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Light-absorption and luminescence processes in nano-sized materials can be modelled either by

using computational approaches developed for quantum chemical calculations or by applying

computational methods in the effective mass approximation (EMA) originally intended for solid-

state theory studies. An overview of the theory and implementation of an ab initio correlation

EMA method for studies of luminescence properties of embedded semiconductor quantum dots is

presented. The applicability of the method and the importance of correlation effects are

demonstrated by calculations on InGaAs/GaAs quantum-dot and quantum-ring samples. Ab

initio and density functional theory (DFT) quantum chemical studies of optical transitions in

freestanding silicon nanoclusters are also discussed. The accuracy of the optical gaps and

oscillator strengths for silicon nanoclusters obtained using different computational methods is

addressed. Changes in the cluster structures, excitation energies and band strengths upon

excitation are reported. The role of the surface termination and functional groups on the silicon

nanocluster surfaces is discussed.

I. Introduction

Semiconductor quantum dots can largely be divided into two

main classes, namely freestanding and embedded quantum

dots. Clusters and nanocrystals consisting of one kind of

atoms or of molecular compounds as well as large molecules

can be considered to belong to the first category.1,2 In the

synthesis, dangling bonds at the surface of the freestanding

quantum dot can be terminated with hydrogen or larger

ligating groups.3–5 The embedded quantum dots are self-

assembled structures fused and integrated into a surrounding

matrix6–9 or manufactured by lithography and chemical etch-

ing.10 Embedded quantum dots can be considered as some

kind of defect in the solid-state material perturbing the

periodicity of the bulk structure11 suggesting the use of models

based on the effective-mass approximation (EMA) in quan-

tum-dot studies.12 The two categories of quantum dots are in

general studied computationally by using different computa-

tional approaches.2,8,12–18 Computational methods developed

for molecular electronic structure calculation are used in

studies on freestanding quantum dots,2,14,16,18,19–23 whereas

computational methods employing EMA models originally

intended for calculations on bulk materials are the standard

approach in studies on embedded quantum dots.8,12,13,24 Large

freestanding quantum dots have also been studied computa-

tionally using EMA approaches.25–27 However, for freestand-

ing quantum dots it is not trivial to determine the effective

confinement potential from basic principles. The use of parti-

cle-in-a-box-like confinement potentials gives a taste of semi-

empirical character of the EMA approach in studies on

freestanding quantum dots.28,29 Such simple EMA models

tend to exaggerate the confinement effects,30,31 whereas im-

proved EMA models with nonspherical confinement poten-

tials yield energies in slightly better agreement with

experiment.32–35 A qualitative explanation of the confinement

energy effects and the dependence of the strength of the

photoluminescence with respect to the cluster size can be

obtained using EMA calculations on freestanding quantum

dots.36,37 For embedded quantum-dots rather accurate
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confinement potentials can be obtained using strain calcula-

tions.6 Atomistic methods for computational studies of em-

bedded quantum dots have also been developed.2,38

The molecular and EMA approaches have their own pros

and cons and are complementary. EMA calculations have

difficulties to accurately describe processes in very small quan-

tum dots because the microscopic structure at the atomic level

determines their optical properties. The strength of the EMA

approach is its ability to describe large quantum dots for which

mainly the confinement effects influence their properties. The

transition from large quantum dots to bulk material can be

made smoothly at the EMA level by using systematically larger

and shallower confinement potentials. Molecular approaches

are preferable for small quantum dots regardless of whether

they are freestanding or embedded in a matrix.

The EMA equations for semiconductor quantum dots con-

taining many particles are often solved using rather unsophis-

ticated computational methods, because the rough

approximations of the EMA model are assumed to limit the

accuracy anyhow. The discrepancies between calculated and

experimental data can thus be due to the EMA approximation

or due to the employed computational methods. Excitonic

systems involving one electron-hole pair can be modelled using

exact diagonalization approaches corresponding to full con-

figuration interaction.8 For many-particle quantum dots, the

construction and diagonalization of the full Hamiltonian

matrix become computationally expensive. In semiconductor

quantum-dot studies aiming at high accuracy, correlation

effects have to be considered because the formally opposite

charge of the electrons and the holes renders correlation

important for luminescence processes.

The EMA and the atomistic approaches are both useful

when aiming at a deeper understanding of the photolumines-

cence (PL) properties of semiconductor quantum dots. Mole-

cular electronic structure calculations at density functional

theory (DFT) levels are limited to molecules consisting of up

to a few thousands of atoms. The applicability of DFT

calculations will though in a near future be extended to much

larger systems.39–44

The approximate density functionals of today are not

perfect implying that DFT results must be assessed by com-

paring them to accurate values obtained at ab initio levels of

theory or to unambiguous experimental data. Such compar-

isons yield the magnitude and sources of errors of the DFT

calculations. Accurate estimates for excitation energies can be

obtained by adjusting the DFT values using correction factors

obtained in benchmark studies. The benchmark calculations

are performed on smaller species because highly correlated ab

initio calculations are not feasible for very large systems. The

coupled-cluster approximate singles and doubles (CC2) model

is currently the most advanced correlated ab initio approach

feasible for studies of quantum dots.23,45 The number of

amplitudes describing the left and right CC2 wave functions

is the same as the number of coefficients parameterising an

excited state at the time-dependent DFT (TDDFT) level. The

computational effort to determine the amplitudes is though

significantly larger than for solving the linear response equa-

tions of the TDDFT method. The basis set convergence is also

slower for ab initio approaches than for DFT based methods.

CC2 calculations are today applicable on medium-size mole-

cules46,47 and small quantum dots.17,48

The DFT and ab initio approaches that can be employed in

studies of large molecules cannot accurately describe multiply

excited states, because neither the linear response DFT

(TDDFT) method using today’s approximate functionals, nor

the linear response CC2 method, are able to provide accurate

excited states with significant multiple excitation character. In

semiconductor quantum-dot studies, this implies that proper-

ties of multiexciton complexes are hard to calculate accurately

using the linear response methods. In EMA calculations, the

difference between excitons and multiexcitonic complexes ap-

pears as the number of quasi particles to be considered in the

calculation. Calculations on exciton systems are two-body

correlation problems involving one electron–hole pair, whereas

calculations on multiexcitonic complexes are more complicated

because interactions between several electrons and holes must

be considered in the many-body calculation.

In this work, we present a overview of our computational

studies on freestanding silicon quantum dots using DFT and

CC2 methods aimed for molecular electronic structure calcula-

tions. The properties of the excited states and the transition

probabilities between the ground state and the excited states are

calculated using the corresponding linear response formalism.

The employed TDDFT and CC2 linear response methods are

not thoroughly discussed here because they have been devel-

oped and implemented by other researchers.21,23 The EMA

method for studies of semiconductor quantum dots is instead

presented in more detail, because a two-band EMA approach

considering electron-hole correlation effects has been developed

and implemented by us and coworkers.13,49–58 The applicability

of the EMA approach on embedded quantum dots is demon-

strated by calculations on a strain-induced InGaAs/GaAs

quantum-dot sample as well as on quantum-dot and quan-

tum-ring models using the same material parameters.

II. Freestanding silicon quantum dots

Crystalline silicon is known to be a poor light emitter due to its

indirect optical band gap.59 Research activities in semiconduc-

tor optoelectronics were originally focused on compound

semiconductors59 with direct band gaps, thus enabling efficient

light emission. Porous silicon was found to be photolumines-

cent at cryogenic temperatures in the mid-80s,60 but when

Canham et al.61 discovered that silicon nanostructures are

photoluminescent at room temperature, it became apparent

that silicon can be useful in optical applications and devices.62

Strong PL from porous silicon occurs in the energy range of

red to yellow light, whereas the blue emission is rather weak.63

Freestanding silicon nanoclusters were synthesised later on

and found to be light emitters with strong luminescence in the

energy range from red to blue depending on their size.1,64–66

The origin of the PL is not understood and no consensus

prevails concerning the PL mechanism at the atomic level.

Different mechanisms for the light emission from porous

silicon have been proposed. These comprise quantum confine-

ment effects, nanocrystal surface states, defects, molecular

functional groups, and structural disorder.66–68 It has even

been proposed that the observed light would be due to thermal
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radiation.69 The most popular explanation of the bright

luminescence is quantum confinement.

The exciton generated by an applied laser field is confined

inside the nanocrystals in porous silicon and the emitted light

is created through radiative recombination processes of the

electron–hole pair. In crystalline silicon and other semicon-

ductors with indirect band gaps, the optical recombination

transition is forbidden, unless lattice vibrations (phonons) are

involved in order to conserve crystal momentum. The spatial

confinement of electrons and holes inside nanocrystals in-

creases the uncertainty of the crystal momentum and optical

transitions become allowed.70 For a narrow confinement

potential, the PL energy is larger than for a flat one, analogous

to the solutions of the Schrödinger equation for a particle in a

box. According to the quantum-confinement model, the re-

combination rate of electrons and holes increases with decreas-

ing size of the cluster. The quantum-confinement model has

proven to be very successful to predicting PL properties in

good agreement with observations, at least as far as the energy

of the emitted light is concerned.

The confinement model provides limited information about

the emission mechanism at the atomic level. Hitherto, little is

known about the luminescence mechanism and the micro-

scopic nature of the quantum-dot structure at the light-emis-

sion centres. Besides the cluster size, there are other factors

that affect the optical properties of the silicon nanoclusters

because all silicon nanoclusters are not strongly luminescent.71

The shape and crystal structure might be important, but the

surface chemistry including active functional groups at the

cluster surface certainly influences the optical properties of

silicon nanoclusters. Computational studies of absorption and

emission spectra of freestanding silicon nanoclusters show that

the confinement model alone cannot explain the observed

strong PL of silicon nanoclusters,72 because the calculated

band strengths for the hydrogen capped silicon nanoclus-

ters17,45,48,73 are several orders of magnitude smaller than

obtained in the PL experiments.74

In preparative chemistry, new routes to synthesise silicon

nanoclusters have been developed and also new approaches to

tailor the surface chemistry are being evolved.1,75 Strongly

luminescent silicon nanoclusters with an optical yield exceed-

ing 60% were recently synthesised.76 The bright silicon na-

noclusters were obtained by attaching octadecacene groups to

their surface. In technical applications and for the microelec-

tronic industry an interesting research direction is the design

and construction of strongly luminescent silicon nanoclusters

embedded in amorphous SiO2 or in other transparent and

robust matrices protecting the light emitters.77 Polysilylenes

also show promise as materials for strong luminescence and

electroluminescence with applications in light-emitting diodes

and flat-panel screens.75,78,79

III. Electronic spectra, oscillator strengths and

lifetimes

A Absorption and emission processes

A more thorough understanding of the light-absorption and

light-emission processes requires information about the

potential-energy surfaces of both the ground and the involved

excited states. The absorption of a photon excites the cluster in

the ground state with its equilibrium geometry to an excited

state. During the excitation process, the molecular structure is

largely unchanged. However, the ground-state structure is not

optimal for the excited state, resulting in a relaxation of the

molecular structure of the excited state. The de-excitation

giving rise to the luminescence can also be considered to occur

vertically from the relaxed excited state structure. The opti-

mised molecular structure of the excited state is not optimal

for the ground state either. The ground-state energy for the

excited state structure is somewhat higher in energy than for

the ground-state geometry resulting in a redshift of the emitted

light. The relaxation of the excited-state structure and the

strain of the ground-state structure contribute to the

Stokes shift.

Calculation of luminescence properties is much more in-

volved than computing the electronic absorption spectrum. In

accurate simulations of the luminescence, a variety of relaxa-

tion processes have to be considered because the observed light

emission is the outcome of several competing and coupled

processes. The emission intensity and the energy of the emitted

light depend on the de-excitation route and populations of the

levels. Both radiative and nonradiative processes have to be

considered. The luminescence strength is obtained by solving

the rate equations for the involved relaxation pathways.

However, Stokes shifts and luminescence intensities can be

estimated by comparing excitation energies and oscillator

strengths calculated for the molecular structures of the ground

and involved excited states, respectively. The difference

between absorption and emission spectra is then assumed to

be merely a consequence of the changes in the molecular

structure.

Stimulated emission and optical gain necessary for laser

action can be observed when population inversions between

the ground and a radiating excited state occurs. Optical gain

was recorded for the first time in embedded silicon nanoclus-

ters by Pavesi et al.77 They proposed a three-level model for

the optical gain mechanism with a population inversion for a

radiative state at the silicon nanocluster/silicon dioxide inter-

face. The radiative state responsible for the optical gain lies

energetically between the ground state and the absorbing

excited states. The prerequisites for a silicon nanocluster based

laser is strong absorption of light, a fast relaxation of the

excited state, and an electron-hole recombination with a

smaller transition probability from the relaxed excited state

than for the absorption process.62,76,77

B Absorption and luminescence spectra

Simulated absorption spectra can be obtained from calculated

excitation energies and oscillator strengths as

IiðoÞ ¼
Xn
j¼1

fij
ðO=2Þ2

ðo� oijÞ2 þ ðO=2Þ2
; ð3:1Þ

where oij are excitation energies from state ci, and fij are the

corresponding oscillator strengths. The summation runs over

all excited states cj in the considered energy range. A Lor-

entzian line shape function with a line width (O) of 50 meV has
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been used in this work. The oscillator strengths fij for the light

absorption process from a specific state ci to all degenerate

states of the upper level cj is calculated as

fij ¼
2

3

DEij

gi
S2
ij ð3:2Þ

where DEij is the excitation energy, gi is the degeneration of ci,

and S2
ij is the squared transition moment calculated as

S2
ij = |hci|x|cji|2+|hci|y|cji|2+|hci|z|cji|2 (3.3)

The expression for the oscillator strength in SI units is

fij ¼
8p2meca

2
0

3h

DEijS
2
ij

gi
; ð3:4Þ

where me is the electron mass, c is the speed of light in vacuum

and a0 is the Bohr radius. Inserting the latest values of the

fundamental physical constants yields a working equation for

the oscillator strength

fij ¼
3:0375568� 10�6

gi

DEij

cm�1

� �
S2
ij

a:u:

" #
ð3:5Þ

The band strengths for comparison with experimental absorp-

tion spectra are obtained by multiplying the oscillator strength

in eqn (3.5) by the state degeneration factors gi and gj. The

luminescence intensity from state cj is proportional to the de-

excitation energy DEji, the degeneration of the upper level gj,

and the transition probability Aji from the non-degenerate cj

state to all states of the lower level ci.

Iji p DEjigjAji (3.6)

Aji (in SI units) is given by

Aji ¼
16p3e2a20
3he0

DE3
ji

gj
¼ 2pe2

e0mec

DE2
jigifji

gj
; ð3:7Þ

where h is the Planck constant, e is the elementary charge and

e0 is the electric constant. The working equation for the

transition probability then becomes

Aji

s�1

� �
¼ 0:66702517

DEji

cm�1

� �2
gi

gj
fji ð3:8Þ

The lifetime tji of the excited state can be calculated as the

inverse of the transition probability rate, when no other

relaxation paths compete with the luminescence process. The

working equation for the lifetime then reads

tji
s

h i
¼ 1:4991938

gj

gi

1

fji

cm�1

DEji

� �2
ð3:9Þ

C Luminescence in the EMA picture

In the EMA model, the electronic excitation from the filled

valence band to the empty conduction band is expressed as the

creation of an electron-hole pair. The de-excitation corre-

sponds to recombination and annihilation of the carrier pair.

In the recombination process, the energy is conserved by

emission of a photon. In a semiconductor with embedded

quantum dots, the excitation process occurs mainly in the bulk

of semiconductor. After the excitation, the carrier pair moves

along the valence and conduction bands towards the quantum

dot where they are trapped by the attractive confinement

potential forming an exciton. The recombination process of

the carrier pair occurs in the quantum dot, because there the

electrons and holes are spatially close to each other. The

annihilation probability of the exciton is largely proportional

to the overlap of the electron and hole orbitals of the exciton

wave function. The luminescence energy depends on the

semiconductor band gap and the energy levels of the exciton

trapped in the quantum dot. The luminescence energy equals

the exciton energy calculated using the EMA method plus the

experimental band gap. The EMA computational methods are

described in section IV.

In strong laser fields, the creation of the carrier pairs might

be faster than the exciton annihilation in the quantum dot.

Many electron-hole pairs are simultaneously trapped in the

quantum dot; multiexciton complexes are formed. The energy

levels of the multiexcitons can be obtained by solving the

Schrödinger equation for interacting electrons and holes

trapped by the confinement potential of the quantum dot.

Doped quantum-dot samples might have a net positive or

negative charge. The excess electrons or holes interacting with

the carrier pairs of the excitons must then be considered in the

calculation. The energy levels of the excitons in the quantum

dot depend on the number of electrons and holes in the dot as

well as the shape and size of the confinement potential. For

example, a biexciton is bound when its energy is lower than the

energy of two noninteracting excitons. When carrier pairs

enter the dot, they emit excess energy to the surrounding

semiconductor matrix as lattice vibrations (phonon). In the

phonon-relaxation process, the exciton might be trapped and

recombine in an excited state. This is called phonon bottleneck

giving rise to extra peaks in the luminescence spectrum. The

main nonradiative relaxation mechanisms of the excitons in

the quantum dot are phonon relaxation and Auger recombi-

nation. In the Auger recombination of carrier pairs the energy

is transferred to a third charge carrier exciting it to a higher

energy state. The Auger process is a very important nonradia-

tive recombination mechanism for freestanding quantum

dots.80,81

IV. The effective-mass approximation

In the effective mass approximation (EMA), the wave func-

tions Cn(r) for each band of the quantum-dot heterostructure

are expressed as a product of a periodic Bloch function un,k(r)

times an envelope function cn(r).
82

Cn(r) = cn(r)exp(ik�r)un,k(r) (4.10)

un,k(r) have a periodicity of the crystal (Bravais) lattice and the

envelope functions cn(r) are determined by fulfilling the

effective-mass Schrödinger equation. The envelope functions

consider localised deviations from the wave function of the

solid-state material. The EMA ansatz inserted into the Schrö-

dinger equation yields an effective Hamiltonian where the bulk

properties appear as an effective-mass tensor for each

band.8,12,83 The Coulomb interaction between the charge

carriers are considered to be screened by the dielectric constant
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of the bulk semiconductor. The eigenvalues of the effective-

mass Hamiltonian equal the deviation of the excitation

energies from the band gap of the infinite crystal.

The number of bands considered in the EMA calculations

on semiconductor quantum dots is two or more. The most

popular EMA model is the k�p model which takes typically

eight bands into account.84 However, the two-band EMA

model has mainly been applied in studies of multiexcitons

and charged excitons at ab initio correlated levels,8 especially

when the energy splitting between the valence bands is large.

The valence-band structure of GaAs-type semiconductors

consists of heavy-hole (HH), light-hole (LH), and split-off

bands. These bands arise from the spin–orbit (SO) coupling of

the electron spin with the Coulomb field of the nucleus due to

the orbital motion of the electron. Similar to isolated atoms,

where SO coupling leads to the splitting of certain degenerate

energy levels, in solids SO coupling leads to the splitting of the

degenerate valence band states. The terms heavy and light hole

arise from the different effective masses of the valence bands

and the split-off hole is the band which is shifted in energy due

to the SO coupling.

In the studied InGaAs/GaAs quantum-dot sample, the HH

and LH bands are relatively well separated. They can therefore

be treated independently resulting in the commonly used two-

band effective-mass equation considering the electrons and the

heavy holes.8 The light-hole effects can be estimated by taking

the HH–LH coupling into account at the perturbation theory

level.56

A The two-band EMA Hamiltonian

The two-band effective-mass (Luttinger–Kohn) Hamiltonian

is written as8,53

Ĥ ¼
X
ijs

heijc
y
i;scj;s þ

X
rss

hhrsd
y
r;sds;s þ

1

2

X
ijklss0

geeijklc
y
i;sc
y
k;s0cl;s0cj;s

þ 1

2

X
rstuss0

ghhrstud
y
r;sd

y
t;s0du;s0ds;s �

X
ijrsss0

gehijrsc
y
i;scj;sd

y
r;s0ds;s0 ;

ð4:11Þ

where cwi,s creates an electron in the single-particle orbital i and

dwr,s creates a hole in r. The corresponding annihilation opera-

tors are ci,s and dr,s. The two pseudospinor components, s,
can take the symbolic values of spin-up (m) and spin-down (k).

The one-body electron and hole interaction terms, heij and hhrs,

consist of the kinetic energy contribution and the interactions

of the electrons and the holes with the confinement potentials

Ue,h
conf.

heij ¼
Z

dxf�i ðxÞ
p̂2x
2me

x

þ
p̂2y

2me
y

þ p̂2z
2me

z

þUe
conf

 !
fjðxÞ: ð4:12Þ

The integration is done over x = r, s. p̂ is the momentum

operator, me
x, m

e
y, and me

z are the diagonal elements of the

effective-mass tensor for the electrons and fi(x) are the spin

orbitals of the electrons. An analogous expression defines the

one-body hole interaction integrals hhrs. The two-body

Coulomb interaction terms gabcd are given by

gabcd ¼
Z

dxdx0f�aðxÞf�cðx0Þ
1

4pejr� r0jfbðxÞfdðx0Þ ð4:13Þ

where e is the dielectric constant of the semiconductor (e =

ere0). The hole and the electrons are considered as separate

particles because of the wide bandgap. The Hamiltonian

contains therefore no exchange interaction terms between

the electrons and the holes. Electron-hole exchange interac-

tions can though be taken into account by an ad hoc addition

of Hamiltonian terms that are proportional to the overlap of

the electron and the hole orbitals.85,86

The properties of the semiconductor quantum dots can be

obtained by solving the Schrödinger equation for the Hamil-

tonian in eqn (4.11). For excitons, the wave function can be

obtained by constructing the full Hamiltonian matrix and

solving the eigenvalue problem by using exact diagonaliza-

tion.8 This is not a practical route for full configuration-

interaction (CI) studies of multiexcitons. We have developed

and implemented similar ab initio methods for solution of the

EMA equations for semiconductor quantum dots as used in

modern quantum chemical calculations. The electron–

electron, hole–hole, and electron–hole correlation effects are

considered at the CI13,49–52,58 and general coupled-cluster (CC)

levels.57 In the quantum-dot CI and CC programs, the elec-

trons and the holes are treated equally (Table 1).

B Phonon relaxation

The multiexciton system can lose its energy either through

radiative53 or nonradiative processes.55 Multiexciton com-

plexes can relax nonradiatively from an upper excited state

in the quasi-particle picture to a lower excited state or to the

ground state by emitting phonons to the surrounding semi-

conductor lattice. The phonon relaxation process involves

initial (R) and final (L) states with equal number of elec-

tron-holes pairs. The Hamiltonian for the deformation-poten-

tial interactions between the longitudinal acoustical (LA)

phonons of the lattice and the excitons can be expressed as53,87

ĤLA ¼
X
ij

X
q

hijweðqÞjjicyi cjðbyq þ b�qÞ

þ
X
rs

X
q

hrjwhðqÞjsidyr dsðbyq þ b�qÞ ð4:14Þ

with

we;hðqÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
�hq

2Vrv

s
De;he�iq�re;h ð4:15Þ

Table 1 The material parameters for GaAs used in the EMA
calculations. me is the effective electron mass (me

x = me
y = me

z), m
h is

the effective hole mass (mx = my), m is the bare electron mass, er is the
relative dielectric constant, n is the refractive index, Ep is the Kane
matrix element, De and Dh are deformation potentials of the electrons
and the holes, v is the speed of sound, and r is the density of the
semiconductor

me mh
xy mh

z er n Ep/
eV

De/
eV

Dh/
eV

v/m
s�1

r/kg m�3

0.0665m 0.143m 0.341m 13 3.6 25.7 8.6 6.7 3700 5300
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where r is the density of the material, �h is the reduced Planck

constant (h/2p), De,h are the deformation potentials for the

electrons and the holes, v is the longitudinal sound velocity

(h�oq = h� vq) in the material, and bq is the annihilation

operator for an acoustic phonon with the momentum q. The

transition matrix element between the initial, CI, and final,

CF, states can then be written as

hCFj ĤLA jCIi ¼
X
ij

hL;Njcyi cj jN;Riwe
ijðqÞ

þ
X
rs

hL;Njdyr dsjN;Riwh
rsðqÞ:

ð4:16Þ

The initial phonon state is assumed to be the vacuum state

with no phonons and the final phonon state is the state with

one phonon with momentum q. The other momentum states

are empty. Hence, the process describes the electronic transi-

tion connected with a spontaneous emission of one phonon.

Fermi’s golden rule can now be expressed using transition-

density matrices as

GN;L N;R ¼
2p
�h

Z
dq
X
ij

re;LR
ij we

ijðqÞ þ
X
rs

rh;LR
rs wh

rsðqÞ
�����

�����
2

dðEN;R � EN;L � �hoqÞ
ð4:17Þ

where and d(EN,R � EN,L � �hoq) ensures that the energy

condition is fulfilled. Summation over the orbital indices i, j

and r, s, leads to a function of q, the integral of which is most

conveniently calculated in spherical coordinates.53 The inte-

gral can then be evaluated analytically for the one angular

variable, and numerically for the other angle. The radial

coordinate is fixed due to conservation of the energy.53 The

methods to calculate the generalised transition-density ma-

trices and phonon relaxations are related to those used in

atomic and molecular electronic structure studies of one-

photon transitions. The transition-density matrix preserving

the many-body information of the phonon transition between

L and R are obtained from the CI coefficients as53,57

re;LR
ij ¼ hL;Njcyi cj jN;Ri ¼

X
I

CN;L

I i
j

CN;R
I ð4:18Þ

rh;LRrs ¼ hL;Njdyr dsjN;Ri ¼
X
I

CN;L
Irs

CN;R
I ð4:19Þ

where the index I includes configurations in which orbital j(s)

is occupied and Iij(I
r
s) refers to the configurations obtained

from I by replacing the spin orbital j(s) with i(r). At coupled-

cluster levels, the transition-density matrix can be obtained

using response theory.88–90

C Radiative electron–hole recombination

The photon-emission rate GN�1,L’N,R, for the transition

from a multiexciton complex with N electron-hole pairs |N,

Ri to a complex with (N � 1) electron-hole pairs |N � 1,Li

can be written as53,82,91–93

GN�1;L N;R ¼
ne2EpEph

6p�h2c3e0me

X
s

jhL;N � 1jP�s jN;Rij
2;

ð4:20Þ

where n is the refractive index of the semiconductor, Ep is the

Kane matrix element,94 and Eph is the emitted photon energy.

The operator Ps
� is the inter-band polarisation operator8

which annihilates an electron-hole pair with a given spin

projection (s = m or k) by creating a photon with a definite

circular polarisation. Configuration interaction expansions of

the initial R and final L states yield a recombination density

matrix expression for the photo-emission rate.

GN�1;L N;R ¼
ne2EpEph

6p�h2c3e0me

X
s

X
ir

gs;�sir;LRhijri
�����

�����
2

; ð4:21Þ

where hi|ri is the overlap of the electron and hole orbitals.

gs,�sir,LR, is the recombination density matrix given by

gs;�sir;LR ¼ hL;N � 1jcidrjN;Ri ¼
X
I

CN�1;L
I CN;R

Iir
; ð4:22Þ

the elements of which contain the many-body information

about transitions between states with different numbers of

charge carriers. The summation includes all configurations of

the hL,N�1| state (CN�1,L
I ) and CN;R

Iir
denotes the CI coeffi-

cients of the |N,Ri state that give a non-vanishing contribu-

tion when the electron in spin orbital i and the hole in spin

orbital r are annihilated. The recombination density matrix

can be evaluated for non-orthogonal states using the same

ideas as used in atomic and molecular calculations of transi-

tion-density matrices.95,96 The calculation of the recombina-

tion density matrix, gs,�sir,LR, requires only a small fraction of the

computational time needed to obtain the CI coefficients of the

|N�1,Li and |N,Ri states.55,97

V. Calculations on self-assembled quantum dots

The strain-induced quantum-dot sample shown in Fig. 1 is

formed in the InGaAs quantum well by the self-organising

growth of an InP island on the InGaAs/GaAs semiconductor

surface.7 The diameter of the roughly cylindrical quantum dot

is 80 nm and the width of the In0.1Ga0.9As quantum well is

7 nm. The confinement potential of the quantum dot can be

calculated using the material parameters and the geometry of

the sample.6 The properties of the electrons and holes trapped

in the confinement potential are obtained by solving the two-

Fig. 1 The InP stressor on the surface of InGaAs/GaAs quantum-

well sample leads to a confinement potential of electrons and holes in

the In0.1Ga0.9As quantum well.
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band Schrödinger equation. The radiative recombination

probabilities and luminescence energies were calculated at

the full CI level for the neutral and charged exciton complexes

as described in the previous section. The obtained lumines-

cence spectra of charged multiexciton complexes in InGaAs/

GaAs quantum dots are compared to the PL spectrum of the

neutral exciton in Fig. 2. The spectra were simulated using the

calculated luminescence energies and the corresponding radia-

tive recombination transition probabilities calculated at the

full CI level. Phonon couplings were not considered in the

simulation of the spectra. For the positive quantum-dot

samples, the energy of the strongest transition decreases when

increasing the charge of the dot. For the doubly charged

exciton system consisting of three holes and one electron, a

weaker transition appears slightly below the main peak. For

the negatively charged quantum-dot samples, the strongest

transition is also redshifted as compared to the neutral one.

The negative biexciton has two weak transitions, one lies on

each side of the main luminescence peak. The luminescence

spectra of the positive and negative triexcitons have two strong

bands corresponding to s–s and p–p annihilations because

the lowest s shells are filled and the third electron-hole pair

occupies the lowest p levels. In the spectrum of the negative

triexciton, a weak transition slightly above the s–s peak is

also seen in the spectrum. The calculated PL spectra resemble

the experimental multiexciton emission spectra for an In0.4-
Ga0.6As/GaAs quantum dot.11 At high laser intensities, a large

number of emission lines appear in the experimental spectra in

the vicinity of the two strongest transitions, corresponding to

the s–s and p–p bands.

The correlation effects are more important for quantum

rings than for quantum dots because the repulsive part of the

confinement potential at the centre of the quantum ring

increases the energy of the s states whereas the p,d,. . . states

are less affected. The energy spacing between the one-particle

states becomes smaller enabling a strong mixing of the states

for the many-body systems. The correlation effects were

studied for biexciton complexes confined in InGaAs/GaAs

quantum-ring samples. The ring-shaped confinement poten-

tials were constructed by adding a repulsive Gaussian function

at the centre of the InGaAs/GaAs quantum dot. The strength

of the repulsive potential at the ring centre is varied by

adjusting a strength parameter; l = 0 corresponds to the

original quantum dot and l = 1 yields a characteristic

quantum ring. The radial confinement potentials of the elec-

trons and holes for the l values of 0.0, 0.4 and 0.8 are shown in

Fig. 3.

The total energy of the ground state of the biexciton

complex confined in the GaAs semiconductor heterostructure

was calculated as a function of the scaling factor l. The energy
increases by about 10% when increasing the repulsion poten-

tials at the centre by letting l go from l = 0 to l = 1. The

correlation effects are found to be much larger in the quantum

rings than in the dot. The difference in the correlation effect

between the quantum dot and the quantum rings are illu-

strated in Fig. 4 where the occupation numbers of the Har-

tree–Fock reference are given as a function of potential

strength parameter l. The weight of the Hartree–Fock refer-

ence for the quantum dot is close to unity, whereas the

Hartree–Fock reference contributes only 53% to the total

wave function of the quantum ring obtained with l = 1.0.

In the full CI calculations of the lowest excited states of the

quantum-dot and quantum-ring samples, the splitting between

the first excited state and the ground state decreases with

increasing l value. For the ring-shaped GaAs semiconductor

heterostructure with l = 0.8, the gap is less than 2 meV. In

Fig. 5, we compare the excitation energies of the first few

singlet excited states of the biexciton complexes confined in the

Fig. 2 The PL spectra calculated for (a) positively and (b) negatively

charged multiexciton complexes confined in the InGaAs/GaAs quan-

tum-dot. The spectrum of the neutral exciton is shown for comparison.

In the notation nXq, n is the number of electron-hole pairs and q is the

excess charge.

Fig. 3 The radial part of the confinement potentials of (a) the

electrons and (b) the holes of the quantum dot (l = 0) and the

quantum rings (l = 0.4 and l = 0.8) are shown.
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quantum dot and the quantum rings with l= 0.4 and l= 0.8.

In the figure, one can see that the excitation energies of the P
and D states decrease faster than for the excited S states when

introducing the repulsive potentials at the dot centre. The

small splittings between the ground state and the excited states

of the quantum-ring samples indicate that the wave function

can be drastically influenced by external perturbations.

VI. Molecular electronic structure methods

The two computational methods employed in the studies of the

freestanding silicon nanoclusters are density functional theory

(DFT) and low-order coupled-cluster (CC) theory. The calcu-

lations were performed with TURBOMOLE.98 DFT was originally

developed for computations of ground-state properties.99,100 It

was later extended to treat also time-dependent phenomena101

using the time-dependent DFT (TDDFT) approach. Linear

response TDDFT calculations provide excitation energies and

transition strengths for electronic excitations. The adiabatic

approximation and the use of the same functionals as em-

ployed in ground-state DFT calculations lead to some general

shortcomings of the TDDFT approach.19,102,103 TDDFT cal-

culations have been found to underestimate the optical gap for

short oligosilanes in the basis set limit. Hybrid functionals were

found to partly correct this error. DFT calculations using

hybrid functionals yield with moderate basis-set sizes excitation

energies in good agreement with experimental values due to

error compensation whereas in the basis-set limit the obtained

optical gaps are about 0.3–0.4 eV too small as compared to

experiment.104 DFT calculations using functionals with Har-

tree–Fock exchange terms in the Hamiltonian are computa-

tionally more expensive. In the absence of explicit

Hartree–Fock exchange, the electrostatic interaction can be

approximated by using the resolution of the identity (RI), i.e.

by expanding it in an auxiliary basis using the Coulomb

norm.105–108 The error introduced by the RI approximation

is negligible but savings in computer time are 10–100 fold as

compared to calculations using hybrid functionals.

The accuracy of CC calculations can in principle be system-

atically improved by employing higher-order CC models in

combination with large basis sets. Unfortunately, the high

computational costs render higher-order CC calculations on

nanoclusters unattainable; only the lowest-order CC methods

can be used. The CC singles model (CCS) provides the same

excitation energies as obtained in CI singles (CIS) calculations,

significantly overestimating the excitation energies. At the

coupled-cluster approximate singles and doubles (CC2) level,

the electron correlation is considered by an implicit treatment

of the double excitations.89,97 In the CC studies on the silicon

nanoclusters, the CC2 model in combination with the RI

approximation was used.23,109,110 The excitation energies and

transition moments of electronic transitions can be extracted

from CC equations using the response approach88 alternatively

using the Lagrangian formulation which gives a variational

expression for the CC energy with respect to the amplitude

parameters.89,90 The CC2 model with large enough basis sets

has proven to be very accurate providing excitation energies of

small oligosilanes in good agreement with experiment.104

VII. Calculations on freestanding silicon quantum

dots

A Accuracy of TDDFT and CC2 calculations

In ab initio and DFT calculations of excitation energies, the

two largest sources of uncertainties are the level of correlation

treatment and the size of the one-particle basis sets. The

reliability of the employed computational level and the accu-

racy of the employed functional can be assessed by increasing

the size of the one-particle basis set until it is practically

complete and then compare the obtained excitation energies

with available experimental data. Such a benchmarking pro-

cedure for linear silanes showed that the optical gaps calcu-

lated at the CC2 level agree well with experimental values for

Si2H6 and Si3H8 measured in the gas phase, whereas for SiH4

the discrepancy between calculated and measured values is as

much as 0.7 eV.104 See Fig. 6. However, CC3 calculations

showed that the reported experimental excitation threshold of

8.8 eV for SiH4 does not correspond to a vertical excitation.111

The best estimated value based on CC3 results for the vertical

excitation energy is 9.45 eV.104 The small difference of 0.18 eV

between the CC2 and CC3 excitation energies for SiH4 and the

almost perfect agreement with experimental data for Si2H6

and Si3H8 show that the CC2 model works rather well for

silanes and most likely also for silicon nanoclusters. For

Si4H10, Si5H12, and neo-Si5H12, the first excitation energies

Fig. 4 The total energy of the biexciton complex as a function of the

scaling parameter l for the repulsive potentials at the dot centre. The

occupation of the Hartree–Fock reference for quantum-dot and

quantum-ring samples obtained for different l values are also given.

Fig. 5 The lowest calculated excitation energies of a biexciton com-

plex confined in the quantum dot (l = 0) and in two quantum-ring

samples (l=0.4 and l=0.8) are shown. The ground-state energies of

the biexciton complexes are set to zero.
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calculated at the CC2 level are 0.46, 0.37 and 0.34 eV larger

than the experimental values measured in the liquid phase.112

The large differences are most likely due to solvent effects.

In DFT studies on the linear silanes using LDA and GGA

density functionals, the optical gaps are underestimated by

0.7–0.8 eV as compared to the CC2 values.104 Hybrid

functionals such as the Perdew–Burke–Ernzerhof hybrid

functional (PBE0)114 and Becke’s three parameter functional

with the Lee–Yang–Parr correlation functional (B3LYP)115,116

perform better. For silanes and silicon nanoclusters, the

hybrid functionals seem to be a good compromise as far

accuracy and computational costs are concerned. At the

PBE0 level, the optical gaps of the linear silanes are about

0.3 eV smaller than the corresponding CC2 values. The optical

gaps calculated at different levels are compared in Fig. 7. Since

the excitation energies obtained at the DFT levels are system-

atically too small as compared to experiment, better estimates

for the optical gaps can be deduced from the DFT excitation

threshold by adding a constant shift.

In the silicon nanocluster studies, the aug-cc-pV(Q+d)Z

basis sets cannot be employed because the computational costs

become huge. The use of smaller basis sets usually blueshift the

lowest electronic transitions. PBE0 calculations with triple z
quality basis sets augmented with polarisation functions

(TZVP) were found to yield optical gaps for the silanes in

close agreement with experiment due to cancellation of

errors.48,104 The basis-set convergence of the optical gap of

the Si10H16 cage is shown in Fig. 8 and 9. The optical spectrum

for the recently synthesised sila-adamantane cluster capped

with methyl and trimethylsilyl groups (Si14C24H72) has a

strong absorption maximum at 5.59 eV.117 DFT calculations

at the PBE0/TZVP level yielded an optical gap of 5.06 eV.

As the first few transitions are rather weak, the observed

transition probably corresponds to the two strong bands

at 5.54 and 5.60 eV with oscillator strengths of 0.42 and

0.69, respectively.48

The molecular structure of the silicon nanocluster also

affects the calculated optical gap. The first excitation energy

of SiH4 calculated using the experimental structure is 0.1 eV

larger than obtained with the structure optimised using the

Becke–Perdew (BP) functional and TZVP basis sets123–125

Fig. 6 The optical gap (in eV) of linear silanes calculated at the CC2

level with Dunning’s quadruple z basis set augmented with diffuse and

polarisation functions (aug-cc-pV(Q+d)Z)113 are compared to experi-

mental values. The calculated oscillator strengths are given as histo-

grams.

Fig. 7 The optical gap (in eV) of linear silanes calculated at the CC2

and DFT levels using the aug-cc-pV(Q+d)Z basis sets.

Fig. 8 The optical gap (in eV) of Si10H16 calculated at DFT levels

using different basis sets. SV(P) = split valence basis set with one set of

polarisation functions on Si.118 TZVP = triple z valence basis set with
one set of polarisation functions.119 def2-TZVP = the newly

optimised TZVP.120 TZVPP = triple z valence basis set with two sets

of polarisation functions.119 Aug-cc-pVTZ = correlation consistent

basis set of valence triple z quality augmented with diffuse

functions.121 QZVP = quadruple z valence with one set of polarisa-

tion functions.122 Aug-cc-pV(Q+d)Z = correlation consistent basis

set of valence quadruple z quality augmented with diffuse functions

and with an extra d shell on Si.113

Fig. 9 Simulated absorption spectra of Si14C24H72 obtained with

different functionals and def2-QZVP basis sets. The experimental

absorption peak maximum is indicated with the vertical dashed line.
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implying that a better precision than 0.1 eV cannot be

expected for the calculated excitation energies.

Many other computational methods have been used to

predict the optical gap of silicon nanoclusters. These studies

comprise highly accurate calculations at the many-body

GW-BSE (Wigner’s method for solving the Bethe–Salpeter

equations using Green’s function theory)126–128 and quantum

Monte Carlo (QMC) levels.16,127,129,130 The QMC is in prin-

ciple a very accurate many-body approach that can be applied

to silicon nanoclusters consisting of hundreds of atoms.131,132

However, the QMC approach is not quite unproblematic for

excited state studies because the construction of the trial

function is not trivial and the obtained results might signifi-

cantly depend on that choice.130 For SiH4, the best optical gap

obtained with the QMC is 9.47(2) eV129 which is in excellent

agreement with the best ab initio value of 9.45 eV calculated at

the CC3 level.104 For SiH4, a smaller optical gap of 9.1(1) eV

has also been obtained at the QMC level.127 For larger

clusters, the choice of the trial function is unfortunately not

easier than for a small molecule. As a consequence, optical

gaps calculated for silanes at the QMC level are not always

mutually concordant.16,128–130 However, the QMC optical

gaps for the neo-Si5H12 molecule possessing Td symmetry

and for the sila-adamantane (Si10H16) cluster calculated by

Benedict et al.128 agree well with the best ab initio excitation

energies and with estimated experimental gas-phase

values.48,104 The assignment of the electronic excitation

spectra using QMC calculations is difficult because the band

strengths are not readily obtained at that level.

The optical gap calculated at the TDDFT level using LDA

and GGA functionals becomes equal to the HOMO–LUMO

splitting in the limit of infinitely large clusters. For clusters

larger than 0.8 nm, the difference between the excitation

threshold and the HOMO–LUMO gap is at the BP TDDFT

level less than 0.1 eV and for silicon nanoclusters larger than

1.7 nm in diameter, the difference is less than 0.01 eV.

Fig. 10 shows a combination of optical gaps calculated at

the BP TDDFT level and the luminescence energies obtained

at the effective mass approximation (EMA) level. The EMA

data are taken from ref. 25. The gaps calculated at the BP

TDDFT level using TZVP basis sets are shifted by 0.8 eV. This

shift is chosen such that the first excitation energy for Si10H16

obtained at the BP TDDFT level agrees with the accurate

optical gap of 5.95 eV estimated using CC2 and QMC

calculations. The dashed line in Fig. 10 represents the optical

gaps calculated at the QMC level using the diffusion Monte-

Carlo (DMC) approach.16

The optical gaps calculated at the BP TDDFT level using

def2-TZVP basis sets for hydrogen-capped silicon nanoclus-

ters are summarised in Fig. 11. In the DFT and TDDFT

calculations, the TURBOMOLE split valence basis set augmented

with polarisation functions were employed.120 The analytical

expression for the size dependence of the optical gap of silicon

nanoclusters was obtained from the BP TDDFT optical gaps

(Eg) of hydrogen-capped nanoclusters larger than 1 nm by

using a power-law fit. The fitted expression for the size

dependence of the optical gap is

Eg = 1.12 + 3.00(d[nm])�1.575, (7.23)

where d is the cluster diameter in nanometers and 1.12 eV is

the assumed bandgap for bulk silicon. Belomoin et al.64

reported a size dependence of Eg = 3.44(d[nm])�0.5 which

was obtained by fitting to experimental PL energies of four

nanoclusters. Delerue et al. proposed a size-dependence of

Eg = 1.12 + 3.73(d[nm])�1.39 based on PL results and

calculations.133 Meier et al.134 determined the size-dependence

of the oscillator strength by measuring the PL decay rates of

silicon nanoclusters of different size. The cluster sizes were

estimated from the size-dependence of the optical gap using

the fit of Delerue et al.

The oscillator strengths calculated at the BP TDDFT level

for the first electronic transition are shown in Fig. 11. The

calculated oscillator strengths decrease less systematically with

increasing cluster diameter than the excitation energy. A clear

trend is though seen in the graph. The curve describing the size

dependence of the oscillator strengths was obtained by first

Fig. 10 The optical gap (in eV) of silicon nanoclusters as obtained at

the BP TDDFT and EMA levels. The BP TDDFT optical gaps are

shifted by 0.8 eV to yield the correct optical gap for Si10H16. The QMC

and EMA optical gaps are taken from ref. 16 and 25.

Fig. 11 Optical gaps (K, in eV) and oscillator strengths (�) for silicon
clusters of different size as a function of the cluster diameter calculated at

the BP TDDFT level using the def2-SV(P) basis set. The size dependence

of the optical gap fitted using the BP TDDFT data is shown as a dashed

line. The experimental fit is represented with the dotted line. The solid

line shows size dependence of the calculated oscillator strength obtained

using the fitting procedure described in the text.
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determining the energy dependence of the oscillator strengths

(fosc) using a similar analytical expression as used by Meier

et al.134 The obtained expression is

fosc = 0.1351 � 10�6 exp(Eg[eV]/0.3036). (7.24)

Combining eqn (7.24) with the fitted expression in eqn (7.23)

yields the following expression for the size dependence of the

oscillator strength

fosc = 0.5406 � 10�5 exp(9.881/d[nm]1.575). (7.25)

The curve representing eqn (7.25) is drawn as a solid line in

Fig. 11. A similar expression with the coefficients of 1.4 �
10�6, 11.24, and 1.39 was obtained by Meier et al.134 using

experimental PL life times in combination with the size

dependence of the absorption energy calculated by Delerue

et al.133 The analytical expressions obtained using the two

fitting procedures agree well. The oscillator strengths obtained

for the larger hydrogen-capped silicon nanoclusters are indeed

very small but they agree qualitatively with the experimental

data of Meier et al.134 The size-dependence function for the

oscillator strength indicates that the large oscillator strengths

of about unity obtained for the very bright silicon nanoclusters

are most likely not merely due to confinement effects.

A surface dimer model suggested by Allan et al.68 has often

been used in explaining the luminescence of silicon nanoclus-

ters (see e.g. ref. 135–137). We have performed calculations

with two clusters Si29H34 and Si29H24 and investigated the

potential energy surface as a function of the elongation of a

single dimer on the surface while optimising other structural

degrees of freedom but preserving C2v symmetry. The results

obtained at the BP TDDFT level using the def2-TZVP basis

sets are shown in Fig. 12. Neither of the surface dimers

exhibits a double-well potential, contrary to the results ob-

tained by Allan et al. Additionally, the oscillator strengths at

elongated geometries are of the order of magnitude of 0.01 at

most. Therefore, the dimer model is, if not wrong, at least

questionable. Interestingly, the potential energy surface of the

triplet ground state for the surface dimer in Si29H24 does have

a double well character.

B Hydrogen-capped silicon nanoclusters

Silicon nanoclusters covered by hydrogens can be synthesised

through electrochemical etching with hydrofluoric

acid.4,64,66,138–140 Luminescent silicon nanoclusters can also

be synthesised from NaSi.26,141 By letting NaSi react with

NH4Br, Zhang et al. manufactured slightly larger hydrogen-

capped silicon nanoclusters with an average diameter of 3.9 �
1.3 nm exhibiting strong PL at 438 nm.141 An alternative route

to synthesise hydrogen-capped silicon nanoclusters is by re-

ducing Si4+ ions in micelles by LiAlH4.
30 The growth of the

clusters is restricted by the micelle size. The smallest clusters

are 1.8 nm in diameter and consist of ca. 150 Si atoms covered

by hydrogens.

Even though the hydrogen-capped silicon nanoclusters

have been studied computationally at many levels of

theory,15–17,45,48,64,73,128–130,136,140,142–160 the reason for their

strong PL emission is still unresolved. A consensus concerning

the molecular structure of the manufactured 1 nm nanoclus-

ters has not been reached either. The most popular candidates

for the structure of the 1 nm silicon nanocluster are Si29H24,

Si29H36, and Si35H36 shown in Fig. 13. However, their absorp-

tion and emission energies as well as the band strengths do not

agree well with experimental observations. The absorption

thresholds for Si29H24, Si29H36, and Si35H36 calculated at the

DFT level using the BP functional are 2.74, 3.84 and 3.70 eV,

respectively.17 The B3LYP DFT, BP DFT and CC2 calcula-

tions yield an estimated optical gap of about 4.5 eV for Si29H36

which is significantly larger than the experimental excitation

threshold of 3.7 eV.144 The corresponding QMC value is

5.3 eV.16 A similar extrapolation procedure for Si29H24 and

Si35H36 as done for Si10H16 in section VIIA yields excitation

thresholds of 3.6 and 4.3 eV as compared to the QMC optical

gaps of 3.6 and 5.1 eV, respectively.16,128

Fig. 12 The potential energy curves for the surface dimer are shown

for the singlet ground state (GS), the lowest triplet state (T), and the

five lowest excited states of each irreducible representation attainable

by dipole transitions from the ground-state. The potential energy

surfaces are shown for (a) Si29H24 and (b) Si29H34 as a function of

the dimer elongation. A1, B1, and B2 denote the symmetry representa-

tions of the excited states.

Fig. 13 The ground state structures of the hydrogen-capped silicon nanoclusters (a) Si29H24, (b) Si29H36 and (c) Si35H36.
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The electronic excitation spectra for Si29H24, Si29H36 and

Si35H36 in Fig. 14 were obtained by plotting each excitation

energy using a Lorentzian line shape function as given in

eqn (3.1). In the absorption spectra one sees that the first

transitions are very weak and that at higher energies,

states with stronger absorption intensity appear. However,

no very bright states were obtained in the calculations.

The oscillator strengths of 10�3–10�2 for these transitions

are two to three orders of magnitude smaller than those

observed experimentally.74

The PL energy and Stokes shifts can be obtained in TDDFT

calculations using the cluster structure of the excited state. The

corresponding oscillator strengths provide an estimate for the

PL strength. For Si29H36, the optimisation of the excited state

structure in D2d symmetry yielded a Stokes shift of 0.7 eV,17,73

whereas a more recent calculation without any symmetry

constraints resulted in a totally unsymmetric structure (C1)

and a large Stokes shift of 2 eV. For the two other clusters, the

Stokes shifts are 1.1 and 1.6 eV, respectively. The vertical

excitation and de-excitation energies for Si29H24, Si29H36 and

Si35H36 are summarised in Table 2. The Stokes shifts and the

two relaxation contributions are also given. The oscillators

strengths obtained for the excited state structures are signifi-

cantly smaller than obtained for the ground-state structures,

especially for the two larger clusters.

Computational studies on sila-adamantane based silicon

nanoclusters showed that the oscillator strengths are practi-

cally independent of the interior structure of the cluster.48

Clusters with fused sila-adamantane cages as core have very

weak transitions48 even though sila-adamantane was found to

have strong absorption at 5.6 eV.48,117 Reboredo et al.156 also

reported that the surface chemistry of silicon nanoclusters is

independent of the core structure. Thus, most likely none of

the studied silicon nanoclusters is responsible for the observed

strong blue PL corresponding to an oscillator strength

of 0.92.74

Optimisations of the cluster structures for the first excited

state show that many local minima with completely different

Stokes shifts can occur on the PES of the excited states. The

large experimentally observed Stokes shift has been explained

by localised surface states in the silicon nanocluster.68 Allan

et al. proposed that such states exist under the form of self-

trapped excitons at the Si–Si dimers on the nanocluster sur-

face. However, in the optimisations of the cluster structures

for the excited state, we did not obtain any significantly

elongated Si–Si bonds. Thus, our silicon nanocluster studies

do not support the notion that surface dimers are the light

emitters of hydrogen-capped silicon clusters.

Fig. 15 illustrates changes in the Si–Si bond lengths of the

Si29H36 structure upon excitation. The largest structural

changes (0.095–0.050 Å) occur at the cluster surface while

changes inside the cluster core are slightly smaller (0.045–

0.039 Å). The largest decrease in the bond lengths of �0.012 Å
occurs also at the cluster surface.

Fig. 14 The electronic excitation spectra of Si29H24, Si29H36 and Si35H36 calculated at the BP TDDFT level using the def2-TZVP basis set. The

solid line shows the absorption spectra obtained using the optimised ground-state structure and the dashed line is obtained using the optimised

geometry of the first excited state. The spectra using the excited state structure were not calculated for the whole energy range shown.

Table 2 The excitation energies (in eV) for the Si nanoclusters
calculated at the BP/def2-TZVP level using the ground-state (Egs)
and the first excited state (Ees) structures. The Stokes shift (DEstokes)
and its contributions from the strain of the ground-state (DEgs) and the
relaxation of the excited state (DEes) are also given. fgs and fes denote
the oscillator strengths of the corresponding transitions

Si29H24 Si29H36 Si35H36

Egs 2.70 3.72 3.60
Ees 1.61 1.79 2.04
DEstokes 1.10 1.94 1.56
DEgs 0.70 1.33 1.20
DEes 0.40 0.61 0.36
fgs 0.000089 0.011 0.0025
fes 0.00015 0.00052 0.00045

Fig. 15 Changes in Si–Si bond lengths due to structural relaxations

of the ground-state structure upon excitation to the lowest excited

state of the Si29H36 cluster calculated at BP DFT and BP TDDFT

levels using the def2-TZVP basis set.
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C Oxidised silicon nanoclusters

Silicon nanoclusters prepared through electrochemical disper-

sion are mainly capped by hydrogens after the etching.4,66,161

They also contain a small amount of impurity atoms66,145 and

the surface is partly oxidised.4 The synthesised silicon nano-

clusters react in the presence of molecular oxygen increasing

the silicon oxide coverage of the cluster surface.76 The oxida-

tion leads to a significant redshift of the PL.162,163 The

quantum yield is also much lower for the oxidised clusters.76

Measurements of the PL of oxidised silicon nanoclusters dis-

play emission contributions that can be assigned to Si–O–Si

and SiQO groups.161,163,164 The spontaneous oxidation also

forms –OH groups on the surface.76

The calculated electronic absorption spectrum in Fig. 16

shows that the optical gap for the oxidised Si29(OH)36 cluster

is redshifted by about 1.5 eV as compared to the hydrogen-

capped one. The first band of the calculated absorption

spectrum consists of several transitions and it has an oscillator

strength maximum of 0.06. The oscillator strength for the

oxidised cluster with SiQO groups on the surface is thus larger

than obtained for the hydrogen-capped ones. The oscillator

strength is still about 15 times smaller than obtained experi-

mentally for the hydrogen-capped silicon nanocluster sam-

ples.74 The optical gap calculated for Si29(OH)36, which is a

silicon nanocluster capped by 36 hydroxyl (–OH) groups, is

about 1 eV smaller than for the corresponding hydrogen-

capped one. The band strengths for the hydroxyl-capped

silicon nanocluster are of the same size as for the hydrogen-

capped silicon nanocluster. Vasiliev et al.162 obtained similar

results in their computational study. The oscillator strengths

for the lowest transitions of the absorption spectrum of

Si29(OH)24(OSiH3)12 are also of the same size as obtained

for the hydroxyl terminated cluster. A silicon cluster em-

bedded in silica was also investigated. The silica is modelled

by a Si58O96H76 shell surrounding the Si29 core. Its electronic

absorption spectrum shown in Fig. 16 is redshifted by about

1 eV as compared to hydrogen-terminated Si29. The obtained

oscillator strengths for the lowest transitions of

Si29@Si58O96H76 are as weak, as obtained for the oxidised

silicon nanoclusters.

D Silane-capped silicon nanoclusters

The computational studies on hydrogen-capped silicon nano-

clusters show that their optical gaps are somewhat larger than

obtained in the experiment. The calculated Stokes shifts are

also larger than the experimental values. The calculations

show that strong ground-state transitions are lacking among

the low-lying excited states. The benchmark studies on the

linear silanes104 as well as the calculated and measured absorp-

tion spectra of silyl and methyl capped sila-adamantane117

suggest that strongly emitting silicon nanoclusters can be

designed by attaching molecular functional groups to the

cluster surface where the substituents function as light emit-

ters. Based on semiempirical calculations, Takeda et al. sug-

gested that oligosilane bridged silicon nanoclusters might be

the origin of the PL of porous silicon.165 Luterova et al.,166,167

and Schauer et al.79 studied experimentally the PL of porous

silicon samples and found that –(SiH2)n– units might form

efficient luminescence centres in these materials. Mu et al.168

also reported strong blue PL from large silica nanospheres

covered by chlorotrimethylsilane.

Recent DFT calculations on silicon nanoclusters covered by

linear silane groups support this conception.158 The calcula-

tions showed that these structures have significantly larger

oscillator strengths for the lowest electronic transitions than

obtained for the hydrogen-capped ones. The obtained optical

gaps are rather independent of the length of the silane chain,

whereas the oscillator strength increases linearly with its

length.

The BP TDDFT calculations on the dimers consisting of

two Si29H36 clusters bridged by a silane chain indicate that

such structures might be responsible for the strong light

emission observed for nano-sized silicon structures.158

The dimers have low-lying strong transitions, the energy of

which is almost independent of the length of the silane

bridge. On the other hand, the oscillator strength is linearly

proportional to the number of Si atoms in the chain.

The size of the cluster tunes the absorption wavelength,

whereas the silane bridge functions as an ‘antenna’. The

excitation energies and the corresponding oscillator strengths

for Si29H35–(SiH2)n–Si29H35 are shown in Fig. 17.

The calculations on the silane-capped silicon nanoclusters

show that variations in the cluster structure do not signifi-

cantly affect the wavelength of the PL, whereas the emission

strength are strongly dependent on the presence and character

of the substituents. This could explain why only a few percent

of the nanoclusters are found to be luminescent in experi-

mental studies.71,161,169 The PL properties of a silicon

nanocluster could even be tailored by attaching appropriate

substituents to the cluster surface.1,161 Light emitting substi-

tuents could also explain the dissimilar results obtained for the

relation between the size of the silicon nanocluster and the

observed luminescence energies.30,149

VIII. Outlook

Research on semiconductor quantum dots has steadily in-

creased over the past two decades and concrete applications

have also began to emerge. Many questions are still

Fig. 16 The electronic excitation spectra of the oxidised silicon

nanoclusters calculated at BP DFT level using the TZVP basis set.
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unanswered and more experimental and computational work

is needed before the full potential of quantum dots can be

utilized. Silicon has established its position as the most used

semiconductor material due to several beneficial properties as

compared to other materials, whereas semiconductor bulk

materials with direct band gaps have to be used to achieve

efficient optical devices. In comparison to bulk semiconduc-

tors, the charge carriers of the quantum dots are spatially

confined in all dimensions, reducing the dimensionality of the

quantum system and bringing out new kind of physical

phenomena. As the surface to volume ratio for quantum dots

is non-negligible, the surface properties of the free-standing

quantum dots or the chemical bonds to the surrounding bulk

material at the interface of the embedded quantum dots

influence their light-emission quality. Even though bulk silicon

with its indirect band gap has poor optical properties, small

silicon nanoclusters have been found to be strongly fluores-

cent. The brightly luminescent silicon nanostructures are novel

candidates for new light-emitting devices. Many theoretical

and technological problems still remain to be tackled before

silicon based optical devices are in everyday use. People have

argued that silicon will never be a useful optical material, but

the recent progress towards silicon-based light sources and

devices is beginning to convince the most ardent critics.

The size of the quantum dots spans several length scales

implying that different types of computational approaches are

required to model them. The smallest quantum dots consisting

of up to few tens of atoms can today be studied at ab initio

correlated levels, whereas DFT based methods can be em-

ployed in calculations on quantum dots consisting of hundreds

of atoms. Faster computers and more efficient algorithms will

bring ever increasing size of quantum dots within reach of

DFT calculations. Atomistic computations on large embedded

quantum dots, quantum-dot molecules, quantum rings, and

more general semiconductor nanostructures will in the nearest

future be unfeasible. The optical properties of such systems

can be provided by EMA calculations, which are explicitly

considering the correlated motion of the confined electrons

and holes of the multiexciton complex.
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22. C. Hättig and A. Köhn, J. Chem. Phys., 2002, 117, 6939–6951.
23. C. Hättig and F. Weigend, J. Chem. Phys., 2000, 113, 5154–5161.
24. M. Cardona and F. H. Pollak, Phys. Rev., 1966, 142, 530–543.
25. G. Nesher, L. Kronik and J. R. Chelikowsky, Phys. Rev. B:

Condens. Matter Mater. Phys., 2005, 71, 035344.
26. S. Lee, W. J. Cho, Y. D. Kim, E. K. Kim and J. G. Park, Jpn. J.

Appl.Phys., Part 2, 2005, 44, 5843–5846.
27. P. F. Trwoga, A. J. Kenyon and C. W. Pitt, J. Appl. Phys., 1998,

83, 3789–3794.
28. J. W. Luo, S. S. Li, J. B. Xia and L. W. Wang, Appl. Phys. Lett.,

2006, 88, 143108.
29. G. Pellegrini, G. Mattei and P. Mazzoldi, J. Appl. Phys., 2005,

97, 073706.
30. J. P. Wilcoxon, G. A. Samara and P. N. Provencio, Phys. Rev. B:

Condens. Matter Mater. Phys., 1999, 60, 2704–2714.
31. C. Delerue, G. Allan and M. Lannoo, J. Lumin., 1998, 80, 65–73.
32. L. E. Brus, J. Chem. Phys., 1983, 79, 5566–5571.

Fig. 17 (a) The excitation energies (in eV) of the two lowest transi-

tions and the corresponding oscillators strengths for the silane-bridged

silicon-nanocluster dimers obtained at the BP TDDFT level shown as

a function of the number of –SiH2– units in the bridge. The filled

symbols show the excitation energies and histograms the oscillator

strengths. (b) A silane-bridged dimer with six –SiH2– units in the

bridge.

4548 | Phys. Chem. Chem. Phys., 2008, 10, 4535–4550 This journal is �c the Owner Societies 2008



33. L. E. Brus, J. Chem. Phys., 1984, 80, 4403–4409.
34. Y. Kayanuma, Phys. Rev. B: Condens. Matter Mater. Phys.,

1988, 38, 9797–9805.
35. Y. Kayanuma, Phys. Rev. B: Condens. Matter Mater. Phys.,

1991, 44, 13085–13088.
36. A. L. Efros and A. L. Efros, Sov. Phys. Semiconduct., 1982, 16,

772–775.
37. J. B. Khurgin, E. W. Forsythe, G. S. Tompa and B. A. Kahn,

Phys. Rev. Lett., 1996, 69, 1241–1243.
38. L. W. Wang and A. Zunger, J. Chem. Phys., 1994, 100,

2394–2397.
39. S. Goedecker, Rev. Mod. Phys., 1999, 71, 1085–1123.
40. D. R. Bowler, T. Miyazaki and M. J. Gillan, J. Phys.: Condens.

Matter, 2002, 14, 2781–2798.
41. J. M. Soler, E. Artacho, J. D. Gale, A. Garcı́a, J. Junquera,

P. Ordejón and D. Sánchez-Portal, J. Phys.: Condens. Matter,
2002, 14, 2745–2780.

42. C. Ochsenfeld and M. Head-Gordon, Chem. Phys. Lett., 1997,
270, 399–405.

43. A. M. N. Niklasson andM. Challacombe, Phys. Rev. Lett., 2004,
92, 193001.

44. S. Coriani, S. Høst, B. Jansik, L. Thøgersen, J. Olsen,
P. Jørgensen, S. Reine, F. Paw"owski, T. Helgaker and
P. Sa"ek, J. Chem. Phys., 2007, 126, 154108.

45. D. Sundholm, Nano Lett., 2003, 3, 847–849.
46. R. Send and D. Sundholm, Phys. Chem. Chem. Phys., 2007, 9,

2862–2867.
47. E. Fabiano, F. Della Sala, G. Barbarella, S. Lattante, M. Anni,

G. Sotgiu, C. Hättig, R. Cingolani and G. Gigli, J. Phys. Chem.
B, 2006, 110, 18651–18660.

48. O. Lehtonen and D. Sundholm, Phys. Rev. B: Condens. Matter
Mater. Phys., 2006, 74, 045433.

49. M. Braskén, M. Lindberg, D. Sundholm and J. Olsen, Phys.
Status Solidi B, 2000, 221, 37–41.

50. M. Braskén, M. Lindberg, D. Sundholm and J. Olsen, in Con-
ference Proceedings Vol. 71: Atoms, Molecules and Quantum Dots
in Laser Fields: Fundamental Processes, ed. N Bloembergen,
N Rahman and A Rizzo, Societa’ Italiana di Fisica, Bologna,
2001, pp. 315–324.

51. M. Braskén, M. Lindberg, D. Sundholm and J. Olsen, Phys.
Status Solidi B, 2001, 224, 775–779.

52. M. Braskén, M. Lindberg, D. Sundholm and J. Olsen, Phys. Rev.
B: Condens. Matter Mater. Phys., 2001, 64, 035312.

53. M. Braskén, S. Corni, M. Lindberg, J. Olsen and D. Sundholm,
Mol. Phys., 2002, 100, 911–918.

54. S. Corni, J. Olsen, M. Braskén, M. Lindberg and D. Sundholm,
Phys. Rev. B: Condens. Matter Mater. Phys., 2003, 67, 045313.

55. S. Corni, J. Olsen, M. Braskén, M. Lindberg and D. Sundholm,
Phys. Rev. B: Condens. Matter Mater. Phys., 2003, 67, 085314.

56. S. Corni, M. Braskén, M. Lindberg, J. Olsen and D. Sundholm,
Physica E, 2003, 18, 436–442.
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Chem. Phys. Lett., 1995, 242, 652–660.
106. K. Eichkorn, F. Weigend, O. Treutler and R. Ahlrichs, Theor.

Chem. Acc., 1997, 97, 119–124.
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109. A. Köhn and C. Hättig, J. Chem. Phys., 2003, 119, 5021–5036.
110. C. Hättig, Adv. Quantum Chem., 2005, 50, 37–60.
111. U. Itoh, Y. Yasutake, H. Onuki, N. Washida and T. Ibuki,

J. Chem. Phys., 1986, 85, 4867–4872.
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166. K. Luterová, I. Pelant, P. Fojtı́k, M. Nikl, I. Gregora, J. Kočka,
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167. K. Luterová, A. Poruba, J. Dian, O. Salyk, P. Horváth,
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