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In this paper a simplified mathematical model of exchange and
motional narrowing, which we call the “random frequency-modulation
model,” is developed, and, to a certain extent, justified. A number of
cases are treated. The one general conclusion which is common to
all is that in the case of extreme narrowing the central part of the
line is resonance-shaped while the wings fall off more steeply than
the resonance shape; the half-width is always of order of magnitude
of the mean square frequency breadth divided by the rate of motion
or exchange.

In two cases the model makes some quantitative approach to realism :
first, the case of a single dipolar-broadened line with exchange, where
the “ Gaussian” assumption can be made and the results have been
fitted to Van Vleck’s fourth moment calculation to give satisfactory
numerical answers; and second, the case of narrowing by diffusion
in solids, where the “ Markoffian ” assumption is valid. The problem
of narrowing of hyperfine structure is considered, and on this model
it is found that before merging the lines draw together, a result
which is confirmed by experiments.

§1. Introduction

Magnetic resonance spectroscopy, the study
of absorption and dispersion of electro-
magnetic radiation by atomic or nuclear
magnetic moments precessing about an ex-
ternal magnetic field, remains an active
branch of physics. This may at first seem
surprising : the magnetic resonance spectrum
of an isolated atomic or nuclear moment
consists of a single line at the Larmor
frequency w=g¢B/hH, and apparently there is
only one parameter, ¢, to be measured for
each atomic or nuclear species. However,
when these moments are assembled into a
piece of matter, their interactions affect this
line, causing it to be shifted, or split up into
components, and spread into a practically
continuous band. We can learn about these
interactions by studying the shape and
breadth of this band, or by studying the
related phenomenon of relaxation. Among
other experimental and theoretical reasons,
this very simplicity of the unperturbed
spectrum has caused the study of line
breadths, line shapes, and relaxation to
assume a greater importance in magnetic
resonance than in any other branch of

spectroscopy. From its beginnings, magnetic
resonance work has been deeply concerned
with the line shape problem, and from the
very first it has made great contributions
through its line shape studies to our know-
ledge of the interactions and motions of atoms
in matter.

The phenomenon of “narrowing” is a
unique feature of magnetic resonance line
breadths, and one of the most interesting and
useful ones. It takes two forms: “motional
narrowing ?, which is caused by the motions
of the atoms themselves in gases, liquids,
and even some solids ; and “exchange narrow-
ing”, which is caused by exchange interac-
tions (or exchange motions) of electronic
magnetic moments. Exchange narrowing,
although more complex, was apparently the
first to be discussed, by Gorter and Van Vleck
(1947)%* and Van Vleck (1948), while motional
narrowing was discussed by Bloembergen,

* Some of the work reported in this paper was
also done independently by P. R. Weiss of Rutgers
University, and discussions with Dr. Weiss have
been most useful. A joint paper on this part has
been published (Anderson and Weiss, 1953).

#* References are found in a bibliography at
the end of the paper, listed by year and author.
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Purcell, and Pound (1948).

The mechanism is in principle the same
in both motional and exchange narrowing.
In order to understand this mechanism we
must first have a clear understanding of
what interactions can and cannot affect the
magnetic resonance line directly. The line
is a result of the precession of the magnetic
moment of the sample, and therefore non-
magnetic interactions cannot affect it direct-
ly. This is because these interactions (such
as exchange, electric dipolar effects, etc.)
are “unaware” of the direction of the
magnetic moment, being magnetic scalars;
in quantum language, they commute with
the components of the magnetic moment and,
by Heisenberg’s equation of motion, cannot
affect its motions. Only magnetic interactions,
such as dipolar interactions, spin-orbit
coupling, or hyperfine interactions of nuclei
and electrons, can have a direct effect. These
interactions, however, are themselves affected
by non-magnetic interactions which cannot
directly affect the line, and this produces the
narrowing phenomenon.

Often the magnetic interactions are weak
compared with the other interactions in the
Hamiltonian. ‘These other, non-magnetic
interactions control the actual motions of
electrons and atoms, and these motions may
be quite rapid and completely independent of
the magnetic phenomena. The magnetic
interactions, since they depend on the posi-
tions of the electrons and atoms, will then
vary in time in some way which is controlled
by the electronic motions. It will be shown
later that the magnetic resonance line ex-
periences a time-averaged effect of the
magnetic interactions. When the atomic or
electronic motions are sufficiently rapid, this
averaged effect may be much smaller than
otherwise. Therefore the broadening effect
of the magnetic interactions is reduced; the
line is potentially narrowed and this is called
the narrowing phenomenon.

The observed breadth of the line may con-
tain two pieces of information: (1) the
magnitude of the magnetic interactions; (2)
the rate and magnitude of the motions of
non-magnetic type. The second class of in-
formation may prove more interesting than
the first. Unfortunately, while the breadth
of the line in the absence of narrowing can
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be calculated in a rather rigorous manner
(Van Vleck, 1948), no comparable treatment
of the narrowing problem has appeared so
far. There is a calculation of exchange nar-
rowing by Van Vleck (1948) which, although
perfectly rigorous, only shows that exchange
narrowing occurs. At the same time it
demonstrates that the actual line breadths and
shapes are not calculable by the moment
method.

Bloembergen, Purcell, and Pound (1948)
attack the motional narrowing problem in a
more physical way. They assume the basic
mechanism explained above—that the broaden-
ing interactions vary in a random manner in
time due to the non-magnetic interactions and
motions—and estimate the line-breadth from
this time variation. This estimate is very
satisfactory. In the case of extreme narrow-
ing (very rapid motions) it is

(1)

where w,® is the mean squared breadth in
the absence of narrowing, and w. is an
average rate of change of the broadening
interactions. w. is equal to 1/r,, where 7. is
the “correlation time” of the motions.

In this paper we attack the narrowing
problem (of either kind) by a method very
similar to that of Bloembergen, Purcell, and
Pound, in that we use a mathematical model
which is also based on the above physical
picture of the process. The model assumes
that the precessing moments give rise to a
radiated electromagnetic wave which is under-
going frequency-modulation, because the
magnetic interactions act to change the
frequency of the precession. The frequency-
modulation is changing in a random way in
time due to the effect of the non-magnetic
motions on the magnetic interactions.

Only a qualitative justification for the
model can be presented. However, there are
good reasons for putting forward this method
in spite of this. Most important is the fact
that its simplicity and definiteness makes it
possible to make much more complete cal-
culations than have as yet been possible, and
to treat more complex situations. Some of
the resulting advantages are the following:

(@) The mathematics of the problem can
be worked out in sufficient detail to give
line-shapes as well as breadths. In all the

Aw o~ wp*we ,
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variations of our model the line has the same
general form : a Lorentz (resonance) line in
the center with a more rapid decrease of
intensity (a “cutoff”) on the extreme wings.
The fact that this shape is observed experi-
mentally is valuable in giving confidence in
the model; at the same time, the shape has
become a useful tool in understanding experi-
mental situations.

(b) .An attempt is made to justify the use
of one form of the model for the exchange
narrowing problem. .Van Vleck’s calculations
give numerical answers for two of the
moments of the line shape, which can also
be calculated by our model. However, as we
have pointed out, his calculations cannot for
fundamental reasons give the line-shape or
breadth. We use the two moments computed
by Van Vleck to fix the two adjustable con-
stants in our line-shape (which are essentially
wy* and w, as defined above), and then the
observable breadth of the central peak can be
related quantitatively to the dipolar interac-
tions and the exchange integral. Thus we
have used our method in this case essentially
as an extrapolation method for Van Vleck’s
computation, and have obtained rather good
agreement with experiment. This work was
reported in an earlier paper (Anderson and
Weiss, 1953); further details and some justi-
fication are included here.

(¢) A particular model for the case of
hyperfine structure can also be worked out
in detail. The result is a qualitative indica-
tion of how the hyperfine structure peaks
merge, which seems to be verified by a
number of experiments. :

(d) An extension of this model can be’

shown to be a fair approximation to the
motional narrowing problem under diffusion
in a solid. Here the random modulation of
the frequency is “Markoffian”, since the
atomic jumps are very rapid compared to the
length of time between them. In principle
this problem is solvable in general, especially
if the simplifying assumption is made that
the jumps lead to a completely randomized
frequency distribution. In this paper we give
certain preliminary results for this problem.

§2. A General Discussion of Motional and
Exchange Narrowing

In this section the justification from basic
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principles which is possible for the random
frequency-modulation model is given and
discussed. It can be made plausible that the
general type of line-shape to be expected is
derivable with this model ; however, certainly
one can make no exact quantitative theory.
It can be shown in general that the spectrum
of the radiation from any quantum-
mechanical system is given by*
S pde-iodt

2

I(w)=Trace , (2)

where u(#) is the radiating dipole moment
matrix in the Heisenberg representation :

ih%=Hu—/,¢H. (3)
H is the complete Hamiltonian.

Now in any problem involving the type of
narrowing we deal with here the Hamiltonian
may be split up into three parts:

H=H0+Hp+En . (4‘)

These three parts are : first, H,, the “unper-
turbed Hamiltonian” which causes the energy-
differences which lead to the observed spectral
lines whose shapes we wish to study. Second
is Hp, the “perturbing Hamiltonian”—gene-
rally just the dipolar interactions between
the moments, although it may also involve
other interactions, such as hyperfine splitting
—which does not commute with H, and thus
can change the frequencies radiated by the
system over some more or less known range.
H, causes the broadening of the sharp single
lines due to H into broader lines or a fine
structure. Finally, there is H,, the “motional
Hamiltonian”, whose characteristic is that it
commutes with both H, and x, and thus can
have no direct effect upon the radiation
emitted or absorbed by the system. On the
other hand, H,, does not commute with H,, .
and thus, by the relation
ZthZ[H; Hp]Z[HOr HF]+[HM) HP] » (5 )

H, can cause a time-dependence of H,. It
is this time-dependence which “narrows out”
the line-broadening which H, otherwise would
cause.

In the usual exchange narrowing case, H,

*  Anderson, 1949. A simple proof of equation
(2) is given in Appendix I. The apparent lack of
convergence is easily removed by convergence
factors or by thinking of the integral as an aver-
age.
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is the interaction of the magnetic moments
2 of an assembly of atoms with the external
field :

-

Hy=3 ;- H=g8 sS-H.  (6)
J

Here ¢ is the Landé factor, 5 the Bohr
magneton, H the external field, and S the
spin.

H, is the dipole-dipole interaction energy
of the moments,

13(§j.§,c
7k

Hp=Hia=9?p*>
Jr k

— 3(SJ'7’jk)(ZSk'7’jk) ) . ()
75k

which Van Vleck (1948) has shown can be

simplified in some cases to

1 3 1
— 232 2. 26 =
Ha g B j’zk jka (2 COS “U jx 2)

X <§]§k_SSJZSkz) . ( 8 )

05 is the angle between 75 and the z-axis,
along which we assume the external field to
have been applied. It is assumed for the
validity of (8) that Hy>H, ; the terms omitted
in (8) lead to the “satellite lines.”

The “motional” Hamiltonian H,, in the ex
change narrowing case is taken to be the
Heisenberg exchange Hamiltonian,

Hm=Hez=%f(7’jk)Sj'Sk .
ix

It can easily be shown that (9) commutes

with the total spin vector of the system Zgj,
and thus both with its z-component, which is
proportional to H, (6), and with its  or y
component, which is the radiation dipole
moment, u@), in (2). It does not commute
with the dipole-dipole Hamiltonian Haaq,
however.

In the case of motional narrowing H, and
H, ((6) and (7)) are of the same form as in
exchange narrowing. Motion of the actual
coordinates of the atoms can change Haq,
while neither H, nor ,u=gB§ij are affected

by physical motion, since they do not contain
the spatial coordinates of the moments.
In this case, H, is the Hamiltonian of the
translational and rotational motion of the
molecules of the substance.

The random frequency-modulation picture
of the narrowing process can be derived from
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the above physical assumptions :

(a) equation (2)

(b) equation (5)

(©) Hpnp—pHn=0

(d) HwnHy,—HyHn=0;

(e) and, in addition, the assumption that
H;; is small enough that it has no
important matrix elements connecting
different states  E;(® and E;©® of the
unperturbed energy H,.

In any real substance assumption (e) will,
of course, not be rigorously true, since there
are many states of H, of equal energy (i.e.
equal S,») and therefore Haq will obviously
have important off-diagonal elements. How-
ever, we may look upon assumption (e) as
an approximation—very like the “adiabatic
approximation” of pressure broadening theory
(Foley, 1946) which often, if carefully handled,
leads to good quantitative results—which
should not lead us too far astray. What is
done is to use always a mean squared value
of Hp which is computed without neglecting
the off-diagonal elements, but to treat it as
though it came only from diagonal ones. In
other words, we do not neglect the magnitude
of these elements but simply compute their
effects non-rigorously whenever they are im-
portant. ‘

Under assumptions (a-e), then, we wish to
compute the spectral intensity (2). We
realize first that we are only considering one
spectral line, so that we only need to con-
sider the element of x(#) which connects two
unperturbed levels of H,, E; and E;. We
can then say that for the spectral line under
consideration,

I{(w) =
i

(11)

Suu(t)e‘i“" dz"‘ .

Now we know part of the time-dependence
of ui(#), that due to the unperturbed Hamil-
tonian H,. We express this fact by trans-
forming to a new matrix element u;;'(¢) which
contains this time-dependence explicitly :

wij(t)=pas’ (&) exp (Gt ,  (12)
where
hwiW=E;—E; .
Now it is easily shown that the transforma-
tion (12) removes the terms of the time-

equation (3) for p which depend on H,, so
that now
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o dy
i —=[Hn-+Hy, 1]
=Hpp' —pn'Hp ,
because of assumption (a).

Now, by the use of assumption (e) we can

actually calculate u:5/(%), as follows :
thity =[Hpp' — ' Hpli;
=(Hp)esptes — pas’ (Hp) s

(13)

i (=140 i @) - 14)
Here dwq;(#) is defined as
Aw“(t) — HP(?)%Z—HZ’(t)J'J' . (15)

k

Equation (14) for the matrix element is easily
integrated to give

()= p11f® exp (z X‘Awwa')dt') . @16)
0

Inserting this into the intensity formula (11)
gives us for the line shape (ignoring as usual
constant or nearly constant factors since we
wish only the shape function)

Izj(a)>~‘ Sw exp (—z’(co — wy O

_Z-S’Aww(t')dtf) Coan
0
dw;(f) is a random function of tlme ; its value
at any time depends on the values of the
diagonal elements of Hp» at that time, and
these will change in a random way at a rate
controlled by the motional Hamiltonian, Hp,
as we see from the time equation (5) for Hy
(there is no time dependence due to H, be-
cause these are diagonal elements) :
ihHy=[Hu, Hy] . (18)
The reason for assuming randomness is that
in the important cases the effect of Hp back
on H, can be neglected, so that the motions
embodied in H, appear to the magnetic
quantities to be uncorrelated. Equation (17),
and the idea of dw:;(#) as a random function
of time whose rate of change is controlled
by H, according to (18), are the basic ideas
of the random frequency-modulation model
of narrowing phenomena.

In general, we will have no rigorous basis
for giving dw;;({) any particular form. In
the first place, because of the inaccuracy of
assumption () dw,;i(¢) is simply a construct,
a single function which is meant to embody
all of the broadening effects, diagonal as well
as off-diagonal, of Hp. In the second place,
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even if we actually had a true expression
for dw;(¢) as a random function, we could
probably not handle it mathematically in the
present state of the theory of random func-
tions.

What we know about dw;;(#), or can usually
find, is at least a good approximation to its
probability distribution : the probability that
at a given time it has a given value. In
many cases Van Vleck (1948) gives us at least
the mean second and fourth moments of this
probability distribution (which, fortunately,
seldom has the peculiarity of anomalously
large wings); in other cases (Anderson 1950)
the entire distribution is available.

Finding the random time properties of
Adw;i(f) is another problem. It is likely that
the problem of finding the line-shape is
hopeless unless this function falls into one
of the two simple cases, the Markoffian or
the Gaussian, of random functions. (See Wang
and Uhlenbeck, 1945) Even if we knew the
exact properties of dw;;(¢), it would therefore
be necessary to assume the best Gaussian or
Markoffian fit to the real function before pro-
ceeding farther. For each of these two
simple cases a solution for the intensity dis-
tribution (17) wiil be given in a later section
of this paper. We shall show that the ex-
change narrowing problem probably is closely
represented by a particular type of Gaussian
random function. The problem of narrow-
ing under diffusion in solids is a very close
fit to the exact Markoffian case. Other cases
must be arbitrarily assigned certain types of
random functions.

Before going on with these detailed con-
siderations, let us take a general look at the
structure of the problem embodied in equa-
tions (17) and (18). The appearance of equa-
tion (17) may be simplified in the following
way : let us redefine w as

19)
this is the frequency deviation from the line
center. Also, let us introduce the phase

deviation 7(#), which is of course simply the
integral of the frequency deviation :

0o=0—w0;9;

n<t>=g°4wm<z'>dt' . 20)
Then (17) becomes '
w)= S” (@b tdr, @1
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a form which is familiar from the “adiabatic
theory” of pressure broadening. (See Ander-
son, 1949, or Foley, 1946.)

We shall find it very convenient to use the
correlation-function form of the Fourier
integral. By a well-known transformation
one can show that

o) =r dreter

-0

S at
X e—-i(n(t r4T)=0(t"))

23)

I(w)zr deetoro(z) .

¢(r) is called the “correlation (or autocorrela-
tion) function” and can be written as:

o(r) =<ett+m -1 >ave. over £ . (24)

In view of equation (16), this is just the same
as

() =< *(E A7) i) >ave. over ¢ .

This represents the averaged “memory” of
the function ;7 at the time ¢4t for what
its state was at a time t earlier.

This theorem as a method of finding the
line-breadth is much Iess sensitive to the
exact line-shape than the moment method.
A number of simple theorems showing this
are given in Appendix II; however, we need,
for present purposes, only the familiar one
that the product of the frequency width of
the spectrum of a function with the time-
extension of this function is always roughly
unity : dwdi~1. Thus we know that if ¢(z)
falls off appreciably, say to 1/e of its value
at =0, by the time T, then the breadth of
I(w), its Fourier transform, is roughly

do=1/T . (25)

To find a rough estimate for 7, let us go
back to the definition (24) of ¢(z), remember-
ing. that 7 is given by (20).

Then

o(r) b=<exp <z S5+7szj(t’)dt'>>ave. overt.
(26)

If w;s® (i.e. H,) was correctly chosen, there
will be no tendency for 7(#) to change other
. than randomly with time; its swings may
become larger but its average is zero. Then
the question to be answered becomes : when
on the average will the integral of dwi¥)
take on a value of order of magnitude unity ?
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This will make the real part.of (26) small,
and the imaginary parts will cancel because
7 is equally often positive or negative. Let
us consider two cases :

I. The variation of dw:;(#) with time is
very slow. Then, for any given time #, dw;;
will have a nearly constant random value of
order of magnitude ’

dwi~)/ Aw—l—j2=wp ,

where we define wp as this value. Thus %
will become appreciable in a time T satisfy-
ing wpT=<1, so that the linebreadth is given
by

(27-I)
Here we see that there has been no narrow-
ing, as expected.

II. The time-rate of change of dw:it) is
greater than w,. In this case, although at
any time dw;; will be of roughly w, in
magnitude, its value will change sign before
the integral in (26) can become appreciable,
and thus ' '

do=wy .

T>1/a)p

joaen }(27—11)
Here we have narrowing, and we find that
the criterion for “slow” vs. “rapid” motion
is, correctly, that used by Bloembergen,
Purcell and Pound (1948), namely a com-
parison with the line-breadth itself.

§3. The Spectrum for Gaussian Random
Modulation ; Exchange Narrowing

The case in which the random modulation
of the frequency is Gaussian noise with an
arbitrary spectrum is rather easily solved in
general. The theorem which can be used in
this case is the well-known one that any linear
combination of values of a Gaussian random
function is itself randomly distributed with
a Gaussian probability curve. In the correla-

tion function (26), the exponent
t+T
S Ao Bdt=X(Z, 7) (28)
17

is just such a linear combination. Thus we
know that the probability distribution of X

is simply

1 ( Xz )
——= €X —_——) .
V2rX? P 2X?

Now we see that if we can find X we can
find ¢(r), since

P(X)= (29)
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o(r) = g“

o(c)= exp <—X‘2/2>[ Vi‘fr dy
xexp(——yz/zﬁ}exp (—X[2) .

e X P(X)dX

(30)

Now if dw;;#) is a Gaussian random func-
tion it is completely characterized, aside from
its mean square magnitude, by either its
spectrum or its correlation function

Pro(T) = Ao w5t +-7)>ave.

ACOU'Z

, @D

which are Fourier transforms of each other.
Let

wp*=Adw,;*

be substituted for the mean square magnitude
of the perturbation, for the sake of brevity.

X2 can be found most easily in terms of the
correlation function for dw;;:

)_(§=<SfdtS7dt’Aw¢ (Bt >ave.
0 0

=wp2S7dtSTdt'¢Aw(t'—t) )
0 0
the average being taken by the use of (31).

The substitutlon of
r=1"—t¢
y=t'+¢

as new variables leads to

Xz =2a)p2gfdx(r——x)¢m(9;) .
0
This gives us
¢(t)=exp (—congde (t—2)Pae (x)) . (32)

Two extreme cases are now of interest.
The first one corresponds to Iittle or no
narrowing. Here we assume that dw;; does
not change appreciably during the time (about
1/wyp) in which ¢(r) falls to a relatively low
value. Then we can set ¢an(z)=1, so that

P(T)oase 1=€XP (—w»*t%/2) , (33a)
and obviously the line shape is a Gaussian
of second moment w,%, which is of course
precisely what we started out with. The
more interesting case is Case II, in which we
have a large narrowing. Then we can say
that ¢a.(x) falls to a small fraction Ilong
before ¢(r) has changed appreciably. Let
1/w. represent essentially the width of the
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¢ao curve; this can be characterized by

S”% (@) do=-—1— .
0 w,

(4

(34)

Then we can easily see that the contribution
of the term in z in the integral is neglible,
of order wp?/we?, so that

@(r)==2exp ( —wp? S:dx (0A,,,(x))

which, since most values of v of interest are
much greater than w., gives
@(T)case m==2€XP (—wp*/we-T) . (33b)
This exponential correlation function corres-
ponds to a lineshape of the resonance type,
as is well-known. Thus at least the central
portion of the line is of resonance shape ; the
wings are determined by ¢(r) for small <, as
we show in Appendix II, so that for these
we need more detailed considerations. Note
that this result is completely independent of
the detailed shape of the correlation function
@au(t), and thus of the detailed spectrum of
the random function dw,;(Z); this is so unless
this function has a correlation which falls off
only as 1/z or less. Such a function would
have a spectrum divergent at zero frequency,
a possibility which seems very unlikely.
‘We shall give two explicit examples of the

function X?. The first numerical example is
the case of the Markoffian Gaussian process.
A Markoffian process is a random process
which proceeds in jumps, the probability of
a jump to a given value of the function being

. dependent only upon the value of the func-

tion immediately before the jump. Such a
process can be made Gaussian by letting the
jumps become infinitesimally small. (See
Wang and Uhlenbeck 1945). In this case the
correlation function is exponential :

(Pro)vark. =€ . (395)
Here w. is the inverse of the correlation time
7. for the process. Now

D) ng‘rdx(t —2z) exXp (—wex)
0

—=20,? T 1
We

we?

(1—eXP(—‘wer)):| :
This gives us for the correlation function

w pz
¢(T)Mark. =€exp4— ] T [
We

+ 220 —exp (—oule ) . G0
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(We have inserted absolute value signs on t

because, of course, X2 is an even function
of 7.) It can quickly be verified that our
two limiting cases are true.

We should note that by either Theorem IV
or V of the Appendix, the wings of the
Gauss-Markoff spectrum fall off only as the
fourth power of the frequency ; it is easy to
verify by those theorems, in fact, that the
coefficient is

Wewp?

I(‘”)m—)oo"’ (04

This means that, although it can be shown
that in either limiting case the fourth power
part is quite far on the wings, still it is true
that the fourth moment is divergent. Van
Vleck’s calculations show that this is not a
satisfactory model for exchange narrowing.

The second example we shall give is the
Gaussian random noise with Gaussian
spectrum. This should give results typical
for the case in which the possible rate of
change of frequency is severely limited. This
is the situation one should expect to hold in
exchange narrowing, where H, can, after
all, only change the frequency at a rate no
greater than something of the order of ZJ/k.
Here we have a correlation function which
is also Gaussian, and we define it as

PanlT) =€XD (—%a)ez 1'2> .

With this definition of ¢4, it is easy to see
that w. agrees with the definition (34), and
that therefore the limiting equation (33b) will
hold. It is easily shown that in this case

?(7)canss =€XP { --*Mgwef exp (-— T
1) 4

4 0

+2L”f(1—exp (_iwezrz >>} . (38
W 4

For this case we should also like to have
the second and fourth moments. These are
most easily obtained through the theorems
of the Appendix. By Theorem II,

wr=wp?.

37

x2>dx

(39)

The fourth moment may be found either by
Theorem I and taking the fourth derivative
of (38), or by Theorem III of the Appendix.
Using the latter method,

wt= <Aw'z j4>ave. + <(‘dit‘da)ij)2>avc. .
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The first term is easily found, since dw;; is
Gaussianly distributed ; it is simply 3wzt A
simple transformation based on the proof of
theorem III given in the Appendix shows
that :

<<%szj>z>ave.

= — <t L 0sul)
= _< Wy j >ave.<ﬁ¢mn T )7

=0
T 2,2
=0 .
2
Then

E*:swp4+§w,,2wez . (40)

We see that now both moments (and in
fact any further ones) are finite; the fourth
moment, as discussed in Appendix III, has a
form remarkably like that given by Van
Vleck for the case of exchange narrowing.

For the comparisons with experiment which
have as yet been made only these moments
and the limiting cases of large and small
narrowing are needed. The uncertainties
caused by a number of experimental and
theoretical complicating factors will make it
hardly worthwhile, for these comparisons, to
consider cases involving intermediate amounts
of broadening. However, the line width has
been computed approximately, for the sake
of completeness, in the intermediate range
where wp» and . are comparable. This
material is therefore included in Appendix
II1.

The use of this Gaussian-Gaussian case as
the model for exchange narrowing, and the
comparison of its results with experiment,
have been discussed in a previous paper
(Anderson and Weiss, 1953). It is pointless
to repeat this work here. The results are, in
the main, very satisfactory; and indicate that
the model is quite accurate and that no
essentially new concepts need be introduced.
The most interesting feature is the appearance
of the “10/3 effect”. The “satellite” (or non-
secular) terms in the Hamiltonian (7) must
be included when exchange is large, which
can be understood from our model very
easily.

§4. The Spectrum for Markoffian Random
Modulation ; Narrowing by Diffusion
in Solids and Narrowing of Fine Struc-

ture
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As has already been mentioned, the Mar-
koffian is the second simple type of random
function, and for this case too one can give
a general method for finding the correlation
function of the spectrum. The mathematics
is considerably more complex than in the
Gaussian case and in many cases the full
solution cannot be carried out. We are, how-
ever, able to solve a few simple or limiting
cases and get a general idea of the form of
the solutions.

The problem is to find ¢(z) from equation
(26)

() =< exp ( ; S”’Aw“(t/)dz'>> av. over ¢
17

(26)
under the assumption that dw:;(#) is Markof-
fian. A Markoffian function f(#) may be
defined in 2 number of ways (see Wang and
Uhlenbeck, 1945); the simplest is that the
probability of a given value f; at the time
¢, if the value was f, at £—4¢, is independent
of the value of the function at any earlier
time than z—4¢. Thus the probability depends
only on the value of the function at the
earlier time, not on its slope, past history,
etc.

An example of such a function is one which
can take on the values =1, and whose pro-
bability of transition from one to the other
in a given time interval df is a constant,
dt[r. A more physical example is the mo-
mentum of a gas particle in a rarified gas
of hard spheres. Collisions change the mo-
mentum by an amount independent of its
earlier history, depending only on its present
momentum.

The Markoffian process is characterized
completely by its “second-order probabilities.”
In the case of a function of a continuous
variable, the time, the second-order proba-
bilities are written as

Probability that value is f, #f
value is f; 4¢ seconds earlier }"
=W(f1lf2,48) . (41)
If the function is not to vary in a senselessly
rapid fashion it is known that W must be
proportional to 4¢ for small 4¢ unless fi1=f>;
in fact, W may be written as

W(filf2,48)=0(f1, f2)+I1(f1, f)dE, (42)

where now II is the probability per unit
time of a transition from f; to f,. The
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d-symbol is Kronecker if the f’s form a dis-
crete set, Dirac if the f’s are continuous.
Finally, since*

SWdf.Fl,

(stating that the function must have some
value at every time) we see that

Sn af,=0, (43a)

so that, since the transitions to values of
foa<f; must always have positive probabilities,
we have
H(flv fz)z —we(fl)(a(fly fz)—P(fn fz)) s
(44)
where the presumably non-singular function
P is normalized :

SP(fl, Fodfi=1,

and w. represents the total probability of
transitions from the value fi.

A few more words on Markoffian functions:
There is for the usual case of “stationary ”
functions a “static distribution ” or intrinsic
probability distribution, Wi(f), which is the
probability distribution of f one gets if the
function is left alone, for an indefinite period.
Such a distribution has to be self-perpetuat-
ing, which means that it must satisfy the
Smoluchowski equation embodying the con-
dition that if the distribution W; holds at #
it must hold at #+4¢:

Wi f)= SdﬂWl(fl)W(ﬁlfz,At) . 4

(43b)

or
0=§df1ﬂ(f1,fz)W1(f1), (452)
or, finally,
we(fz,)Wl(fg):SdflP(ﬁ, FIWfod fo) -
(45b)

We see from comparing (45b) with (43b) that
P(fi, f») is not symmetrical in its arguments.
This could be avoided very easily by using

#* All equations like the following can be writ-
ten either as though f has a continuous range,

in which case \df can be used, or as though f

is discrete, in which case they are to be written
as Xy. The one way of writing is generally
obvious if the other is given, so that I shall not
give both except where confusion might arise.
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instead the function wJf)Wi(f)P(f1, f2)
which is symmetrical, at least in all cases
we consider. This corresponds to defining a
second-order probability W’(fi|fs,4t) which
is the probability that the value is f; at ¢
and f, at #--4¢, which is symmetrical unless
the process violates microscopic reversibility.

With this brief introduction to Markoffian
theory, let us see what can be done with (26)
if dw;j(#) is our Markoffian function f(#). A
matrix method of solution is used* in which
we consider the probabilities W(fi, f;) or
P(fi, f») as two-dimensional matrices connect-
ing the sets of indices f; to f;; thus possibly
for the following the assumption that 4w has
a discrete set of values will be more con-
venient.

The average in (26) may be written in the
following way. We divide the interval 7 into
»n equally spaced steps, such that t/z is very
small compared with the rate of change of
4w ; then (42) will hold. The averagand is

o (15 50 (0m3)

L+
—exp ( 15 Aw(t’)dt’) .
13
Now we want to know the probability that

do takes on a certain set of values at the
various instants in equation (46): i.e., that

(46)

Aa)(t+ %)=Aw1 , Aw(t T zi)=Aw

Aw(t—!— —) dwy, .

This is easily found (see, again, Wang and
Uhlenbeck (1945)). The probability is

Pldwidw,- - - dow) = Wi(dwr) W(Awlldwz , %)

X W(ACUzlALU?,,L) Xooe XW(Awn—J]Awn:L) .
7 , ”
(47)
Now we can find (26) simply by summing
the product of (46) and (47) over all the
possible combinations of dw’s, since these are
respectively the value and the probability of
Po)=3 X X -

a given averagand.
.T 2
-(exp (Z— > Awm))
A"’l Awg Awg 7 m=1

< Wi (do) TT W(Amm_luwm, i) 48
m=2 n
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n-1
=> >---31I (exp(iidwm)
Aml Awgy m=1

X W(Aa)mlAaJm+1; 7 >) exp (Z Awn——)

Now the central product has the form of a
matrix product. It will have this form ex-
actly if we define the diagonal matrix dw**

(A__‘L’)Aw1sz= 0(dw:, dwy) X dwy (49)

which has the effect in matrix multiplication
simply of multiplying any matrix element
Maw, a0, By 4w The probability matrix has

already been suggested :

W(L)_ =W<Aw11Aw2,—T—). 50)
=N\ /rvia0, n

We also introduce Wi(4w) as a row vector in
4w space, and 1 (dw), the vector all of whose

components are unity, as a column vector.

Neglecting dwn,-t/n at once compared to
unity, we can write (48) as a matrix product
multiplied on left and right by row and
column vectors respectively :

s (o) (3)) 5
: (48a)

Now, since r/n-4w can be made as small as
we like, it is permissible to let

exp(z’ —T—Aw> =1+i“dw
7 = npn=

while from (42) we can rewrite the matrix W
in terms of a matrix II:

W(i)=1 I
=\ 7 = =y

This gives us for the product in (48a)

(el )

(1t 5 G0+ m)

which, letting, # go to infinity, is
exp (zzdw+11))
so that (48) becomes »
¢(v)=W1-exp (z(gdo+11))-1
or,

* The method was suggested by the Kramers-
‘Wannier (1941) method in statistical mechanies.

#k We shall underline vectors once, matrices
twice in this vector space, the coordinates -of

"which are numbers referring to the various pos-

sible values of dw.
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o= =

Aw), Awy

Wi(dw,){exp (z (dw+11))}dw;, do,

(49)
Equation (49) is the general solution of our
problem. It expresses ¢(r) in terms of the
known matrices II, defining the Markoffian
process, and 4w, and the function Wi(dw:)
(actually derivable from II by the integral
equation (45b).)

We see now the form which the solution
to this problem will take. The basic problem
will be to diagonalize the matrix (F4w-+II)
by means of a transformation matrix T:

T-'Gdo +IDT=4,
where 4 is a diagonal matrix. If we can
find 4 and T, we can transform the two
vectors Wi and 1 by means of T into the

coordinate system in which #dw+II is

diagonal. ¢(r) will then be a sum of ex-
ponentials e~®" in the eigenvalues* whose
coefficients will depend on the extent to which
their individual eigenvectors are contained in
W, and 1. Fourier transformation then

shows us that I(w) is a sum of resonance
(Laplacian) distributions, with central fre-
quencies given by the imaginary parts of the
A;, and widths by the negative real parts.
In explicit form, we label the eigenvalues of
A with the subscript «, 8 etc. and the various

;I_a)’s as before, and

¢(T> :A ZA (W])Aml[exp (T(Z‘A(D + H))]A"’lAmZ
0], Awg ——————
= Z 2 <.KV1)A“’1_Z_‘A“’1‘”£“’A‘”2_1

_Aml, Awy, Awg Awy a, B
x[exp (r(Go+I)]awsrws Taw,sTaw, ™

= 3 (WawriTawe €xXp (Let)Turw, ™
Awy, Awyg, @ T = =
(50)
so that the coefficient going with exp(4qr7) is
> (_Wl)AmliAwlwzwsz_l .

Awf, Dwy
The two limiting cases of extreme narrow-
ing and no narrowing come out of this for-
malism very easily. For little narrowing, we
should be able to neglect transitions relative
to the frequency differences, so that 7dw>II.

Then the matrix 74w-+1I1 is already diagonal
so that there is no necessity for using T (i.e.
Toro=0sr,) and the eigenvalues of zdw--I1

are just z4w. Equation (50) becomes

P. W. ANDERSON

(Vol. 9,

@(r)= AZ Wi(dw)e'd>™
which transforms into the spectrum
I(a)): AZ Wl(Aw)Bw,Am':Wl(a)) y

which is just the spectrum we started with
(since W, represents the normal stationary
distribution of frequencies).

In the case of extreme narrowing, on the
other hand, we can at first neglect 74w rela-
tive to II. Now we really know without
further —s_piaciﬁcation only one eigenvalue of
II: namely, the eigenvalue zero, which cor-
‘responds to the right eigenvector 1, the left
eigenvector W;. This is easily seen from
the equations (43a) and (45a), which in sum
notation read

2 m(Awl)EAwlsz =(_I/Kl 'E)Amg =0 )

Aw|
and
AZ gAmlAmzz(g 'DAuq:O .

This is a fortunate situation: it shows us
that the vectors we actually happen to have
in (49) for this case are the eigenvectors of
the only eigenvalue we know exactly, so that
the transformation matrix T has non-vanish-
ing coefficients only for this one eigenvalue,
and

o(c)=1.

This of course gives us an infinitely sharp
line at the central frequency : Lw)=d(w).
Next we consider the effect of including
4w in the calculation to first or second order.
In the first order, obviously all that happens
is to change the eigenvalue by <z4dw >, :
the center of our narrowed distribution is at
the average frequency of the un-narrowed
distribution. To second order, the other
eigenvalues of IT will begin to enter to some
extent, but this is a minor effect, since the
greater part of the line intensity will still be
in the zero-eigenvalue line. This line, how-
ever, will also be affected, since the eigen-
value will be changed by an amount of order
of magnitude 1/I1(z4w)?. This can easily be
shown to be a real negative contribution and
means that the line has a breadth of order

* Note: For negative r it may be easily veri-
fied that ¢(—7)=¢*(c) so that, for negative 7, 4;
must be replaced by — 4;*. If this were not true
the spectral intensity would take on complex
values.
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(dw)*/w,, the wusual “narrowed” breadth.
Thus here again we see the basic features
of the exchange narrowing phenomenon coms-
ing out.

It is of interest, both in clarifying the
previous discussion and in bringing out fur-
ther points, to actually work out some simple
cases as far as possible. The simplest pos-
sible case is that in which we have only two
possible frequency shifts, which we take (this
is of course no specialization) to be #+w, , and
these frequencies are equally probable so
that Wi(+wo)=Wi(—w,). The only possible
“transition-matrix ” II for this case is

= —We We i
= We —We

where w. is an adjustable parameter specify-
ing the rate at which jumping takes place
back and forth between the two frequencies.
The matrix we wish to diagonalize is then

:] . (52)
(05

The secular equation is easily seen to be, (if
A is the eigenvalue)

(a)e‘l‘i)z'l;woz—wez: »

(51)

We
i(ﬂo -

(ZACO + H) _ I:iwo —We
e W,

or
A=—wetV 0l —w,® - (53)
Defining
r=wy/we, (54)
as the ratio of splitting to jump-rate,
A=—we 1vI—2?) . (53a)

Equation (53a) already says a great deal
about the spectrum, since it gives the center
frequencies and the breadths of the two com-
ponent lines. For 2>1 (splitting predomi-
nant) (53) reads
X=ii1/a)oT—a)—eZ-—(De »

(53b)

which says that the two lines at +w, begin
to draw together as the jump-rate increases
but always have the breadth (half at half
power) w., given by the rate of jumping, so
long as z>1. The breadth . corresponds
to the “exchange broadening” idea: lines
separated by splittings large compared to the
exchange frequency are broadened, not nar-
rowed.

This tendency of the lines to draw closer
together before being completely narrowed
out seems to be experimentally confirmed by
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various measurements on hyperfine structure
in dilute solutions of paramagnetic ions.* It
seems to be a general property of the secular
equations, although it can be less pronounced
for larger numbers of lines, as we shall see.

In the case in which the jumping pre-
dominates, 2<{1, we have equation (53a), with
no imaginary part of 2 at all : both component
lines are centered at the mean frequency.
One line has a breadth of order of magnitude
2w, the other a breadth (if w.>w,)

N\
Aw:—a)(g(l— / p—C
we?

~ Yo~
2w,

2

which exhibits the usual exchange narrowing
form. This is the line which predominates :
we shall sez that the effect of the other line
is simply to introduce a cutoff in the wings
so that these fall off as 1/w* rather than
1/w?. (Note that the fourth moment is infi-
nite, as is to be expected from the theorems
of Appendix I.)

Proceeding with the calculations of the
explicit line shape, we define the two roots
as

A= —0dl—v1—g?

=—wl+v12?)
The components of the transforming matrix
T must satisfy**:

} (55)

(Z.a)o—(l)e—lﬂTll +U)6T21 =0

(fwo—we—2A3)Toe+weT1,=0 } (56)

Now the correlation function is
o(r)= X > TAwlheM__ZAAwg"l 57

A=Qp, Az Awg, Awg=ttwy ==
so the coefficient of the A; term, for instance,
is '

TuTy - TouTie '+ T Tu 1+ Ty Tyt
We use the fact that T7-'=1 to combine
the first two terms, and using the orthog-

onality of T to effect further simplification it
can eventually be shown that

* Schneider and England, 1951: they mention
the effect on p. 225, and also it is evident in
the 1N picture of their fig. 8. Garstens (1952)
has also mentioned this effect.

**  Note that this case involves a complex sym-
metric matrix (idw+1) so that a diagonalizing

matrix can certainly be found. It can in fact be
chosen to be a complex orthogonal matrix.
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¢(r)=exp{—owa(l—1/T—2? }(1 +?T1_:_?)

+exp{(—we(1+1/1 _xz)}<]_ _Vil——xz )
| (58)

To obtain the spectrum from (58), we must

separate the two cases z>1 and 2<1. For
z>1 (splitting predominant) we get
I(w)—g e e T|:cos (0+we/ 22 —1)
0
1 : I
+W__151n (0+wey/ 22—t
+cos (w—we1/ z*—1)
——7:1:157—71 sin (w—we/ 22 —1)T J
(the sine terms entering ‘because, again,

¢(—1)=¢*(r) so that the imaginary coefficients
must change sign upon change of sign of 7.)
This gives us

20+ 0/ 2?—1
(0+wey/ 22 —11+ 0

+ 20.—0/1/ 5 —1
(0—wey/ 22 —1)+ e

1l(w) =2[

:| . (59a)

We note here that the spectrum is not exactly
the sum of two resonance distributions, be-
cause of the imaginary terms which give us
the odd terms in the numerator ; but if 1<z
or » is not comparable with w, (i.e. near the
centers of the lines) the difference is small.
However, as 2—1 these terins take on major
importance in making the transition to the
narrowed case, in which the signs of the
two distributions are opposite. A summed

form of (59a) will be of interest: It is
8(!)33{1;2
I =
(@) 04420202 (2—2%) 1 wtat
2
- Baew, . (59b)

03420 (2w — wy?) + Wyt

This is the same as the expression which has
been obtained by Archer (1953) by an entire-
ly different methed. It is rather interesting
that this summed expression is identical in
the two cases <1 and 2>1, in spite of the
apparent discontinuity in 4; and 1, between
the two cases.

For z<1 the same procedure can be follow-
ed, although here the mathematics is a little
simpler.
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1 ()= Zs Cos wTe™“e” (exp(+we1/ 1—2%7)

X (1 +_l/—11:——2)+eXp (_we'l/l——x% 7)
<1 V1= :r))
_ 2w [ 1
T 11—z @+ od(l—/T—2?)”
1
e %
Note the behavior of (59c) when 2<<1. Then

the first term will far overshadow the second
until o~w.; at this point the two begin to
be approximately equal, and thus the wings
of the line fall off more rapidly than 1/w?
beyond this point.

The two terms of (59c¢c) can be added
together :

I(w)__._2_a’_e{2__ (40)021/1—972)
1V 1—2% o*+ol+l—2)—20i,/1—2>
X (w? +(Ue2(]- +1—2)4-20:2,/T—2?)

. 8wlx
T 0t 20022 —~z“)+ wetat

and we get (59b), again in agreement with
Archer.

Archer’s form can be used to show that
the “two-line” formulas such as (53) must
not be taken too seriously: the imaginary
part of 2 does not give exactly the frequency
of the maxima of the spectrum, nor do these
maxima come together exactly at z=1; it
gives rather a way of dividing the spectrum
into two “lines”. The actual maxima occur
at the minima of the denominator in (59b)
which come at

@ >2 )
22<2 J

In figures 1 and 2 are plotted some of
these results. Figure la shows both the im-
aginary part of A (the nominal frequency of
the lines) and the maxima (60) plotted against
z (we plot w/w, to show the effect of narrow-
ing). Figure 1b gives the nominal half-
breadth, Awa (divided by w.), as a function
of #. There is not much point in finding the
true half-breadth from (59b) since the line
shape is not even approximately resonance
in the intermediate region where corrections
are important. In figure 2 a few of the
complete line shapes are plotted for the inter-

(60)



pair of lines under exchange or motional
narrowing.

mediate region.

This very simple two-frequency case is the
only one which is easily done exactly. It
would be possible, but not very fruitful, to
solve three- and four-line cases, which could
of course be done in general. It seems to
me more interesting to develop some fairly
general perturbation methods for dealing
with certain classes of cases involving many
lines, so that we can get a rough idea of the
behavior in the strong and weak narrowing
regions.

The correct approach in the weak narrow-
ing case is quite obvious : ordinary perturba-
tion theory. Here the secular equation is

1954) Narrowing of Spectral Lines 329
1.2 T 32 T T
, N P "
T — ¥ " .
: S RN e
\\ 24 A\ I
> /1
INTENSITY MAXIMA
0.4 \ N 20 A \\ //\\
02 \ 16 I\ / \‘\\ \1
AEAN YT
@ 4 Iw) / \ ———% ] \
@, /', 0707 ,,.\
° 12 17 )\‘<4 /.“\\1\ S “\
oz I/ . 5 | Yo
/ / 08 /i £ \ M. AYANIAN
-o4 / / Y/ REBZAWNNN
-08 } / / P TN
1 / o4 A /’ \\\
-08 e ,//)// == k\ﬁ
—4/ B T TR 04 08 1.2 16 20
-1.0 Ugo
T oF 63 o4 65 06 67 o8 08 16 i 1z [Fig. 2. Spectral intensity for a pair of lines
we with the ratio w,/wy of jump-rate to splitting
“o- as parameter.
(a)
Le / nearly diagonal already, since we assume
. TR o> To first order, the j'th eigenvalue
PN Rl e is just the j’th diagonal element :

"ZA - - pe ’

W =tw;+1j=10;—wj) . (61)

e RN This means that the individual lines are at
B, % first only broadened slightly by the frequency
e \t jumps. The second-order perturbation theory

0.6 ‘\\ : giVeS

S’I LomponEnTS \“\\ COMPONENT Mdl
0.4 - - . A %) i
6 A®=—w i wj—>—=) (62
, \\ J e(])"’ J ZR w;— o ( )
0.2
We see that there is a frequency-shift, of
l)c: 0.2 04 0.5 0.8 1.0 1.2 1.4 1.6 8 20 second order in II (or Cl)g) WhiCh, it is easily
o verified, is such as to shift the lines towards
o) the center of the pattern. However, it is
Fig. 1. Line breadths and frequencies for a possible in some cases that the shift will not

occur for all lines of a pattern, as we shall
see, since it requires that there be more
transition probability toward the center of
the pattern than toward the edges for each
individual Iine, which is not necessarily
always the case.

We can give the expression for (62) for
two simple cases which we shall consider as
typical of two possible extremes. In each
case we consider that the spectrum consists
of a series of # equally spaced, equally strong
lines, of frequencies

wi=n—1)iwy, (n—3)w,: - -(—n+3)iwy,
(—n+1)w, -
In case (a) we say that transitions are equally

likely to all other lines of the spectrum (we
assume a symmetrical IT-matrix) so that

(63)
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—w, We We o We
n—1 n—1 n—1
B We _ We o _
n—1 Yo a1
We We
_— _a)e J— — — J—
n—1 n-—1
II,= ° - - - — = -
Ye
n—1 o - T @e
(64)

The transition probability from each line is
we. In case (b) we say that transitions occur
only to the nearest lines, and so except for
the end lines each line must have a proba-
bility for transition from it of w., to each of
its neighbors of we/2. This gives

We  We

_@e @ g - — — 0
2 2 0
e _(, P _ _ _ _ _
2 ‘2
0 ¥ _w, — — — _ _
0 0%_____
1]b=
0 - - — - - -
.
2
W,
. = = e = —W, ——
2
Wy —We
0 = = ==0 35—

(65)

For case (a), (62) gives for the original line
of frequency muaw,,

(Am)a=—we

+i(ma’o—

n=1 @2 1
G )
(The prime, of course, means k=<m). The
pattern is symmetrical about 0, so pick 7 >0.
Then

(Am)o= —we

+i(ma)o—

=1 +m 1

©e (66)
(n—]-)zwolu(nﬂ)—m l ).

(It must be remembered that all sums here
are by steps of two.)
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Case (b) is simpler. Clearly, all of the
lines except the end ones are unshifted, as

we suggested before could happen. The
central lines have: ‘
(Am)o | 1m) 501 =EM@— 0 ; 67

while the end lines obey
-
(xm)b!wwi(n-l):“%e'ki((”“l)wo— 8020 ) .
(68)
For the simple case of #=4 it might be

useful to write down the various breadths
and shifts, in Table L

Table I
Case a Case b
Line
breadth shift breadth shift
1o 52_ We wg?
Boe Oe 108 wo 2 8 wg
w,2

S T G 0

—wg w, + 3(; (i:)o W, 0
D T we?
3o Ve 108 wo 2 8 wo

It is interesting to note that the shifts are
rather small, and also that the sum of the
shifts of the two lines on one side of the
center is roughly the same in the two cases.
The smallness is checked by experiment, in
that the lines seem to shift only a very little
before they merge and begin to narrow as a
group.

Finally, it has been checked, in connection
with these formulas and with Table II, that
the change in the amplitudes with which the
various components enter is of still higher
order in w./w, and will probably not be
noticeable until the perturbation treatment
breaks down entirely.

The approximation from the opposite end
of the scale, large narrowing, (II>idw) is
based on the observation we have already
made, that the line-shape at this end is deter-
mined by the one eigenvalue A near zero ; all
others represent broad, weak components of
the line and can be neglected. Thus we can
set 4 nearly equal to zero; this implies that
the large terms in the secular equation are
those with low powers of 1, which we now
set out to compute.
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The constant term in the secular equation
is the determinant, |ido+II|. We note that
|II] =0, and that if the pattern is symmetrical
there must be no imaginary terms so that
the first terms here are of order wy®. The
term in A in the secular equation is made up
of the product of the various subdeterminants
times A:

(=2 zJE!Mw+HI”

where this denotes the determinant with the
7'th row and column omitted. If 3 |II}#7=<0,
7

it certainly will overwhelm 4w, so that this
term is of order All~w,?, as we shall see.
The next term must be of order A2~wyt, so
we can omit it. We have then

— 23|94 |ido+T1| =0
J

A= lidw‘l‘nlwozmrms
Z]Hljj
J

Examples will make this much clearer. We
consider again the problems of Cases (a) and
(b), defined by the transition matrices (64)

(69)

and (65). In case (a)
n—1 columns
2|
7
We We W,
— W, - -
n—1 n—1 n—1
We
—w,
n—1
=n n_l
rows
We . . w
n—1 - ¢

This determinant can be evaluated to give

_nwe>n-1
n—1 :
Now we want to compute the ,?> terms in
[Zo+1I]. '

Olii= 70
S ms=( (70)
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lio+1T|
— 1w — we W, W @,
(ﬂ )Z(Uo , P - —
We . w,
_ —1 (n 3)2&)0 W, T
n’ie]_ n_ciel (”-—5)1'0)0—@ _————
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The terms in 7w, as already pointed out,
vanish by cancellation between + and —wo;.
The terms in w,? can be picked out and are

]z'w—f—]:[lm()z: St Gwo)mm’ we )n—z
m<lm’ 12—1
1—n 1 1 1 -1 _
1 1 1 (n—2
1 1  1-n--- rows)
(71

This determinant and the sum are easily
evaluated. The result is

_na)e)n—z

n—1

and finally, the eigenvalue of interest is

lio+1T] o2 = ”‘3—1 moz( (72)

o2 (n—1)%(n+1)
e 3n :

A= (73)

Note that this expression (which is
the breadth of the narrowed line in this case)
represents roughly the ratio of the square
of the breadth of the pattern (nw,) to the
rate at which the frequency changes (we).

Case (b) can also be done in general. 3 |IT|#
can be seen to be the sum of all the possible
partitions into pieces of form

(m columns)

We
—w, 2 o
2
De  _, Pe _
2 2
M TOWS Pe o, _
2
—w, 2
2
0 Y @
0 2 2
We '\ Im
= = 7
-G o

by a simple computation. Adding the parti-
tions together we get

s m=n(-5 )" (75)
J

Now we must find |Zo+11]uy%erms. The deter-

minant |fo+II] is
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jwg—2e Y -
(n—D)iwn— : 0 0 ,
‘% (7 —3Yiw— s -“;— 0 —
0 ‘—"2~ (n—5)iy— i % 0
lido+1I| = 0 0 - - (76)

E)ﬁ
: 2

0 — - % (—(n—l)z'go _Zf"e )

This may be broken up into a sum of terms
containing  (fmowg) (Em’w,) with m>m’.
Multiplying these terms will be a product
of three sub-determinants A, B, and C, with
A being the part above zmw, A and C will
be of the form (74) with (z—1—m)/2 and
(n—1+m")/2 rows and columns respectively.

W, ((n—=1) -m)/2
a-(-3)

C=<_%)(m'+(n—1))/2 )
2

The terms between smw, and im’'w, give
another type of determinant :

@
—we 220 0 — 0
@
W, We
— ——we —_—
2 2
0 Y _ _
g
B=| 0 o0 —
[O]
_ o, P
@e g
W, We
— — —w, —
2 2
0 — — 0 ?2—() —We

B=(ﬁ)(/’n_’mo/2—l ( m—m{><_1)(’m—‘7n')/2_1

x(m —Z—m/_l rows and cqumns)

2 2

by another computation.
Thus, finally, we have

l tdo+11 [ wpterms
. :—‘0)02(’—3)8 )n"‘ Z mm/ m;m ) . (77)
m>m’ .

The summation in (77) can be evaluated by
straightforward application of the various
summation formulas for powers of integers,
and the final result is

— n-2 4
(78)

and
s I

The fact that #* instead of #? (as in 73)
appears in (79) for large » is reasonable on
the following basis. The total width of the
original pattern is ~zw,. This means that
for A to remain reasonable as #—o w.~n?;
but this is correct, because this is the condi-
tion that the rate of diffusion remains reason-
able. That is, the expression (79) is still the
square of the band-width divided by the
effective rate of change of frequency, which
in this case of only short jumps is w./72.

For such an unrealistic model further
detailed study of particular discrete cases is
hardly important. The next logical step is
to consider continuous distributions of  and,
particularly, to consider a relatively realistic
model of the effect of solid diffusion on un-
clear resonance breadths, which has been
observed experimentally by Norberg and
Slichter (1951). Diffusion in solids usually
proceeds by jumps, short compared to the
time between jumps. It is also true that a
given atom nearly completely changes its
magnetic environment with each jump (if the
system is not dilute; diffusion in such a
system as H in Pd or Na in NH; is quite a
different thing, since there the perturbers are
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relatively far away compared to the jump
distance, and there will be long-term correla-
tion). If this is the case, we may assume
that the new frequency to which a given
atom jumps is unrelated to its old frequency.

Such a Markoff system can be set up, and
integral equations found for the eigenvalues
and eigenvectors. We shall do this, although
we have not been able to solve the system
in general, because of certain irregularities.
However, the interesting case of extreme
narrowing can be solved.

In the continuous case, the matrix 4o can

be written
(80)

We assume that the frequencies are distribut-
ed according to some probability function
P(w). P(w) (which we take to be normalized)
is then the line shape in case the jump rate
is slow. In accordance with our physical
idea of what happens in the diffusion process,
we assume that the probability of jumping
from a given frequency per unit time is con-
stant, =w,. The probability of jumping 7o
a given frequency w, we assume unrelated
to the previous frequency, so it can only be
proportional to P(w,). These two criteria are
satisfied if we set

H(w;, @3)=0e(—0(01—w2)+P(wy) . (81)

‘We could check that with Wi(w)=P(w), the
two Smoluchowski equations (43a) and (45a)
are satisfied.

Now our problem is simply to diagonalize
the matrix (do-+II), which gives us an
integral eigenvalue equation. We introduce
the eigenvector ¢(w,), and the integral equa-
tion is

(fl__o__))a,l swg — @1 0w —w,) .

dez(z'ingwl, (o) =10y . (82)

Equation (82) may be written out using (80)
and (81), and we get :

(At we—z2w1)¢ (1) = weSP(a)z)d’(wz)dwz . (83)

(83) can be solved in the two limiting cases
of w,—0 and w,—~c. In case w,—0, obviously
$(wr)=0(0—on)
and
A=iw .

Here the distribution is, of course, unchang-

ed. In case w,—~o, we may for practical
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purposes neglect 7o on the left, and then
there are two possibilities : ¢(w;)=constant,
A=0 or ¢(w;)=any function orthogonal to
P(w,), in which case both sides are zero and 1=
This reflects the fact that any distribu-
tion which is not P(w) will decay according
to exp(—w.t) into P(w); the eigenvalue 1=0
belongs to the stationary distribution. 21=0
means an infinitely narrow line, of course.

Mathematical difficulties immediately attend
any perturbation approach from the side. of
w.=0, because of the singularity of the
eigenvectors; one easily sees that the per-
turbation of the eigenvector is also singular.

On the other end, a fairly satisfactory
treatment of the eigenvalue coming from 2
=0 can be done, as follows. The right-hand
side of (83) is just a constant if it does not
identically vanish; call this constant «w.,
and we get

— we.

Owe

W) =2
(0)1) 2 + &)e—iﬁ)l

. (84)

But this must integrate to give « back again,
so that

Awe .
SP (@) At wc—iow =«

o AP 0e—I®

Now we assume 2 real and P(w) an even
function of w. Then we get

do.

N 1 1
l—weso P(co)dco( At w.—Iiw + At w.+iw )

Lo A4+ w.
—ZweSO P<(é)dw A+ we)*+w?
This is a rigorous integral equation for the
eigenvalue 2 which, in principle, could be
directly integrated at any time if we had the
distribution P(w).

Notice, however, that (85) will cease to
furnish a real eigenvalue when . becomes
too small. For instance, imagine that P(w)
is a flat-topped distribution of width 2wy,
height 1/2w». Then the most the integral in
(85) can give is m/4wyp, so the right-hand side
is always less than (7/2)w./wp. If wp is too
large, this cannot equal 1.

We are, then, concerned primarily with the
case in which the breadth of P(w) is fairly
small relative to w.. We can expand the
integral, then, and get

(85)
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— 2o P(w)dw<1 o )
l‘,—a)g (Z_,_a)e)z
or,
At o= e_SE"EM.
+ we=w, (/H-we)z

-If . is not too small, we can assume I<w,,
and

o <a)2>ave .

We

(86)

This is a very simple formula, and entirely
in accordance with our expectations. It can
be assumed that since all other eigenvectors
will be approximately orthogonal to P(w),
only this eigenvalue will be important for
large narrowing, and (86) may be taken to
be the breadth of the line.

Further mathematical manipulations with
the continuous case have not been success-
ful, nor is it certain that they are of much
help in solving problems. It would be of
some interest to have a solution for the effect
of correlation between the frequencies before
and after a jump, but this has not been
attempted. A sounder physical basis for the
calculations in this section would also be
desirable.

I am indebted to a number of my col-
leagues for helpful discussion, notably Drs.
Lewis, Holden and Machlup. Professor Van
Vleck kindly showed me Archer’s results
prior to publication.

Appendix I

Proof of the General Fourier Integral
Equation for the Spectrum

The spectrum is given in more familiar
form in the following way. We take the
energy levels Ey, --- En--- of the entire
substance. The spectral intensity of the
radiation or absorption of the substance, as
it is most usually defined (we omit external
factors) is given by

Lo)do= > | ttmn |20 (m2) (a)

where the prime on the sum means that we
sum only over levels such that

E,—E,=ho (b)
to within the interval Adw. 4 is the dipole
moment matrix of the substance. p(m) is
essentially - exp (—En/kT); it is practically
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constant in a paramagnet in normal circum-
stances and so will hereafter be omitted for
brevity. The difficulty all comes from the
restriction of the sum due to (b); but this
can be avoided by the well-known trick of
using the ¢-function expansion

27z5<x)=r eiztdy . (c)
Then we get
[o)=> Sw dt exp(—z‘(w——Eﬂ;—E”)t ),amn i

where now the sum is unlimited. But

exp (z @ﬂ%@)umn =(4E))mn

the time-dependent matrix element of the
dipole moment, which satisfies equation (3)

of the text. Thus we have,
oo 2
fo)=3 S dte=t(p)
m, n —co M7

=Tr

S“ dtube-ior | .

In case we want to include the density
function p(m), this can easily be done; the
result is the more general formula given in
the reference, Anderson (1949).

Appendix IT

Some Useful Theorvems About the Relation-
ship Between ¢(v), I(w) and dw,t)

Theorem 1.

(—ip 9% S“’ dooI(©)
d‘l'n =0 J=ee
$r-0 Sm dol(w)
or, if ¢(0)=1 and I(w) is normalized to unity, |
(=) ' =Sw doo"l(0);
dT” ir=0 —o0

and conversely, the same theorem is true
with I{w) replaced by ¢(zr) and vice versa, and
the sign of 7 changed. The theorem is not
new and is proved trivially by differentiating
and setting r=0. The theorem means that
the moments of I{w) are determined by the
behavior of ¢(r) very close to the origin,
which may (as we shall see by the next
theorem) have very little to do with its
general course. On the other hand, we know
intuitively that I{w) will not be peculiar at
the origin (unless it happens to have line
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structure, which case we shall ignore for the
time being) so that we expect the moments
of ¢(r) to be normal and manageable, and
to be closely related to the line-breadth.

Theorem II.

The second moment of I(w), in case it is
of the form (21) of the text, is independent
of whether or how dw(¥) changes in time,
" but depends only on the probability distribu-
tion of dw;(#); in fact, it is given by (dw;;)>.

This is easily proved from the first theorem.
Starting with' :

d¢ t+T
e =<ddw(t-+7) exp ( S Adw;dt’ >>ave.
t

we may shift the origin by an amount 7, so
long as we leave the points equivalent to ¢
and #+7 in the same relationship to each
other. (This trick is not really necessary here,
but will be useful for theorem III.) Thus we
may write

dca =idwt) exp (z S b

o2 = ——<A(O,J(t>Aa)zj(t'—T>

A@ij(t,)dt/)>ave. 5

X exXp (z St 4 ww(l")di’)>ave. .
-7

Clearly,
d¢
dr?

and by theorem I we get our theorem. This
theorem shows one of the many close
analogies between our model and the real
narrowing problem. Van Vlieck (1948) shows
the above relation to be true for the exchange
narrowing problem—i.e. exchange cannot
change the mean squared breadth—and it
also can be shown for the motional narrow-
ing problem, since it depends only on the
assumption (a) of section II of this paper.
Another theorem showing the similarity of
the model to the real problem is the follow-

= -——<(A wtj(t))2> ave.over ¢ »

iT=0

ing:
Theorem IIL
J— 4
wt= Z:f o = <Awij4>a.ve.

+<(—*Awu) ave. .

This is easily proved starting from the ex-
pression for d?¢/d<* above. We get
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ae _
dz?

<Aw“(z‘)< ——Adw,; (Zf—l-’ﬂ

—I—ZA a)uﬁ’(zf——z')) exp (Z St Aw.zj(t/)dtl)>ave.
t—7

and now shifting the averaging variable back
again to the original one by a change of v,
we get

Lo —<Awu(t—[—z')(————Aw“(t)—zAm”z(t))
Xexp (i St vazj(lf/)dt/)>ave.
13
ae d 2
= _<( O doust-+)+idos (t—!—z-))
X <7t4 w;(t)—1d con%f))
X eXp <Z SHTA wu(t')dt'>>ave.
3
£3 J—
C(Zi:: =0 =ot= <A w‘ij4>a.ve.
; P ,
+<(WACDM> ave. -

Now Van Vleck’s result for * can be

written in the following way ;

—w_‘i:<[1:[’ [H, #]]Z>ave.
which, in view of the facts that H, can be
transformed out of all operators, and that
H,, commutes with x, gives us

h4w4=<[Hp+Hm, [Hp, /l]]2>ave.
:<[Hp’ [Hp, ﬂ]]z>ave.
+<[Hm, [H’IN ﬂ]]2>ave.
+2<[Hum, [Hyp, £]][Hp, [Hp, 2]]>ave.

and he found that the last term on the right
was always quite negligible. Thus he could
write the fourth moment as the sum of the
“normal” fourth moment, analogous to
<dw;*>ave., which comes entirely from Hp,
and another term coming-from the time rate
of change of [Hy, 1]

Theorem IV.

Under certain limitations, the expansion of
the spectrum on the wings in inverse powers
of the frequency :

LB

wt

is controlled by the values of the successive
odd derivatives of ¢(z) at the origin :
1744 dép

A:——-——— B:
dr oy’ ar’, =0

, etc.
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This theorem is very closely related to
theorem I: clearly, a finite (22—1) derivative
is a singularity of ¢(z) at the origin which
may be approximated by letting the (27-th)
derivative become infinite there. (e.g. a finite
first derivative means that ¢(r) goes down
on each side of zero with finite slope, so that
we need an infinitely sharp curvature at the
origin.) Thus we suspect that the (2n)th
moment will be infinite, so that the spectrum
falls off at least as slowly as 1/o**! and
possibly slower.

Any real physical ¢(r) will not have real
singularities at the origin, but may approxi-
mate them because some process—e.g. the
jumps in diffusion, or collisions in a gas—
occurs very much faster than other processes.
Thus eventually any I(w) will fall off ex-
ponentially rather than in inverse powers of
o. (See, for an example, Anderson (1949a)).

Proof of the theorem. This is done by
successive partial integrations. If ¢(r) is real
it must be even; we assume it is since we
always treat this case only. Therefore

I{w)= Smcos wrp(t)dr .
0

By a partial integration

I(o)=—> ¢(T) ”__I_S E;Sln ordr ;

¢ and all its derivatives which we use must
be assumed to vanish at infinity, and none
of the derivatives to be infinite at the origin
(except, of course, when the series is found
to have a term, as explained above). Then
by another partial integration, after observ-
ing that the first term above is zero,

sin wr

1 do 1 (= are
I(CU)=— w? _LE— 'r=o—_—£;go COos wTZl—z?dT .
Further integrations give us
__1de| 1 av¢
Hw)= w? drl—g o* drt |-
1 diyp 1 (~de . .
— g | Xo e sin wrdr .

The process can be carried on until we
find a nonvanishing term, so long as the
derivatives are integrable and vanish at in-
finity. This proves the theorem.

Theorem V. If @a,(r)—the correlation
function of the random frequency modulation
—has a finite first derivative at the origin,
there is an inverse fourth power term in the
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expansion in theorem IV. This is easily
proved from the expression for d3¢/dz3,

PO~ ot Aot —dons®)

X exp <z St 4 Cl)lzj(i/)dt/)>€we.

We let =—0. dw,7 is assumed to be zero;
any term coming from this will be irrelevant
to the theorem. The expression then be-
comes

;d;: =<dw;; (1)( —Aw, J(t)>>ave

which is, in fact, just the same as

T =

dirﬁwzjz Puw(T)

T=0

= oot >

From this we can easily prove that if
@Am(r)ze“"”

I(w)~w.wy*/wt, as stated in the text.

Appendix IIT

Exchange Narrowing (Gaussian Modulation
with Gaussian Speclrum) in the Inter-
mediate Case.

Equation (38) of the main part of the paper
gives an exact expression for the correlation
function in the Gaussian-Gaussian case which
we have assumed to correspond to true ex-
change narrowing. This is

2 W, T
¢<r>=exp[— @y ’S “exp (——xz)dx
We 0 4

L 2oy 2wy? {1 exp< _wezfz)}] .
T Wwe2 4
(ATII-1)

In this Appendix we use this to find out how
the line shape varies in the intermediate case
in which w, is comparable with w,.

The fact that this function can be com-
puted and tabulated is of little use, because
the Fourier integral required to get the line
shape would still have to be evaluated
numerically, at considerable labor. Thus an
approximate procedure might as well be used
from the first, and since we know the limit-
ing behaviors both for large and for small
w./wp, it seems most sensible to try to find
correction terms at both ends and then fit the
two curves together by interpolation in the
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intermediate range. To do this we need no
more than approximate values of ¢(r) in the
two ranges (A) w,>1, and (B) wso<1. The
following values are easily derived from
(A TII-1).

Range A: wga>1
(D(T) =exp|:——(‘;—l-— —7ui+2>wp2 ]
(A III-2)
Range B: wr<1
(a(r)zexp[_(a)p;-:z ZL% 02w 74)]
: (A III-3)

Let us for simplification use dimensionless
ratios as our variables. We define these as:

wo] wp=Y
WT =z (A ITI-4)
oo, =y .

In terms of these the two approximations for
¢(r) are:

A ¢(T)=3XP|:——;;<M—%+--->]

xy>1 (AIll-2a)

X 1/ 2% zat
B: ¢(T)=6Xp|:—?(—-2——g+ ):I

xy<Ll . (ATIll-3a)
How well these two expressions fit together
is shown in fig. Al, in which is plotted the
true expression for the coefficient of —1/%? in
the exponent of ¢ as a function of z, as well
as the two approximations (A ITI-2a and 3a).

The Fourier integral becomes

I(V)=Si°exp (z ”7”_% 1) )dx (A TTI-5)

i4
2
.0
P
-
08
"/
f(x)
. INTERPOLATION-1a /4
ds -
CURVE ACTUALLY USED
7l
P
LA w-x-2
2 < |-~
0z fie0=F- et
ol LT ]
o2 04 06 08 10 12" 14 1.6 1.8 20
Fig. A-1. The function f(x) from equation

(A III-5).
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where f(z) is the function plotted in Fig. Al.

In computing line shapes, the easiest
quantity to get is the central intensity, which,
besides being of considerable experimental
interest itself, is a fair measure of the
line-breadth. This quantity, normalized on
a scale of constant w, and varying we/wp=vy,
is

1(= 1

I(O)=?S dus exp (_? ﬂ@). (A TI1-6)

This can rather easily be computed for the

two limiting cases. For Case A we separate
flz) into two parts:

f@=f+fi=

where

) =fa)—(= —2)

@_(x ——) 5<1.2

~() x>1.2 (A III-8)

f1 is.a function in any case which does not
extend appreciably beyond z=1. This is a
useful property.

Now,

IA<0)=%S:exp(_f%?)¢x

el

()

(w—2/m)+fr(z) (AIII-T)

x2
2

Changing variable,

1.(0)=exp (/) <2y>S “e-udu exp(—fi(y'u)y,
0
(A TI1-9)
This may be expanded into

7.(0)=exp <~2/ny2><2y>g”e-udu
0

The appropriate approximation to the
second term for large y is that unless #
is very small 3?>1, so that e % is very
close to unity. Thus

140)=2y exp (+2/ny2)(1 —S”Mdu)

=2y exp (+2/7ry2)<1 —~—S f 1(w)dx)

(A TII-10)
Using the approximation AIII-8 for fi(z),
this gives
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L=y exp (+2/y)(1 =27
Y )
Tyt oy
The small y approximation (Case B) is more
77::1:4 ) dos

(A III-12)

(A III-11)

easily obtained. We get

13(0)=._2_S°°exp (—i( 2 _
Y Jo Y\ 2

%’%Swexp (—22/297) dx<1 g
0

48y
T m 9
IB<0>*2‘/_2 (1 +g Y )

(AIII-11 and 12) as a function of y are
plotted in figure A2, with an approximate
interpolation drawn in to fit the two limiting
cases together. This shows how the central
intensity increases as a function of w./ws, the
“narrowing ratio”.

The half-power width can also be estimated
in a similar way. We start from the general
expression for the ratio of intensity at a
frequency v to that at O,

. ZS:COS iy?-exp (—f@)/y?) d

10 S:exp (—f @) de

SO

(A TII-13)

For the high narrowing case A Wwe use
(A TII-7) for f(x), and get

©  yw Tz filw)
) _ Socos_y—exp(_?_ v >dx

10) ~ S*e yEEa=a

0

The half-width we assume to be close to that
for the extreme case y—oo, which is 1/y.

Thus we set
u=-?1/—(1+a) . (A TII-14)

Then all quantities can be expanded, assum-

ing ‘as before that f1/y* and & are small. A
straightforward calculation yields
1 S fl(x)dﬂ'
== te (A TII-15)
S e *usinu du
0
o299
-y
(Avay) s (1 _:299 (A TII-16)
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Note that the order of the change in half-’
width is smaller than that in 7(0); tnis in-
dicates that the line-shape is less sensitive
than the total scale to decreasing ¥, an
interesting fact experimentally.

The approximation from the other end goes
again from (A III—13), but here we set

4

foy=E -2,

and get
= v 22 7w 2t
1) ~So Ty eXp<~_ 2 ’)dx
0y — rexp (_ P
0

T X
2 48 yz)dw

Here again we expand as in the case of X(0),
assuming (7/48)(»*/y?) small as well as the
difference

=v—1/2In2
between the true half-width and the one for
y=0. To second order in y*> we get

ey 2ta(1 5o (1-152)).

(A III-17)
Pa
p -
6 ~ ’/‘
-
“0)5 . ]
. AT L@
e
lNrERPoLirlthA/"—{a(o)
fo =T
2 (il
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Y

Fig. A-2. Central intensity I,
narrowing as a function

in exchange
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Fig. A-8. Half-power half-width (in units of
wy) as a function of y=w./wpy.



The two approximations (A III-16 and 17)
‘are plotted in figure A 3. It is seen that they
fit fairly well together, and indicate an inter-
polation curve which one might well expect
to be accurate to a few per cent. This curve
then gives our best guess as to the half-width
in the case of intermediate amounts of ex-
change narrowing.
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