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A new effective interaction potential between an electron and a hole of a
Mott—Wannier exciton in a polarizable medium is derived following a pro-
cedure similar to that of Haken. The variational polaron wave functions
used are those first proposed by Haga. Using this effective interaction
potential the values of the binding energy of an exciton are calculated
variationally in several polar crystals. The values thus obtained agree very
well with those derived from experimental measurements and are always
considerably smaller than those calculated using Haken’s potential.

THERE HAS BEEN a great deal of interest in theoretical
and experimental investigations of the behaviour of
Mott—Wannier excitons in polar crystals in recent years.
These studies have yielded important information about
the band parameters of these materials. Some time ago,
Haken? derived an effective interaction potential
between an electron and a hole of a Mott—Wannier
exciton in a polarizable medium using a two-particle
generalization of the Frohlich? Hamiltonian. Towards
this end he used a wave function for the exciton which
was expressed in terms of products of free electron
polaron and free hole polaron wave functions of Lee,
Low and Pines.? This procedure neglects the correlation
effects between the electron polaron and the hole
polaron. As the Mott—Wannier excitons in most polar
materials are rather shallow, this was considered a
reasonable assumption. Recently, Bachrach and Brown
have determined experimentally the binding energies of
Mott—Wannier excitons in thallous halides. They found
values of 6.5 * 1 and 11 * 2meV in TIBr and TICl
respectively. Using the best known values of the electron
polaron masses and the hole polaron masses in these
materials they calculated the binding energies using a
simple hydrogenic formula with a static dielectric con-
stant. The values of the binding energy they obtained
were much too small. The use of the latest cyclotron
resonance masses® does not change the situation signifi-
cantly.® As thallous hatides are polar crystals, the effec-
tive interaction between the electron and the hole may
not be purely Coulombic. Using Haken’s potential,!
they then calculated variationally the binding energies of
excitons in these materials using a hydrogenic wave func-
tion as a trial function. The values they calculated
turned out to be about an order of magnitude larger
than those obtained experimentally. This circumstance
led to several theoretical attempts” 1 to calculate the
binding energy of a Wannier exciton in a polarizable
medium.
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In this note we calculate the effective interaction
potential between an electron and a hole of a Mott—
Wannier exciton in a polar crystal following a procedure
similar to that of Haken but using the variational free
polaron wave functions first proposed by Haga.'? Using
the effective potential thus derived, we calculate vari-
ationally the binding energy of a Mott—Wannier exciton
in several polar crystal using a hydrogenic trial wave
function. This work was motivated by our desire to find
out how the use of different free polaron wave functions
in Haken’s procedure will modify the potential he
derived using Lee, Low and Pines wave functions. As
shown in Table 2, the values of the binding energy we
calculate are significantly lower than those obtained by
using Haken’s potential and are in good agreement with
those obtained experimentally.

The Hamiltonian of our system, which consists of a
conduction electron and a hole coupled together by an
attractive screened Coulomb potential, both interacting
with the longitudinal-optical phonon field of the crystal
lattice can be written as®
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where b, and by are the annihilation and creation oper-
ators for a longitudinal optical phonon of wave vector q.
The optical phonon frequency is w and is assumed to be
independent of q. The momentum, position coordinate
and the band mass are denoted by p;, r; and m; where
i =1 for the electron and i = 2 for the hole.

The quantity v, is defined as
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V is the volume of the crystal and €., and €, denote the
high frequency and the static dielectric constants respect-
ively. Note that the parameter 7, is the same for both an
electron and a hole.

To derive an effective interaction potential between
an electron and a hole of a Mott—Wannier exciton we
use the following product wave function for the exciton

V=3 Gy k00, b2 (s, b)) (©6)
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where q),(“l)(r,, bg) is a free electron polaron wave func-
tion and ¢1(32)(r2, bg) is a free hole polaron wave function.
For these wave functions we use the following form as

first derived by Haga.1?
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where |¢o) is the phonon vacuum state and U? is the

canonical transformation first used by Lee, Low and
pines.3 Forsmall values of k; we have®
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In equation (8) (—) sign corresponds to the electron and
(+) corresponds to the hole. As Wannier excitons are
rather shallow in most semiconductors we have used
free polaron wave functions for small values of k;.
Following a method similar to that used by Haken® we
find, using Haga’s free polaron wave functions,? that
the effective Hamiltonian can be written as

2
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Here p and r are relative momentum and position co-
ordinates respectively and u* is defined as
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where the polaron masses m7 are related to the band
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masses m;
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as first calculated by Haga.1?
The effective interaction potential ¥(r) can be
written as
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is the expression first derived by Haken.! The other
symbols in equation (13) are defined as
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and #n stands for the quantity obtained by integrating
(U *{) over all the electron, hole and phonon variables.
When we put ¢, = 0 the Haga’s wave functions go over
to Lee, Low and Pines® wave functions and equation
(13) reduces to the effective interaction potential
obtained by Haken.

1t is possible to evaluate V'(r), n(r) and n analyti-
cally using methods of complex integration. The
expression for V(r) thus obtained is rather complicated.
However, terms containing products like cg‘)cfl” * and
cDe®* when summed over the wave vectors make a
relatively small contribution to the binding energy of an
exciton in most materials. For the purpose of exhibiting
the general form of the effective interaction potential
we neglect these terms and write V(r) as
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Table 1. Values of the electron band mass (m,), electron polaron mass (m?), hole band mass (m,), hole polaron mass
(m3), all expressed in terms of free electron mass, static dielectric constant (e,), optical dielectric constant (€..) and
longitudinal optical phonon energy (hw) expressed in meV in several polar crystals. The electron band masses and

the hole band masses are determined from their respective polaron masses using equation (12)

Material m, my m, m3 €o €oo hw

CdTe 0.0917 0.0965 0.32 0.35 10.23 7.21 21.3
(6)

CdS 0.158 0.179 0.57 0.7 9.68 5.24 38
(®)

Zn0O 0.235 0.271 0.78 0.95 8.15 4.0 72

(13)

TICl 0.355 0.55 0.49 0.82 37.6 5.1 21.5
(6)

Table 2. Values of the binding energies calculated using Haken's potential (Ey), using our potential (E,), using

simple hydrogenic formula (€,s) and measured experimentally (E**®%) in several polar crystals. All energies are

expressed in units of meV. The values of Ey are calculated using band masses determined from the polaron masses
using Lee, Low and Pines® formula i.e. m} = my(1 + o,/6)

Material Ey E, €15 ESx®t
CdTe 12.2 10.2 9.8 10 (14)
Cds 34.1 24.8 20.8 28 (15)
Zn0O 88.0 58.7 43.8 59 (11)
TIC1 79.4 46 3.17 11+2(4)

To obtain the ground-state energy of our system
described by equation (10), we follow a variational
approach since it is obviously not possible to solve for
the eigenfunctions and eigenvalues of this Hamiltonian
in an analytic form. We choose the following hydrogenic
wave function as our trial function
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where § is a variational parameter and g is the effective
Bohr radius
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Using this wave function we calculate the expec-
tation value of the Hamiltonian given by equation (10)
in a closed form. This expression is then minimized
numerically with respect to 8 for several polar crystals.
The value of the binding energy of an exciton is then
obtained by subtracting this expression from the sum
of the electron polaron self energy (— a;hw) and the
hole polaron self energy (— a,;hw) as the latter are the
energies of the electron polaron and the hole polaron
respectively at a very large distance. The results are
shown in Table 2. The values of the various physical
parameters used are given in Table 1. In Table 2, we
also give the values of the binding energy obtained by
using Haken’s potential (Ey), the hydrogenic expression

(€15 = u*e*/2€3h?) and those obtained from experi-
mental measurements. We find that the values of the
binding energy we calculate are in good agreement with
the experimental values (except for TICl) whereas those
obtained by using Haken’s potential show a considerable
disagreement. Even in the case of TICl the use of our
effective interaction potential reduces the binding
energy to about half the value obtained from Haken’s
potential. We find that except in the case of TICI, the
values of the binding energy we calculate are somewhat
smaller than the experimental values. In these materials
the polaron hole masses are known only approximately
as no cyclotron resonance measurements have been
done for the holes. Our calculation of the binding
energy does not include the contributions of exchange
interaction and the central cell effects. The central cell
effects make a positive contribution and the exchange
interaction makes a negative contribution to the bind-
ing energy thus partially cancelling each other.

We have also calculated the energies of several low-
lying excited states of a Mott—Wannier exciton in polar
crystals. This along with the details of our calculations
and a comparison between our results and those
obtained by others will be published elsewhere.

To conclude, we have derived an effective inter-
action potential between an electron and a hole of a
Mott—Wannier exciton in a polarizable medium, using
Haga’s free polaron wave functions and following a
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procedure similar to that of Haken. Using this potential  smaller than those obtained by using Haken’s potential
we have calculated variationally the values of the bind- and are in better agreement with the experimental

ing energy of an exciton in several polar crystals. We values.

find that the values thus obtained are considerably

REFERENCES

HAKEN H., Nuovo Cimento 10, 1230 (1956).

FROHLICH H., Advances in Physics Vol. 3, p. 325. Taylor and Francis, London (1954).

LEE T.D., LOW F. & PINES D., Phys. Rev. 90, 297 (1953).

BACHRACH R.Z. & BROWN F.C., Phys. Rev. B1, 818 (1970).

HODBY J.W., JENKINS G.T., KOBAYASHI K. & TAMURA H., Solid State Commun. 10, 1017 (1972).
BAJAJ K K., Solid State Commun. 15, 1221 (1974).

MAHANTI S.D. & VARMA C.M,, Phys. Rev. B6, 2209 (1972).

BAJAJ K.K., in Polarons in Ionic Crystals and Polar Semiconductors (Edited by DEVREESE J.), pp. 194--225.
North Holland, Amsterdam (1972); DE VOOGHT J.G. & BAJAT K .X., Phys. Rev. B7, 1472 (1973).

9. SAK., Phys. Rev. B6,2226 (1972).
10. WANG S. & MATSURRA M., Phys. Rev. 10B, 3330 (1974).
11. MAHLER G. & SCHRODER U., Phys. Status Solidi (b) 61, 629 (1974).
12. HAGA E., Prog. Theoret. Phys. (Kyoto) 13, 555 (1955).
13. KARTHEUSERE. (in reference 8).

14. SEGAL B. & MARPLE D.T.F., in Physics and Chemistry of II- VI Compounds, (Edited by AVEN M. &
PRENNER 1.), Ch. 7. North-Holland, Amsterdam (1967).

15. LITTON C.W., REYNOLDS D.C. & COLLINS T.C., Phys. Rev. B6, 2269 (1972).

B A o o



