will be discussed, whilé tﬁé-former one will be 'tre&ted in
the next chapter.. o -

In this chapter, we will extend the coupled mode
theory, especially the phase matching concept to the
quasipériodic optic superlsttice. We ﬁill use them to study
the transmission spectrum generated in the quasiperiodic

optic superlattice by the electrooptic effect.

§5¥-1.Coupled mode theory for the FOS

A.General cése
The conventional Fibonacci superlattice is constructed
according to f.he concatenation rule stj—llsjuz for J»3,
with 81=A and 82=AB.A and B are  the so-calleé building
blocks, each composed of two layers of different comstituent
materials., According to Merlin et al%, " the thicknesses‘ of
the first.layers of these two blocks are the same(let it be
1})and the thicknesses of the second layers are differeﬂtly
chosen such that 1}1A2;7{1+182); T=§V§+1)/2. Here 1 and

AZ
I are the thicknesses of the second layers of blocks A and

B2
B, réspectively. Herecafter we will assume that the blocks .A
end B are arranged along the x axis.

The coupled mode theory for the periodic structure has
alréédy been developedl. Its main idea is that thé periodic
variation of the dieleetric iensor is considered as &
perturbation that couples tﬁe unperturbed normal modes of

the structure. In the theory, the dielectric tensor as a

function of space is written as

é'(xJYsZ)=5 {v,2)+he{x,7:8); : : : { Bl }
0 NN [y . S



where 50(ygz) is the .ﬁﬁéerturbed- part of ;h§ “dielectric:
tensor,; and Azs(x,¥,%)}) is‘periodic_in the x direction aﬁd isf?
the only periodically varying part of the dielectric temnsor.

In the Fibonacci superlattice, Bq.(5—1) still holds
except that As{x,y;2) is no longer periodié but quasiperic-

~dic in the x direction. In the following we will assume
Ae(x,y,2)=Ac(y,z)f(x), (52}

where +1;if %.is in the first layer of blocks,
f(x)=} .
~1,if x is in the second layer of blocks.

The following derivation is much the same as  the
derivation used for the periodic superlatticele The only
difference is that in the periodic .superlattice Fi{x} isw
expanded as a Fourier series,..whereaé in the Fibanaccir
superlattice, it must be expanded as a Fourier integral. By
the use of the direct or the projection method?’éf(x)'can be

written in the form

—ikx --iGm nX
£(x)=[t(k)e dk:Z A e BT . {Beme3)
an .
|0
with
i X .
1€§Gm nl-Xm n) 31n§G I gin X

A ﬁe ? ¥ .m‘ m’n [ (5‘“4}

nn 1 X
e} M, 5
2 m,n

Starting from Maxwell’s equations and using the
B . F—.




parsbolic apprcximationlfgiﬁgs

(B -3 -G _Ix
: ~ {m, n) : t @myn ,
< 1W3 IE 20 i (55
t m,n '
with
i{wt-p x}
%"*:ZAmtxmm{y,z)e ", (5—6)
£ _ .

where Ar' A are the mode amplitudes, ﬁ}, ﬁt are the wave

t
vectors, and

SR 0y =l B (y,2) £ _E (y,2)dydz, (5T )
rt 4 m,n’' 4 I pt¥e B, b’ JaEs '
e =hs(y,z)h . '{SmNS)
m'n ‘m’n . X

Here the coefficient C(?’ 2} Leflects the magnitude of

coupling between the rth and tth modes due to the (m, n)th

Fourier component of the dielectric pert&rbatlen, So we call
(m:n}

ot is, ‘the

it a Qoupllng_coefficlent. The larger the C
stronger the coupling is.

Bq.{b=—=b} .Qcﬁstitutes a set of .00ﬂ?18d linear
differential equations. In principle, an infinite number of
mode amplitudes are involved. waever, in praotiée,.
especially neér the condition of resonant coupling, only twg
modes are strongly ccupled and Eg. (5m~5) reduces to two

equations for the two mode amplitudes. We d631gnate the two '

coupled modes as 2 and 3. Neglecting 1ﬂteractxon with any of
mmllﬁmm '




the other modes, we‘géﬁ

‘dAZ rg2 (m,n)A eLAﬁx
& - TE‘T 23 3 !
fi?; Oy ("m’."n)a e*mﬁx (5-»9; '
dx I ! 32 2 y

with _
ﬂﬁ:ﬁz-ﬁ3_gm,n ’ . gﬁwaIO): 

If the dielectric tensor e(x,y,2}) of Eq.(5~1} is a

function of x only, the normal modes of the unperturbed

pedium are plane waves and the 'sm n is constant. The
¥
coupling coefficients C‘f’n) for this case become
{m,n) wz % YN
c'M__BH p o B, {511}
rt 2 el r on,n t
&t :

where u is the permeablllty,P and Pt are unit pelarization

vectors of the plane waves.

B.Special case

The theory just developed above will be applied to 7& '

more special case, an FOS. Its schematic disgram is showh in
Figl1~a3.

In order to make the normal modes coupled together

under the action of an electric field, it is necessary that

the electrodes be on the ¥ surfaces or the x surfaces of the

el ] S




FOS% Here we choose the fxéﬁffaces to be the electrd&és and
the ¥ axis to be the propagating -direction of the light
heams. |

The geometrical arrangement of our system is gshown in
Fig.5w=1. The ?olarizer has its transmission axis parallel
to the y axis, and the analyzmer paréllel to the z  axis. In
the absence of an elecﬁric fieid, the FOS is homogeneous to
thé propagation of light and the direction of its principal
axes are along the x, ¥, % axés, respectively(sée Fig.5==1}.

The dielectric temsor in the principal coordinate of the FOS

Analyzer

/

/“"

7 , Polariger

/!

'Input light

Fig.5—1.0eometrical configuration of the Fibonacei optic
superlattice. X, Y, ©Z denote ‘the principgl axes of

unperturbed dielectric temsor and X, Y7, Z’(X,Y'?,Z?’}i:tha
W g



principal axes of'pékturbed dielectric teénsor..

n2 1)
o 2 _ .
EO=£0 0 n_ o 1, : (Bl
' 0 nz .
e

where 50is the dielectric constgnt.of the vacuunm, 5

In the presence of an electrie fields because of thg
electrbéptic effect, the FOS:bééomés inhomogeneéus to th;
propagation of light. If the magnitude of the field i?
moderate{say about lﬂﬁv/cm}, the change of the dielectric
:tensof is‘very smalll and the modulation can be taken for a
perturbation. Using the fact that the perturbed terms aré

much smaller than the unperturbed ones, we get

5:50-&:5, | {5=c13) ;
with
10 0 )
Ae=~g v, E 2.2 o 0 1 |f({x) {5mid)
T 04272 0 e | *ia =
0 1 0

Here Az can be treated as a small dielectric perturbation.

At the same time, we get the_rotation anglé bétween the
pertufbed principal axes{Y’,Z’ or Y’?,Z°'} due +teo the
electroogtic effeétr' and the unperturbed principal |
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axesz,Z){see Pig.feml}

tan 0 2r4232f(x)
- 2 -1 2 -1

h:; (n} -{n )
[s]) a

. ' (515}

Obvicusly, the angle rocks back and forth from +|a| to
L ~la} along the x direction from one domain to the mnext. In
j;this way the function of the FOS is similar to a Solc filter
with quasiperiodicity?

Because A is a Hermitian dielectric tensor, it is easy

to prove from Eq.{(5—5) that

(msn)__
023 ={C

é;m"“’)*.\ {5—16)

According to the geometrical arrangement of our system,

we have
ro'\
§¢=§¢= 1
r 2
LOJ
11}
= o=
' =P = . — ]
Pt PS‘ 4] {5 }

nznz
{(m,n} 1 w . oe 18
K=Cpy' =g == =~ T4 an (5-—18)
none . : | .




where G_ =2 (ntnT) /Demtmtnt) Z((147) 1) .

b
Since the coupled modes are propagating in the Same

direction, the sign factors ﬁzllﬁgl and -ﬁsliﬁs[. are both

eﬁual to 1. Thus Egs.{5—8) become

dA s
2--1ka e O,

an | | |
3_ .. % -iAfx
ik Age ° - | (5—19) |

The initial cpndition at x=0 which is determined by the -

polarizer is given by

AZ(Ojﬁl,
A3(0)=0- . {5=m2()} |

The solution of the coupled eguations then is

iz0B%
A (x)=e [coa(sx)—i%in(sx}} s
2 2s
_iiamx
A (x)ze 2 (-ix%)-sin(ex) (5—21)
3 : 8 _
where 8 ig given by
32=K*K+(ﬁﬁ/2)2‘  - | (522} |

At the analyzer (z-polarized) x=L{which Iis directly

2

related to the block number N}, A is  extinguished. The
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_ transmission for the z—polarized"iight is thus given by

sinzsL _
—z _ I
8

7=k}

This is the same aé the well Eknowrn pendellosung or
pendulus sclution of_Ewald? The energy ig passed back and
.forward between the inéident and diffracted beams as- they
travel in the FOS. The coupling is provided in thié case by
the scattering from one .beam to the other due to the
existence of én perturbed dielectric tensor. |

In the following we will discuss some interesting
phenomena in the FOS. All the calculations have been made by

i
the use of Jones matrix method .

452 .Phase matching conéept and dynamical effect

When one discusses interaction among waves 1in . a
dielectric ﬁedium, one'oftén meets with the phase mnatching
concept.rThe phase matching plays an important role in many
processes such as tke mnonlinear optic, electrooptic and
acoustooptic procesées. If the phase matching condition is
gatisfied, the energy conversion can be complete; if not,
the conversioh will  be inefficient. in homogeneous
dielectric media and periodic dielebtric media, such concept
has already been established1'7 . In recent years,
reseéfches on quasiperiocdic superlattice have been Qade much
pragreés. But to our knowledge, there is no such concept
propoSedrfar quasiperiodic superlattices up to now.

From Eq. {523}, we find that  for significant - mode

coupling to take place between m&deé 2 and 3, three
s T2 T



conditions must be fulfilled. The first ”isffa" Einematic.

condition whick is
Af3=0. : ' (524}

Eq.{B-=24} will be referred to a=s phase_m&tching condition,
This quditicn_ié a counterpart of the ome for periodie 
B} éﬁrﬂcturesle In both ééses, tﬁe,reciprccal véct&r pléys an
.impertant role. It is the recipioéal vector that compensates
the birefringence and makes +the ecnergy coupling process
pfoceéd éfficiently,

We have calculated the dependence of +transmisaion on
the block number N of the FOS for some 6, .- In the
calculations, I is kept constant. We find that for some
wavelength,_there existsra éorrespoﬂding reciprocal vector
Gmgn-by which the phase matching.§onditian is satisfied. For
example, for A=0.8000um and A=0.5478pm, the corresponding

reciprocal vectors are G and G respectivei?, which

1,1 1,27
make the phase matching c;nditien s;tisfied, Figs.,Be2 show
the resultas. For comparison, the transmission of the
yﬂpolariied light is alsec shown. It can be seen _that .when'
Eg.{5—24) is valid, the energy conversiomn can be complete.
In ?ig=5mm3,-a wavelength is chosen such that the phase
matching condition is nol satisfied, clearly the energy
conversion is very low. Altermatively, if X is kept |
constant, we also find that for some vslue of 1, there
exists a corresponding reciprocal vector Gm,niby which ﬁheE

phase matehing condition is satisfied. The results are the

same. Here we also present_.the results for the .periodic.
- ' 1220
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| Fig.5-—2.Dependence of the transmigsion of the z-polarized

_; light on the block number N with phase matched and
i=8.0441ym{curves A). For comparisdn, the trapsmission of
the y-polarized light is also shown(cur%es B).{2)A=0.8000um,

ﬁz‘ﬁg"ﬁl’lzﬂ;(h)k:{hSé?Spm, By=f,=G; ,=0.

e 1 2 i rmiom




1.00

] B

o i
) -
2 ]
g 0.50 —
§ i
E'.‘ o=

0.00 A H/.\ / 3

200 ' 400 600

Block number N.

Fig.5_~3.Dependénce of the transmission of the z-polarized
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»x=0.798um{curve A}. For compariéon, the transmission of the

y-polarized light is also shown(curve B}.
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1ight on the block number N for periodic stfucture with
phase matched: 1=8. 1614pm, Az1.224.m, ﬁ BS uﬁ(curve Aj.
For comparison, the transmission of the y—pol&rlzed light is

also shown{curve B}.
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Block number N
Fig.5~—5.Dependence of the transmission of the z-polarigzed
light on the block number N for periodic structure with
phase unmatched: 1=8.1614um, h:l.ZiSym{cﬁrve A).For
comparison, the transmission of the y-polarized light is

also shown{curve B}.

structure calculated numerié&lly. Fig .54 éhows the
dependénce of transmission on the block number with phase
métched, while Fig.5-—5 is for the phase unmatiched. Clearly,
the main features of gquasiperiodic structure bear a strong
resemblance to those of peﬁiodie structure.

The second is ) _ _
e ¥4 T



[K|L=(2u+1)}n/2,u=0,1,2,..., (5—25)

which is a dynamical condition. If m and n are fixed, then K
'is a constant. Eq.(5--25} thus indicates that for some value
of L, i.e., for some value of N, the block numsber, the
traﬁsmission will be at its maximum. And. for some other

value of N, the transmission will be =zero if
|K|L=vm,0=1,2,3,..., {526}

is satisfied. It is this dynamical effect that makes the
trangmission osciilate almost sinusoidelly with the block
numbher N, which can be secen in Fig.5—2. Analcgéus to x-ray
diffraction and electron diffraétion, G'Bhere !Klﬁi can be
defined as the extinction distance.

The third is that K must not vanish. If it does, then
the transmission will be zerc. We call. it‘ thé extinction
phenomenon which will be discussed in §5—3. Here we will
point out that the extiﬁction rhencmenon is totally
determined by its structure parameters not by the. block
nusber N. Whereas the extinction distance.is determined by N
and is a dypamical effect. These +two different phenomena
should not be confused.
§5——3.Transmission spectrum _

A3 in Eq.(5-—23) is of much significance not’ only
fbecause it determines the.degrée of energy conversion, but

alsc because it determines the cﬁaraeteristics of the
P 5> T J—




transmission spectrum. Let us rewrite Eq.{5—24) in its

explicit form

1{31 -n )=_D2f0T
Ao e Z2{ivril?

or
BinT

m,n 2(1+7) {0 -a.7 ' e (5——27)
o e

{=}

1
N

Here nD and ne are‘the refractive indices of the ordinary
and extraqrdinafy lights, respectively. RBqg.{5—27) is wmuch
similar to the one obtained .for the second harmonic
gener&tioﬁ in an FOS?Both ﬁome from the 'enérgy coupling
between waves and in both cases 'the dispefsion of the
refractive indices must be taken into account. 8o  the
discussion will be to some extent parallel {to that o6f second
harmonic generation.

' In order to gair an insight into the main features of
the spectrum, ﬁumerical calculations have been made which
are valid only under room temﬁerature. Because of lack of
sufficient data, the dispersioﬁ of the - eléctrooptic
coefficient is not considered. This will'-bnly afféct the
peak heights and do not affect the peak_positions as can be
seen in Egs. {5~-=23) and {5—24). .

According to the discussion in §5-—2, for some values
of N, the block aumber, some peaks will be -missing doe  to
IKfL:vn, L is an integer. ?herefére in the calculations, we
have avoided these values of N. Below only the'fesults with

N=200 have been presented.

—ton_



There are Lwo situati&ns'which can be-conéi&eféd hare;'w
The first one is to keep the wavelength constént and change }
the structure parameter 1, thus change the magnitude of,;
reciprocal vectors. Therefore, the dispersion 6f the_ 
refractive indices of n  and An;' has mno effect on the 3

o
spectrum. Eq. {5-27) can be rewritten as

~(m+n7)k

= . {5—28)
m;n '2(1+T)(n°-ne)

For those peaks with n, =nm being asuccessive Fibonaceci

pumbers, Bq.{5=—28} becomes-

A P :
1{1,p)= 2(1'!'1')(\"\ e ) T s {5—m29)

here p is an integer.

Fig.5—6 shows the dependence of the transmission on.;
the structure parameter I with the input light of A=0.8000um
under the condition 1 ‘Tl (n=0.34). We note here ‘the_;
relation 1{1l,p+l)= 1(1,p)+1(1,p—1) holds. This shows that the
transmission spectrum reflects | the structural
self-similarity of the FOS. More generally, we ha?e
calculated the transmisaion:under conditions lA#TIB. Results
show the peak positions remaining the same, except for their
heights, which conform to the literaturez’g.

The second one is to keep the structure parameter 1.
unchanged and vary the wavelength of the input 1light. 1In
this case, the dispersive effect of the refractive indices

on the transmission spectrum must be taken into account.
NI &4 : N '




£a.{5—27) can be rewritten as

1} . m+nT =
X' m,n z(no-m)-ne(m:)uwgi‘ ’

{ . {5—30)

Here no(k) and ne(K3 are functions of XIO;

Fig.5~7 shows the depéndence of the transmission on
| the wavelength with 1=10=niﬁﬁcf Herg ﬁﬁo=ﬁz—ﬁb=2H(nO~ne}IA0
with 'K0=0.8000pm. Though, compared with Fig.5-—8, the
structure of the spectrum seems to be the same, the
positions of the peaks shift a lot due to the -dispersi¢ne

. For those peaks with n, m being the successive Pibonacoi

1.00
N 2
7 T
— 3
_ (1,1) T
&
= = {1,2}
m e
=2 _
g 0.50 — )
£ 1,1 N (2,2)
| - {0,1)
0.00 g Iﬁilt‘“iﬁ‘f‘f*“lﬁi‘{i r"rﬁu‘l T T

2.50 o 8.50 .. 10.50
Structure parameter l{microns)
f Fig.5n—6.Dependence of the transmission on the structure
'.parameter 1 with r=0. SGOOpm:'  'thé <K  that
| 1(1,p+1)=1(1,p)+I(1,p-1). The transmission ‘spectrum reflects

 the self-81m11ar1ty of the FOS structure,j
” 120
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Fig,bw=x7, Dependence of the transmission on the wavelength

=5. . #{1 + .
w1th.1 5.0441m. Note that (1/k)1,p+1 { /R)Isp (I/K)i,p—l

numbers, Eq.(5m~30) becomes

&y = T ' (5—31)
X Lp 200 OJ=n_(XN{T+7)1 “”
The relation
i S | 1 ' _
{ e = d —32

is no longer valid because of the dispersion. So here the
spectrum ig non-self- 31mllar. In other words, the spectrut
Vdoes not reflect the self 31mllar1ty of the reciproecal spact
.and does not reflect mthe symmetry of  the QUasiperieéﬁ

. T, T




str&cture.

In the second“harmonie=generatien of aﬁ' FOS;. we have
discussed an extihétiﬂn phénbmeﬁbn;' Hefe' this “phenomenan
slso exists which can be seen in both Figs.5—& and 5¥.In
§5»—2, we have. already..mentioned. this Qheﬁomencnn The
general extincticn’ rﬁle can be derived directly - frﬁm
EQ.{SMQZB},IWE cén see from it that the transmission éépends
con K as well as on Af. The extinction ocours when K=0. From

Zgs.{5—4) and (5—18), this happens when

g .— . o
S%EEGm,nl‘G° (5“%33)

That is 1=25{n/G_

¥

n}=25(ﬂ/(ﬁ2"f93§b or
{(m,n}=(23,23). (5-—34)

In deriving Bq.{5-—34}, the phase matching 'conditioh has
been used. Here n/{ﬁz—ﬁajlis.thé thickness of a N2 wave
plate. Namely, all peaks with indices {m,n}={23,2j} are
absent in the spectrum provided the structure paramétér 2
.equéls aﬁ'evén number times the thickness of a: A/Z2 wave
plate. _ | 7. |

Finally, please notice that- the whole set of the

reciprocal vectors G possesses some invariant property.
. S MTx . -

From Gm n=ﬁ{m%n7)/€{1+?}1}, we can derive that if 1 changes

¥

by 7P times,; the whole set of the reciprocal vectors Gm n
3

only transforms intc & new set of Gm’ ,'whiCh is equivalent
to reindex the old one. The derivation is as follows. For
. example, I changes by ¥ = times, we have
. LT



_(m’ 40’ T) n{minT)
(1+T)T—11_{1+T}1 B,n

G

ot . (5—35)

Where m=n’ and n=m’4+n’. Because m and n run over all the

integers, the ¢ .

;, i8 just the same as the e o Fig.58
’ L]
reflects this invariance.

1.00
- .2
— T
B (1,1}
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2 q.3
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] {0,1)
] )
T
{1,0)
0.00 *llsji{ :;lt.lil:Alii_
0.40 0.0 ' 1.40
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Fig.5-——8.Dependence of the transmission on the wavelength
with 1=5.0441ym/7=3.1175um. Note that there exists &
one~to-one coffespondence of the peak positions between
' Fig.5=-7 and Fig.5-—8 which is equi#alent to reindexing the

peaks of Fig.5.—7 despite of the peak height and extinction.

§5-—4 .Summary
We have analyzed theoretiéally the electrooptic effect

in an FOS. Both coupled mode theory and Jones matrix method




have been used. The ﬁﬁéSe ‘matching cénceﬁf.‘hés gééﬁ
presented for the first'time'fér the(FGS. The transmission
spectrum shows non-self - 31mllar1ty due Lo the dispersion of
'the refractlve 1ndlces¢ The extinction phenomenon has been
dlscussed An 1nvar1&nt property of the ‘re31prccali vectors
Gm under the inflation transformatian ‘of the stfucture

n
¥ .
parameter I has also been discussed,
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CHAPTER 6
Reflection of ligﬁif and acoustic waves-by,micfon

superlatiice

In the previous chapters, we have discussed the%
piezcelectric, nonlinear optic and_electrooptic' effects. ofé
the micron superlattice made of a crystal with its 'symmetfjg
of 3m point group. All of them are related to the tensors of%
.physicél guantity with odd-rank. Generally Speaking, in the§
"absence of an external electric field, the even-rank ténsorsf
are the same in positive domains and negative domains. So?
the micron superlattice is homogeneous to the propagation ofé
light and acoustic waves. But in the presence of an externalé
electric field, the situatibn is 'different. As we Vhavei
félready sgen.in chapter 5~tha£ the dielectric tensor, beiﬁg%
a second-rank one, is modulated by an electric field throughé
the electrooptié_effectn Alshits et al% have proved, bothg'
theoretically and experimentally, that not oniy theg
dielectric tensor but also the elastic temsor can be%
- modulated by an external electric field through nonlinearity%
or coupled physical effects such as electroacoustic andé
eléctrooptic effects,; which are associated with the oddrrank§
tensors. Therefore, in this case, the micron superlatticé‘
will be inhomogeneous to the propagation of 17ght andw
acoustic waves; and is siﬁilar ‘to & coaventional:
superlattice composéd of two different materials.

In addition; in introduction, we have mentioned thaté
apart from the 1800 ferroelectric domain superlattiée, therEE

. 0 ‘ .
may be others, e.g., the non-180 ferroelectric domain
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superlattice, the lamiﬁar twin superlattice, the
polar-inversion supefiéfiice,' etc..  Under certain
cqnditidns, ‘all of them will be inhnmqgeneous to the
prépagation of classical waves, and are similar to the
conventional superlattice. To make.the discussion suitable
to all of these superlattices, here, in this chapter, we
will study the propagation of light anq acoustic waves in a
conventional superlattice composed of two materials. In this
qaée, tensors both with odd-rank and with even-rank may -
chaﬁge their magnitudes or their éigns. or both regui&rlyg
Many researchers have studied the trangmission spectra of
light and acoustic phonons in the conventional
superlatticezu&é. In their works, thef did@ not take into
. account théreffect of dispersion of the light velocity ,(o;
rather the refractivg index} and “the velocity of acoustic
phonons on the specfra (transmission). They did not notice
that there exist twe kinds of  interf&ces, one. with its
rEflection'goéfficienﬁ ﬁositivé .and the other with its
reflectién coeffiéient negative. Owing to these two reasons,
they‘did not obtain the exact an&lytical:expression for the
transmission of waves in the superlattice {(as for light, the
analytical expression was not given). Hence ~they  did not
predict the extinction . phenomenon as that_ predicted in
- chapter 4 and 5. And more, they did ndt discuss thé phase

matching concept. These will be the topics of this chapter.

&6—1.Theory
Fig.6m=l{a) shows a conventional Fibonacci superlattice

made of two different matériais, There are two building
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hlocks,_ each compose& of'ftwa dlfferent materlalsa The :

'thlcknesses af the flrst 1ayers of the blocks are equal Let

n.; V

i 1
the denslty of the flrst layer (materlal i), respectively,

. Pl be the refract;ve 1ndex, the sound veloclty and

and nz, vz

'_1ayer (materlal 2) Wlthcut the 1loss of generality, we

assume that n2>n; and vz>v1n For simplicity, we consider

that the incident wave is normal +to the surface of the

s PZ be the correspoﬂdlﬁg paramcters of the secoad

gtructure, we define this direction as the =x axis. The

o & e B & ——f—— 4 ——]
E.,,_ 1_+5_ 2_"%}1133'@'1525“_ |

P1 | Ps Py {Pa
v}. Vz Vl vz
Z Z z =
2, 4 2, I3 %y Zg & 7 8
{a)
2 Lt Lyt nilm"’inzlazi’“
A ot B A =
14
uﬂ u1 uz us u4 u5 us
{b}

Fig.6~-1.{a)Schematic diagram of a conventional Fibonacci
superlattice. (b)Transformed from {(a} for light waves with

the thicknesses of layers altered.
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incident wave will be ‘reflected by the interfaces. The
reflection coefficientifé?'the ith interface is given bys

¥. -7,
r=um%iir?% , : o (6l )
i+t i
where , for light waves, yi=n§ and for .acoustic waves,
_yi=pivi {i=1,2). When a'wave trgvels from material 1 +to
'materiai_z, the reflection coefficient is ?oéitive. While =
wave travels from materiai 2 to material 1, the reflection
coefficient is negative, or the réflected wave undergoes a
phase change of n with respect to the incident one.
Obviocusly, there are two kinds of interfaces. The position
coordinates in Fig.6—1(a}) with their subscripts being even
numbers constitute one set, others form the second set.

Below we will take the light waves as an example. For

convenience, we replace the real thicknesses of ~the layers

with the corresponding_optical path, i1.e.,

o™ Ay ™ o

Lpg™Palpg 1

Lpy™har™y 1 s

Lpg™Pplp, (6-—2)

where we have set lAileI

néw superlattice with the thicknesses of the layers

=1, In other words, here we have a

R 5. 1 gua.



expressed by Eq.({6-=2}, which is shown in Fig.6-=1(b}. The{
properties of interfaéés'are as the old one. Whgn- a lightﬁ

wave travels in such a structure, its wavelength remaing

constant. By the same analysis as that in x-ray diffractiop
in solid-state physics, the structure factor can beﬁ

expressed as

~ ilku, . , iAku,, | '
+1
SF(Ak)=§d e 2 1-+e1"§j e 2 . {6—3)
J J
where Ak:ﬁ? e =2k, E? represents the wave vector of the
in  ref in _ :
incident wave, Ejef that of the reflected wave and k=2n/)

with A being the wavelength in vacuonm.

If  the condition L .+L _=7(L_.+L__) is satisfied .

Al AZ_ 8 Bl LBZ
Eg.{(6~—3) can be written in the form ’

.1

i==fkE, sin¥ -iX
2 Al | 1 m,h m,n Zn{m+nT)
SF(ﬁk}a e 31n§&kLA1§E:-m§nmm— e S{Ak mwﬁﬁwmuni
m;0 :
B;n _
{6—4)
with
B:’T(LA1+LA2)+L31+LB2e

For scoustic waves,; the corresponding expression is

B 4 I sinX -iX
1 Al m,n m;n nimtnr)
S {wix e 83 Do e Sfw - - }
F i ' Xm n D
B0 ' : _ ' {65}




with

1A1 IAZ 131 132 '
pf=7( = + = Y+ = + = .
1 2 1 2

Eqg.{(6~4}(or Eq.{6~5}} 1is much the same as those

obtained in previous chapters. Likéwise, here the most

gignificant peaks in refiectivity occur for those k:km o for
. Cm,

which m and n are successive Fibonacei numbers. These

reflections are commonly labeled Tp.'

In order to see the features of the spectrum more
cleariy, the matrix method is used whieh is convenient for
numerical calculations. Again we take the light wavés as an
example. The electiric field of the light wave within each
homogeneous layer can be expressed as a sum of an incident
and a reflected plane wave. The complex aﬁplitudes of these
two waves éonstitute the components of a column vector. The
electric field in layer o (a=1,2) of the nth bleck can .be
represented by a column vector

a(ai

n

b(a)
n

yo=1,2 _ (6—8)

And S0 the electric field distribution in the same layer can

be written

., () .
ik {z-2 } -ik A
E(z):aia}e n n-1 %bia}e o _ -1 . (6T}
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By imposing the bouﬁ&gﬁy ‘conditions at zzz_ . +1 .. and ;

n- 1 Al
z=z_ 41, +1,,, the matrix for block A can be obtained which |
ig
{1} (1) .
an A n+1 o
=7 (6—8)
L) B ! - b
n n+1
where
~ik_1 n n
A 1 Al i, 2 i
Tll-e [éoskzlAz 5(;- +Km}31nk21A2]
i 2
A i “ikg e (nz = Jsink 1
12° 8° no Tno S Mg an 0
i 2
TA Cp el (nz ° sink I
21" T° a. m. StMgfag 7
i A
ik 1 n n
A 1 Al i, 2 i
T22-e {cosk21A2+§(—_ +Eﬁ}31nk21A2)
: 1 2
'k1=2ﬁn1fh,
= A . S
k,=2mn, /A (6—3}

The matrix for block B is given by the same expression with

I _ replaced by 1

AZ B2®

Thus by iterated substitution, the celumn vectors in

the Nth block are rélated'to that of the meroth block by

X1 B
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So-2 .Discussions

—m14]m

0
b ;:T b » {B~—10)
0 | N

with T:TATBTATATB....

The same expression can be oBtained for acoustic waves
excep@ that in matrix e;ements Tij’ k1=afv1, k2=wlvz, and ni
is replaced by P1v17 nz by pz 2. |

The reflection eoefficiént is given by

b

G] .

T -{—— P {G—=11)
3] aﬁ bN-O

That is, it is the ratio of the complex amplitude bO at the
input to the incident aﬁplitude ao, subject to the houndary
condition that to the right of the structure ﬁhere is no
wave incident on it(i.e., bN=0).

Froﬁ Eq.(6—=10}, we have

T .
21
T Seme—, {612}
N Tll ‘

The reflectivity is obtained by taking the absolute

sguare of Ty o that is
. 2 , 21,2
Il ~f-—-11 (6-—13)



The-ﬁﬂfunction‘in,Eqi(S_ué) is very important in the

analysis of the probleﬁ{iﬂﬁe condition

=2n(m+n7)=G ' {614}
D C Wmen , ;

Ak

may be c¢called the Bragg condition or rather the
phase-matching condition. Wﬁeh this éondition is sétisfied,
the _reflected waves are in phase, and therefore they
interfere constructively. 1If, on the other hand, the

condition is'not observed; the reflected waves are Qﬁt of

1.00

Reflectivity
o
en
o
L bt et

0.00 LANE D T A R B SN B S DA SN R S B S S mmay s
43 | 50 160
Block number N
Fig.6—2.Reflectivity vs.block number for light waves with
Ak:GL,I and n1=2.5, n2=2.0.

phase, and they interfere destructively. In monlinear optic

effect and electrooptic effect, we have met the same

problem. Clearly, in interaction processes between waves,
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