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A simple analysis prcdicts the Helmholtz and higher modes of cylindrical resonators. Formulas for 
the quarter-wave tube. the closed tube, and the classic Helmholtz resonator are special cases. It is 
found that the classic Helmholtz formula begins to lose accuracy for resonator lengths L > k/16. A 
corrected Helmholtz equation is given as an approximation to the exact result. The analysis requires 
values of inside and outside orifice end corrections. Rayleigh's model of a piston in an infinite wall 
and Ingard's calculations for a piston radiating into a tube give satisfactory results when the theory 
is compared to experiments. Resonator experiments were performed with k oL in the range •r/8 to 
3•r/8 and orifice to cavity diameter ratios from 0. I to 0.8. 

Subject Classification: 20.40; 85.32. 

INTRODUCTION 

The classical analysis of a Helmholtz resonator pre- 
dicts that the resonant frequency is independent of the 
shape of the cavity. This result arises from an assump- 
tion that all dimensions are small compared to the wave- 
length. We will present a simple, but very useful• anal- 
ysis which is valid for cylindrical resonators of arbitary 
length. 

The analysis predicts the higher modes as well as the 
Helmholtz or first mode. Special cases of the theory 
give the resonant frequencies of the quarter-wave tube 
and the completely closed tube. The results show that 
the classical analysis is valid only when the length di- 
mension is less than/• of the wavelength, significantly 
shorter than the often quoted •-wavelength criterion. An 
approximate form of our analysis is a closed form ex- 
pression for the Helmholtz frequency. It contains a 
length correction term and is valid over a much farget 
region of wavelength than the classic formuia. 

Experiments were conducted on three groups of reso- 
nators with nominal frequencies of 250, 5000 and 1000 
Hz. Each group had three resonators of different di- 
mensions, so in fact nine different resonators were 
tested. The experimental results confirm the useful- 
ness of the analysis. 

I. ANALYSIS 

A Helmholtz resonator is shown in Fig. 1. The reso- 
nator consists of a cylindrical tube and an orifice. The 
tube area A is closed at x = 0, and is driven by a mass 
of air in the orifice at •c= œ. The orifice area is S and 

the effective length l' includes end corrections on both 
sides. The acoustic transmission tube equations are 
solved for the cavity with boundary conditions of infinite 
impedance at the solid end and a reactive mass loading 
from the orifice. The left-moving plane wave is denoted 

p_ = • exp[-j(wt + kx)], 
and the right-moving wave is represented by 

p. = • exp[-j(•ot - kx)] . 

The volume velocities of these two waves are •/.=pJ 

'(pc/A) and U_= -p./(pc/A). An expression for the 
acoustic impedance at any point in the cavity is 

Z= p.+p. pc ael•%Oe U.+U.- A' •e•+l•e '• (1) 
This •uation is evaluat• at x= 0 and x= L, then a 

and • are eliminat• in favor oi Zo and Z•. A •d wall 
at x= 0 me•s that 2 0 is i•i•te and results in 

Z• =}• cotkL, (2) 
a purely r•ctive impedance. 

The orHice at x= L •s a reactive impeduce m•eled 
by the mass m of fluid which oscillates in the orifice 

. • P• •-- cpl• 
Equating Eqs. 2 •d 3 yields a t•nseenden•l •tion 
for all reso•nt wavenum•rs: 

• kL = eotkL. (4) 
The solutions are depicted graphically in Fig. 2, where 
[(I'/L). •/S}]kL aM eotkL are pl•ed. The intersec- 
tions of these functions desi•te the resona• frequen- 
cies s•ce •L/c = kL. The first intersection is the 
"HelmhoKz" frequency, •d succeeding •terse•ions 
determine the higher m•es which are sometimes ealted 
"standing wave"/r•uencies. Thus, Eq. 4 theoretic•y 
pr•uees the Hetmholtz a• the nonharmo•c stand•g 
wave m•es of a cyH•rical Helmholtz reso•tor. The 
theo• aeeou•s ior the fact that catty len•h •y be 
comparable to or 1o•er than wayclenCh. The trans- 
verse dimensions a• orifice len•h must still be small 
eom•r• to wayclenCh. E•ension of the theo• to cav- 
ities whose area •es with x could be m•e using the 
approp•ate e•ension of wave tube theo•. 

Special ea•e• of Eq. 4 •ve the reao• frequencies 
oi the quaker-wave tu• •d a closed tu•. H the o•iee 
area S •u•s the tube area •d l ' is t•en as the value 
for a radiating piston, then the quaker-wave tube for- 
mu• correet• for • end effect is o•ained. The for- 

muh for a closed •be is •o•d • noting th• the end 
correction l%• (the orifice tabus), whHe S-• a. The 
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Zo =" ZL: j=m/I 2 
FIG. 1. Cylindrical Helmholtz resonator. 
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limit r- 0 is a solid wall, and Eq. 4 becomes cotkL =•. 
This produces the customary closed tube resonances. 

Closed-form approximate results are obtained by ex- 
panding the right side of Eq. 4: 

1 _l•teL _•5(leL) • (5) cot(kL) = ..... 
The classical formula for a Helmholtz resonator is ob- 

tained by retaining only the first term in the series. 
The first term is also plotted on Fig. 2 where one can 
see that it begins to deviate from the cot curve around 
kL: n/8; • of a wavelength. This point marks the limit 
of validity for the classical formula. 

An improved Iielmholtz resonator formula is found by 
retaining two terms in Eq. 5 and simplifying to 

wo=c(, ,,, +Sx - 
The term preceded by « is the only difference between 
Eq. 6 and the classical formula. The accuracy of Eq. 
6, as an approximation to Eq. 4, is good almost to the 
quarter-wavetube case. For example, at kœ= 15•r/32 
the error is 6.6% while for a quarter-wave tube kL = =/2 
the error is 10•. Most cases of practical interest are 
covered by this approximate formula. 

Previous articles which are related to the current pa- 
per are by Alster z and by Tang and Sirignano. • The first 
article gives a semiempirical formula for resonators of 
various shapes. The second article is a sophisticated 
analysis of cylindrical resonators and acoustic dampers 
beginning with nonlinear wave propagation equations. 
They include an orifice whose length is long compared to 

TABLE II. Experimental and theoretical Helmholtz frequencies. 

0.133 252 259 2.78 266 5.56 254 0.79 

[250 HZ 0.200 234 259 10.68 271 15.61 238 1.71 
0.267 211 259 22.75 276 30.81 213 0.95 

0.200 498 517 3.82 537 7.63 506 2.01 

H500 Hz 0.300 472 517 9.53 554 17.37 467 -1.06 
0.400 538 623 15.80 691 26.44 540 0.37 

aRayleigh's end correction in classical formula. 
•ingard's end correction in classical formula. 
eIngard's end correction in Eq. 4. 

a wavelength. Equation 4 with l' taken as the actual ori- 
fice length is a special case of their analysis. 

II. EXPERIMENTS 

A series of nine resonators was constructed by ma- 
chining cavities from solid aluminum bar stock. Three 
groups with nominal Helmholtz frequencies of 250, 500, 
and 1000 Hz contained three resonators each. The di- 

mensions are given in Table I. The wavenumber range 
for the resonators was n/8 < k0L < 3•r/8. This means all 
resonators were outside the classic theory. A z-re. - 
diameter Br{iel & Kjaer microphone was mounted 
through the cavity wall. 

During a test the resonator was excited with a loud- 
speaker. In each case, the orifice directly faced the 
loudspeaker which was several feet distant. The fre- 
quency response of the resonator was monitored on an 
oscilloscope. Care was taken to separate actual cavity 
resonances from testing environment resonances. Each 
resonator was tested inside a small sound attenuation 

booth with one open side. A Br•el & Kjaer type 1022 
beat frequency oscillator was used as a power source. 
The loudspeaker was driven by the oscillator, while the 
output from the oscillator was regulated by means of a 
compressor circuit. A regulating microphone was 
placed in the sound field of the loudspeaker. This mi- 
crophone's output voltage was used as a control voltage 
to insure constant sound pressure. The oscillator fre- 
quency scale was manually scanned between 0 and 5000 

TABLE I. Helmholtz resonators dimensions. All orifice 
thickness t = 0. 318 cm. 

Orifice Orifice Cavity Cavity Cavity 
radius area radius length volume 
•o S R L V 

Group (cm) (cm 2) (em) (cm) (era S) 
0.254 0.203 1.91 10.82 123 

250 Hz 0.381 0.456 1.91 18,90 215 
0.508 0.811 1.91 27.46 313 

0.254 0.203 1.27 6.10 31,0 
500 Hz 0.381 0.456 1.27 10.64 53.9 

0.508 0.811 1.27 10.64 53.9 

0.254 0.203 0.635 6.10 7.70 
1000 Hz 0.381 0.456 0.635 6.10 7.70 

0.508 0.811 0.635 6.10 7.70 
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TABLE HI. Measured and predicted resonant frequencies. 

Group r•/R (Hz) (Hz) (%) 

252 254 0.79 

1648 1646 - 0.12 
0.133 

3238 3228 - 0.31 

4845 4824 - 0.43 

234 238 1.71 

980 990 1.02 

0.200 1855 1875 1.08 

2775 2780 0.18 

3666 3691 0.68 

I. 250 Hz 211 213 0.95 

728 728 0.00 

1319 1320 0.08 

0.267 1929 1934 0.26 

2552 2557 0.20 

3183 3183 0.00 

3813 3810 -- 0.08 

4434 4439 0.11 

498 508 2.01 

0.200 2968 2944 - 0.81 

472 467 -- 1.06 
II. 500 Hz 0.300 1818 1795 -- 1.27 

3423 3350 --2,13 

538 540 0,37 

0.400 1899 1867 -1.69 

3454 3397 - 1.65 

x 899 x 

0.400 3060 3213 5.00 

x 1081 x 

IH. 1000 Hz 0.600 3346 3451 3.14 

x 1188 x 

0.800 3393 3649 7.54 

aI•gard's end correction in Eq. 4. 

Hz. When a resonance was encountered, the ampriled 
cavity response was observed on the oscilloscope. The 
frequency was digitally displayed by a Hewlett Packard 
5221A Electronic Counter. 

Ill. RESULTS 

Measurements of the Helmholtz frequencies are pre- 
sented in Table H and the higher modes in Table rff. In 

order to compare with theory one must evaluate the ef- 
fective lenffth of the orifice (l% l+ a o + At) including an 
inside and outside end correction. Hayleigh proposed 
the well-known correction of a0= 8r•/3# which models 
a piston radiating into haH-space. This is also frequent- 
ly used for the inside correction. However• Ingard • pro- 
posed that the inside end correction should model a pis- 
ton radiating into a tube of radius R. This correction 
is given approximately by 

8--•-(1 - 1.24 •) for-• <0.4 At = 3• \ ' 

For cases where r•/R > 0.4 one should consult Fig. 3 of 
Ref. 3. 

The measu,rements in Table H actually validate the use 
of Ingard's inside end correction and also possibly ex- 
plain why it has not received wider acceptance. Three 
calculations of the Helmholtz frequency were made. 
The classical formula with Hayleigh's correction on both 
sides is in error by 3 to 20%. This error doubles when 
Ingard's correction is used for the inside. However, 
when the wave tube analysis equation, Eq. 4, is used 
with Ingard's correction, the error is 2• or less. Since 
Ingard' s correction and the cavity length correction are 
in opposite directions, it has been more accurate to ne- 
glect both corrections than include only Ingard% correc- 
tion. Recall that classical theory was valid only up to 
about L = X/16 and only very-low-frequency resonators 
can meet this criterion. 

The higher modes listed in Table HI are compared 
with calculated values using Eq. 4 with Hayleigh' s 5, 0 
and Ingard's A! correction. The comparison is very 
good for the 250- and-500-Hz group and moderate/or 
the 1000-Hz group. We were not able to pin down a 
Helmholtz frequency for the 1000-Hz group. This is an 
inadequacy in the test setup as several large responses 
were observed near the expected Helmholtz frequency. 
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