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N O T E  

ANALYTICAL APPROXIMATION TO THE CAPACITANCE OF THE 
MICROSTRIP DISK CAPACITOR 

(Received 6 July 1995) 

1. INTRODUCTION 

In a recent paper, Gelmont et al.[l] discuss the capacitance 
of  a structure composed of  a metal disk separated from a 
ground plane by a dielectric layer (the microstrip disk 
capacitor). The capacitance was calculated by numerically 
solving an integral equation; this approach, though with 
different solution techniques, was used in previous studies 
of  the same problem[2,3], and was shown to yield results 
of  great accuracy. Earlier treatments of this problem are 
quoted in [1,3]. 

On the basis of their numerical solution, Gelmont et al.[1] 
proposed the following interpolation formula for the 
capacitance, C, of  a disk of  radius a on a dielectric sheet 
of  thickness b and relative permittivity E backed by a metal 
plane (see Fig. 1): 

2n(E + 1)%a 
Ca tan-~[2b(E + l)/(aE)l' (1) 

where C a is the approximate capacitance and e o is the 
vacuum permittivity. This formula reproduces the correct 
limiting expressions both for b/a--*0 and b/a--* oo, but for 
intermediate values of  the ratio b/a it underestimates the 
true capacitance by an amount that can reach 25% for 
E = 1. The value of 33% for the error given in [1] is incorrect 
since it is based upon the ratio C/Ca. The actual relative 
error is CJC - 1 = 1/1.33 - 1 = - 2 5 % .  

The purpose of this note is to directly derive a different 
approximation for C, which has a maximum error of 10% 
(7.5% for E = 1). This approximation is obtained without 
introducing integral equations, but only through a theorem 
of  potential theory and known results of electrostatics; 
because of  this derivation, the resulting formulae have a 
more evident physical interpretation than an interpolation 
formula, such as eqn (I). 

2. A P P R O X I M A T E  C A P A C I T A N C E  FOR t = 1 

We consider first the simpler case where the disk is 
surrounded by vacuum (E = 1), to better illustrate the 
principle of  the method. The starting point is a vector 
integral identity, known as Green's reciprocal theorem (see 
[4], p. 1089), which is an immediate consequence of  his 
second identity; this theorem is applied here to the region D 
external to the disk surface S~, and bounded by the conduct- 
ing plane $2 (z = 0) and the sphere at infinity. A disk can 
be regarded as an oblate spheroid of  infinitesimal thickness; 
this notion clarifies the meaning of  "external" and also 
shows that St is actually composed of  two sheets. If q~ and 
~b' are two solutions of  Laplaee's equation inside D, then 
Green's reciprocal theorem states that: 

X ! ,' dS = x / , dS, 
i= I J S l  i= I J S l  

(2) 

where d/On is the derivative along the outward normal to 
Si. We assume that q~ and ~b' are due to two different 
distributions a~, and a~ on St of  the same charge Q, in the 
presence of  the grounded plane $2. We take for tr t the 
density that is appropriate to Sl in the absence of the plane 
$2, i.e., when St is isolated. We choose tr~ to be the 
equilibrium charge density on St, and hence ~b' will have a 
constant value V', on S~. Thus eqn (2) becomes: 

V' f Js, OLP d S =  fs, Ck~n (3) 

The contribution of  $2 vanishes, since ~b = qS'= 0 on $2. 
The application of  Gauss's theorem to the first integral of  
eqn (3) shows that its value is - Q / E  0 . In the second integral 
of this equation, Ogp'/an = -a~/E0, since q~' corresponds 
to an equilibrium configuration, and the field vanishes 
"inside" S~. More precisely, (0~b 'fign) ± = - (tr ~ ) +_/%, where 
+ ( - )  refers to the upper (lower) face of  St, and 
tr~=(tr~)+ + ( a l L .  Since q~ is continuous across St, the 
second, two-sheet integral of  eqn (3) can be written as a 
single sheet integral involving tr~ [eqn (4)]. Thus eqn (3) 
yields: 

1 
f s  ~rld? dS. (4) V ' = ~  I 

Therefore, the capacitance C = Q/V' can be written in the 
form: 

Q2 
c - (5) 

s a~dp dS 
t 

The potential q~ on S t can be expressed in a rela- 
tively simple form in terms of  the isolated-disk potential in 
oblate spheroidal coordinates (~, rl) , with their origin at the 
centre of  the disk and interfocal distance 2a; these coordi- 
nates are defined through the cylindrical coordinates (,o, z) 
with the same origin by[5]: 

p = ax/(1 + ~2)(1 -- q2 i 
(6) 

z = act/. 

In fact, the potential of  an isolated conducting disk carrying 
a charge Q (and hence with surface charge density trl) is 
given by (2/n)V o tan-t(1/~), where V0 = Q/(8Eoa), and the 
disk itself corresponds to ~ = 0 (see [5] or [6] (Vol. I, p. 254), 
with the interchange of  ~ with r/). To obtain the potential 
in the presence of  $2 at ~ = 0, we must add to the potential 
of  S~ that of  its negative mirror image S~ with respect to the 
plane $2 (see [6] Vol. 2, p. 199). The resulting values of  q~ 
on St is: 

Lp(p ) ~ V o - (2/n)V o tan-l[1/¢(p)], (7) 
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Fig. 1. Geometry of  the microstrip disk capacitor. 

where ¢(p) is obtained from eqn (6) by replacing z with the 
distance 2b of  S~ from S t (see Fig. I). This yields: 

~ ( p ) =  ( x / ~ / 2 ) I - ( 1 - - 4 f 1 2 - - p 2 / a  2 ) 

+ x/( l  -- 4fl 2 -- pE/a2)2 + 16fl2] I/2, (8) 

where fl = b/a. By substituting eqn (7) into eqn (5), making 
use of  the identity tan-l(1 Ix) = n/2 - t a n - t  x, and, recalling 
the definition of  V 0, we obtain for C the expression: 

2E0a 
, (9) 

Jo L - -Q /mn- ' [¢ (p ) lp  dp 

where ~(p) is given by eqn (8). The expression of  eqn (9) is 
exact, but contains the unknown equilibrium charge distri- 
bution try(p) on the disk. However, a first approximation 
to C can be obtained by replacing tr; (p) with the constant 
density Q/(na2); this distribution is correct only in the limit 
of  b/a~O, but it will be shown that it yields acceptable 
accuracy for any value of  the ratio b/a. For constant a~, 
the integral in eqn (9) can be evaluated exactly, by changing 
the integration variable from p to ~ by means of  the square 
of  eqn (8). The resulting approximation for C is given by: 

4nEoa 
c, . .  14/~ 2 l '  (I0) 

tan -t ¢, + ( * , -  ~oJ|~-~-  l / 
where ~0 and ~t are the values of  the function ~(p) ofeqn  (8) 
for p/a = 0 and p/a = 1, respectively. By examining the 
asymptotic form of  G0, ~l for b/a--*O and b/a~oo, it can 
be proved that Ca in eqn (10) correctly approaches the 
elementary expression n%a2/b as b/a---,0, and the isolated 
disk capacitance, 8%a, as b/a--*oo. 

Figure 2 presents a comparison between the values of  the 
ratio Ca/C according to Gelmont et al.[1] and eqn (10) for 
different values ofb/a. The values of  Ca/C of  Gelmont et al. 
have been obtained from Fig. 2 in their article[i]. The exact 
values of  C were not reported in [1], therefore they have 
been deduced from those (C# values) given by Carlson and 
Illman[7] for the parallel disk capacitor; in fact, an exam- 
ination of  Fig. 1 shows that C(b/a)= 2C~(2b/a). These 
values were used to evaluate CJC on the basis of  eqn (10). 

The plots o f  Fig. 2 indicate that eqn (10) yields a 
maximum error of  about 7%; the corresponding value for 
eqn (1) is about 25%. Equation (1) gives a somewhat better 
accuracy than eqn (10) as b/a-,O, whereas this latter 
equation is much more accurate for intermediate or large 
values of  b/a. A more detailed indication of  the accuracy of  
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Fig. 2. Values of  the ratio Ca/C vs b/a according to eqn (l) 

for ~ = 1[I] and eqn (10). 

Table 1. The normalized capacitance C*= C/(n%aZ/b) of the 
microstrip disk /n vacuo for selected values of b/a. The values 
obtained from eqn (10) are compared to those of Table 1 (N = 2) 

in [3]. 

C* C* 
b/a [3] [eqn (10)]  Relative error (%) 

0.2 1.5800 1.66 5 
0.5 2.3183 2.36 2 
1.0 3.5345 3.552 0.5 
2.5 7.2684 7.271 0.04 
5 13.5920 13.5928 0.006 

10 26.3006 26.3008 0.0008 

eqn (10) for b/a >>. 0.2 is given in Table 1, where the values 
of  C * =  C/(moa2/b) are compared with those given in 
Table I in [3]. 

3. APPROXIMATE CAPACITANCE FOR 
ARBITRARY t 

We turn now to the more general case where the metal 
disk lies on a dielectric layer with relative permittivity ~. In 
the region fl the permittivity K% is now point dependent, 
with K = 1 for z > b and K = E for 0 < z < b. By applying 
Gauss's divergence theorem to the vector 
~b'K V~b - ~bK V~ '  in this region, we obtain a generalization 
of  Green's reciprocal theorem of  eqn (1) in the form: 

i= l , ~b'K dS dS. = i= t  dpK (11) 

Repeating the reasoning of  Section 2, in terms of  electric 
displacement instead of  electric field, leads again to the 
expression of  eqn (5) for the capacitance. The potential $ 
required in eqn (5) can again be found by applying the 
method of  images, although here an infinite sequence of  
them is needed, as explained in [6] (Vol. 3, p. 233), or in the 
more explicit analysis by Kleefstra and Herman[8]. Accord- 
ingiy, the potential at z >i b of  a point charge q resting on 
a dielectric slab (i.e., at z = b in Fig. 1), which lies on a 
conducting plane (z = 0), can be described by means of  the 
following system of  images. The charge q itself is replaced 
by (1 - k)q, with k = (~ - 1)/(¢ + 1); a sequence of  image 
charges: 

--(1 -k2)q ,k( l  - k2)q  . . . . .  

- ( - l )nkn (1 -k2 )q  . . . . .  (12) 
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is introduced, which are located at z < 0 at respective 
distances from q: 

2b, 4b . . . . .  2 ( n + l ) b  . . . .  (13) 

By introducing the analogous system of image disks, we 
obtain the generalization of eqn (7) in the form: 

4~(p) = (1 - k)V o - (2/n)V0(1 - k2){tan-'[1/~o(p)] 

- k tan- ' [ l /~  1 (p)] + " "  

+ (-- 1)"k" tan-t[1/~n(p)] + ' "  "}, (14) 

where the functions ~,(p) are defined through eqn (8), by 
replacing // with //, = (n + 1)b/a. Consequently, eqn (9) 
becomes: 
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Fig. 3. Values of the ratio Ca/C v s  b/a according to [1] 
(E >>1) and eqn (16) for E = 10. 

C =  
2E o a 

(1-k2)  ~o(-l)"k" f f [ ~ ] t a n - t [ ~ , ( P ) ] p  dP' 

and the new approximate capacitance, to be compared to eqn (10), is given by: 

q 47teoa 

( I - k 2 ) , = 0  ~ ( - l ) " k "  t a n - ' ¢ , , + ( ¢ , , - ¢ ~ 0 )  ~ - - ~ - 1  

(15) 

(16) 

where ¢.0,~.1 are the values of ~.(p) for p/a=O and 
p/a = 1, respectively. An examination of the limiting be- 
haviour of eqn (16) shows that this expression correctly 
approaches nEeoa2/b as b/a~O, and 4(E + 1)E0a as b/a--,oo. 
For b/a > 1, the term in curly brackets in eqn (16) can be 
approximated by replacing tan-I(~.t) with n /2 -1 / (2 / / . )  
and neglecting its second addend. The resulting series can be 
summed with the aid of eqns (0.231.1) and (1.511) in [4], to 
g i v e :  

4(E + 1)Eoa 
C a ~ (17) 

a l + k  
1 - -  In(1 + k) 

nb k 

It has been checked that the difference between this 
expression and eqn (16) is less than 3% for b/a > 1.5. 
The result of eqn (17) is also useful for accelerating the 
convergence of the series of eqn (16), following the 
procedure suggested in [9]. 

Figure 3 compares the ratio Ca/C according to eqn (1) 
and eqn (16) as a function of b/a. The values of Ca/C 
according to Gelmont et al.[l] have been obtained from the 
plot (E >> 1) of Fig. 2 in their paper. The values of C required 
to estimate Ci/C according to eqn (16) were obtained from 
that plot and eqn (1), with the tentative value E = 10. This 
because neither the actual value of E used to produce the plot 
nor the exact values of C were given in [1]. 

The plots of Fig. 3 indicate that eqn (16) yields a 
maximum error of about 9.5% (this value becomes 8.5% for 

= 20); the maximum error of eqn (1) is about 14%. As 
before, the present approximation performs better than 
eqn (1) for b/a > 1, whereas the converse is true for b/a << 1. 

Approximate formulae for C valid for any E were derived 
by Coen and Gladwell[3] on the basis of a Legendre 
expansion of the solution of a Fredholm integral equation 
for the charge density. Their approximation was shown to 
have a maximum error of about 6%, which is lower than 
that ofeqn (16). However, the single eqn (16) is valid for any 

value of b/a, whereas in [3] the capacitance is approximated 
by two different expressions, depending on whether b/a is 
smaller or larger than approximately 0.2. Moreover, eqn 
(16) uses only elementary functions, whereas the approxi- 
marion in [3] for b/a ~< 0.2 contains a series of elliptic 
integrals. 

4. CONCLUSION 

An approximate analysis has been given for the capaci- 
tance of a metal disk separated from a ground plane by a 
dielectric sheet. On the basis of Green's reciprocal theorem, 
an exact relation has been derived, which expresses the 
capacitance in terms of the (unknown) equilibrium charge 
density on the disk and the (known) potential produced by 
the disk when it is isolated. By approximating this density 
with a constant, expressions for the capacitance have been 
derived and have been compared to exact results and a 
recently proposed interpolation formula. More accurate 
estimates of the capacitance can be obtained by using a 
better approximation to the true charge density on the disk. 
This improved charge distribution may be found by specific 
physical considerations or, more generally, by means of the 
principle of minimum energy of the system (see, e.g., [6], 
Vol. 2, p. 161), also known as Thomson's theorem[10]. The 
proposed method of approximate calculation of capacitance 
may be applied to other configurations, with a special 
advantage when an exact analysis is difficult to perform. 
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