@ Pergamon

0038-1101(95)00175-1

Solid-State Electronics Vol. 39, No. 2, pp. 314-317, 1996
Copyright © 1996 Elsevier Science Ltd
Printed in Great Britain. All rights reserved
0038-1101/96 $15.00 + 0.00

NOTE

ANALYTICAL APPROXIMATION TO THE CAPACITANCE OF THE
MICROSTRIP DISK CAPACITOR

(Received 6 July 1995)

1. INTRODUCTION

In a recent paper, Gelmont et al.[1] discuss the capacitance
of a structure composed of a metal disk separated from a
ground plane by a dielectric layer (the microstrip disk
capacitor). The capacitance was calculated by numerically
solving an integral equation; this approach, though with
different solution techniques, was used in previous studies
of the same problem[2,3], and was shown to yield results
of great accuracy. Earlier treatments of this problem are
quoted in [1,3].

On the basis of their numerical solution, Gelmont et al.[1]
proposed the following interpolation formula for the
capacitance, C, of a disk of radius a on a dielectric sheet
of thickness b and relative permittivity ¢ backed by a metal
plane (see Fig. 1):
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where C, is the approximate capacitance and ¢, is the
vacuum permittivity. This formula reproduces the correct
limiting expressions both for b/a —»0 and b/a - 0, but for
intermediate values of the ratio b/a it underestimates the
true capacitance by an amount that can reach 25% for
¢ = 1. The value of 33% for the error given in [1] is incorrect
since it is based upon the ratio C/C,. The actual relative
error is C,/C —1=1/1.33 — 1 = —25%.

The purpose of this note is to directly derive a different
approximation for C, which has a maximum error of 10%
(7.5% for € =1). This approximation is obtained without
introducing integral equations, but only through a theorem
of potential theory and known results of electrostatics;
because of this derivation, the resulting formulae have a
more evident physical interpretation than an interpolation
formula, such as eqn (1).

2. APPROXIMATE CAPACITANCE FOR e=1

We consider first the simpler case where the disk is
surrounded by vacuum (e =1), to better illustrate the
principle of the method. The starting point is a vector
integral identity, known as Green’s reciprocal theorem (see
{4], p. 1089), which is an immediate consequence of his
second identity; this theorem is applied here to the region Q
external to the disk surface S,, and bounded by the conduct-
ing plane S, (z =0) and the sphere at infinity. A disk can
be regarded as an oblate spheroid of infinitesimal thickness;
this notion clarifies the meaning of “external” and also
shows that S, is actually composed of two sheets. If ¢ and
¢’ are two solutions of Laplace’s equation inside Q, then
Green'’s reciprocal theorem states that:
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where 0/0n is the derivative along the outward normal to
S;. We assume that ¢ and ¢’ are due to two different
distributions ¢,, and o on S, of the same charge Q, in the
presence of the grounded plane S,. We take for o, the
density that is appropriate to .S, in the absence of the plane
S,, i.e.,, when S| is isolated. We choose o] to be the
equilibrium charge density on §,, and hence ¢’ will have a
constant value ¥’, on S,. Thus eqn (2) becomes:
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The contribution of S, vanishes, since ¢ =¢’' =0 on S,.
The application of Gauss’s theorem to the first integral of
eqn (3) shows that its value is —Q /e,. In the second integral
of this equation, d¢’/dn = —a|/e,, since ¢’ corresponds
to an equilibrium configuration, and the field vanishes
“inside™ §,. More precisely, (0¢'/on), = —(61), /¢y, where
+ (—) refers to the upper (lower) face of S,, and
61=(0), +(67)_. Since ¢ is continuous across S;, the
second, two-sheet integral of eqn (3) can be written as a
single sheet integral involving ¢ [eqn (4)]. Thus eqn (3)
yields:
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Therefore, the capacitance C = Q/V’ can be written in the
form:
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The potential ¢ on S, can be expressed in a rela-
tively simple form in terms of the isolated-disk potential in
oblate spheroidal coordinates (£, ), with their origin at the
centre of the disk and interfocal distance 2a; these coordi-
nates are defined through the cylindrical coordinates (p, z)
with the same origin by[5]:

p=a/(1+&)(1~n?)

z = aln.

C= (5)
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In fact, the potential of an isolated conducting disk carrying
a charge Q (and hence with surface charge density o)) is
given by (2/r)¥V,tan—!(1/¢), where ¥, = Q/(8¢,a), and the
disk itself corresponds to ¢ = 0 (see [S] or [6] (Vol. 1, p. 254),
with the interchange of ¢ with »). To obtain the potential
in the presence of S, at ¢ = 0, we must add to the potential
of S, that of its negative mirror image S} with respect to the
plane S, (see [6] Vol. 2, p. 199). The resulting values of ¢
on S, is:

é(p) = V, — 2/m)V, tan~'[1/&(o)], Y]
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Fig. 1. Geometry of the microstrip disk capacitor.

where £(p) is obtained from eqn (6) by replacing z with the
distance 2b of S} from S, (see Fig. 1). This yields:
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where f = b/a. By substituting eqn (7) into eqn (5), making
use of the identity tan~'(1/x) = n/2 —tan~! x, and, recalling
the definition of V,, we obtain for C the expression:
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where £(p) is given by eqn (8). The expression of eqn (9) is
exact, but contains the unknown equilibrium charge distri-
bution o(p) on the disk. However, a first approximation
to C can be obtained by replacing o (p) with the constant
density Q/(ra?); this distribution is correct only in the limit
of b/a—0, but it will be shown that it yields acceptable
accuracy for any value of the ratio b/a. For constant o1,
the integral in eqn (9) can be evaluated exactly, by changing
the integration variable from p to ¢ by means of the square
of eqn (8). The resulting approximation for C is given by:
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where ¢ and £, are the values of the function £(p) of eqn (8)
for p/a =0 and p/a =1, respectively. By examining the
asymptotic form of &, ¢, for b/a—0 and b/a—> w0, it can
be proved that C, in eqn (10) correctly approaches the
elementary expression ne,a’/b as bj/a—0, and the isolated
disk capacitance, 8¢ya, as bja— 0.

Figure 2 presents a comparison between the values of the
ratio C,/C according to Gelmont ez a/.[1] and eqn (10) for
different values of b/a. The values of C,/C of Gelmont et al.
have been obtained from Fig. 2 in their article[1]. The exact
values of C were not reported in (1], therefore they have
been deduced from those (C,, values) given by Carlson and
Hlman(7] for the parallel disk capacitor; in fact, an exam-
ination of Fig. 1 shows that C(b/a)=2C,4(2b/a). These
values were used to evaluate C,/C on the basis of eqn (10).

The plots of Fig. 2 indicate that eqn (10) yields a
maximum error of about 7%; the corresponding value for
eqn (1) is about 25%. Equation (1) gives a somewhat better
accuracy than eqn (10) as b/a—0, whereas this latter
equation is much more accurate for intermediate or large
values of b/a. A more detailed indication of the accuracy of
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Fig. 2. Values of the ratio C,/C vs b/a according to eqn (1)
for ¢ = 1[1] and eqn (10).

Table 1. The normalized capacitance C* = C/(ne,a’/b) of the
microstrip disk in vacuo for selected values of b/a. The values
obtained from eqn (10) are compared to those of Table 1 (N =2)

in [3].
Cc* c*

bla 3] [eqn (10)] Relative error (%)
0.2 1.5800 1.66 5

0.5 2.3183 236 2

1.0 3.5345 3.552 0.5

2.5 7.2684 7.271 0.04

5 13.5920 13.5928 0.006
10 26.3006 26.3008 0.0008

eqn (10) for b/a > 0.2 is given in Table 1, where the values
of C*=C/(reya*/b) are compared with those given in
Table 1 in [3].

3. APPROXIMATE CAPACITANCE FOR
ARBITRARY ¢

We turn now to the more general case where the metal
disk lies on a dielectric layer with relative permittivity ¢. In
the region Q the permittivity Ke, is now point dependent,
with K =1 for z > b and K =¢ for 0 <z < b. By applying
Gauss’s  divergence  theorem to  the  vector
¢’'K V¢ — ¢K Vo' in this region, we obtain a generalization
of Green’s reciprocal theorem of eqn (1) in the form:

i ¢'Kz—¢ds=‘2; ¢Ka¢,
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Repeating the reasoning of Section 2, in terms of electric
displacement instead of electric field, leads again to the
expression of eqn (5) for the capacitance. The potential ¢
required in eqn (5) can again be found by applying the
method of images, although here an infinite sequence of
them is needed, as explained in [6] (Vol. 3, p. 233), or in the
more explicit analysis by Kleefstra and Herman([8}]. Accord-
ingly, the potential at z 2> b of a point charge ¢ resting on
a dielectric slab (i.e., at z =4 in Fig. 1), which lies on a
conducting plane (z = 0), can be described by means of the
following system of images. The charge q itself is replaced
by (1 — k)q, with k = (¢ — 1)/(e¢ + 1); a sequence of image
charges:

~(1=k¥)q, k(1 —kYg, ...,

—(=1k"(1 —k¥gq,..., (12)
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is introduced, which are located at z <O at respective
distances from g:
2b,4b,...,2(n+ 1)b,. .. (13)

By introducing the analogous system of image disks, we
obtain the generalization of eqn (7) in the form:

$(p) = (1 —k)V, — 2/n)V,(1 — k) {tan""[1/£4(p)]
—k an~'[1/& (PN + -

+(=Drk"tan~'[1/&,(p)] + -}, (14)

where the functions £ (p) are defined through eqn (8), by
replacing f with B, =(n + 1)b/a. Consequently, eqn (9)
becomes:
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Fig. 3. Values of the ratio C,/C vs b/a according to [1]
(e>1) and eqn (16) for ¢ = 10.

and the new approximate capacitance, to be compared to eqn (10), is given by:
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where ¢, &, are the values of £,(p) for p/a =0 and
pla =1, respectively. An examination of the limiting be-
haviour of eqn (16) shows that this expression correctly
approaches nee,a®/b as b/a—0, and 4(c + 1),z as bja—co.
For bja > 1, the term in curly brackets in egn (16) can be
approximated by replacing tan~'(¢,) with =n/2 — 1/(28,)
and neglecting its second addend. The resulting series can be
summed with the aid of eqns (0.231.1) and (1.511) in [4], to

give:
4 + D¢ga
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It has been checked that the difference between this
expression and eqn (16) is less than 3% for b/a > 1.5.
The result of eqn (17) is also useful for accelerating the
convergence of the series of eqn (16), following the
procedure suggested in [9].

Figure 3 compares the ratio C,/C according to eqn (1)
and eqn (16) as a function of b/a. The values of C,/C
according to Gelmont et al.{l] have been obtained from the
plot (e » 1) of Fig. 2 in their paper. The values of C required
to estimate C,/C according to eqn (16) were obtained from
that plot and eqn (1), with the tentative value ¢ = 10. This
because neither the actual value of ¢ used to produce the plot
nor the exact values of C were given in [1].

The plots of Fig. 3 indicate that eqn (16) yields a
maximum error of about 9.5% (this value becomes 8.5% for
¢ = 20); the maximum error of eqn (1) is about 14%. As
before, the present approximation performs better than
eqgn (1) for b/a > 1, whereas the converse is true for b/a « 1.

Approximate formulae for C valid for any ¢ were derived
by Coen and Gladwell[3] on the basis of a Legendre
expansion of the solution of a Fredholm integral equation
for the charge density. Their approximation was shown to
have a maximum error of about 6%, which is lower than
that of eqn (16). However, the single eqn (16) is valid for any

value of b/a, whereas in [3] the capacitance is approximated
by two different expressions, depending on whether &b/a is
smaller or larger than approximately 0.2. Moreover, eqn
(16) uses only elementary functions, whereas the approxi-
mation in [3] for b/a <0.2 contains a series of elliptic
integrals.

4. CONCLUSION

An approximate analysis has been given for the capaci-
tance of a metal disk separated from a ground plane by a
dielectric sheet. On the basis of Green’s reciprocal theorem,
an exact relation has been derived, which expresses the
capacitance in terms of the (unknown) equilibrium charge
density on the disk and the (known) potential produced by
the disk when it is isolated. By approximating this density
with a constant, expressions for the capacitance have been
derived and have been compared to exact results and a
recently proposed interpolation formula. More accurate
estimates of the capacitance can be obtained by using a
better approximation to the true charge density on the disk.
This improved charge distribution may be found by specific
physical considerations or, more generally, by means of the
principle of minimum energy of the system (see, e.g., [6],
Vol. 2, p. 161), also known as Thomson’s theorem[10). The
proposed method of approximate calculation of capacitance
may be applied to other configurations, with a special
advantage when an exact analysis is difficult to perform.
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