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Abstract. The effective medium theory of one-dimensional and two-dimen-
sional periodic structures are investigated. A method based on a Fourier
decomposition of the wave propagating along the direction perpendicular to the
periodic structures allows one to determine the zeroth-, first- and second-order
effective indices. For one-dimensional problems, we derive closed-form expres-
sions of the effective indices for both TE and TM polarization. Our result can
be applied to arbitrary periodic structure with symmetric or non-symmetric
lamellar or continuously varying index profiles. The theoretical predictions are
carefully validated using rigorous coupled-wave analysis. For the two-dimen-
sional case, only symmetric structures are discussed and the computation of the
zeroth-, first-, and second-order effective indices requires the inversion of an
infinite matrix which can be truncated and simply solved numerically. The
EMT prediction is qualitatively validated using rigorous computation for small
period-to-wavelength ratios. It is shown that for large period-to-wavelength
ratios near the cutoff value, no analogy between 2-D periodic structures and
homogeneous media holds for highly modulated lamellar gratings.

1. Introduction

Recent experimental and theoretical investigations have shown that periodic
subwavelength structured surfaces with periods which are small compared to the
illumination wavelength behave as homogeneous media and have suggested
interesting applications, such as fabrication of anti-reflection coatings [1-6],
quarter wave plates [7, 8], polarizers [9], and graded-phase diffractive elements
[10-12]. The replacement of the periodic structure by a homogeneous medium is
often referred to as homogenization or effective medium theory (EMT). EMT can
be applied to a large variety of physical material properties [13], such as the
diffusion constant, magnetic permeability, thermal conductivity, etc. To facilitate
the design and fabrication of artificial dielectric elements, one must be able to relate
the effective index of the subwavelength structured surface in a simple way. The
properties of one-dimensional (1-D) periodic structures have been analysed in great
detail, and the equivalence of 1-D gratings and homogeneous uniaxial thin films
has been rigorously derived in the long wavelength limit. Throughout the paper,
the long wavelength limit refers to infinitely small periods compared to the
wavelength illumination and corresponds to zeroth-order static EMT solutions. A
closed-form EMT solution for 1-D periodic lamellar structures composed of two
homogeneous materials was derived by Rytov [14]. By matching Maxwell’s
boundary conditions inside the periodic structure, he found the three effective
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indices for wave propagation along the lamellar stack with the electric field parallel
to the grating vector (TM polarization) or perpendicular to the grating vector (TE
polarization), and for waves propagating perpendicularly to the lamellar stack.
Rytov’s approach which is based on matching the boundary conditions inside
the periodic structure can be referred to as a modal approach. Using a more
rigorous modal formalism, MacPhedran et al. [15] studied the long wavelength
limit of 1-D lossy lamellar gratings and showed that the equations of electrostatic
can be used to rigorously determine the zeroth-order effective index. By using a
Fourier expansion wave basis of the field inside the periodic structure, Bell et al.
[16] generalized these previous works to an arbitrary 1-D symmetric profile. They
showed that symmetric gratings are equivalent to an uniaxial film in the long
wavelength limit, and derived a closed-form for the second-order effective index
of symmetric 1-D gratings and for TE polarization. Bouchitte and Petit [17]
provided a rigorous demonstration of the equivalence of 1-D gratings and thin
films in the long wavelength limit. Haggans et al. [18] studied the EMT of 1-D
lamellar periodic structures in conical mountings, and Campbell and Kostuk [19]
modelled sinusoidally modulated and slanted gratings for conical and non-conical
mountings.

Limited research has been done in the area of two-dimensional (2-D) gratings.
Jackson and Coriell [20] derived upper and lower bounds of the zeroth-order
effective index of 2-D periodic structures. Their work was mainly motivated by
the derivation of transport coefficients of materials composed of two different
homogeneous media, but can be applied to optical coeflicients such as the magnetic
permeability or the dielectric constant. Because these bounds are generally quite
narrow when the two media have similar optical indices, their average represents
a good approximation of the zeroth-order effective index [12, 13]. Motamedi et
al. [5] proposed an approximate solution for the zeroth-order effective index by
averaging the two zeroth-order TM and TE effective indices of 1-D gratings. As
was noted by Grann et al. [21], Motamedi’s solution is strongly inaccurate. By
making an analogy from the series and parallel equivalent circuit model, Brauer
and Bryngdahl [22] proposed a more accurate formula. In fact, their EMT solution
is a weighted average of three indices, the upper and lower bounds derived in [13]
and the average index of the periodic structure. More recently, Grann et al. [21]
used rigorous coupled-wave analysis (RCWA) to estimate the effective index of
2-D gratings by computer simulations.

In this paper we study the EMT of 1-D and 2-D periodic structures for a wave
propagating normally to the grating. We use the Fourier expansion method
proposed by Bell et al. [16]. In particular for TE polarization and 1-D structures,
we provide simulation results showing that their approach is not restricted to
symmetric structures. For TM polarization and 1-D structures, we derive a
closed-form of the second-order effective index. For 2-D symmetric periodic
structures, closed-forms of the zeroth- and second-order effective indices are
provided. By 2-D symmetric structures, we mean structures presenting a centre
of symmetry. It does not imply that the periods are the same, and for gratings
composed of parallelipipeds of one given medium immersed in another medium,
it does not imply that the two fill factors are equal. To our knowledge, this work
is the first to derive the second-order effective index of arbitrary 1-D periodic
structures with TM polarization, and to present a rigorous approach for the EMT
of 2-D period structures.
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In our approach, the EMT is derived by considering the propagation of a
periodic wave with a plane-wave dependence along the direction of propagation.
The periodic structure is assumed to have an infinite spatial extent in all the
directions. To verify the EMT predictions, a finite spatial extent of the periodic
structure is inserted between two semi-infinite homogeneous media. This defined
a grating diffraction problem which is solved by rigorous computation. We then
verify the effective index predictions by comparing the transmitted and reflected
amplitudes obtained with rigorous computation and with a homogeneous thin film
whose optical index is equal to the EMT prediction. In this comparison, the
thickness of the grating and that of the thin film are assumed to be equal. As was
noted by Grann and Moharam [23], the effective properties of subwavelength
gratings cannot be simply described by an effective index. When the grating
thickness is much smaller than the wavelength, they showed that an effective
thickness has to be introduced to accurately describe the effective properties. In
our experience, the effective thickness must not be taken into account for a grating
thickness larger than about one tenth of a wavelength. In this paper, this effect is
not discussed and the grating thickness chosen for comparison is much larger than
the critical value of one tenth of wavelength. Consequently, this paper is devoted
to the study of wave propagation in media with periodic permittivity, and not to
the equivalence between subwavelength periodic structures and homogeneous thin
films. This is the reason why, in order to avoid any confusion in the following, we
prefer to refer to EMT rather than to homogenization.

In section 2, we first introduce the notation and present the methodology used
throughout the paper. The methodology is basically the same as those provided in
[16], except that the EMT solution is derived without expanding the field in a
power series of the period-to-wavelength ratio. As was pointed out in [17], the
existence of such power series would require more study. In section 2.2, we solve
the problem of 1-D periodic structures for TE polarization. In section 2.3 using
RCWA simulations, we emphasize that the EMT solution is valid even for
non-symmetric gratings. Section 3 is related to the EMT of 1-D periodic structures
for TM polarization. A closed-form of the zeroth- and second-order effective
indices is first derived. When applied to lamellar periodic structures composed of
two alternate layers, the closed-form is shown to be identical to a previous result
obtained by Rytov [14]. Then using RCWA simulations, the generality of our
EMT solution is tested for continuously varying index profiles. In section 4, the
EMT of 2-D symmetric periodic structures is derived. The calculus is more
complex but the methodology remains the same. A closed-form of the zeroth- and
second-order effective indices is derived for symmetric gratings. The long wave-
length limit effective index is shown to lie in between the upper and lower bounds
of [13], and the second-order effective index formula is tested by RCWA. Section
5 concludes and summarizes the results of the paper.

2. Methodology and EMT of one-dimensional structures for TE
polarization
To establish our notation, let us first consider a 1-D periodic structure along
the y axis with an arbitrary relative permittivity profile &(y), as shown in figure 1.
The structure is assumed to be constant in the x and z directions. The grating
period along the y direction is denoted as 4, and the grating-vector module K is
simply defined as K = 21/4. When considering 2-D periodic structures, the relative
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Figure 1.  1-D periodic structure along the y axis. The relative permittivity is independent
of x and 2z coordinates. A denotes the period. TE and TM polarization correspond to
electric fields parallel to the x and y directions, respectively.

permittivity &(x, y) depends on both x and y coordindates and is constant in the
z-direction. Again A denotes the period along the y direction. The period in the
x direction A, can be simply written as A, = A/p, where p is a dimensionless
coefficient. Again we note K = 2n/4. For both 1-D and 2-D structures, A and K
are related to the periodicity along the y direction. Using ¢,,, to denote the (m, n)th
Fourier coefficient of period structures, we have

&(x,y) = Y. &y, 4exp iK(pmx + ny). (1)

m,n

Similarly, for 1-D structures, we have

&(y) = Z £, exp iKmy. (2)

Also, we denote the Fourier coefficients of 1/e(x,y) and 1/e(y) by a,, , and a,,
respectively. Magnetic effects are not considered in this paper so that the
permeability of periodic structures is constant and noted y, everywhere.

2.1. Methodology

For both 1-D and 2-D periodic structures, we will consider a wave with
wavelength 4 in the vacuum and wave-module vector K (k = 2nt/4). The wave is
propagating in the periodic structure along the z direction and is polarized in either
the x or y direction. Note that because of the symmetry degeneracy of 1-D periodic
structures, the z and x directions are equivalent. A temporal dependence exp (—iwt)
is assumed for the wave. For 1-D (resp. 2-D) gratings, we assume that the wave
amplitude is periodic in the y (resp. » and y) direction. The z-dependence of the
wave amplitude is given by

exp (i(7)"?Kz). &)

The constant 7 is read as the square of the effective index of the periodic structures
for the z direction and the given polarization. Then the periodic wave with the
z-dependence of equation (3), is used in satisfying Maxwell’s equations inside the
periodic structure. Obviously such a solution is not correct, but we will see that,
at least for small period-to-wavelength ratios, it is possible to find a particular 5
value such that Maxwell’s equations are satisfied. As only the limit of small
period-to-wavelength ratios are considered in the following, it is convenient to
expand 7 in a power series of a = A/4

n=tfg+mat +na i+ ..., 4)
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where 1, is the square of the zeroth-order effective index and #;,, =1,..., N is
the 7th-order coefficient of the series expansion. In general 5 depends on the
permittivity ¢, the period A, the wavelength 4, and on p for 2-D periodic structures.
In the literature, the zeroth-order EMT is also referred to as the quasi-static limit
or the long wavelength limit. Note that the above methodology is strictly the same
as in [16]. It is used for the 1-D TE and TM problems, and for the 2-D problems.

2.2. EMT of one-dimensional structures: TE polarization

We look for a wave propagating in the 2 direction and periodic in the y direction
with period A. The x component of the electric field denoted A(y, 2) can thus be
expanded as a Fourier series and according to equation (3), can be written

A(, 2) = exp (i(n)'/*Kz) }, 4,, exp (iKmy), &)

where 4,, is a constant coefficient. To satisfy Maxwell’s equations, the wave of
equation (5) must simply satisfy Helmholtz’s equation A4 + k%(y)A4 = 0. By
identifying in the plane-wave basis, we find the infinite set of linear equations

Vi, (gg—i*® —mA;+ Y §_p4,=0. (6)
p#Ei

By looking for a nontrivial solution of this homogeneous system, the effective
permittivity # is seen as the value which obeys the dispersion relation

2.2 ... -
g—n—N-a &N E_N  E_N-1 E_N-i
2
EN—1 go—Nn—a" &_, €_2 € 1~
8N 81 80_” 8_1 c 8___,' M =O.
2 ...
EN+1 € &  g—n—a 81—
e & e E: cee go—n —1202
N+i i+1 1 1—1 o1

7

For a 2N + 1) x (2N + 1) determinant, equation (7) can be read as the nullity of
a polynomial in a? of degree 2N. Substituting the asymptotic series from equation
(4) into the determinant, it is straightforward to derive that 1y = g, so that the
highest order a*V of the polynomial equals zero. It is also easy to show that for
any 1, f§;;,; = 0. Elementary algebraic manipulations show that by annulling the
coefficient of order 4N — 2 in the determinant, the expression of 1, is derived.
Finally, we obtain

E_LE
n=é+ a-zp;)% +O(«™). (8)

Equation (8) is the same as equation (15) of the paper by Bell and his co-workers
[16]. To derive equation (8), these authors expanded the diffracted wave amplitudes
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A, in a power series of o ™!, and restricted their discussion to symmetric grating
profiles. We emphasize here that equation 8 can also be applied to non-symmetric
structures, since it was derived without any restriction on the periodic structure
profile. The next section provides computational evidence with a non-symmetric
example. In [17], Bouchitte and Petit noted that the power series expansion used
by the authors of [16] was a point of concern in their mathematical approach, and
that the validity of expansion would require more in-depth studies. Our demonstra-
tion simply employs a power series expansion for the relative effective permittivity
of equation (4), and not for the diffracted wave amplitudes 4,. The fact that our
derivation and that of [16] gives the same EMT result makes firmer our opinion
that the series expansion of 4, is valid. Note, however, that this concordance does
not really demonstrate the validity of the series expansion. In fact, it is our opinion
that the series expansion of 4;s provides a convenient way to simply derive equation
(8), and even to obtain higher order terms in a =%, a~¢, etc. It will be used in section
4.4 to derive the second-order effective index of 2-D symmetric periodic structures.

2.3. Simulation results

In order to verify the behaviour with « of the effective index given by equation
(8), we proceed as follows. First, we choose the non-symmetric periodic structure
shown in figure 2. Each layer is homogeneous with relative permittivity ¢; = 1 and
g = 16. Parameters a, b, ¢ and d define the position of the layer boundaries. Their
numerical values are given in the caption of figure 2. We choose a non-symmetric
grating in order to test the validity of equation (8) for non-symmetric structures.
Then we insert a finite section of this structure between two semi-infinite
homogeneous regions of permittivities ¢; and gy, respectively. The depth 4 of the
periodic structure was taken to be equal to four wavelengths in the simulations.
Figure 2 defines a diffraction problem that we solve using RCWA for an incident
plane wave of unit amplitude, normally incident from the region of relative
permittivity & . Solving Maxwell’s equations, we compute the complex transmitted
amplitude ¢ and reflected amplitude 7 of the zeroth-order diffracted waves. Then
making the analogy between subwavelength periodic structures and a homogeneous
medium, we define the equivalent effective index of the periodic structure by the

£
I
h A
-
e | &1 21 €]
[ L 'l [ 1 x y
"aA bA  cA dA
31

Figure 2. TE polarization case. Non-symmetric periodic structure of depth 4 inserted
between two homogeneous regions of permittivities &, = 1 and g;; = 16. The periodic
structure is composed of alternate layers of permittivities g and &j;, and is defined
by the transition walls a =01, b=02,¢c=06and d=01.A=4pm and A=1pm
were chosen for the computation.
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Figure 3.  Simulation results for TE polarization. The solid curve represents the effective
index of equation (8) when applied to the grating problem of figure 2. The circle-marks
are the effective indices ngpcw, Obtained by minimizing the error function of equation
(9). 201 orders were retained for the RCWA computation. The dashed curve
corresponds to the effective index prediction when the 2 ~* term in the series expansion
of equation (8) is included.

real number ngcwa Which minimizes the error function
e =|r'(ngcwa) — 7* + |t (ngcwa) — 112, (%)

where r'(ngcwa) and t'(npcwa) are the reflection and transmission complex
coefficients of a thin homogeneous layer of thickness & and optical index ngcewa,
inserted between two infinite media of relative permittivities & and g;. The
effective index ng -y, is supposed to be larger than the minimal value of the grating
index, and smaller than the maximal value of the grating index. For example, for
the grating of figure 2, ngcwa € [(g1)"%; (&11)"2].

Figure 3 provides a comparison between the EMT prediction of equation (8)
and those of RCWA. The comparison is made over the complete operating
region of the grating defined in figure 2 as a zeroth-order filter. The solid line
corresponds to the effective index of equation (8). The 11 circle-marks correspond
to the effective indices ngcwa computed with RCWA and by minimizing the
error function of equation (9). The maximum error, e, obtained with the 11
RCWA computations was 0-058. This value is an important feature of the
comparison, since it quantifies the confidence someone can expect in the EMT
prediction. For example, the error e of 0-058 corresponds to a difference in reflected
intensity |7'(ngcwa)l® — [71? of 0:029, which is less than 3%. In general, the error
e increases with the parameter o. This is not surprising as one would expect that
the EMT predictions are more accurate for small period-to-wavelength ratios. In
figure 3, the maximum error (e = 0-029) is obtained for the largest value of «,



01: 13 22 March 2011

[ CAS Chi nese Acadeny of Sciences] At:

Downl oaded By:

2070 P. Lalanne and D. Lemercier-Lalanne

namely o =0:25. We first conclude that there is an excellent matching
between the theoretical prediction and simulation results, even for large values of
A/ that reach the upper bound 1/(¢;;)!/?, beyond which the grating of figure 2
stops behaving as a zeroth-order filter for normal incidence. We note that the
effective index prediction including the a~* correction term (shown on the
dotted line in figure 3) provides still better agreement with rigorous
computations.

For a = 0-18, the circle-mark differs greatly from the value 3-49 predicted by
equation (8). An effective index of 3-49 gives an error function ¢ = 0-023 and a
difference in reflected intensity of 92 x 10~5. The effective index, ngcwa = 3:74,
obtained with RCWA gives a lower error ¢ =00031 and a slightly higher
difference in reflected intensity of 3.4 x 10~% This shows that the computation
defined by the minimization of the error function of equation (9) is not well-
conditioned: even if only one absolute minimum in the considered interval exists,
there are in general several good potential candidates for ngcw,s. Two comments
have to be made in relation with the ill-conditioning. Firstly, since small variations
of the transmitted and reflected amplitudes computed with RCWA can induce
large variations of the effective index ngcwa, RCWA convergence has to be
guaranteed. In figure 3, 201 orders were retained for the computation. This
was largely sufficient since the same results were obtained with 101 retained
orders. However, we note that for 51 retained orders, significantly different ngewa
results were obtained. Secondly, the error criterion of equation (9) is somewhat
arbitrary. For instance, in [21], the authors used two other different criteria
depending only on the comparison of the reflected intensities. This was probably
due to the fact that these authors were mainly concerned by the anti-reflection
properties of subwavelength gratings. However, it it our opinion that the criterion
of equation (9) is worth considering, as it takes into account both reflected and
transmitted waves in the analogy. Only this criterion will be used in the following.
As a matter of fact, the discrepancy observed in figure 3 for a = 0-18 has to be
attributed to an artefact resulting from the chosen criterion and to the only
approximate analogy between subwavelength gratings and homogeneous thin films.
The error e = 0-023 obtained with the effective index n = 3-49 is an acceptable
value equal to the one obtained for a = 0-25 and comparable to those obtained for
o = 0-2 and 0-23. So we conclude that the EMT prediction of equation (8) has
been validated over the complete operating region of the grating of figure 2 as a
zeroth-order filter.

3. EMT of one-dimensional structures: TM polarization
3.1. Derivation of the effective relative permittivity

Let us now suppose a wave propagation in the z direction and polarized in the
x direction. The magnetic field 4(y, z) is parallel to the x direction and is given by
equation (5). The electric field E has y and = components and is written

E, = exp (ikn'*z) . s,, exp (iKmy) (10 a)

E, =exp (ikn'z) Y f, exp (iKmy), (10 )
m#0
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where s,, and f,, are constants. The curl Maxwell’s equations are

0E, OE

z_____y=_'w

dy 0z iopod
104
__.=.([)E 11
& 0z R an
aﬁ=—iwe:E,,.
oy

Identified in the plane wave basis, equations (11) become

mKf,, — kin)/%s,, = —wped,, (12 a)
k)Y a,_ 14, = ws, (12 b)
1
mKA4,, = -0 Y &, 1k (12 ¢)
1#£0

By substituting f,, from equation (12 a) into equation (12¢), and then using
equation (12 b) to eliminate the ¥ component of the electric field, we obtain the
infinite set of linear equations

Vi#0 (o® —efi +nbi)A; + Y (’11’-‘1 - Eil_—l)Al + nbipdo =0
Oand:
1+ 13)
(1 —nag)Ao—n ), a_14,=0,
1#0
where
by = Z —‘si—pap_l-

p#0 b

Once again the effective relative permittivity n is seen as the value which obeys

tl?e dispersion relation
—Na?—eg/N+nb_y_p gontmb_n_y Mb_no —E_N_y+Mb_ T —E_n_ifitnb_p, e
E_y_N/N+nb_y_y —teg by _y mb_yg  —E_y+mb_y —e_'_fitnboy
—nay ~na, 1—na, —nay —na; | =0.
& _nN/N+nby_n e+1by nbyo Pegotnby —E_ifitnby
g_Nn/N+nbi_y  crr e g1+, nbio =gy tnby v il—gfitnb

(14)

For a (2N + 1) x (2N + 1) determinant, equation (14) can be read as the nullity
of a polynomial in «® of degree 2N. Substituting the asymptotic series of
equation (4) into the determinant we easily derive that 1 — agt, = 0, so that the
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Figure 4. Lamellar structure composed of alternate layers of relarive permittivity &, and

gr;- The fill factor f is a dimensionless coefficient equal to the ratio between the size
of layer II and the period.

highest order in «*V equals zero. Note that only the diagonal terms of the
determinant contain «? terms. This can be exploited to derive 1, by nullifying the
coefficient of order (4N — 2) of the polynomial. We obtain

n=l+a-213 y 8280 4 o(u-4. (15)
) ayp#0 P
To our knowledge, equation (15) has never been previously derived.
Let us now consider the particular example of figure 4 studied by Rytov [14].
A lamellar structure composed of two alternate layers of relative permittivities ¢
and &g is depicted. For this simple structure, the Fourier coefficient ¢,, is

&, = &0, + (11 — Gl)w,

(16)
where §,, is non-zero and equals 1 if and only if n equals zero. f is the fill factor
defined in figure 4. Using infinite summation of trigonometric Fourier series [24]
and substituting the Fourier coeflicients of equation (16) into equation (15), we
obtain a simpler expression for n expressed as

2 2
LR f)’(s”—_g—’) 20072 + 0. (17)
a 3 Er1€y ap
By matching the boundary conditions inside the periodic structure, Rytov derives
a transcendental equation (see equation (18) in [14]) which does not give an
analytical solution for 1. However using the Taylor series expansion for the
tangents of the transcendental equation, equation (17) is derived. This coincidence
is not fortuitous, since solving Maxwell’s equations inside each layer and then
matching the boundary conditions at the layer interfaces is equivalent to solving
Maxwell’s equations inside the whole periodic structure. As a consequence,
equation (15) can be seen as a generalization of equation (17) for arbitrary profiles,
including multi-layer lamellar (as in figure 2), sinusoidal or arbitrary continuously-
varying-index periodic structures.
Finally, we note that equation (15) can also be derived by using a series
expansion of A;s in a similar manner as the authors of [16] did for TE polarization.
This confirms to us the validity of such an expansion.

3.2. Simulation results

In order to test the validity of equation (15), we proceed as in section 2.3. A
periodic structure with a continuous relative permittivity linearly varying from 1
to 9 over one period is chosen. As shown in figure 5, this structure is inserted
between two infinite homogeneous regions of relative permittivities g =1 and
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Figure 5. TM polarization case. A periodic structure with a continuously varying
permittivity is inserted between two homogeneous regions of permittivities &, = 1 and
g1 = 4. Along one period, the relative permittivity of the grating is linearly varying
from 1 to 9. h = 0-54.

g1 = 4. Figure 5 defines a grating diffraction problem which is solved using RCWA,
for a wave normally incident on the grating from the region of relative permittivity
g;. 501 orders were retained in the RCWA computation. It was largely sufficient
since the same results were obtained with 401 retained orders. However, with 201
retained orders, like in the TE polarization case, convergence was not obtained,
and highly inaccurate ngcw, results were observed. The need for a very high
number of retained orders to ensure proper convergence can be attributed to the
fact that RCWA convergence-rates are much slower for TM than for TE
polarization [25], and that the minimization problem of equation (9) is ill-
conditioned. The comparison between the effective index prediction of equation
(15) and RCWA simulation results is shown in figure 6. Again the solid line

23 T T T T T T T T T
2.2,_ .......... -

2.15F L EERIEE R e . R Lore 5

effective index
)
=
T

2.05

TM mode

L J 1 1 1 i
~o 0.05 0.1 0.156 0.2 0.25 0.3 0.35 0.4 0.45 0.5
NA

L 1 L

Figure 6.  Simulation results for TM polarization. The solid curve represents the effective
index of equation (15) when applied to the grating problem of figure 5. Circle-marks
are the effective index ngcwa obtained by minimizing the error function of equation
(9). 501 orders were retained for the RCWA computation.
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corresponds to the EMT prediction and the nine circle-marks result from
RCWA computation. The horizontal axis covers the complete operating region
of the grating as a zeroth-order filter for normal incidence. When determin-
ing the effective index mycwa, the maximum error e obtained with the first
eight period-to-wavelength ratios (A/A=005,01,...,04) is less than 006
and the maximum difference in reflected intensity |7’ (ngcwa)l? — |7|% is less than
0-01.

The last circle-mark which does not match the EMT prediction deserves
particular attention. Unlike the single point discrepancy of figure 3, the strong
mismatch between EMT and RCWA for o = 0-45 is not due to any problem caused
by the ill-conditioning of the error-function minimization. For A/4 = 0-45, the best
effective index ngcwa gives an error ¢ = 043 and a difference in reflected intensity
of 0-18. For A/A larger than 0-33, we note that the effective index of the grating
exceeds the cover and substrate indices, and so the grating of figure 5 becomes a
waveguide grating. Because resonance effects in an evanescent wave cause a
redistribution of the energy in the propagating waves, waveguide gratings can
potentially generate sharp variations in the intensity of the reflected wave [26].
Even if EMT can be used to roughly estimate the wavelength at resonance, it
cannot predict the energy redistribution around the resonance. For the grating
problem of figure 5, a strong resonance effect was observed around o = 0-45. The
zeroth-order reflected intensity increases from 5% to 100% for A/A varying from
0-450 to 0-457. This resonance effect explains the abnormally large error e and the
discrepancy in figure 6 observed for 4/ equal to 0-45.

Because of the good matching between the solid line and the circle-marks in
figure 6, we conclude that the simulation results validate the =2 behaviour of the
EMT solution. In general it was noted that the analogy between subwavelength
structures and homogeneous media is less accurate in TM than in TE polarization,
especially for large index-modulations.

4. EMT of symmetric two-dimensional periodic structures
The methodology used for deriving the zeroth- and second-order effective

index of 2-D periodic structures is the same as the one used for 1-D periodic
structures. However, the mathematical complexity is increased because of the
double periodicity in the x and y directions. In section 4.1, we first derive the
infinite set of linear equations that the wave propagating along the z axis must
satisfy, from the Maxwell’s equations. This linear system is similar to equations
(6) and (13) previously derived for TE and T'M polarization. In section 4.2, we
solve the system of linear equations in the long wavelength limit, and derive the
expression for the zeroth-order effective index. Section 4.3 provides simulation
evidence showing that the zeroth-order effective index lies in between the upper
and lower bounds derived by Coriell and Jackson [13]. In section 4.4 we derive
the expression of the second-order effective index and, in section 4.5, we test our
EMT result with RCWA.,

In the following, we restrict the discussion to symmetric periodic structures
with

=¢g (18)

m,n —m,n~ “m,—mn —-m,—n"

Note that it does not imply the equality of the periods along the x and y directions,
but simply that a centre of symmetry exists.
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4.1. Denrivation of the infinite set of linear equations
In the appendix, using the Floquet theorem, we derive the following set of
second-order differential equations

” 2
S3e0 + K PZ €_p, —aSypg
»q

=0 (19 a)

Sioo +K Y ey S
p'q
=0 (19 b)

MPS = 1S o+ K2(? + M2 p2) (1S, — mpS,,..) + K Y e, —p,n—g(mpS,,,—nS,,.)
p’q

=0 (19¢)

K ) Em—p,n—q(MPSypg + 1S,p.)
? 9

8 - n— ” "

= (6, 9120, 0) ;";—pzp,_'__qzq (qSypq+pprpq+k2 ; sp—r,q—t(Pprrt+qSyrt)>' (19 d)
The last two equations (19 ¢) and (19 d) hold for any m and n, (m, n) # (0, 0). S,,,,.
and S,,,, are the (m, n)th space-harmonic amplitudes of the electric field’s x and
y components. They only depend on z. S%,, and S}, are the second derivatives
0*S,,,.,/02* and aZSy,,,,,/azz, respectively. Equations (19) provide a complete set of
second-order differential equations (Helmholtz equations) for the x and y compon-
ents of the electric fields inside 2-D periodic structures. They are formally
equivalent to equations (22) of [25].

We look for a wave with the z-dependence of equation (3), which satisfies
equations (19). The x and ¥ components of the wave electric field are

E,=exp(ikn'?z) Y  s,..exp [iK(mpx + ny)] (20 a)
(m, n) #(0,0)
E, = exp (ikn'/’z) Y s,,,, exp [iK(mpx + ny)], (20 b)

where s,,,, and s,,,, are constants, and only E; has a dc component. On spatial
averaging along the x and y directions of the periodic structure, E, equals zero
and E, equals s, since only E, has a non-null dc component. Note that when
looking for a wave polarized in the x direction, equations (20) hold except that, in
this case, only E, has a dc component (i.e. 5,49 = 0 and 5,49 # 0). In the following,
the EMT for the x polarization will not be derived. Its derivation is basically the
same as the y polarization case, and therefore only its result will be given. Because
of the symmetry hypothesis of equation (18), it is readily apparent that for any
(m’ 71),

Samn = " Sx—mn = " Sam—n= Sx—m—n and Symn = Sy —mn = Sym—n = Sy—m—n- (21)

Equation (21) implies that, for any p, s,,, and S.0p are equal to zero. Substituting
Simn and S7,,, with s, and —Kk?gs,,,,, (I holds for x and y) into equations (19), we
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obtain the following set of linear equations

My00 = 2, EpaSypqs (22 a)
p‘ q

andVm>=0, Vn20, (mn)#(0,0),

aZ(nZ +m pz)(mxnm - mpsymn)

= MPNS y — S xmn PZ Em—pyn—g(MPSypq — NSyp.) =0 (22b)

2
* pz Em—p,n—a(MPSxpq T NSypq)
’q

= Z 8’;+’”_% <_qnsypq - PPUSqu + Z sp—r,q—t(ppsqu + qsypq)) . (22 C)
@.9#0,0P°P" +4q nt
Note that equation (19 b) becomes trivial. Of course equations (22 ) and (22 ¢)
hold for any (m, n) # (0, 0), but because of the symmetry, we need only to consider
these equations for positive m and n values. Equations (22) correspond to equations
(6) and (13) previously derived for 1-D periodic structures.

4.2. Zeroth-order effective index

As equations (22) are a complete set of equations, in principle the dispersion
relation can be written by nullifying the determinant of the set of equations. But
for this 2-D problem, the determinant cannot be simply expressed. In order to
derive the EMT, it is preferable to assume that s,,,, and s,,,, can be expanded in
a power series of A/A. The validity of this assumption was discussed in section
2.2. We note the power series expansion

sym (0) + a_zsgg’)l”-{— PP (23 a)
=s§33m+a‘2s9,,’.,. + (23 b)

where odd-order terms are omitted since equations (22) only depend on a2. By

retaining terms in a® in equation (22 a) and in &2 in equations (22 ) and (22¢), we
obtain
(Mo — &o, 0)sy00 = X &p,q% _(v(i)b)q' (24a)
(»,9)#(0,0)
and Ym > =0, (m,n) #(0,0),
Y. Em—pn—a(MmPpSigy + 18355) = 0 (24b)
p.a
15Qh = mps Q. (24c)
Using equation (24 ¢) to express 5@  as a function of sgg,)q, and substituting into
equation (24 b), we obtain for positive n and m with (m, n) # (0, 0)
m
) sm-p.n-q<n + T2 ) Sa =~ e, 5300, (25)
2.9#0 q

From equation (24 ¢), s(o)o equals zero for non-zero m. According to equation (21),
for n = 0, equation (25) is trivial. If the Fourier series is truncated to Mgyt



01: 13 22 March 2011

[ CAS Chi nese Acadeny of Sciences] At:

Downl oaded By:

Effective medium theory of periodic structures 2077

orders both in the x and y directions, equation (25) can be read as a system of
Mgmr(Memr + 1) equations (Vm > 0, Va > 0), which can be set in the compact

form
As® = —s{Qhb (26)

where A is a Mpyr(Memr + 1) by MEMT(MEMT +1) matrix, s{ is a
Mpyr{Mgmr + 1) vector composed of sm elements, and b is a MEMT(MEMT +1)
vector with ne,, , elements. We suppose that A can be inverted (we have no
demonstration of that pomt) Denoting by a the inverse matrix of A, sg‘;,)q can be
expressed as a function of SyOO’ and we have

Vp20,V4> 0,5, =~ ¥ ahle,.m @7)

yrq
m20,n>0

where ab;%, are the coefficients of matrix a. These coefficients only depend on the
periodic structure, i.e. on &, , and p. Substituting s§2,)q given by equation (27) into
equation (22a), and looking for a non-zero solution in J§,%)0, we obtain the

zeroth-order effective permittivity

No = 80,0 - Z Z 6m nafn nsp q (28)
2,9q#0m=20,n>0
When considering a wave polarized in the x direction, equation (25) has to be
replaced by
ng \ o 0
Z 8m-—p,n—q<m + —2> Sgcp)q = —msm,n-‘io)o: (29)
p#0.,q bp
which holds for n = 0 and m > 0. Equation (29) defines a new matrix A and a new
vector ﬁ, where carats are used for differentiating the x and y polarization case.
So for the x polarization, the zeroth-order effective permittivity # is

A== % L tmablibe,em (30)
p#0,qm>0,n20

where @54, are the coefficients of the inverse matrix of A In general, because (A, B)
and (A, b) are different, the two normal effective indices are also different, and the
periodic structure exhibits biaxial properties in the long wavelength limit. Now
when we assume that ¢, , and &, ,, are equal for any (m, n) and that the periods in
the x and y direction are the same (p = 1), it is easily shown that (A B) and (A, b)
are equal, and so the periodic structure exhibits uniaxial properties.

4.3. Zeroth-order effective index: simulation results

Coriell and Jackson [13] derived upper and lower bound expressions for the
zeroth-order EMT of several simple symmetric periodic structures composed of
two-phase materials. The two structures they considered are depicted in figure 7.
They are both symmetric with ¢, ,=¢, , and p =1, and are composed of two
homogeneous media indexed by 1 and 2. In our simulation, media 1 and 2 have
optical permittivities equal to 1 and 16, respectively. The periodic structure of
figure 7 (a) is composed of parallelepipeds of high index inserted in a medium of
low index. Similarly, the periodic structure of figure 7 (b) is composed of cylinders
of low index inserted in a medium of high index. We define the fill factor of the
two structures as the ratio between the width (resp. the diameter) of the
parallelepiped (resp. cylinder) and the period A. For these two periodic structures,
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Figure 7.  (a) Periodic structure composed of parallelepipeds of high index inserted in a
medium of low index. (b) Periodic structure composed of cylinders of low index
inserted in a medium of high index.
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Figure 8.  Zeroth-order effective index of the 2-D periodic structures. The solid curves
are the upper and lower bounds derived in [13] for the zeroth-order effective index
and for the periodic structure of figure 7. Plus-marks, cross-marks and circle-marks
are, respectively, the effective indices of equation (28) for truncation ranks Mgyt
equal to 8, 20 and 40.

the upper and lower bounds are given by equations (6 a), (6b), (7 a) and (7 b) of
[13]. They are plotted in figure 8 as a function of the fill factor. These are the solid
curves in figure 8. As we could not find a general expression for the inverse matrix
a, only numerical computations allow us to derive the values of 7, given by equation
(28). The computation basically requires the inversion of the infinite matrix A,
which for numerical purposes is truncated. We denote by Mgy, the truncation
rank. The size of the truncated matrix is Mgpyr(Memr + 1) X Mpyr(MenT + 1)
Because of the symmetry (equation (21)), a truncation rank Mgy, corresponds to
+ My rr orders in each direction, i.e. a total of N = (2Mgpr + 1)? orders. In figure
8, circle-, cross-, and plus-marks are the effective indices obtained for different
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truncation ranks of matrix A. Circle-marks were derived with Mgy =40 (N =
6561), cross-marks with Mgy = 20 (N = 1681), and plus-marks with Mgy =7
(N = 225). Basically, the EMT prediction of equation (28) lies in between the
upper and lower bounds. For the parallelepiped case and for fill factors about 0-8
and 09, it is noticeable that the truncated expansion is slowly converging. For a
fill factor equal to 0'9, even with Mgy = 40, 1, remains just above the upper
bound.

4.4, Second-order effective index

We now proceed to the derivation of the second-order EMT. Taking a”? terms
in equation (22 a) and o° terms in equations (22 b) and (22 ¢) and simplifying using
equations (24 b) and (24 ¢), we obtain

2 0 2
’105;(\;0)0 + ’725§;0)0 =) Ep,q5§;3q» (31a)
p.q

and Ym = 0, Vn = O, (m, n) # (Oy O)v

€ b n—
T tnpneans BB = e T et () G1)

2,2 2 0

(7? + m*pV)(ns2),, — mps@),) = —PZ em_p,,,_q(mpsgg)q —nsQ)). (31¢)
q
For n =0, equation (31 ¢) reduces to
1

2 0 ()

Vm>0,520=—5= Y &ncpqSipy+ &m05500- (32)
moP” p,q#0

As sfgp)q can be expressed as a function of s%)q, equation (31 ¢) allows us to express
s as a function of s§g)q and sg,z,,)m. Substituting into equation (31b) {2, by its

expression as function of sg,%)q and s§,2,,)m, we obtain

mp’p
Vm20,Vn>0, Y En_puogln+—— )52, =SB — Emnns$Bo, (33)
q

ypq
p,q#0
where
2
© _ Ep.gMP P 0y _Mo (o) 2 Ep—rg—t [P T\ ()
CrmS00=" 2. Em_p, _<—s 00— — Symy +mMpP L s
TR ke P T Ng(pP+H T g P ,,geopzp2+q2 g t)”"
— 2 Em—p,n"550- (34)
p#0

The right term of equation (34) is only a function of s_(v%)o since s%)o and sfvg)q are
only functions of sg%)o (see equations (27) and (32)). Consequently vector ¢, whose
coefficients are c,,,, is only dependent on the periodic structure, i.e. on ¢, and p.

Equation (33) can be written in the compact form
0
As? = Qe — sBb, (35)

where matrix A and vector b are the same as in equation (26). So the solution of
equation (35) can be written

2
Vp 2 O: Vq > 0’ S;;p)q = 2 a?n',?l(cmnsg'%)o - 8m,nns§120)0)' (36)
m=20,n>0
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By substituting sﬁ,)q from equations (36) and (32) into equation (31 a), the sfv%)o term
cancels. By looking for a non-zero solution in sg‘;,)q, we obtain the second-order
effective relative permittivity

£ .0
na= 3 Y & @ Y, —g 5 (85,0 — Y gp_,.atle, b\, (37)
£,g#0 m>0,n>0 p#0 PP (r.)=0,0

uz0,v>

A similar expression with %%, coefficients holds for the x polarization case.

4.5. Second-order effective index: simulation results

In order to verify the validity of equation (37), we proceed as in sections 2.3
and 3.2, and we insert a one-wavelength thick layer of the periodic structure, as
shown in figure 7(a), into two semi-infinite homogeneous media of relative
permittivities 1 and 16. For A/A smaller than 0-25, this defines a zeroth-order
grating problem that is solved by rigorous computation. The fill factor was chosen
equal to 0-6. For 2-D periodic structures, the implementation of coupled-wave
methods is memory consuming, With our IBM/RISC6000 workstation, only 289
retained orders can be implemented in the RCWA computation. As was noted in
section 2.3, the minimization of the error function of equation (9) is not well-
conditioned. Moreover in section 4.3, the truncated expansion used in our EMT
derivation which, like coupled-wave methods, depends on the Fourier expansion
of the grating relative permittivity, was shown to be slowly converging especially
for a duty cycle equal to 0-9. Being aware of the difficulty of obtaining very accurate
rigorous computations, and of their impact when carefully comparing them with
EMT predictions, we asked our colleagues at the Helsinki University of Technology
to run their highly efficient code implementation. We are grateful to Eero Noponen,
who computed for us the transmitted and reflected amplitudes, using his eigenmode
method for three-dimensional profiles [27]. The transmitted and reflected ampli-
tudes, ¢ and r, he found with 625 retained orders, are shown in the second and
fourth columns of table 1. The corresponding period-to-wavelength ratios are
given in the first column. In table 2, the convergence of the coupled-wave used in
the simulation is illustrated. The reflected and transmitted amplitudes are given
for different numbers N of retained orders varying from 289 to 625. These results

Table 1. Reflection and transmission complex coefficients of the period structure of figure
7 (a) when inserted between two semi-infinite media of relative permittivities 1 and
16. The r and ¢ coefficients are the reflection and transmission complex coefficients
obtained when retaining 625 orders in RCWA, and the 7" and t” coefficients are
those predicted by the second-order EMT (index given by the two first non-zero
terms of equation (4)). The corresponding period-to-wavelength ratios are shown

in column 1.

AfA r r’ t t”
0-02 —0-517 4+ 0-265i —0-4521 + 0-3394i —0-390 + 0-116i —0-378 + 0-1651
0-05 —0-531 4 0-242i —0-4808 + 0-3094i —0:395 + 0-094i —0-383 + 0-147i
0-075 —0-551 + 0-202i —0-5175 + 026211 —0-400 + 0-064i —0-388 + 0-122i
01 —0-570 + 0-137i —0-5570 + 0-1925i —0-404 + 0-023i —0-394 + 0-088i
015 —0-548 — 0-088i —0-5999 — 0-0102i —-0401 — 01111 —0-400 — 0-005i
012 —0158 — 0-321i —0-5158 — 0-2528i —0270 — 0-381i —0-388 — 0-129i

0-24 0-069 + 0-295i —0-3084 — 0-3883i 0-263 + 0-398i —0-347 — 02611
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Table 2. Convergence of the coupled-wave method. The first column shows the number
N of retained orders in the computation. 7 and ¢ are, respectively, the reflection and
transmission complex coefficients. A/4 = 0-1.

N r t

289 —0-5819 + 0-0849i —0-4044 + 0-0001i
361 —0-5813 + 0-08701 —0-4045 + 0-0006i
441 —0-5746 + 0-1195i — 04045 + 001561
529 —0-5724 + 0-1276i —0-4046 + 0-0190i
625 —0-5698 + 0-13661 —0-4045 + 0-02301

are obtained for @ = 0-1. As can be seen, even with 625 orders, the convergence
of the rigorous computation is not perfectly guaranteed. Although the real part of
¢ is constant for the considered interval (variation less than 10™%), we note that »
and the imaginary part of ¢ are gradually increasing. This effect is weak, since from
N =289 to N = 625, the variations observed on the real and imaginary parts of r
and ¢ are smaller than 0:05. Thus, for the following comparison, we will consider
the reflection and transmission coefficients computed with 625 retained orders as
enough accurate to allow a qualitative comparison with our EMT results.

For the numerical computation of the EMT, we proceed as follows. Once
matrix A is inverted and a%;%, are known, s%)q and sﬁ,)q are computed with equations
(27), (32) and (36). Then n, and 5, are numerically derived by using equations
(28) and (37), where s§,%)0 and s%)o, are, respectively, set to 1 and 0. When inverting
matrix A, the truncation rank Mgy was chosen equal to 40. A truncation rank
of 40 corresponds to 6561 retained orders with the coupled-wave method, and thus
can be considered to be large enough to be accurate. The reflected and transmitted
amplitudes found by replacing the grating by the homogeneous layer with the
effective index predicted by the EMT are noted " and t”, respectively. They are
shown in the third and fifth columns of table 1. This allows a direct visual
comparison with the r and t coefficients computed by the rigorous method.
According to table 1, two operating regions can be distinguished for the comparison.
For A/A larger than 0-15, there is no match between rigorous computation and
EMT prediction. For A/ smaller than 0-15, the real parts of the transmitted
amplitude t” predicted by EMT never differ by more than 0-01 from the rigourous
computation results, and the difference between the imaginary parts of the
transmitted amplitudes (¢ and t”), and between the real and imaginary parts of the
reflected amplitudes (r and r”) is never larger than 0:07. This corresponds to a
difference between the reflected or transmitted intensities which is never larger
than 0-02. Thus, we first conclude that, for A/A smaller than 0-15, a good qualitative
agreement between EMT and rigorous computation is obtained. In table 3, a
comparison between the effective index ngcwa derived from rigorous computations
and the second-order EMT prediction '/? is shown. For A/A smaller than 0-15, a
small difference between ngcwa and n'/? exists. The difference is smaller than 0-02.
For A/A larger than 0-15, the difference is significantly larger and reaches 0-2 for
A/A =0-15.

The poor agreement between EMT and rigorous computation for large
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Table 3. First column, period-to-wavelength ratios. Second and third column, errors and
effective indices found by minimizing equation (9). Last column, EMT effective
indices given by the two first non-zero terms of equation (4).

A/ 4 Mrcwa n'/?
0-02 0-008 1-443 1424
0-05 0-020 1:448 1432
0-075 0-031 1-457 1-443
01 0-048 1471 1-459
015 0-035 1-527 1-502
02 0-093 1663 1-561
0-24 0-168 1-808 1-618

period-to-wavelength ratio raises the following question. Has this bad agreement
to be attributed to the EMT itself, or to the fact that for large period-to-wavelength
ratios, a strict analogy between 2-D periodic structures and homogeneous media
does not exist? To answer this question, we solve the minimization problem defined
by equation (9). For A/A =0-2 and 024, the two effective indices found are
npewa = 1°665 and ngewa = 1-808 (see table 3). The corresponding errors e are
large, and are, respectively, equal to 0093 and to 0168 (see table 3). For
comparison, for the 1-D grating of section 2.3 which has a comparable index
modulation, the maximum error found was 0-06. We thus conclude that the analogy
does not hold for large period-to-wavelength ratios. This poor analogy observed
for 2-D structures (in comparison with 1-D structures) can be justified by looking
at the long-wavelength-limit behaviour difference of 1-D and 2-D periodic
structures. By expanding the diffracted wave amplitudes 4; in a power series of
a~!, for TE and TM polarization of 1-D structures, it is easily shown that [16]

Vi#0,4;,=0@ %) and Ay=0(). (38)

Consequently, in the long wavelength-limit, waves which propagate in 1-D
periodic structures are simply plane waves 4, exp (in3/°kz), with , = g, for TE or
o = 1/ag for TM. For 2-D periodic structures, the wave is no longer a plane wave,
but a superposition of plane waves, since neither s, nor s_ﬁ,‘:,)m are zero for
(m, n) # (0, 0). So 2-D period structures are not strictly equivalent to homogeneous
media even for infinitely small periods. It is thus reasonable to see that, for large
period-to-wavelength ratios near the cutoff value, the analogy between 2-D periodic

structures and homogeneous media is even less accurate or legitimate.

5. Conclusion

In this paper, the EMT of 1-D and 2-D periodic structures was studied for
waves propagating normally to the structure. For 1-D periodic structures, a
closed-form of the zeroth- and second-order effective indices was derived for TE
and T'M polarization (see equations (8) and (15)). These formulas can be applied
to any arbitrary periodic structures, symmetric or not, with continuously-varying-
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index profiles or step-index profiles. The validity of equations (8) and (15) was
tested by RCWA, and a very good agreement between the EMT results and RCWA
simulation results was obtained, even for large periods that almost reach the cutoff
period above which the gratings stop to behave as zeroth-order filters. For 2-D
periodic structures, formulas for the zeroth- and second-order effective indices of
symmetric periodic structures were derived (see equations (28) and (37)). These
formulas can be applied to any arbitrary pertodic structures which have a centre
of symmetry. The numerical evaluation of equations (28) and (37) requires the
inversion of the same infinite matrix. In practice, the matrix is truncated and is
inverted numerically with standard library programs. We have shown that the
zeroth-order EMT (equation (28)) lies in between the lower and upper bounds
derived in [13]. When validating the second-order EMT by rigorous computation,
a good qualitative agreement between the EMT and simulation results was
obtained. However, it was found that the analogy between subwavelength periodic
structures and homogeneous media is less accurate for 2-D than for 1-D structures.
For periods larger than half the cutoff period, the periodic structure of our example
stops behaving as a homogeneous medium. In the paper, although all simulation
results are provided for real index profiles, the EMT results can also be used for
absorptive materials.
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Appendix

In this appendix, we derive equations (19). For the sake of generality, the
exp (in'/?kz) dependence of equation (3) is first not assumed, and we derive a set
of second-order differential equations using the Floquet theorem. This formulation
is similar to that provided by Peng and Morris in [28], in which electromagnetic
scattering of 2-D gratings was analysed by using RCWA with second-order
differential equations. For ease of reference, we shall follow the notation used in
this work.

As the periods in the x and y directions are respectively noted by A/p and A,
the electric and magnetic fields E, and H, are expressed as (Floquet theorem)

E,= Z Somn €xp [IK(mpx + ny)]
| (A1)

1/2

H, = (8—0> Y. U exp [iK(mpx + ny)],
Ho mn

where S,,,, and U,,,, depend on variable z. Similar expressions hold for the y and

z polarization of the field. We denote by S, S U

. ymn? zmn) 'ymn> and Uzmn their
dependence with z. The curl Maxwell’s equations identified in the quasi-plane
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wave basis are

inK S s — Sy + KUy = 0 (A2a)

—impKS,,, + Simn + kU, = 0 (A2b)

mpKS,,,, — nKS,,,., + kU, =0 (A2¢)

1K Uy — Ul = K Y. 8 p. e g’Supg = 0 (A 2d)
p'q

—imPK Uppy + Ul = K Y, € p.n—gSypg = 0 (A2e)
p’q

mpKU,,,,, — 1K U,y =K Y €y gSeps =0, (A2 f)
p'q

where prime denotes the derivative relatively to the z-variable. We now proceed

with the elimination of U,, U,, U, and S, in between the six previous equations. As

can be seen from our previous work on TE and TM polarization of 1-D gratings,

we try to derive second-order differential equations containing a minimum number

of terms depending on a, or similarly on K. Setting m = n = 0 in equations (A2),

we first obtain equations (194) and (195) which do not depend on parameter K.
From equations (A2 d) and (A2 e), we obtain

(7® + m*pHKU,,,, + inU'ypyy + impUly + K Y, €4y o(mpS

ypg — MSxpg) =0
».q

(A3a)

U oy — mpU,,,,, — 1K Z Em—p,n—g(MPSypq + nS,,.) = 0.
-8
7 (A3b)

From equation (A2¢), U,,,, can be expressed as a function of S,,,, and S,,,,. From
VH =0 that can be derived from equations (A2 a)-(A2¢), and from equation
(A3 a), equation (19¢) is derived for any (m, n) # (0, 0). From equation (A3 b) and

(A2f), we obtain :

,,Z Em—pn—qSapg = —iK ,,Z Em—pn—qgMPSipg + 1S,50), (A4)
»q »q

which is simply V(¢E) = 0. From equations (A2 a) and (A25), we have

1
iKS’zmn =3 ("S;mn + MPS;",,, - 1k("U;mm - mpU;mn)) . (AS5)

n* + m P
Substituting nU},,,, — mpU,,,, from equation (A3 b) and (AS), S,,,, is seen only as

a function of S, and S,. Substituting S,,,, into equation (A4), equation (19d) is
derived for any (m, n) # (0, 0).
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