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' CHAPTER 4

Nonlinear optic efféct:of quasiperiodic optic-superlattice 

Since the discovery of the guasicrystal,many researcheg
were directed toward its linear phenomena énd its
third-order nonlinearity4’5.Little has been done on the
second—order.nonlinear optical phenomena because of lack of
‘propér-materials, |

The Fibhonacci optic superlattice(FOS). provides a useful
tool for the study of such phenomena. '

In this chapter,we will first study the spectrum qf the
second harmonic of the FOSS. Then we will study the harmonic
genérations aﬁd proposé the phase-matching concept for the
FOS . By a more rigorous theoretical treatment,one

backward-going second harmonic has been predicted.

PART 1

Second harmonic spectrum

There are many theoretical and experimental studies

which have shown that the spectra of the guasicrystal, such
1,2,8,9 .
as those of x-ray diffraction4, phonon 777", electronic
: 10
energy Structure1 and polariton etc., are all

seif-gimilar. Here we report our theoretical results of the
gpectrum of the_second harmonic in an FOSG. Cwing +to the
diapersive effect of the refractive index, the spectrum does
noet possess the self—simila:ity, And by an adequate‘ choice

of the structure parameters, an extinction phenomenon  is

found,




 &4,-1w—1 Theory

The FOS used here is shown in Fig. i{——3. Here we have
get =”=—(1+fm~_} and retained only two =adjustable
;parameters 1 and 7. Through the variation of the value of 7
ithe structure can be e1ther a periodic superlattice or a
?quasiperiédic one. For example, if 7=0, then ‘the structure
js a periodic one, otherwise it is a gquasiperiodic one. In
our system, 1 and play an importaent role; s0 ﬁe call them‘
:gtructure parameters.

As will be seen below, the phase4matching regime can
not be used to study the effect of the FOS on the nonlinear
optical phemomena. So the_quasi—phase—matching‘ conceptlislz
should be developed. In order to use the largest nonlinear
optical coefficient d33 of LiNb03 crystals, we assume that
the domain boundaries are parallel to the vz plane(Fig.lwm3)
and that the polarization of the electric fields are along
the z axis with their propagating directions along ‘the x
axis. . ' V o .

_In what follows, we will 1imit ourselves to the case of
the second harmonic generation (SHG) with =& single laser
beam incident onto the surface of the FOS. Starting from the

1
Maxwell equation 3'14.

' 2ep
Z—e(x t)—mi 3 ;x s L) 4; ap ;x,t) \ (4re1—1)
c A c 8t

and using the small signal approximatian, we get
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. "Efiz : 3 o b
2 -2ik2w 2 __ 32ng d f( )EZ 1(k 231)3:1. (4i—z)

with E2 taking the form : .

. 2w _ B
Ez(x;t}zEz(x)el(zwt“k x). { 4 -eeel o3 )

¥here, » and kw are the angular frequency and wave number of
the fundamental beam respectively, ka is the wave number of
the second harmonic and ¢ is the light speed iﬁ vacuum, ﬁﬁis.
the nonlinear polarizatién vector.

Convenﬁionally, the second-order derivative in-
Eg.{4—1—2) is neglected which is the soc-called parabolic

approximation. Eq.(4=—1=-2} turns into

dE 2 @ _
2, 16nw 2 1(}: -2k )x ,

By integrating Eq. {4=~l~-4}, the. secand h&rmonic:
electric field after passing through N blocks of the FOS.can

be represented as

32nm2 218" iAkxn in lﬁkxn
E_{N)= oo 4, E e +e e ,(é.—_]_sﬁi
2 kzwczﬂk 331 .
=2j+1 n=23
20 o . : -
where Ak=k -2k and j=0, 1, 2, .... {xn} are the positions

of the ferroelectric domain boundaries(Fig.l-=3).
In Eq.{4==lw=5), the terms inside the braces' are the

structure factoer which is divided into two parts with one




part lagging behind the other a phase of exp[1(Ak1+ﬁ)l

For an infinite array w1th lAllB-T(l e., "= =0. 34), by
i5

gse of direct or projection method, Eq.(4—1—35) can be

Jritten in the form

20 AN 2 m,n m,n 2 m,n 5 m,
Y oG 2 dssEl} ® i X
k¢ - — =G m,n
m,n 2 El,n
x&G(Ak-G ). ' - {(4—1—6}

- By using Egq.(1—21) and integrating Eq.(4—1—4) directly,

E2 can alsoc be expressed as

' 1 i
. _ T i 0¥
E (N)=-1i 32ﬁm2 d EZ 1(§Gm,nl Xm,n) San m,nl s;n m,n
5 2 C3at1/) © 1 X
kE ¢ — e m,n
m,D m,n
sin(ﬂk—Gﬁ n)XN
A . S, PR
TG ) ¢ )
m;n
Where_&k:kzm—ZRw.

According to the definetion of the delta function

X .
S{k)=lim E% J N elgudu, { 4 ceee ] e }

-X
N

Ne—p

these two regsults are the same.
For a periodic optic superlattice, a similar expression

can be obtained which is

' eB5—



e 1
2 R - it 1
82w e\ i{l-cosmn) 2 m S
Eziék)—nlkzweg d33§IfQ;:.- mr © *s;?§gm;'
, _ " m#EQ o
sin(&k—Gm)XN ‘ : '
X ¥ - (4'—"’1""‘"9)

{Ak-G )
m

where Gm is the recigracal vector of the period&
structuré,l is the thickness of the positive domain.

The appeérance of Ak is due to the energy couplin
hetweeﬁ the fundamental beam and the second harmonic through
the nonlinear optical effect. Obviously the FOS can not be
used to the gtudy 6f the SHG with éhase ﬁatched {Ak=0). It
can be only used +to the study of the SHG with

guasi-phase-matchable.

$4wmln2 . Spectrur of the second harmonic
The peaks of the second harmonic intensity can be

obtained from the &-function in Eq.{4—-1-~6), which is

_2r{m+nT)

ﬁkm 0 5 R { Bomuncs] e ] O )
3

or

{ﬁkD)m n:Zn(m+nT), ' - {4—lmmtl)

From Eq.{4——1lw=11} we will discuss some interesting
phenomena in both real space  and reciprocal space. A1l
calculation feéults ére valid only under room temperature
rand without the loss of generality, only the resultS‘ with

— 1 S




N=100 have been presented,}37r
In real space,; we étudyuthe dependence of ‘the - second
i parmonic intensity on the structure parameter I of the FOS.

{ 13 this.case, the mave lengih ko is_kept unchanged, s8¢ are

1_{)_-a.:nd LI Here kc represents the

. gavelength of the fﬁndamentai_fféquency'in.vacuum, N and

- the refractive indices n

: héouare the refractive'indices for the fundamental beam and

the:secohd'harmonic, respeétivély. Thus the dispersion of
the refractive indices has no effect on the second harmonic
spectrum. Eq.{4—1—11)} can be rewritten as

{m+ n'T 3 ;Lﬂ

1 = ‘ ' {41012}
m,n é(nzg—nlo)(3+7}

For'those'ihtense peaks, Bq.{4—1-—12) becomes

I

' _ . G P
I{s,pl)= 4{n20-n10){1+7) ST, | ) (4-—1-——13)

here s and p are integers.

Obviously.here the relation 1(3,p¥1}:1(s,p}fl{s,p—1}
holds and thus the spectrum of the second harmonic -exhibits
self-similarity. Fig.4——1—mi shows the relation between the
second harmonic intensity and the structure parameter I with
the pump beam at wave length kozl.SISHm and' n10:2.1453,

n,,=2-1870 for LiNbO, orystals under the condition 1,/1.=7.

The result confgrms iith the discussion above. The intense
peaks take the fqrm of 'kOSTp/[4(n20—n10)(1+7)}Q ~ Under
general conditions, i.e.; lgfle, calculations have shown
that the peak positions of ' the second harmonic 'intensity.-

BT




keep unchanged except  their stremgths.ln our case; thy
change of the value af:ﬁ does not affect the  value of L,

This can be seen easily from the relation D=T1A+IE=21(1+TL

This indicates that D is a chﬁracteristic parameter of lhg
. . 7 A
FOS. The result is consistent with that of R.Merlin et al .

They found that for all IA?IB, the Fourier spectrum of the
structure factor of a Fibonacci superlattice consists of

S-function peaks at k=2i(m+n:s)/D with D:TlA+lB' We may

deduce from these results that the FOS possess certain space
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Structure parameter I(mierdns)

Fig.4—1--1.Dependence of the sccond harmonic intensity on
the structure parameter 1 in real space.Note that

IH{s,p+1)=I{s,p)+1{s,p-1).

symmetry. The symmetry is determined by the arraugement

order of the blocks not by the block thicknesses.
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In reciprocal spaée}iwe stud?_ the dependence  of the
second harmonic intensity on the wave length ). TIn this
case,; the  structure parameter 1 is kept. constant.

Eq.{(4—~-1—11) can be rewritten as

| - BtnT
{I}m,n_ '4{.n2(;\_)—n1-(}\_)}(1+7)1 : L Ty, J— D

_ . ' 17
here nl(ﬁ) and nz(h) are functions of X . Eq.(4—I1-—14)
indicates here the dispersive effect of the refracﬁive index
on the second harmonic spectrum must be taken into account.

Though, for those intense peaks, Eq.{4--1-—14) becomes
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Fig.4.—1—2.Dependence of the second harmonic intensity on
the fundamental wavelength in reciprocal space. Note K that
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the relathn:(1/h)s,p+1:(1/l}3,p+(1/%)3 no longer ho}dS_

-1
because of the dispersion of the refraci?ve index, whereas
in linear phenomena and the_tﬁird order nonliﬁear optical
phenomena, this relation is valid.

Fig.,4——1-—2 .Shows thé felation. between +the second
barmonic intensity and the wave.length with Izlc:njéko and
IA:TIB. Here Akozén(nzo*nie}/lo. As usual,; the intense peaks

gccur at {m,n}#(F W'}. But their positions shift a  lot.

k-1""k
For example, in Fig.4-—1——2, we can see three intense peaks
occuring at RS , as indicated by Tp. They are ll 2:1.318gm,
? y
hljazlcliﬁpm and l1’4:0.960ﬁm. Obviously

(1/%}1 4#(1/)&)1 3+(1/R) So the spectrum of +the second
8 k]

1,2°
harmonic intensity in r;ciprocal space does mnot exhibit
selfusimilarity.

Here another interesting phenomenon should be noted
‘which is someﬁhat similar to the extinction phenomencn in
solid state physics. In both Figs, (4~—1-—1) and {4—1-2)},
the mode (2,2} doe=n not appear. As discussed above, éfter
the fundamental'. lighﬁ passing through the entire
superlattice, the resultant second harmonic light can be
viewed as composed of two parts with a phase .différence of
expli{akI+1}]. VWhen the two satisfy the condition
(AkI+n)=(2j+1)7 or |

1:23—%3., j=1, 2, 3, ..., . A 4—1—186)

mgo___




they interfere destrucﬁi#@lﬁ._ﬁere n/Ak is the  coherence
length for SHG.  That is to say, when the structure
parameter 1 equals an even number times the coherencs
iength, the corresponding SHG will &isappear. This can be
also deduced from Eq.{4-—1-——8) easily. In Eq.{4—1-w=8), for
mode. (2,2}, we éan obtain Ak I=2n from the &-function. But
then the factor sin{Aki/2}=0. So +he second hérmonic
intensity is ZEro. By substltutlng for ﬁkl' from
Eg. (4e-=l=18} into the 5ffunct10n in Eqg. (4—u1~m8), we can

~obtain the general extinction rule which is

(myn}=(2j,2j}. o (4dmla17)
Namely, all peaks with their index (m,n)=(2j,2j) are absent

in the spectrum of the second harmonic intensity.

@4«~1ww3.8ummar$

- We have studied the second harmonlc generation in the
FOS thecretlcallye In our system, we flnd that becauze of
the disﬁgrsive efféct'of the refractlve index; the spectrum
of the second harmonic'intéﬁsity in reciprocal spéce.‘does
not reflect the symmetry of the quaslperlodlc structure and
thus does not exhibit self- 81m11ar1ty Also found is the
extlnctlon phenomenon provided the structure parameters are
properly selected. The general extinction rule has been

chtained.
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F’;QET 2

Harmonic generations’&h& the quési—phase—matcﬁiﬁgi

The gquasiperiodic superlattiée has been studied e lot
jn recent years both theoretically and experimentally.

2,3
although there are suggestions ’ that the qgquasiperiodic

guperlattice can be of some practical usage, to our

knowledge, the pépers concerning this problem <directly are
gtill lack. In this part, we will propose a scheme by which
a third-harmonic can be generated in the Fibonacci optic
superlattice(FOS) through the nonlinear optical effect.
Compared with that generated by a conventional method, the
intensitj of the third harmonic generated here is a little
larger. However, there are many other iypés 6f quasiperiodic
superlattices4“”?, so it is hopeful tﬁét a much more

effective superlattice for the generation of the third

harmonic may be found.

§ fwenZmen]l . Theory
Here we consider a case in which & =2ingle laser bean

with w1=w is incident from the left onto the surface of an

FOS and through the nonlinear optical effect, the SHG énd

the third-harmonic generation{THG) exist simultaneously in
the FOS. The configuration of the structure and the
polarization states of the light waves.are as those in part
t. Here, three optical fields must be téken into account,
one for w1=m, one for m2=2w and one. for w3=3w. The three
optical fields, described in terms of their electriec field

components, are given by

—93—



E, (x,£)=E, (x)e - ,1=1,2,3, - {421y

which satisfy the wave eguation
—— —— 22
7 (2=

The presence of these electiric fields can give rise to!
nonlinear polarizations at frequencies w_, and w, etc., which

2 3
are

i(ﬁwlt—2k1x}
Pzw(x,t)=2d33f(x)31(x)e )

(e *w, )tk vk, )x] _
?Sw{xgt)=4d33f(X)E1(X)E2(X)e . {423}

Before going into detailed analysis,we must make sonme
assumptions. We assume that the '§ariation of the field
amplitudes with x is small encugh so that kidEi/dx>>d2Ei/dx2
and that the amount of power lost from the input beam (wi}
is negligible, i.e., dE (x)/dx=0. We alsc assume that
E1)>E2, Eﬁ’ this is the =o} called small | gignal’
approximation.

. Under these conditions, using equations (4;“2~_1) e
(4—-2-—3} and carrying out the indicated differentiation, we

can get

ﬁEi(x) 7 ' :
N e =0, | | {4omeZuwmiin}

D i




ag,(x}
2 _ 167w 2 1(k Y _2x” }x . :
—dx 1k2m 5 dggfix }E o g o (Aeab)
dE, {x} ‘ 2 20y
3 _ . 12nw 1(k -k )x
— = 1k3w(1:2 d33f(x)E1E2(x) . (4fu2~_§c}

1n equations (4—2—4) only the largest terms have been

kept.
By integrating the equations {(f-onlmd } “the electric

fields after passing through a general block can - bhe

represented as

El(xj)zEI(O), . . {4—eZba)
1 Akx
B 1 irAk?  iAKLS j-1 _2
Ez(xj)—Ez(xj_1)+E Kl(l—ﬁe ‘e ‘e E1 ; {4—2—=bDb}
- K iAk’x -
a 1 2 isk®1 iAkK’L? i-1
Egixj)—Es(xj_1)+E E; El(l 2e te e Ezixj—})
T s .' ¥ 3 A9 s hic? i(&k{-&k,)xn
+n£ x 1+(1~2e1ak1)(elﬁk L_eluk l)_eluk 1 o J IES
i6 2 1
x AT T
1. Ak (kAR )L él(ﬁk+“k %51 3
15 2 {Ak+AKk’ ) ' : 1
{2 meb50)
Where
&k:kzw w’




ﬁk_s =k3‘_u_k2=iﬂ_ku.‘ ,

2
S4nw
i kZWCZ&k 33
2
Z88nw
E s 4 _ K ' {(4—2—86)
SN 331
2 czﬁk’ !
and xj is the position nf.the second interface of the Jth
L4 l‘ L P_. —_
block as shown in Flg.l——S. When L 1A 1A1 IAZ' the
equations are for blocks A, when L"iB'181+IBz, they are for

bloecks B. In deri?ing Egs.{4—2---8},; the boundarj conditions
have been used which are E1{0)=E1, Ez(ﬂ):O, E%{O}=0v

THe'equations {4-—2—5) can be written in a matrix form

(E(x) 3(x ) |
J A(B) 1 _ _ _
Ez(xj)_J=T 2(x 1) ' (4——2—T)
Ea(xj)u E (xjui)
where
1 0 0 }
A(B) | .A(B) ' |
T =1 Ty, 1 o t | | (428}
A(B) A{B) '
T31 T32 1
with




A(B) 1 iakl, UFCA(B) iAk'1. isk’1 )
T31 —T€K2{1+(1 2e Y (e -e y-e

(MM ) 1 Ak e1(£k+uk )1A(B)

*e 16 2 “(Ak+AK")

i(AktAkT )x
j-1
xe _ 3
K 1Ak’1 1Ak’ x
A(B) 1 2 iAk' 1 A(B) i-1
32 "% g Eqll-2e e e o (4—2—9)

1

Thus the output electric fields after passing through N
blocks are ~
3

1
o |, {(4ome2rm10)

3
1( N)
By (xy)
3(xN) 4]

where TN....TATBTATBTATATBTA i.e., TN is the produect of N

matrices. ' |
These eguations constitute the basis of our numerical

calculations and discussions of this paper. We will discuss

them in detail in the following section.

é@——Z——Z.Humeriéal calculations and discussions

We have performed numerical computations for both SHG
and THG with the pump beam at wave length 1.318um of  Nd:YAG
laser. For LiNbog_ erystals, under room temperature, the
refraéti#e indices, accordiﬁg to the Hobden and Warngr’s

ST



equation ,"are S _
n_=2.2215, n_=2.1436 at A=1.318um,
no;2.2839, ne;2,1953 at_h:O.SSme,
né:2.39;3, ne=272882 at A=0.439%m.

A.S8econd harmonic generation{SHG)

The SHG is the result.of two intense pump beam mixing.
Under the céndition of small signal approximation,the second
harmonic intensity depends completely on the struétures of
the superiattiqe, i.e., deﬁends. on whether it is
quasi-phase-matched or not.

Iin a homogeneous medium, the term sin(%ﬁkx/&k). is
crucial to the success of the experiment . To obtain a
significant amount of power, it is obviously necessary to
achieve a coﬁdition where 7

2w

Lk=k“®-2k"=0 - | (fum2mmll)

igs fulfilled. This is called the phase matching condition.
For a pericdic. structure, a similaf term exists which is

sin[ﬁfﬁk—Gm)x/(ﬂk—Gm)1(see Eq. 4wl —8}, The condition
26w .
k -Zk--Gm=0. {4—2—12)

is the so-called quasi-phase-matching which was predicted

g . ' 1 1

theoretically by Bloembergen et al. 0.1 at 1962 and proved
. P : _ 12-18 '

experimentally. by several groups 1 . Likewise;’ for a

gquasiperiodic structure, we can also: define a

quasiwphaSe-ma{ching condition bécause.of the resemblance of
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1. (4——=1—=7) and (4-—le=@), which is
-2kt-e 0. e ” (42--13)

The meaning of these conditions are almost the same. When
they are satisfied, tﬁe output of the SHG will be strong;
when not, the ocutput will be very weak. '
Fig.4—2—1 shows the relationship between the 'second
harmonic intensity and the block number. with
I:l —ﬂ/{k —2k ), t=7 and 13 taking various values. Note
that when 1=0, the enhancement of the second harmonic
intensity is proportional to the square of the block number
as curve(A) of Fig.émn2mni jindicates. It is just the result

of a periodic one. For when =0, the FO8 turns back toc a

periodic optic superlattice(see Eg.l~12) and
., 2
E:liw=n/(k Q—ka) is just the quasi-phase-matching

condition. The curves (B) and {C) represent the enhancement
of the second harmonic 1ntenszty w1th 7=0.15 and 7=0.30. The
curve of 7=0.15 grows more slowly then the square dependence
curve (A}, but more rapidly than the curve of 7=0.30. It
should be menticned that,.in our choice .of the structure
parameters, nc matter what values n. takes, the condition
1=n/{k2w-2kw)- is quuivalent _to sz—ka—Gl-lzﬂ, the
quésiwphase—matching.- | | '
Fig.lww2wm? shows the relationship between the secqn&
héfmonic:intensify and the block ﬁumber witb k2w~22w—ﬁm’n#0,
7 Obv1ously, the SHG is very 1neff101ent. |
Comparing Egqs. {(fBem13) w1th (4__2__12), we flnd that

it is the reciprocal vector the structures provide which
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compensates the dispersich of the refractive index and makes

the nonlinear optic process phase matched.

B.Third harmonic generation(THG}

The process of the THG discussed here is a coupled
pafametric-process,_that is, two parametric processes, the
SHG process and the frequency upconversion process { FUP}
which mixes the fundamental frequéncy with the second

harmonic, are coupled in this material.

10000
3 .
< 4
%; -
3 i
= "
-1 -
& -
0 :

Block nﬁmher N

Fig 4~2.—1.The depeﬁdence of the second harmonic intensity
on the block number with I=6.37um in different CAaSes.
{A)}n=0, i.e., in a periodic optic superlattice; {(B)yn=0.15,
i.e., in a Pibonacci optic superlattice; (C}the same as {B)
with 7=0.30. For both (B) and (T}, kzm-ZRN—G_ .=0.
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According to Bq.{1—12), three parameters {I,n,t} =are
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tadJUSt&bIEn We have calculated the relationship between the
.thlrd harmonic intemsitly and these parameters separately.
Fig.4—2—3 shows the dependence of the third- harmonic

.intensity on I with N=100, 7n=-0.02 and t=1.62. Clearly,
there exist three maximum values in the range of 1=5,90pm to
j=6.40um. They ocour at (1}1125.98pm; .(2)12=6.08um;.
3)1326.3?ym..

 Fig.,4—2-—4 shows its dependence on 70 with N=100 while
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Fig,4-—2--2.The dependence of the gsecond harmonic intensity
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7 takes these three values separately. We find that for each

value of 1, there is an optimum value of 173 where the

intensity reaches its maximum. By repeated' adjustment of
these parameters, an optimum condition has been found -which

is 1-6.08um, ©=0.01, t=1.90 with the third  harmonic




3(0:12200052{_;_;{Fig.'4-—-—2m5, - curve{C)}. Below we|

will discuss zome interesting phenomena.

intensity I

Taking lziiwzn/ﬁk, (12w=6.37gm) and 1=5.98.um, we have
calculated the dependence of the third harmonic intensity on
the block number which is shown in Fig.4-2m45; The twg-
curves differ from each other_ in nature COmpletelj, one.
fluctuates drastically while the other iﬁcreases steadily
with the block number. The explanation is as follows.

Asidiscussed above,; when Iiliw:6.37ym, the . second’
harmohié'is quasi—phase—matchéd and its intensity increases
with the block number as Fig.4—;2——i shows. But fhen, the.
third harmoniec is not quési—phasé—matched. In some parts of
the superlattice, the third harmonic 1is construetive, in

some other parts of the superlattice, it is destrucfive; S0
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Fig.4—w2—3.The dependence of the third harmonic intensity

on I with N=100, 3»=-0.02 and t=1.62.
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: Fig.4~-2wq.The dependence of the.third harmonic i.tensity
| on » with N=100.(A)I=5.98um; (B)I=6.08um; (C)1=6.37um.
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on the bleck number'uh&ér different conditions{(ﬁ)l:ﬁ.S?pﬁ;
$2-0.10, t=1.62; (B)I=5.98um, n=-0.02, £=1.78; (C)1=6.08um,
»=0.01, t=1.90.

its intensity fluctuates drastically as 'the‘_block numbeyp’
varies. Fig.ému2~—5(A) shows this feature clearly. But frog
Egs.{4—2--5), we can see thét the TﬁG depends not only on
the structure parameters but also on the 'second harmonic
intensity. So.as the block number increéses; the thlrd
harmonié-intensity undulates more severely while the second
harmonic intensity increases steadily. :

When 1=5.98um, we find that

Ak’ 1=37. . : (A1)
K1) 3w .

Therefore, 1=31c , here lc represents the coherent length

for the THG in a single FUP. Why 1 should take the value

o 3w :
three times the liw is obvious. Because if lzlcw, the THG in

g'siﬁgle FUP is quasi-phase-matched, but the BSHG is phase
mismatched severely. The result is that the generated THG is
very inefficient because of its relation to the SHG. We know
that, as Tar as the_phase factor is concerned, the effect of

1=312m jg the same as the effect of lzlaw for THG. And

[
when 1=3lcw, the mismatch of the SHG becomes smaller. Thus

the‘ third harmonic intensity increases with the block
number(Fig.d—mzn—s, curve(B))..

The curves 4-"2“*5(3) and 5(C) resemble each other.
They are of the shépe of step-like. In both éases, the

second harmonic are phase-mismatched. Fig.4—2w-6 reveals
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this feature. The seéb#di harmoﬁic intensity fluctuates
almost sinusoidally. Théfé.is a onew=to-—one cdfréépondence
between .Figs.4—w2m—6 and 4——2-—5. Whenever the second
harmonic intensity decreases, a platform apPEars on the
third harmoﬁic intensity. And more, since the maximum value
of the second hérﬁonic intensity in Fig.4—2--6{A} 1is .much
larger than that in 6{B), its corresponding third harmonic
intengity is much stronger. This strongly indicates the
dependence of the THG on the SHG.

To obtain an appreéiation for the enhancement of the
third harmonic available in our case, ccnsider‘ a commonly

16
used two step process . The SHG is generated in  the first

2w
LiNb03 crystal of 100 lc long using nonlinear coefficient
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" Fig.A-—2-6.The dependence of the second harmonic intensity
on  the block pumber. {A}I=6.08um, =0.01, .  t=1.980;

(B)1=5.98um, p=-0.02, t=1.78.
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d31 with the phaseQméﬁghed, then it mixes ,iwitb the . |

fundamental frequency in the second LiNbO3 crystal of;;

-IOGXSICm long using the same nonlinecar coefficient, here
3

lc-:nfﬁk’, the relative output intensity of ‘the THG is I
:99000K2. We find that the third harmonic intensity  in our
case is fairly well though not so exciting. .However, since

there are many other types of quasiperiodic superlattices,
it may be possible to find one in which SHG énd THG can be
phase-~matched simultaneocusly. In that case, the THG can be
1genérated much more efficiently, which is favorable to the

practical applications.

G423 Summary

We have presented a detailed theoretical analysis of
the SHG amnd THG in the FOS. A particular techunigque has  been
proposed which is the first direct depiciion of the
practical applications of  quasiperiodic superlattices,
although the resulis are not so exciting.

The analysis used here can be carried over to many

other +types of quasiperiodic .superlattices and to the

Fibonacci superlattices of other materials. To deal with
guasiperiodic superlattices consisting of different
materials ‘wifh different refractive ihdices along the

optical propagation direction, the reflection by  the
interfaces must be considered.

The FOS discussed here is a new solution tq the
quasi-phase-matching of the optical parametric processes.
With this material, not only miéht the SHG and the THG have

applicable enhancement,rbut alsc cther parametric processes
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might proceed with largé'énhancement,
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 PaRT 3

More rigoraﬁ??treaﬁment'of the SHG

The conventional method of treating the second harmonic

generation involves two assumptions, the first is the- small
gignal approximetion and the second is ﬁhe parabolic
approximation which neglects the second-order derivative in
the wave equaﬁion, We have known that the small signal
approximation is equivalent to the kinematiecal theory of
diffraction in x-ray or electron and leads to the breakdown
of the energy comnservation. In order to see the effect of
the second approximation on the SHG, here in this part we
will solve 'the problem " more strictly. ©Only the first
assumption is remained,.the second one is removed.

Here we start from Eg.{4w—li-—2). TIts sclution ‘can be
obtained through two steps. First ﬁé sclve the corresponding

homogeneous equation

2
3B JE
2 2 2 ‘
——gm -2k’ == =0, (fmBni )
8x2 -

Ite sclution is

52K %%

E =C +Cze s {fm e }

206 1

Next, we use the method of variation of constants to obtain -

the solution of Eq.(4-—1-—2}, which is

1 B



' 1ok
E, Ci(x§+02{x)e i ! L}

Through the conventional procedures; we have

8C . -2 2w W ,
1 ,16rw 2 i{k -2k }x.
g =—3 TR ésgf(x)Ele v , { & <o o)
kE c©
%y iienwz d f(x)Ezefi(k2“+ka)x (d3s)
&x kzmcz 33 1 :

The solution of Eq.(4——3—4} describes =a forward-going
second harmonic wave and the solution of B (feem3mab )
&escribés a backwardugoing one. For & given structure, only
one kiné of wave can be enhanced efficiently, either the
forward-going one or the backward-going one. Since we have
already discussed the former one, so here ﬁe will merely
study the léﬁter one. The solution of Eq.{4—3-—5} is

I-X )_sin%G 1

. N . 1

2 -1 {=G

b §
Ezack(ﬁk,t}zigznw 3 EZ 2 m,n .m,n

k2w32 331 EG
' : B, 0 2 m,n
sinX . 20
.1 L &{E-G )elfzwt+k %) s T TR -y
X : T m,n
2

o .
here K=k +2k ;, other notations are as before.

Obviously, in any case, K can not be egual to zero,
hence the backward—going second harmonie can never be ‘phase

matched in s homcgeneogs medium. It i=s reasonable to ﬁeglect

e 31 B




tﬁe second-order derivative in Eq.{4e—=l=Z2), which results
in the disappearance of §§g backward«g0ing Second;;harmanicg
But in a periodic or a2 quasiperiocdic structure, the phase
mismatch of the SHG process can be compensated with the
reciprocal vectors the structure provides. Therefore the
backﬁardngoing second harmonic can be quasi-phase-matched
and enhanced enormously. This new phencmenon may ﬁ&ve some
applications in future.

Likewise, starting from Eq. (438}, we ocan discuss
the spectrum of the backward-going second harmonic and the
dispersive effect of the refractive index on the spectrum as
well as the extinction phénqmennn. The resulﬁs are much the

same as those of the forward-going second harmonic.
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CHAPTER §
Electrooptic effect and transmission spectrum of 1ight in

‘Fibonacci optic superlattice

Ordinarily, the propagation of lights in a dielect:ic
medlum only relates to the dielectric tensor; & second-rank
one. In chapter 1, we bhave already proved that the
dielectric temseor is the same in positive domains and
negative domains for a crystal with its symmétry of 3m point
group. So the optic superlattice will be homogeneous to the
propagation of lighta. But this is valid omnly iﬁ the absence
of an external electricn field. For electrooptic crystals,
LiHbO3 being one of them, the dielectric tensor can be
modulated by an external electric fleld1 Since the positive
&Gmaln and negative domain act dlfferently to the electric
field, the dielectric tensor is no longer the same in these
two types of domains. The electric field can be applled onto
the media through.more than one schemel. For example, for
POS of LiNbO, crystals as shown in Fig.1—3, if the applied
electric field is along the =z axis, then only the diagonal
elements of the dielectric tensor jr affected. In thié case,
the light will be reflected by the interfaces with its
polarizaﬁion unchanged. If, on the other hand, +the applied
electric field is along the ¥ axis {or x axis), then only
the .off—diagonal elements of the dielectric tensér is
affected, at least in the first or&er approximation. In this
case, the energy of lights with different polarizations will

be coupled together. In this chapter, only the latter one
wsizzn_




