 
clearly not be counted in the physical action which enters (B. 12). If we write 

Q(E)=$-AE*+O(E~)) (& + o>, 
L 

then the explicit expression for A is 

and the physical action is $4(*A. Substituting this in (B.12) and comparing with 
(B. 15), we find 

p, = m-’ -.--v I- 
( 

4 
fz T 1 4+0;+2yIw,l . (B.26) 

A suitable contour integration of (B. 11) (where we must remember that part of the 
“contour at infinity” will contribute a finite amount) shows that ,u’ =,u. Thus the 
method of this paper yields the correct expression for the complete groundstate 
density matrix of the damped harmonic oscillator, as of course it must. It is 
interesting to note that while the contribution to the kinetic-energy term which arises 
from the discontinuity of q(T) at the ends of the region of integration is spurious as 
discussed above, the contribution of the “damping” term (i.e., the last term in (4.27)) 
from this discontinuity 3o is real and is indeed necessary to ensure the correct 
logarithmic divergence of (B.11) at the upper limit. (More realistically, of course, the 
(r - rl)-* behaviour of the integrand of this term is cut off at a value of I r - r’ I of 
the order of LO;‘, thereby producing a large but finite value of the integral as 
discussed in connection with (B.11)). 

Finally we comment briefly on the temperature-dependence of the quantities A and 
,D (see Eq. (B.3)). First, using the familiar Kramers-Kronig and longitudinal sum 
rules for ImXJc0) (see, e.g.,. Nozikes and Pines [64] we see that in the high- 
temperature limit where coth(phm/2) tends to ~/PAW, A tends to (‘&VW;) ‘, and ,U 
tends to M/h*/?; thus in this limit the density matrix becomes (writing the temperature 
WT’as 0) 

1 lWCu; 
K(X, <: 0) = const exp - - 

( 
-x2 + 

2 k,B 
L$!!!p) 

independently of the degree of damping. It should be noted, however, that whereas L 
achieves essentially its asymptotic form for k,8 %- hwi/y ln(y/o,) (cf. below), JI does 

” That is, the contribution from the regions close to the discontinuity on opposite sides, where q(Y) 
is different by -c from q(r). 
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not do so until kg0 % hy ln(o+,/r). In the zero-temperature limit the integral (B.9) can 
be evaluated explicitly and we find 

(B.28) 

where 
CX< 1, (B.29a) 

a> 1. (B.29b) 

We note that f(a) attains the value 2/7r for a = 1 and for large a has the asymptotic 
form (2/na) In 2a. Thus the probability density distribution of the oscillator in coor- 
dinate space is severely narrowed in the overdamped limit, while the corresponding 
momentum distribution is broadened. 

A final question of interest concerns the order of magnitude of the temperature at 
which the form of I changes over from the zero-temperature value (B.29) to the high- 
temperature form @Mwi)-‘. In the underdamped limit this temperature is obviously 
of order hw, /k, ; in the overdamped limit we see by studying the contribution to the 
integral (B.9) from the regions w  < wily, wily < w  < y, and w  9 y, respectively, that 
the crossover temperature is of order ((hwz/k,y) In(y/w,)). That is, for a highly 
damped system the crossover to a classical description of the density distribution 
takes place at a much lower temperature than for the corresponding undamped 
system. 

APPENDIX C : 
THE COUPLING MECHANISM IN A DISSIPATIVE SYSTEM 

In this appendix our goals are (1) to make plausible the statement that the 
Lagrangian (3.5) can be taken as the most general description necessary for a 
dissipative system obeying Eq. (2.8) (or the generalization to a q-dependent q) (2) to 
justify Eq. (3.6) (or Eq. (3.10)) which relates the parameters of the model to the 
phenomenological friction coefficient (3) to elaborate somewhat the distinction made 
in Section 2 between “quasi-linear” and “strictly linear” dissipation. The first two 
parts of this programme, at least, to some extent duplicate or parallel various results 
already in the literature (cf. in particular (471) and at first sight might even seem 
rather pointless, since in almost all cases of current practical interest in the context of 
the tunnelling problem one knows a priori, on the basis of some specific model, that 
the system-environment interaction is indeed of the form (3.2) (and indeed in many 
cases that it is of the “strictly linear” form (3.7)). However, since one of the goals of 
the present work is to put us in a position to infer as far as possible the effects of 
damping on tunnelling from a knowledge of the phenomenological quasiclassical 
equations alone, we feel there is some point in exploring how far these equations 
constrain the possible coupling mechanism. 
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We consider a system described in terms of a variable q whose classical equation 
of motion is of the form 

M4- + v(q)4 + g = Fext(t), (C-1) 

where we have allowed the friction coefficient v to be amplitude-dependent but not, 
for the moment, to depend on frequency. It is to be emphasized that F,,,(t) in 
Eq. (C.1) is taken to be a “true” force which acts on the system alone (and not. for 
example, also on the dissipative mechanism); to be precise, the total work done per 
unit time by the external force is taken to be simply dF,,r(t). Equivalently, we can 
say that the rate of dissipation of energy by the system into its environment is given 
by the expression r(q)g’. Although at first sight this might seem obviously true, it is 
desirable to be quite explicit about it, for the following reason: It is in fact possible to 
construct examples of tunnelling problems3’ in which the energy dissipated into the 
environment is not proportional to the squared velocity 4’ of the tunnelfing 
coordinate q, but to some other quantity, e.g., to the squared rate of change of the 
momentum conjugate to q. In such cases it may be possible formally to cast the 
equation of motion of the tunnelling variable in the form (C. l), but only at the 
expense of replacing FeXt(t) on the right-hand side by a quantity which, although a 
given function of time controlled by the experimenter, is not a “true” force is the 
sense specified above. Moreover, such cases have the anomalous property that (at 
least in the examples we have studied) the (pseudo) “friction coefficient” q(q) 
appearing in Eq. (C.l) is actually negative over much of the tunnelling region. It is 
therefore quite reasonable to expect that even the qualitative effect of dissipation in 
such cases may be quite different [65] from that obtained in this paper (cf. the results 
of Appendix B: for the case of a simple damped harmonic oscillator, dissipation 
proportional to 4* increases the mean square momentum (p’) and conversely 
dissipation proportional to @’ increases (q2)). Although this “anomalous” case may 
possibly be relevant to some systems which can be studied in the future in the context 
of macroscopic quantum tunnelling, it does not appear to be relevant to any system 
of current practical interest and we therefore explicitly exclude it from consideration 
in this paper;32 we hope to consider it elsewhere in the future.* 

We now turn to the justification33 of the “oscillator-bath” representation of the 
environment used in Section 3. We make essential use, here, of the condition that the 
environment B is only weakly perturbed by the motion of the system (though we will 

” We thank A. Widom and T. D. Clark for a preprint 1651 which, by explicitly constructing such a 
model problem, induced us to elucidate this point. 

j2 Note that in the case of linear friction such explicit exclusion is redundant. 
” The ensuing considerations refer only to the T = 0 case relevant to the work of this paper. The 

finite-temporation case needs separate discussion. 
* Note added in proof. A paper on tunnelling in the presence of arbitrary linear dissipation. which 

includes the “anomalous” case as a special case, is currently in preparation for submission to Physical 

Review B. 
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eventually make a considerable generalization of this). Let the coordinates (not 
necessarily one dimensional) of B be collectively denoted 5, and let its Hamiltonian 
when isolated be I?,. The eigenfunctions w,,(r) satisfy the equation 

fi, w,(t) = En w,(O (C.2) 

Let the interaction of 8’ with an external agency described by some set of coordinates 
q be given by some real function V of e, q and their conjugate momenta, and define 

where p is the momentum conjugate to q and pr that conjugate to c. We suppose now 
that the following condition is satisfied for all relevant values of p and q: 

I V,,(P, q)l(E, - Em)1 - 6 6 1. (C.4) 

If the system B then starts in its groundstate, the probability of a process in which n 
factors of V enter will be proportional to E”‘, Hence, if we neglect terms of order e’ 
and higher, the only matrix elements we need be concerned with are the elements Vj,. 
We define Hermitian operators Zj and ~7~ in the space of the eigenfunctions vj(<) by 
their matrix elements 

(jl -;ilO) = (0 lqj) = (A/2m,jcoi)‘~2, (CSa) 

all other elements zero, 

(jI~jlO)=-(“/pj(j)=imjUj(jI”jlo)~ (CSb) 

all other elements zero, where oj = (Ej - E,)/h and the “masses” m.i are arbitrary. 
We now add, for each index j, a (possibly fictitious) infinite set 1 n,i), n = 0. 1. 2,..., of 
oscillator states: in this notation the groundstate of 8’ is a product of IO,), and the 
states called j above are now denoted / lj> nkzj IO,,. The operators ai and fij are 
extended into the new space so constructed by assigning to them the conventional 
oscillator matrix elements ((nj + I iijji nj) = (nj + 1)“2 (~/2/2~r~~u~)“~, etc.). We also 
construct an effective Hamiltonian 

( 
“2 ii,,, = \‘ p’+ lm,+; . 

7 2mj 2 ) 

Finally we add to fi,, an interaction Hamiltonian of the form 

Hint = - x (Fj(P, q) zj f Gj(P, q)fij)> 

(C.6) 

(C.7) 
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Re vjo(P, 41, 

Since the matrix elements of ai,, and the eigenvalues of geff reproduce the true 
matrix elements V,,(q) and true energy level differences E, -E, for all “singly 
excited” states, the combination fi,, + Z?,,, will generate the correct dynamics of the 
system to the extent that double excitation is negligible. It is only to the extent that 
this condition holds that the response of B will be linear in the external perturbation, 
so we can say that for our purposes the replacement of the true Hamiltonian by that 
appropriate to a set of harmonic oscillators is effectively equivalent to the assumption 
that the response of the environment to the perturbation exerted by the “system” is 
linear (or more precisely, that the response to a classical perturbation whose 
magnitude is less than or equal to the maximum value of the interaction function 
fiint(p, q) obtained for values of p and q of interest in the tunnelling problem, is 
linear). Whether or not this condition holds for any specific physical system 
considered is of course a matter for detailed argument in each case; however, it 
should again be stressed that the condition of linearity of environment response is 
quite different from (and much weaker than) the condition of weak damping-just as 
the fact that a beam of light may be almost totally absorbed in a gas by no means 
implies that nonlinear effects have to be taken into account. 

In Eq. (C.7) we have kept only terms of first order in the environment variables. 
Should we also keep (a) terms of second and higher order (b) terms of zeroth order? 
With regard to (a), this is a somewhat delicate question. Consider, for example, a 
term of the form 

fig, = x U,,(q) XjXj8. 
ji’ 

(C.9) 

If such a term exists, it will have an effect comparable to the original effective 
Hamiltonian Herr (Eq. (C.6)) and will in general lead to a considerable rearrangement 
of the environment levels. Thus the weak-coupling condition is not satisfied and in 
such a case the adiabatic approximation must be used (see below). Thus for the 
moment we omit terms of the second and higher order. On the other hand terms of 
zeroth order in pj and xi may exist in the coupling (as, for example, in the case of 
electromagnetic coupling, where q is magnetic flux or something similar: see 
Appendix A), and will then influence the motion of the system, generally by changing 
either the effective potential or the effective mass or both. Thus we should generalize 
the interaction Hamiltonian slightly to read 

Gint = - 1 (Fj(Py 4) zj + Gj(P, q)bj) + @(PY 41, 
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where the form of @ may depend OII the parameters (mjq wj, Fj(pq), Gj(Pq)) of the 
environment but not on the dynamical variables pj, Xj. 

It would no doubt in principle be quite possible to proceed with all our tunnelling 
calculations on the basis of a general Hamiltonian of the form (C.10). However, the 
Lagrangian (3.5) is so convenient that it is useful to see under what assumptions 
(C.10) can be reduced to (3.5) (or the equivalent Hamiltonian). The reasoning here 
will be plausible rather than totally rigorous: we suspect that rigorous proofs 
probably can be constructed for at least some of the statements made below, but they 
are likely to be extremely tedious and there seems little point in trying to produce 
them here. 

We tirst observe that the phases of the excited-state wave functions w,(r) relative 
to the groundstate are arbitrary, and hence (in view of Eqs. (C.5)) the choice of the 
variables xj and pj contains an element of freedom. Moreover, in all cases of physical 
interest the variable q has a definite parity under the operation of time reversal (TR). 
Let us then use the above freedom to choose the “coordinate” .xi to have the same 
parity under TR as q; pj then automatically has the opposite parity. Since the 
interaction Hamiltonian (C.10) must be invariant under TR, it then immediately 
follows that if q is even, Fj(pq) must be an even function of p and Gj an odd one. 
(with no restrictions on their q-dependence). If q is odd, on the other hand, Fj must be 
an odd function of q and Gj an even one, with no restriction on the p-dependence. 
Further symmetries of the system may constrain the functions Fj and Gj further: e.g., 
if parity is conserved and q is odd under both TR and space reflection (as, for 
example, in the case of magnetic flux), then Fj(Gj) must be even (odd) in p. 

The ensuing argument is somewhat delicate. It is based on the fact that, in general, 
any dependence of the Fj or Gj on p is liable to produce a form of dissipation which 
cannot be cast in the form q(q) d2. This can be seen, for example, by considering the 
simple case Fj = 0, Gj = Cjp. Indeed, at first sight it is tempting to argue that Fj(qp) 
and Gj(qp) must be functions of q only, in which case it would follow immediately 
that in the case where symmetry constrains Gj to be an odd function of p, as above, 
Gj = 0, and the form (3.5) is established. This is actually rather too simple. To obtain 
a more convincing argument we introduce the notation 

(mjuj)p”2 (Fj + imjojGj) = RjeiOl, (C.11) 

where Rj is real. We then evaluate the second-order perturbation-theoretic expression 
for the energy dissipated by the system into its environment, taking the system 
dynamical variables p(t) and q(t) to be given functions of time and writing for the 
Fourier components F, E l F[p(t), q(t)] eiwt dt the relations Fw = (iw)-’ [k], = 
(ia)-’ {(aJ’\ ap)i, + @F/aq)4), etc. (For the details of the operations involved, cf. 
below.) In general this procedure gives us terms in the dissipation which are of the 
form v(q) G2, but also nonvanishing terms involving p and its derivatives. A necessary 
(though not sufficient) condition for these to be convertible into terms of the form 
v(q) 4’ is that the system satisfies the relation 

p=MG (C.12) 
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to within some function which, while it need not vanish identically, is guaranteed to 
be zero for any forced motion of the environment. The function in question is, of 
course, from Hamilton’s equations just 8?i,,/~p (where any contribution from 
@(p, q) can be ignored, since it simply renormalizes the effective mass). The 
condition that afi,,,/@ be zero for any forced motion of the environment yields, after 
a little algebra, the condition 

I 

cc dw’ 
{w’K,(p, q: 0) + iwK,(p, q: co)} = 0 

0 WI2 -w2 

where 

K,(P, q: w) = ; + $ R; (p, q) 40 - wi), 

K,(P, q: w) = x R,; 2 (p, q) 6(w - w,J. 
i 

(C. 14a) 

Barring, possibly, some sort of pathological conspiracy between the behaviour of the 
Rj and 0, in different frequency regions, Eq. (C.13) implies 

K,(p, q: w) = K,(p. q: w) = 0 (C.15) 

for all p, q. and w. Evidently the most natural way to satisfy (C. 15) is to set each of 
the Fj(pq) and Gj(pq) individually independent of p for all q. It then immediately 
follows from the considerations of the above paragraph that G,i = 0 if q is either even 
under TR or odd under both TR and space reflection. This covers most of the cases 
of practical interest. 

We cannot, of course, absolutely exclude the possibility that the Fi and Gi depend 
individually on p in such a way that Eq. (C.15) is satisfied (or, in cases satisfying 
neither of the above invariance coditions, that Gj is some nonzero even function of q). 
However, the above argument suggests that any such dependence would have to be 
rather pathological in nature (and, we suspect, might well be further restricted, if not 
totally excluded, by further arguments along the same lines). Thus. while we have no 
rigorous proof that the Lagrangian (3.5) is the most general which can give rise to 
the equation of motion (C.l), we feel that we have made it sufficiently plausible to 
use that Lagrangian as a basis for the work of this paper. 

It should be noted that the argument leading to Eq. (C.12) above rests essentially 
on the fact that the quantities Cj, mj, wj characterizing the environment do not 
already contain the phenomenological viscosity explicitly. Were this not the case, 
then the replacement of Eq. (C.12) by a relation of (for example) the form 

P=Md+w (C. 16) 

would in principle be acceptable, since the w-dependent relationship between the 
Fourier components of p(t) and q(f) could be cancelled by a suitable distribution of 
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the environment spectral density, etc. Such a case would arise, for example, if we take 
an adiabatic-type coupling (cf. below) of the form 

and reduce it to the form (C. 10) by incorporating the terms bilinear in the pj in the 
(so-called) “unperturbed” Hamiltonian of the environment. The point is that the 
resulting description does not conform to the conditions specified above, since the 
environment is now already strongly perturbed by the interaction (in fact, the relevant 
spectral densities will now contain the damping v explicitly). While such a procedure 
may be relevant to the “anomalous” type of problem mentioned above, in the case of 
the canonical problem dealt with in this paper Hamiltonians of the form (C. 17) are 
much more simply handled by another method: see below. 

We next discuss how to incorporate into our scheme the important case of a 
system whose interaction with its environment is well described by the adiabatic 
approximation. In such a case let q and c represent, respectively, the “slow” degree of 
freedom and the collection of “fast” degrees of freedom; in the context of a 
macroscopic wave function description (see Introduction) these will be the 
macroscopic and microscopic coordinates, respectively. Let us schematically indicate 
a typical frequency of the slow degree of freedom by wg and that of the fast degrees 
of freedom by w,; then by hypothesis we have oO/w, G 1. To zeroth order in the 
small parameter CL)~/W, the energy eigenfunctions have the form 

(C.18) 

where the functions xk(<: q) satisfy a Schrodinger equation in which q enters as a 
parameter 

m + vr9 9)) &Jr: 9) = U,(q) X/J& 9). (C.19) 

where f(c) schematically represents the (q-independent) kinetic-energy or similar 
terms in the “fast” Hamiltonian. The functions pik(q) are solutions of the equation 

I - T$ $ + u,(q) -Ei, Vik(q) = 0, (C.20) 

where M is the coefficient of f4* in the Lagrangian and may or may not have the 
significance of a physical mass (see Introduction). The functions !Pi,(q, <) = ) ik) form 
a complete orthonormal set, and the correction Afi to the Hamiltonian arising from 
the terms neglected in the zeroth-order adiabatic approximation (which is of order 
e+,/w,) can be expressed in terms of its matrix elements in this basis 
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Now we note a special feature of the adiabatic approximation as applied to 
macroscopic systems: The microscopic states ,yk(q) which are coupled together by Afi 
are in general different only in the behaviour of a small fraction (-l/N) of the 
macroscopically many particles involved. As a consequence, the effective potential 
U,(q) felt by the macroscopic degree of freedom q depends on the “microscopic” 
index k only to order l/N, and so the states cpik(q) are effectively independent of k. 
This simplifies the ensuing formulae considerably. We contruct a linear operator34 
Z?(q) in the space spanned by the functions xk(r: q) by giving its matrix elements in 
this basis: 

(k l&q)1 0 = J’xk*(T: q) (-ih i) x,(6 q) dt. (C.22) 

The operator so defined is Hermitian and is parametrically dependent on 4. Since it is 
a linear operator and the basis set xk(& q) is complete for given q, it follows after a 
little algebra that the perturbation terms (3.15) can be written 

W IAfil .N = & (i Id,,(q) + ~;,,@7)~ + (Ok, (4)l j>, (C.23) 

where as usual 

(il~l.G=jc,“(d (-ifi:) Vj(S)dq (C.24) 

and we have written for clarity (k II?(q)1 f) = kk,(q), etc. Thus the total Hamiltonian 
can be written 

f? = $yf (P + &I))’ + U(q) + ii,“,) (C.25) 

where ki,,, is an operator which refers exclusively to the “environment” 
(microscopic) coordinates <, and Z?(q) is another operator on these coordinates which 
is parametrically dependent on q. The cross-term in brackets is symmetrized as in 
(C.23). Apart from a factor of the coupling constant (-e) the expression (C.25) is 
formally identical to the familiar Hamiltonian of a charged particle interacting with 
an electromagnetic vector potential in one dimension. 

‘* For clarity in the next few lines we put circumflexes on those qualities (only) which are operators 
with respect to the microscopic coordinates r. 
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The argument that the environment can be treated as a set of harmonic oscillators 
now proceeds similarly to that given above for the weak-coupling case, with the 
operator Z? now playing the role of the system-environment interaction. If the Born- 
Oppenheimer expansion is to be a good approximation as we are assuming, then we 
can argue, as above, that as regards the term linear in Z? we need only the matrix 
elements of Z? between the ground and excited states, and that these can be put in 
one-one correspondence with oscillator matrix elements. If as above we choose the 
environment coordinates xj to have the same parity under time-reversal as q, then 
since Z? is not a function of p the only possible form of Z? linear in the environment 
variables is 

K(q) = \- Kj(q) Pj* (C.26) 

Suppose we insert this expression in Eq. (C.25). Is it guaranteed to give the term in 
Z?* correctly? Here we invoke again the fact that, in view of the macroscopic nature 
the system, the microscopic states x,Jq: [) differ only in the behaviour of a small 
number of particles. To the extent that this is so, the approximation 

(k Ik’( r> E (k I@ O)(O lk( I) (C.27) 

should be well justified, and we substitution (C.26) is legitimate. Thus we finally end 
up with an adiabatic Hamiltonian of the form 

‘=& i p + T Kj(q) Pj ’ + U(q) + I?,,, 1 

of which (C.17) is a special case. Here A,,, has the standard oscillator form (C.6). 
It is now straightforward to show (most simply, though not most elegantly, by the 

procedure mjWjXjF’tpj, addition of a total time derivative to the Lagrangian to give 
an interaction term proportional to the ij, and use of the procedure of Appendix A) 
that the description (C.28) is canonically equivalent to the Lagrangian (3.5) with 

Fj(q) given by 

Fj(q) = (mjWj)2 Jq Kj(q’) dq’. 
0 

Thus the case of adiabatic coupling may be treated-albeit perhaps somewhat 
artificially-as a special case of our formalism, and the automatic occurrence of the 
counter-term in Eq. (3.5) indicates that in this case there is no physical frequency 
shift, as indeed we should expect. 

The upshot of the above rather messy and inelegant argument is that for all prac- 
tical purposes we can take the Lagrangian for our problem without loss of generality 
to be given by Eq. (3.5), that is, 
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L = $14cjz - V(q) + ; 1 m&t; - co;xj’, - 1 l;i(q) xj 
i j 

- c F;(q)/2nzi co;, (C-30) 

where, as in the main text, we shall abbreviate the last term as @fAw*q*. We now 
enquire what constraints are imposed on the parameters of the model by the 
condition that the motion of the system is to obey the phenomenological damped 
equation (C. 1). For orientation we first discuss the separable linear case 
(Fj(q) = C,q) and prove Eq. (3.6) that is, 

(C.31) 

It is straightforward to verify that the condition (C.31) must hold if a classical 
treatment of the Lagrangian (C.30) is to produce the equation of motion (2.8). 
Adding to (C.30) a term qF,,,(t) to describe the action of a possible external force, 
we obtain the equations of motion 

kfd = - g + M Aw*q + F&t) - ; Cix,j, (C.32) 

mjij = -mjufxj - C,iq. (C.33) 

Taking the Fourier transforms of Eqs. (C.32k(C.33). eliminating the xi and using 
(C.30), we find that the Fourier transform q(w) of the system trajectory satisfies the 
equation 

-Mu*q(u) = - (u) t Fe,t(u> + K(u) q(u), (C.34) 

where 

K(u) 5s \’ 
c+o* 

7 ??lju;(u;-u*)’ 
(C.35) 

We now make the crucial assumption (cf. above) that for all values of w of interest 
for the problem under consideration the spectrum of the environmental oscillators 
may be treated as continuous. Defining as above 

we have 

2u2 * 
K(u) = - 

i 
J(u’) do’ 

71 0 u’(u’2 - 02) . 
(C.37) 
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Now, to get agreement with the Fourier transform of the phenomenological equation 
(2.8) we need the conditions Im K(w) = VW, Re K(w) = 0 to hold for all values of 
interest. (To d f e me the imaginary part of K we attribute, as usual, an 
infinitesimal positive imaginary part to w.) The first condition obviously requires the 
relation (C.31) to hold for all relevant values of w. Let us assume that (C.31) in fact 
holds to a good approximation for values of o much less than some characteristic 
frequency o, of the environment. (For example, in a metal w, might be of the order 
of the inverse Drude relaxation time.) Then the real part of K(o), for small o, is 
easily seen to be of order r~w*/o,, that is, smaller by a factor w/o, than the 
imaginary part. Thus, provided that all the relevant values of w  are small compared 
to w,, this term will be negligible and the effect of the coupling to the dissipative 
mechanism (environment) will simply be to modify the classical equation of motion 
in a way described by the friction coefficient v (as in Eq. (2.8)). (Any frequency- 
renormalization effect has already been taken into account when V(q) is taken to be 
the renormalized potential). In the more general case it is clear that the imaginary 
part (J) and real part of K(w) are, respectively, the real and imaginary parts of the 
complex frequency-dependence admittance describing the dissipative element, which 
can in principle be obtained from experiment, 

What are the “relevant” values of the frequency w? We shall see in Section 5 that 
for a lightly damped system the frequencies of importance in the tunnelling rate are of 
the order of the classical small-oscillation frequency wO, while for the heavily over- 
damped case they are of the order of the “slow” relaxation frequency O~/JI 
(y 3 q/2M). Th us, if the condition w  < w, is fulfilled for the undamped system it is 
certainly fulfilled for the same system subject to arbitrarily heavy damping. Actually, 
it is characteristic of macroscopic systems that the typical frequency of the 
macroscopic coordinate is very much lower than the frequencies of the environment 
which provides the dissipation, so that our condition is usually very well fullilled.‘5 
Were this not so, the whole long-established tradition of describing macroscopic 
behaviour by simple phenomenological equations involving frequency-independent 
friction coefficients, conductivities, etc., would of course be ill-founded. 

Naturally, it is trivial to extend the above results, if necessary, to cases where the 
relevant system frequencies are not negligibly small compared to w,: all that is 
necessary is to equate J(w) to the imaginary part of the appropriate impedance Z(w). 
Of course in such cases we expect the real part of K(w) to be nonzero. 

We now return to the general case, in which Fj(q) is not necessarily linear in q. We 
might as well handle immediately the case in which r] may be amplitude-dependent 
(though we assume that it is frequency-independent). We will establish a relation 
analogous to (C.31), namely, 

(C.38) 

35 It is possible that it may break down in some Josephson junctions (or SQUIDS), where the 
capacitance is small and the small-oscillation frequency therefore high. If so, the the classical equation 
(2.8) has to be generalized. 
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This generalization of (3.24) is almost intuitively obvious, since we would expect 
quite generally that the “local” friction coefficient should be related to the 
correlations of the local fluctuating forces, which are proportional to the quantities 
3Fj/aq. To establish (C.38) formally we proceed as follows: First, we derive from the 
Lagrangian (C.30), with the interaction term and the counterterm as given, equations 
of motion for q and the xj, and eliminate the latter. This gives the following equation 
for q: 

Mcgt) = - g (t) + Fe.&) - v ---y l aF’([) 
7 mjwj dq at,: Fjlq(t)lj (c.39) 

where $’ is shorthand for the operator d*/dt*. We can rewrite the last term in the 
form 

(C.40) 

We now take the Fourier transform of (C.40) and try to equate it to that of a 
phenomenological dissipative term of the form q(q)cj. To get an exact equality we 
require the relation 

which must hold for arbitrary gn. We first examine the part of this expression which 
comes from the pole of the expression io’/(wj - w”). This is, if interpreted in the 
usual way, 

X {d(Uj- 0’) + S(Uj + O’)}. (C.42) 

By changing the variable of integration in (C.42) to w” - o’ and using the fact that 
this expression must (to get agreement with (C.41)) be independent of w”, we see that 
it is legitimate to replace the o’ in the b-functions by any (sufficiently small) 
frequency whatever. The integral over w’ is then a simple convolution, and a Fourier 
transformation back to the time variable immediately yields the condition (C.38). We 
note carefully that so far we have seen nothing to suggest that a purely linear 
dissipation (r](q) s q = const) cannot be obtained from a general (nonseparable) 
interaction of the form (C.30). 

Now, however, we consider the rest of the expression (C.41), which comes from 
the principal part of the integral over 0’. It is convenient to consider for definiteness 
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the special case o = 0 and to introduce the function (which is of course in general a 
function of the particular trajectory q(t) we are considering) 

(C.43) 

Then the equation of motion of q, in Fourier-transformed form, acquires an extra 
term Aq,,,cj,,,, where Ar;l,,, is defined by 

-i Av,,, = 9 
I^ I O” d[ cc dz ml z)(l + 0”) 

-03 --oc; z* - (( + wy* . 

In the special case of a linear separable interaction of the type (3.7), K(c) is propor- 
tional to S(C) and (C. 11) just gives back the reactive linear term of order r,~‘/w, 
mentioned above. Let us, however, consider the more general case. If K([, z) has 
structure on a scale WJ~ with respect to z, then in general we will get a term of order 
qw*/o, which, barring accidents of cancellation, will be nonlinear, (cf. below), and if 
o,, 5 w, will be larger than that obtainable from the “optimum” assumption that the 
scale of variation of K([, z) in z is the same as that of its integral over 1; (which is 
essentially q(z)), i.e., the microscopic frequency w, mentioned in Section 3. Let us 
therefore make this “optimum” assumption, namely, that K(c, z) is essentially 
constant, (equal to K(5)) with respect to z for z 5 o c: and let us further consider the 
case in which 0” is much less than wu, (though not zero). Now, the principal part 
integral over z will in general be of order w;i(l + O(c*/wf) + .+.). The c-integral 
then gives 

-id?,,,-0;’ 
!’ K(C)(i t o”)( 1 + const <‘/w: t . ..). (C.45) 

The terms independent of 0” vanish because K(i) from its definition is an even 
function of 4’. The term in 0” coming from the 1 in the brackets gives a linear 
reactive term of the same form as that coming from (C.37). The first nonlinear term 
comes from the c2 term in the bracket: it is proportional to the expression 

(C.46) 

Now, the integral of K(c) over c is proportional to the friction coefficient q, so that 
we can write this term as 

I ,  (32 

(Ary,,,)n,,. = const q 2- - 
w, of’ 

(C.47) 

where 0 is the typical frequency represented in K(c). Suppose that the typical 
velocity of the system is v and the typical range of the interaction potentials Fj(q) is 
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a. Then, clearly, the quantity 6 is of order v/a, and finally, the first nonlinear term 
due to the dissipative effects, which is reactive in nature, is of order ~(w/o,)(v’/uf), 
where v, = w,a is a typical velocity associated with the dissipative mechanism. 
Hence for any finite frequency, however small, it will eventually become important if 
we let the amplitude of motion (hence the velocity) become large enough. This 
completes the demonstration that the only form of interaction compatible with strictly 
linear dissipation (or, more precisely, with strictly linear effects of the dissipative 
mechanism) is the separable form (3.7). 

The above considerations may take on a little more flesh if we oonsider a specific 
model for the nonseparable interaction. Let us, for example, consider the following 
model, which might serve as a crude model for certain types of friction between solid 
surfaces (through not for conventional “sliding friction”) 

Fj(q) = bj exp - (q - Rj)*/af , (C.48) 

where the sites R, are randomly distributed along the q axis and the frequencies oj of 
the oscillators associated with them are uncorrelated to the parameters bj, uj, and Rj 
(which may or may not be correlated with one another). For such a model we can of 
course evaluate the quantity K(& z) in a closed form and demonstrate the truth of 
Eq. (C.47) where 6 w  v/a (6 is a typical value of the a,‘~). 

Let us summarize the results of this appendix. First, in the context of the problem 
of interest to us, as defined in the second paragraph, we find that barring possible 
rather pathological cases (which we have not been able to exclude rigorously but 
have argued are unlikely to be relevant in real life) the most general Lagrangian we 
ever need to consider is (3.5). Second, we have shown that in the most general case 
the parameters of the model are constrained by the relation (C.38) (or more generally 
(3.10)). The case of linear dissipation g(q) = 3 is a special case of this. Third, in the 
special case of strictly linear friction we have shown that Fi(q) must have the 
separable form SC,. It should be emphasized once more that in most practical cases 
of current interest the considerations of this appendix are superfluous, since one can 
establish the form of the coupling directly from some microscopic model. 

APPENDIX D : 
SOME MATHEMATICAL RESULTS NEEDED IN SECTION 5 

We first prove the results (5.15)--(5.16) concerning the function 

F(e) 3 (1 + (3/2) sin 0)” 
(1 + sin 8)* cos e 

(0 < 8 < n/2). 

Consider the quantity 

G(8) E (1 + sin f3)* cos epqe) - 1 ] P.2) 

P.1) 
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and write it in the form 

G(e) = (1 + 5 sin 19)’ - (1 + sin ~9)~ + (1 + sin 0)’ (1 + sin 8 - cos 0) 

= $ sin f3( 1 + 5 sin 8 + + sin* el + (1 + sin ey (1 + sin 8 - cos e). (D.3) 

Now the expression in the square brackets is evidently bounded below by (1 + sin 0)’ 
and above by z-(1 + sin@*; similarly, the expression (1 + sin f3 - cos 0) is bounded 
below and above by sin 8 and 2 sin 8, respectively. Thus we have 

$ sin e( 1 + sin e)* ,< G(8) < +? sin e( 1 + sin e)* (D.4) 

from which it follows immediately that 

as stated in the text (Eq. (5.16)). Finally Eq. (5.15) may be obtained directly from the 
fact that the expression 

(1 + $ sin ey - * sin 0( 1 + sin e)* 03.6) 

is, as easily demonstrated, positive everywhere in the range 0 < 0 < n/2. 
We now turn to the inequality (5.17). We define Fourier transforms by the 

prescription 

f(w) = (2n)-“* jm f(t) exp(--iwt) dt. 
~ ix 

Then the quantities (5.4) are given by the expressions 

(D-7) 

BE m I If(4’ dw (DAb) ~~ 
t?= (2rr)-‘/2j.;a dwj”;m dw’lym dw”f(w)f(w’)f(o”) 6(cu + co’ + w”), (D.gc) 

jj=2 a, 
I -m Iwl IfW12 h- (D.8d) 

We immediately see (though it is not needed for present purposes) that a simple 
Schwarz inequality yields A = ~/@L?)“* < 2. 
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We now proceed to demonstrate the inequality (5.17), that is, 

K[f]~[f]=~~*/~*~8~/9. (D-9) 

By exploiting the symmetry of the expression (D.~c), we can rewrite it in the form 

c’= & /omdw jam dco’f(u)f(cu’)f(-w - w’) 

< & j;dujo7’ du’ If( If( If(w + 0’11 (D. 10) 

(where the inequality follows from the fact that f(w) -f*(-w)). We now apply a 
simple Schwarz inequality to produce the result 

(D.ll) 

The double integral J in the braces may be evaluated by rotating the axis in the 
w -0’ plane through 45”. This gives 

1 .‘i 

J=t --x 0 
j dyJm dx If(x)l’ = \=‘x If(x dx 3 $ 

-0 

and hence 

(D. 12) 

(D.13) 

from which the inequality (D.9) follows immediately. We note that for the inequality 
to become an equality,f(w) must be real (implying anf(t) symmetric around t = 0) 
and must satisfy the condition 

f(w + w’) =f(w)f(w’) (w, u’ > 0). (D. 14) 

This immediately implies that f(u) = exp - const /u 1, which in turn implies that the 
form off(t) is (1 + t2)-‘. That this function does indeed yield an extremum of the 
quantity KA can be verified by noting that when suitably scaled (cf. Eq. (5.28)) it 
solves the Euler-Lagrange equation corresponding to (5.2) in the limit a + co. (In 
view of Eqs. (5.9~(5.11) and (5.16), this is evidently equivalent to minimizing KA). 

We tabulate for reference (Table I) the values of the scale-invariant quantities K, A, 
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TABLE I 

Function f 'dfl llfl tii 

sech* t 5\/5/6 18&(3)/n' 751(3)/n' 
8n/9& fi 8x/9 

914 4ln 9ln 

and KA for three functions which give, respectively, the minima of the functional 

ooolfl 0% (5.10)) f or very small and very large a and a reasonably good value for 
a- 1. 

Finally, let us calculate the value of Do(a) given by Eq. (5.39) in the extremely 
overdamped regime (a --t 00). In order to do this we need to know all the bound states 
of the operator A,, + 3 (see (5.32)-(5.34)) with &,(t) = t(l + t*). In other words, we 
need to solve the following eigenvalue problem in the w-representation 

-'-%y"(u') do' = nly,(w). (D. 15) 

where we have dropped terms of order a-‘. 

We list below the normalized eigenfunctions and eigenvalues we have found which 
can be shown to satisfy (D. 15) by direct substitution. 

Eigenfunction Eigenvalue 

‘Y,(u)= i,,:Js)“* [(1+2q+,w,]e-~Y i”-(‘t2fi), 
‘y,(o) = \/z ue-‘w’! A, =o, 

As one can see, we could find only one bound state apart from w,,(w) and v/,(o). 
This has eigenvalue lying between 0 and 1 and, consequently, must contribute to C, 
defined by (5.37). Whether v/*(w) is the only eigenfunction with 0 < ,J < 1 is still an 
open question. Although we have not proved this result we shall take it for granted 
for the present calculation. Therefore, we can write D,(a) as 

Do(a)= (lnfij,),--ln~~,~--ln~,- 1 t (A;‘@,+ (fi;‘Q,. (D.16) 
II=0 

The matrix elements of the operators In fi, and fii, ‘P can be easily evaluated in 
the o-representation as 

(D.17) 
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and 

emlw-w”lc/n(w’)du’. (D.18) 

Then, inserting (D. 17), (D. 18), and the tabulated values of v,(w) and 1, in (D. 16) 
we get 

D,=- 1 +2jmdwln(l +w)e-‘“[2-4w+6u2] 
0 

dw(1 +w))‘eP2”[l +o--w’+2w3]. (D.19) 

Now, defining 

and noticing that L,(k) = A-‘d,(A) (which follows from an integration by parts of 
L,(I)) we can write Do as 

Do = -F + 19e2E,(2), 

where E,(x) is defined as (661 

E,(x)rf=qdt (x > 0). 
x 

This function is tabulated in many mathematical tables (see, for example, [66]) and 
the final result for Do reads 

Do z -1.5. 
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