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Abstract. The effective medium theory of one-dimensional and two-dimen- 
sional periodic structures are investigated. A method based on a Fourier 
decomposition of the wave propagating along the direction perpendicular to the 
periodic structures allows one to determine the zeroth-, first- and second-order 
effective indices. For one-dimensional problems, we derive closed-form expres- 
sions of the effective indices for both TE and TM polarization. Our result can 
be applied to arbitrary periodic structure with symmetric or non-symmetric 
lamellar or continuously varying index profiles. The theoretical predictions are 
carefully validated using rigorous coupled-wave analysis. For the two-dimen- 
sional case, only symmetric structures are discussed and the computation of the 
zeroth-, first-, and second-order effective indices requires the inversion of an 
infinite matrix which can be truncated and simply solved numerically. The 
EMT prediction is qualitatively validated using rigorous computation for small 
period-to-wavelength ratios. It is shown that for large period-to-wavelength 
ratios near the cutoff value, no analogy between 2-D periodic structures and 
homogeneous media holds for highly modulated lamellar gratings. 

1. Introduction 
Recent experimental and theoretical investigations have shown that periodic 

subwavelength structured surfaces with periods which are small compared to the 
illumination wavelength behave as homogeneous media and have suggested 
interesting applications, such as fabrication of anti-reflection coatings [l-61, 
quarter wave plates [7, 81, polarizers [9], and graded-phase diffractive elements 
[lo-121. T h e  replacement of the periodic structure by a homogeneous medium is 
often referred to as homogenization or effective medium theory (EMT). EMT can 
be applied to a large variety of physical material properties [13], such as the 
diffusion constant, magnetic permeability, thermal conductivity, etc. T o  facilitate 
the design and fabrication of artificial dielectric elements, one must be able to relate 
the effective index of the subwavelength structured surface in a simple way. The 
properties of one-dimensional(1 -D) periodic structures have been analysed in great 
detail, and the equivalence of 1 -D gratings and homogeneous uniaxial thin films 
has been rigorously derived in the long wavelength limit. Throughout the paper, 
the long wavelength limit refers to infinitely small periods compared to the 
wavelength illumination and corresponds to zeroth-order static EMT solutions. A 
closed-form EMT solution for 1 -D periodic lamellar structures composed of two 
homogeneous materials was derived by Rytov [14]. By matching Maxwell’s 
boundary conditions inside the periodic structure, he found the three effective 

0950-0340/96 512.00 0 1996 Taylor & Francis Ltd. 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
A
S
 
C
h
i
n
e
s
e
 
A
c
a
d
e
m
y
 
o
f
 
S
c
i
e
n
c
e
s
]
 
A
t
:
 
0
1
:
1
3
 
2
2
 
M
a
r
c
h
 
2
0
1
1



2064 P .  Lalanne and D .  Lemercier-Lalanne 

indices for wave propagation along the lamellar stack with the electric field parallel 
to the grating vector (TM polarization) or perpendicular to the grating vector (TE 
polarization), and for waves propagating perpendicularly to the lamellar stack. 
Rytov’s approach which is based on matching the boundary conditions inside 
the periodic structure can be referred to as a modal approach. Using a more 
rigorous modal formalism, MacPhedran et al. [lS] studied the long wavelength 
limit of 1-D lossy lamellar gratings and showed that the equations of electrostatic 
can be used to rigorously determine the zeroth-order effective index. By using a 
Fourier expansion wave basis of the field inside the periodic structure, Bell et al. 
[16] generalized these previous works to an arbitrary I-D symmetric profile. They 
showed that symmetric gratings are equivalent to an uniaxial film in the long 
wavelength limit, and derived a closed-form for the second-order effective index 
of symmetric I -D gratings and for T E  polarization. Bouchitte and Petit [17] 
provided a rigorous demonstration of the equivalence of 1-D gratings and thin 
films in the long wavelength limit. Haggans et al. [18] studied the EMT of 1-D 
lamellar periodic structures in conical mountings, and Campbell and Kostuk [19] 
modelled sinusoidally modulated and slanted gratings for conical and non-conical 
mountings. 

Limited research has been done in the area of two-dimensional (2-D) gratings. 
Jackson and Coriell [20] derived upper and lower bounds of the zeroth-order 
effective index of 2-D periodic structures. Their work was mainly motivated by 
the derivation of transport coefficients of materials composed of two different 
homogeneous media, but can be applied to optical coefficients such as the magnetic 
permeability or the dielectric constant. Because these bounds are generally quite 
narrow when the two media have similar optical indices, their average represents 
a good approximation of the zeroth-order effective index [12, 131. Motamedi et 
al. [S] proposed an approximate solution for the zeroth-order effective index by 
averaging the two zeroth-order T M  and T E  effective indices of 1-D gratings. As 
was noted by Grann et al. [21], Motamedi’s solution is strongly inaccurate. By 
making an analogy from the series and parallel equivalent circuit model, Brauer 
and BryngdahlC221 proposed a more accurate formula. In fact, their E M T  solution 
is a weighted average of three indices, the upper and lower bounds derived in [13] 
and the average index of the periodic structure. More recently, Grann et al .  [21] 
used rigorous coupled-wave analysis (RCWA) to estimate the effective index of 
2-D gratings by computer simulations. 

In  this paper we study the E M T  of 1-D and 2-D periodic structures for a wave 
propagating normally to the grating. We use the Fourier expansion method 
proposed by Bell et a f .  [16]. In  particular for T E  polarization and I-D structures, 
we provide simulation results showing that their approach is not restricted to 
symmetric structures. For T M  polarization and I -D  structures, we derive a 
closed-form of the second-order effective index. For 2-D symmetric periodic 
structures, closed-forms of the zeroth- and second-order effective indices are 
provided. By 2-D symmetric structures, we mean structures presenting a centre 
of symmetry. It does not imply that the periods are the same, and for gratings 
composed of parallelipipeds of one given medium immersed in another medium, 
it does not imply that the two fill factors are equal. T o  our knowledge, this work 
is the first to derive the second-order effective index of arbitrary 1-D periodic 
structures with T M  polarization, and to present a rigorous approach for the E M T  
of 2-D period structures. 
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In our approach, the EMT is derived by considering the propagation of a 
periodic wave with a plane-wave dependence along the direction of propagation. 
The  periodic structure is assumed to have an infinite spatial extent in all the 
directions. T o  verify the EMT predictions, a finite spatial extent of the periodic 
structure is inserted between two semi-infinite homogeneous media. This defined 
a grating diffraction problem which is solved by rigorous computation. We then 
verify the effective index predictions by comparing the transmitted and reflected 
amplitudes obtained with rigorous computation and with a homogeneous thin film 
whose optical index is equal to the EMT prediction. In this comparison, the 
thickness of the grating and that of the thin film are assumed to be equal. As was 
noted by Grann and Moharam [23], the effective properties of subwavelength 
gratings cannot be simply described by an effective index. When the grating 
thickness is much smaller than the wavelength, they showed that an effective 
thickness has to be introduced to accurately describe the effective properties. In  
our experience, the effective thickness must not be taken into account for a grating 
thickness larger than about one tenth of a wavelength. In  this paper, this effect is 
not discussed and the grating thickness chosen for comparison is much larger than 
the critical value of one tenth of wavelength. Consequently, this paper is devoted 
to the study of wave propagation in media with periodic permittivity, and not to 
the equivalence between subwavelength periodic structures and homogeneous thin 
films. This is the reason why, in order to avoid any confusion in the following, we 
prefer to refer to E M T  rather than to homogenization. 

In section 2, we first introduce the notation and present the methodology used 
throughout the paper. The  methodology is basically the same as those provided in 
[16], except that the E M T  solution is derived without expanding the field in a 
power series of the period-to-wavelength ratio. As was pointed out in [17], the 
existence of such power series would require more study. In section 2.2, we solve 
the problem of 1-D periodic structures for T E  polarization. In section 2.3 using 
RCWA simulations, we emphasize that the E M T  solution is valid even for 
non-symmetric gratings. Section 3 is related to the E M T  of 1-D periodic structures 
for T M  polarization. A closed-form of the zeroth- and second-order effective 
indices is first derived. When applied to lamellar periodic structures composed of 
two alternate layers, the closed-form is shown to be identical to a previous result 
obtained by Rytov [14]. Then using RCWA simulations, the generality of our 
E M T  solution is tested for continuously varying index profiles. In  section 4, the 
E M T  of 2-D symmetric periodic structures is derived. The  calculus is more 
complex but the methodology remains the same. A closed-form of the zeroth- and 
second-order effective indices is derived for symmetric gratings. The  long wave- 
length limit effective index is shown to lie in between the upper and lower bounds 
of [13], and the second-order effective index formula is tested by RCWA. Section 
5 concludes and summarizes the results of the paper. 

2. Methodology and EMT of one-dimensional s t ructures  for  TE 
polarization 

T o  establish our notation, let us first consider a 1-D periodic structure along 
they  axis with an arbitrary relative permittivity profile ~ ( y ) ,  as shown in figure 1 .  
The structure is assumed to be constant in the x and z directions. The  grating 
period along the y direction is denoted as A, and the grating-vector module K is 
simply defined as K = 24A. When considering 2-D periodic structures, the relative 
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Figure 1. 1 -D periodic structure along they axis. The relative permittivity is independent 
of x and z coordinates. A denotes the period. TE and TM polarization correspond to 
electric fields parallel to the x and y directions, respectively. 

permittivity E(X, y) depends on both x and y coordindates and is constant in the 
z-direction. Again A denotes the period along the y direction. The  period in the 
x direction A, can be simply written as A, = Alp, where p is a dimensionless 
coefficient. Again we note K = 2n/A. For both 1-D and 2-D structures, A and K 
are related to the periodicity along they  direction. Using E,, to denote the (m, n)th 
Fourier coefficient of period structures, we have 

E(X, y) = C Em,nexp iK(pmx + ny) . 
m,n 

Similarly, for 1-D structures, we have 

~ ( y )  = C E, exp iKmy . 
m 

Also, we denote the Fourier coefficients of l / ~ ( x , y )  and 1 /~ (y )  by am,n and a,, 
respectively. Magnetic effects are not considered in this paper so that the 
permeability of periodic structures is constant and noted po everywhere. 

2.1. Methodology 
For both 1-D and 2-D periodic structures, we will consider a wave with 

wavelength A in the vacuum and wave-module vector k (k = 27~14. The  wave is 
propagating in the periodic structure along the z direction and is polarized in either 
the x or y direction. Note that because of the symmetry degeneracy of 1 -D periodic 
structures, the z and x directions are equivalent. A temporal dependence exp (- iot) 
is assumed for the wave. For I-D (resp. 2-D) gratings, we assume that the wave 
amplitude is periodic in the y (resp. x and y) direction. The  z-dependence of the 
wave amplitude is given by 

exp (i(q)”*kz). (3) 

The constant q is read as the square of the effective index of the periodic structures 
for the z direction and the given polarization. Then the periodic wave with the 
z-dependence of equation (3)) is used in satisfying Maxwell’s equations inside the 
periodic structure. Obviously such a solution is not correct, but we will see that, 
at least for small period-to-wavelength ratios, it is possible to find a particular q 
value such that Maxwell’s equations are satisfied. As only the limit of small 
period-to-wavelength ratios are considered in the following, it is convenient to 
expand q in a power series of a = A/A 
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Efective medium theory of periodic structures 2067 

where qo is the square of the zeroth-order effective index and qi, i = 1, . . . .  N is 
the ith-order coefficient of the series expansion. In  general q depends on the 
permittivity E ,  the period A, the wavelength 1, and on p for 2-D periodic structures. 
In the literature, the zeroth-order EMT is also referred to as the quasi-static limit 
or the long wavelength limit. Note that the above methodology is strictly the same 
as in [16]. I t  is used for the I-D TE and T M  problems, and for the 2-D problems. 

2.2. 
We look for a wave propagating in the z direction and periodic in they  direction 

with period A. The  x component of the electric field denoted A(y, z) can thus be 
expanded as a Fourier series and according to equation (3), can be written 

EMT of one-dimensional structures: TE polarization 

A(y, z) = exp (i(q)'I2kz) A,,, exp (iKmy), ( 5 )  
m 

where A,,, is a constant coefficient. To satisfy Maxwell's equations, the wave of 
equation ( 5 )  must simply satisfy Helmholtz's equation AA + k2E(y)A = 0. By 
identifying in the plane-wave basis, we find the infinite set of linear equations 

By looking for a nontrivial solution of this homogeneous system, the effective 
permittivity q is seen as the value which obeys the dispersion relation 

;o - q - N2a2 * 

. . .  . . .  

. . .  .. 

'N-I 

EN 

&N+ 1 

. . .  
. . . . .  

&N+i 

. . .  .. 

81-N 8-N &-N-l ... 8-N-i * . '  

. . .  . . .  ... 

. . .  . . .  . . .  
... . . .  Eo-q-a2 E - ~  8 - 2  E - 1  -i 

... ... 81 60-? E-1 E- i  

61 - i  EO 
... co-q-a2 - . -  

... . . .  . . .  . . .  
. . .  E0-q-i2a2 . . .  

E i + 1  Ei Ei- 1 

. . .  . . .  . . .  ... . . .  

= 0. 

For a (2N + 1) x (2N + 1) determinant, equation (7) can be read as the nullity of 
a polynomial in a2 of degree 2N. Substituting the asymptotic series from equation 
(4) into the determinant, it is straightforward to derive that qo = c0 so that the 
highest order a4N of the polynomial equals zero. I t  is also easy to show that for 
any i, q2i+l = 0. Elementary algebraic manipulations show that by annulling the 
coefficient of order 4 N  - 2 in the determinant, the expression of q2 is derived. 
Finally, we obtain 

Equation (8) is the same as equation (15) of the paper by Bell and his co-workers 
[16]. To derive equation (8), these authors expanded the diffracted wave amplitudes 
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A, in a power series of U-', and restricted their discussion to symmetric grating 
profiles. We emphasize here that equation 8 can also be applied to non-symmetric 
structures, since it was derived without any restriction on the periodic structure 
profile. The next section provides computational evidence with a non-symmetric 
example. In [17], Bouchitte and Petit noted that the power series expansion used 
by the authors of [16] was a point of concern in their mathematical approach, and 
that the validity of expansion would require more in-depth studies. Our demonstra- 
tion simply employs a power series expansion for the relative effective permittivity 
of equation (4), and not for the diffracted wave amplitudes A,. The fact that our 
derivation and that of [16] gives the same EMT result makes firmer our opinion 
that the series expansion of A, is valid. Note, however, that this concordance does 
not really demonstrate the validity of the series expansion. In fact, it is our opinion 
that the series expansion of Ais provides a convenient way to simply derive equation 
(8), and even to obtain higher order terms in u - ~ ,  etc. It will be used in section 
4.4 to derive the second-order effective index of 2-D symmetric periodic structures. 

2.3. Simulation results 
In order to verify the behaviour with a of the effective index given by equation 

(8), we proceed as follows. First, we choose the non-symmetric periodic structure 
shown in figure 2. Each layer is homogeneous with relative permittivity el = 1 and 
eII = 16. Parameters a ,  b, c and d define the position of the layer boundaries. Their 
numerical values are given in the caption of figure 2. We choose a non-symmetric 
grating in order to test the validity of equation (8) for non-symmetric structures. 
Then we insert a finite section of this structure between two semi-infinite 
homogeneous regions of permittivities and c I I ,  respectively. The depth h of the 
periodic structure was taken to be equal to four wavelengths in the simulations. 
Figure 2 defines a diffraction problem that we solve using RCWA for an incident 
plane wave of unit amplitude, normally incident from the region of relative 
permittivity e l .  Solving Maxwell's equations, we compute the complex transmitted 
amplitude t and reflected amplitude r of the zeroth-order diffracted waves. Then 
making the analogy between subwavelength periodic structures and a homogeneous 
medium, we define the equivalent effective index of the periodic structure by the 

4 
A 

h 

&I1 &I 
X 

I 1 
aA bA cA 

&I1 
Figure 2. TE polarization case. Non-symmetric periodic structure of depth h inserted 

between two homogeneous regions of permittivities = 16. The periodic 
structure is composed of alternate layers of permittivities and is defined 
by the transition walls a = 0.1, b = 0 2 ,  c = 0 6  and d =  01. h =4pm and A =  1 pm 
were chosen for the computation. 

= 1 and 
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Figure 3. Simulation results for TE polarization. The solid curve represents the effective 
index of equation (8) when applied to the grating problem of figure 2. The circle-marks 
are the effective indices nRCWA obtained by minimizing the error function of equation 
(9). 201 orders were retained for the RCWA computation. The dashed curve 
corresponds to the effective index prediction when the a-4 term in the series expansion 
of equation (8) is included. 

real number nRCWA which minimizes the error function 

where r’(nRCWA) and t’(nRCWA) are the reflection and transmission complex 
coefficients of a thin homogeneous layer of thickness h and optical index n R C w A ,  

inserted between two infinite media of relative permittivities cI  and cII .  T h e  
effective index RRCWA is supposed to be larger than the minimal value of the grating 
index, and smaller than the maximal value of the grating index. For example, for 
the grating of figure 2, “RCWA E 

Figure 3 provides a comparison between the E M T  prediction of equation (8) 
and those of RCWA. The  comparison is made over the complete operating 
region of the grating defined in figure 2 as a zeroth-order filter. The  solid line 
corresponds to the effective index of equation (8). T h e  11 circle-marks correspond 
to the effective indices nRCWA computed with RCWA and by minimizing the 
error function of equation (9). The  maximum error, e, obtained with the 11 
RCWA computations was 0.058. This value is an important feature of the 
comparison, since it quantifies the confidence someone can expect in the E M T  
prediction. For example, the error e of 0.058 corresponds to a difference in reflected 
intensity IY’(nRCWA)12 - 1 ~ 1 ~  of 0.029, which is less than 3%. In general, the error 
e increases with the parameter u. This is not surprising as one would expect that 
the E M T  predictions are more accurate for small period-to-wavelength ratios. In  
figure 3, the maximum error (e = 0.029) is obtained for the largest value of u, 

( E ~ ~ > ’ / ~ ] .  

2069 

!5 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
A
S
 
C
h
i
n
e
s
e
 
A
c
a
d
e
m
y
 
o
f
 
S
c
i
e
n
c
e
s
]
 
A
t
:
 
0
1
:
1
3
 
2
2
 
M
a
r
c
h
 
2
0
1
1



2070 P .  Lalanne and D .  Lemercier-Lalanne 

namely a = 0.25. We first conclude that there is an excellent matching 
between the theoretical prediction and simulation results, even for large values of 
AlA that reach the upper bound l / ( ~ ~ ~ ) ~ / ' ,  beyond which the grating of figure 2 
stops behaving as a zeroth-order filter for normal incidence. We note that the 
effective index prediction including the a-4 correction term (shown on the 
dotted line in figure 3) provides still better agreement with rigorous 
computations. 

For a = 0.18, the circle-mark differs greatly from the value 3.49 predicted by 
equation (8). An effective index of 3-49 gives an error function e = 0.023 and a 
difference in reflected intensity of 9.2 X w5. The  effective index, nRCWA = 3-74, 
obtained with RCWA gives a lower error e = 0.0031 and a slightly higher 
difference in reflected intensity of 3.4 x lod4. This shows that the computation 
defined by the minimization of the error function of equation (9) is not well- 
conditioned: even if only one absolute minimum in the considered interval exists, 
there are in general several good potential candidates for nRCWA. Two comments 
have to be made in relation with the ill-conditioning. Firstly, since small variations 
of the transmitted and reflected amplitudes computed with RCWA can induce 
large variations of the effective index nRCWA, RCWA convergence has to be 
guaranteed. In  figure 3, 201 orders were retained for the computation. This 
was largely sufficient since the same results were obtained with 101 retained 
orders. However, we note that for 51 retained orders, significantly different nRCWA 
results were obtained. Secondly, the error criterion of equation (9) is somewhat 
arbitrary. For instance, in [21], the authors used two other different criteria 
depending only on the comparison of the reflected intensities. This was probably 
due to the fact that these authors were mainly concerned by the anti-reflection 
properties of subwavelength gratings. However, it it our opinion that the criterion 
of equation (9) is worth considering, as it takes into account both reflected and 
transmitted waves in the analogy. Only this criterion will be used in the following. 
As a matter of fact, the discrepancy observed in figure 3 for a = 0-18 has to be 
attributed to an artefact resulting from the chosen criterion and to the only 
approximate analogy between subwavelength gratings and homogeneous thin films. 
The error e = 0.023 obtained with the effective index n = 3.49 is an acceptable 
value equal to the one obtained for a = 0.25 and comparable to those obtained for 
a = 0-2 and 0.23. So we conclude that the EMT prediction of equation (8) has 
been validated over the complete operating region of the grating of figure 2 as a 
zeroth-order filter. 

3. EMT of one-dimensional structures: TM polarization 
3.1.  

Let us now suppose a wave propagation in the z direction and polarized in the 
x direction. The  magnetic field A(y, z)  is parallel to the x direction and is given by 
equation (5). The electric field E has y and z components and is written 

Derivation of the effective relative permittivity 

E,, = exp (ikq'l2z) c s, exp (iKmy) 
m 

E, = exp (ikq1/2z) c fm exp (iKmy), (10 b)  
m#O 
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Effective medium theory of periodic structures 2071 

where sm and fm are constants. The curl Maxwell's equations are 

- iwE, 
1 aA 
E aZ 

aA 

aY 
- -iw~E,. -- 

Identified in the plane wave basis, equations (1 1)  become 

1 

By substituting f ,  from equation (12 a) into equation (12c), and then using 
equation (12 b) to eliminate the y component of the electric field, we obtain the 
infinite set of linear equations 

where 

Once again the effective relative permittivity q is seen as the value which obeys 

, . . .  . . .  ... ... 

= O .  

(14) 

For a (2N + 1) x (2N + 1)  determinant, equation (14) can be read as the nullity 
of a polynomial in a2 of degree 2N. Substituting the asymptotic series of 
equation (4) into the determinant we easily derive that 1 - aoqo = 0, so that the 
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highest order in a4N equals zero. Note that only the diagonal terms of the 
determinant contain a2 terms. This can be exploited to derive q2 by nullifying the 
coefficient of order (4N - 2) of the polynomial. We obtain 

&I &I1 &I 

T o  our knowledge, equation (15) has never been previously derived. 

A lamellar structure composed of two alternate layers of relative permittivities 
and cII is depicted. For this simple structure, the Fourier coefficient E, is 

Let us now consider the particular example of figure 4 studied by Rytov [14]. 

where 6, is non-zero and equals 1 if and only if n equals zero. f is the fill factor 
defined in figure 4. Using infinite summation of trigonometric Fourier series [24] 
and substituting the Fourier coefficients of equation (16) into equation (15),  we 
obtain a simpler expression for q expressed as 

By matching the boundary conditions inside the periodic structure, Rytov derives 
a transcendental equation (see equation (18) in [14]) which does not give an 
analytical solution for q. However using the Taylor series expansion for the 
tangents of the transcendental equation, equation (1 7) is derived. This coincidence 
is not fortuitous, since solving Maxwell's equations inside each layer and then 
matching the boundary conditions at the layer interfaces is equivalent to solving 
Maxwell's equations inside the whole periodic structure. As a consequence, 
equation (15) can be seen as a generalization of equation (17) for arbitrary profiles, 
including multi-layer lamellar (as in figure 2), sinusoidal or arbitrary continuously- 
varying-index periodic structures. 

Finally, we note that equation (15) can also be derived by using a series 
expansion of Ais in a similar manner as the authors of [16] did for TE polarization. 
This confirms to us the validity of such an expansion. 

3.2. Simulation results 
In order to test the validity of equation (15), we proceed as in section 2.3. A 

periodic structure with a continuous relative permittivity linearly varying from 1 
to 9 over one period is chosen. As shown in figure 5 ,  this structure is inserted 
between two infinite homogeneous regions of relative permittivities = 1 and 
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wx Ly 
Figure 5. T M  polarization case. A periodic structure with a continuously varying 

= 1 and 
= 4. Along one period, the relative permittivity of the grating is linearly varying 

permittivity is inserted between two homogeneous regions of permittivities 

from 1 to 9. h = 051. 

eII  = 4. Figure 5 defines a grating diffraction problem which is solved using RCWA, 
for a wave normally incident on the grating from the region of relative permittivity 
E , .  501 orders were retained in the RCWA computation. It was largely sufficient 
since the same results were obtained with 401 retained orders. However, with 201 
retained orders, like in the TE polarization case, convergence was not obtained, 
and highly inaccurate nRCWA results were observed. The  need for a very high 
number of retained orders to ensure proper convergence can be attributed to the 
fact that RCWA convergence-rates are much slower for T M  than for T E  
polarization [25], and that the minimization problem of equation (9) is ill- 
conditioned. The  comparison between the effective index prediction of equation 
(15) and RCWA simulation results is shown in figure 6. Again the solid line 

5 

Figure 6. Simulation results for TM polarization. The solid curve represents the effective 
index of equation (15) when applied to the grating problem of figure 5. Circle-marks 
are the effective index nRCWA obtained by minimizing the error function of equation 
(9). 501 orders were retained for the RCWA computation. 
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corresponds to the E M T  prediction and the nine circle-marks result from 
RCWA computation. The horizontal axis covers the complete operating region 
of the grating as a zeroth-order filter for normal incidence. When deterrnin- 
ing the effective index nRCWA, the maximum error e obtained with the first 
eight period-to-wavelength ratios (A/A = 0.05, 0.1, . . . , 0.4) is less than 0.06 
and the maximum difference in reflected intensity IT’(nRCWA)(’ - 1yI2 is less than 
0.01. 

The  last circle-mark which does not match the E M T  prediction deserves 
particular attention. Unlike the single point discrepancy of figure 3, the strong 
mismatch between EMT and RCWA for a = 045 is not due to any problem caused 
by the ill-conditioning of the error-function minimization. For A/A = 0.45, the best 
effective index nRCWA gives an error e = 0.43 and a difference in reflected intensity 
of 0.18. For A/A larger than 0.33, we note that the effective index of the grating 
exceeds the cover and substrate indices, and so the grating of figure 5 becomes a 
waveguide grating. Because resonance effects in an evanescent wave cause a 
redistribution of the energy in the propagating waves, waveguide gratings can 
potentially generate sharp variations in the intensity of the reflected wave [26]. 
Even if E M T  can be used to roughly estimate the wavelength at resonance, it 
cannot predict the energy redistribution around the resonance. For the grating 
problem of figure 5 ,  a strong resonance effect was observed around ct = 0.45. The  
zeroth-order reflected intensity increases from 5% to 100% for AlA varying from 
0.450 to 0.457. This resonance effect explains the abnormally large error e and the 
discrepancy in figure 6 observed for A/A equal to 0.45. 

Because of the good matching between the solid line and the circle-marks in 
figure 6, we conclude that the simulation results validate the a-’ behaviour of the 
E M T  solution. In general it was noted that the analogy between subwavelength 
structures and homogeneous media is less accurate in T M  than in T E  polarization, 
especially for large index-modulations. 

4. EMT of symmetric two-dimensional periodic structures 
The methodology used for deriving the zeroth- and second-order effective 

index of 2-D periodic structures is the same as the one used for 1-D periodic 
structures. However, the mathematical complexity is increased because of the 
double periodicity in the x and y directions. In section 4.1, we first derive the 
infinite set of linear equations that the wave propagating along the z axis must 
satisfy, from the Maxwell’s equations. This linear system is similar to equations 
(6) and (13)  previously derived for T E  and T M  polarization. In section 4.2, we 
solve the system of linear equations in the long wavelength limit, and derive the 
expression for the zeroth-order effective index. Section 4.3 provides simulation 
evidence showing that the zeroth-order effective index lies in between the upper 
and lower bounds derived by Coriell and Jackson [13]. In section 4.4 we derive 
the expression of the second-order effective index and, in section 4.5, we test our 
EMT result with RCWA. 

In the following, we restrict the discussion to symmetric periodic structures 
with 

(1 8) - - 
6m.n = E-m,n = Em, -n 8-m, - n *  

Note that it does not imply the equality of the periods along the x and y directions, 
but simply that a centre of symmetry exists. 
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4.1. 

second-order differential equations 

Derivation of the infinite set of linear equations 
In the appendix, using the Floquet theorem, we derive the following set of 

s;oo + k2 c E-p,  - q s y p q  
P .  4 

= O  

The last two equations (19 c )  and (19 d )  hold for any m and n, (m,  n) # (0, 0). S,, 
and S,, are the (m,  n)th space-harmonic amplitudes of the electric field's x and 
y components. They only depend on z. S-, and S&, are the second derivatives 
d2Sm,/az2 and a2Symn/dz2, respectively. Equations (1 9) provide a complete set of 
second-order differential equations (Helmholtz equations) for the x and y compon- 
ents of the electric fields inside 2-D periodic structures. They are formally 
equivalent to equations (22) of [ 2 5 ] .  

We look for a wave with the z-dependence of equation (3)) which satisfies 
equations (19). The  x and y components of the wave electric field are 

Ey = exp (ikq'12z) c sum, exp [iK(mpx + n y ) ] ,  (20 b)  
m, n 

where s,, and sum, are constants, and only Ey has a dc component. On spatial 
averaging along the x and y directions of the periodic structure, Ex equals zero 
and Ey equals s,,, since only Ex has a non-null dc component. Note that when 
looking for a wave polarized in the x direction, equations (20) hold except that, in 
this case, only Ex has a dc component (i.e. syoo = 0 and sxoo # 0). In  the following, 
the E M T  for the x polarization will not be derived. Its derivation is basically the 
same as the y polarization case, and therefore only its result will be given. Because 
of the symmetry hypothesis of equation (18), it is readily apparent that for any 
(m, 4 ,  
s,, = -sXWmn _ -  sm-, - s ~ - ~ - , ,  and s,, = sy -mn - sum-, - sy - m - n .  (21) 

Equation (21) implies that, for any p ,  sxpo and sxop are equal to zero. Substituting 
S,, and SL, with sImn and -k2qslmn ( I  holds for x and y )  into equations (19), we 

- - - - 
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orders both in the x and y directions, equation (25) can be read as a system of 
M E M T ( M E M T  + 1) equations (Vm 2 0, V n  > 0) ,  which can be set in the compact 
form 

where A is a M E M T ( M E M T  + 1) by M E M T ( M E M T  + 1) matrix, SIP) is a 
M E M T ( M E M T  + 1) vector composed of ~ $ 7 ~  elements, and b is a M E M T ( M E M T  + 1) 
vector with nc,,, elements. We suppose that A can be inverted (we have no 
demonstration of that point). Denoting by a the inverse matrix of A, ~ $ 7 ~  can be 
expressed as a function of s$b, and we have 

where at,$, are the coefficients of matrix a. These coefficients only depend on the 
periodic structure, i.e. on &m,n and p. Substituting s $ i  given by equation (27) into 
equation (22a), and looking for a non-zero solutlon in s$b, we obtain the 
zeroth-order effective permittivity 

~0 = &0,0 - C C &rn,nakPnEp,qn* (28) 
p , q # O  m,O,n>O 

When considering a wave polarized in the x direction, equation (25) has to be 

which holds for n 2 0 and m > 0. Equation (29) defines a new matrix A and a new 
vector 6,  where carats are used for differentiating the x and y polarization case. 
So for the x polarization, the zeroth-order effective permittivity f i  is 

il* = &O,O- C C &msnGk,qnEp,qm, (30) 
p Z 0 . q  m>O,n,O 

A A A  

where G$pn are the coefficients of the inverse matrix of A. In general, because (A, b) 
and (A, b) are different, the two normal effective indices are also different, and the 
periodic structure exhibits biaxial properties in the long wavelength limit. Now 
when we assume that cmSn and &n,m are equal for any (m,  n)  and tha: the periods in 
the x and y direction are the same ( p  = l), it is easily shown that (A, 6) and (A, b) 
are equal, and so the periodic structure exhibits uniaxial properties. 

4.3. 
Coriell and Jackson [13] derived upper and lower bound expressions for the 

zeroth-order E M T  of several simple symmetric periodic structures composed of 
two-phase materials. The  two structures they considered are depicted in figure 7. 
They are both symmetric with = &n,m and p = 1, and are composed of two 
homogeneous media indexed by 1 and 2. In our simulation, media 1 and 2 have 
optical permittivities equal to 1 and 16, respectively. The  periodic structure of 
figure 7(a) is composed of parallelepipeds of high index inserted in a medium of 
low index. Similarly, the periodic structure of figure 7 (b) is composed of cylinders 
of low index inserted in a medium of high index. We define the fill factor of the 
two structures as the ratio between the width (resp. the diameter) of the 
parallelepiped (resp. cylinder) and the period A. For these two periodic structures, 

Zeroth-order effective index: simulation results 
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W :medium2 0 :medium1 

Figure 7. (a) Periodic structure composed of parallelepipeds of high index inserted in a 
medium of low index. (b) Periodic structure composed of cylinders of low index 
inserted in a medium of high index. 

fill factor 

Figure 8. Zeroth-order effective index of the 2-D periodic structures. The solid curves 
are the upper and lower bounds derived in [13] for the zeroth-order effective index 
and for the periodic structure of figure 7. Plus-marks, cross-marks and circle-marks 
are, respectively, the effective indices of equation (28) for truncation ranks MEMr 
equal to 8, 20 and 40. 

the upper and lower bounds are given by equations (6 a) ,  (6 b),  (7 a )  and (7 b) of 
[13]. They are plotted in figure 8 as a function of the fill factor. These are the solid 
curves in figure 8. As we could not find a general expression for the inverse matrix 
a, only numerical computations allow us to derive the values of qo given by equation 
(28). The  computation basically requires the inversion of the infinite matrix A, 
which for numerical purposes is truncated. We denote by M E M T  the truncation 
rank. The  size of the truncated matrix is MEMT(MEMT + 1) x MEMT(MEMT + 1). 
Because of the symmetry (equation (21)), a truncation rank M E M T  corresponds to 
*ME,, orders in each direction, i.e. a total o f N  = (2MEMT + 112 orders. In  figure 
8, circle-, cross-, and plus-marks are the effective indices obtained for different 
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truncation ranks of matrix A. Circle-marks were derived with MEMT = 40 (N = 
6561), cross-marks with MEMT = 20 (N = 1681), and plus-marks with MEMT = 7 
(N = 225). Basically, the E M T  prediction of equation (28) lies in between the 
upper and lower bounds. For the parallelepiped case and for fill factors about 0.8 
and 0.9, it is noticeable that the truncated expansion is slowly converging. For a 
fill factor equal to 0.9, even with MEMT = 40, qo remains just above the upper 
bound. 

4.4. Second-order effective index 
We now proceed to the derivation of the second-order EMT. Taking u - ~  terms 

in equation (22 a) and uo terms in equations (22 b) and (22 c) and simplifying using 
equations (24b) and (24c), we obtain 

and V m  2 0, V n  2 0,  (m,  n)  # (O,O) ,  

(2 )  ( 2 )  ) = C Em-p,n-q(mpSxpq + m y p q  

(n2 + m 2 2  p ) ( n s g n  - rnps;?,) = 

P .  Q 

For n = 0, equation (31 c) reduces 

As s$)~ can be expressed as a function of s$)~, equation (31 c) allows us to express 
sg,, as a function of s$L and s%,. Substituting into equation (31 b) s!,.., by its 
expression as function of s$\ and s;?,,, we obtain 

where 

The right term of equation (34) is only a function of sipdo since s$b and s$,\ are 
only functions of s$b (see equations (27) and (32)). Consequently vector C ,  whose 
coefficients are c,,, is only dependent on the periodic structure, i.e. on E,, and p .  
Equation (33)  can be written in the compact form 

AS") Y = S $ ~ C  - sk3 b , (35)  
where matrix A and vector b are the same as in equation (26). So the solution of 
equation (35) can be written 
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By substituting s$L from equations (36) and (32) into equation (31 a ) ,  the shgo term 
cancels. By looking for a non-zero solution in s;,~, we obtain the second-order 
effective relative permittivity 

A similar expression with $$,$ coefficients holds for the x polarization case. 

4.5. 
In order to verify the validity of equation (37), we proceed as in sections 2.3 

and 3.2, and we insert a one-wavelength thick layer of the periodic structure, as 
shown in figure 7 (a), into two semi-infinite homogeneous media of relative 
permittivities 1 and 16. For A/A smaller than 0.25, this defines a zeroth-order 
grating problem that is solved by rigorous computation. The  fill factor was chosen 
equal to 06 .  For 2-D periodic structures, the implementation of coupled-wave 
methods is memory consuming, With our IBM/RISC6000 workstation, only 289 
retained orders can be implemented in the RCWA computation. As was noted in 
section 2.3, the minimization of the error function of equation (9) is not well- 
conditioned. Moreover in section 4.3, the truncated expansion used in our E M T  
derivation which, like coupled-wave methods, depends on the Fourier expansion 
of the grating relative permittivity, was shown to be slowly converging especially 
for a duty cycle equal to 0.9. Being aware of the difficulty of obtaining very accurate 
rigorous computations , and of their impact when carefully comparing them with 
EMT predictions, we asked our colleagues at the Helsinki University of Technology 
to run their highly efficient code implementation. We are grateful to Eero Noponen, 
who computed for us the transmitted and reflected amplitudes, using his eigenmode 
method for three-dimensional profiles [27]. The  transmitted and reflected ampli- 
tudes, t and r, he found with 625 retained orders, are shown in the second and 
fourth columns of table 1. The  corresponding period-to-wavelength ratios are 
given in the first column. In table 2, the convergence of the coupled-wave used in 
the simulation is illustrated. The  reflected and transmitted amplitudes are given 
for different numbers N of retained orders varying from 289 to 625. These results 

Second-order eflective index: simulation results 

Table 1. Reflection and transmission complex coefficients of the period structure of figure 
7 (a)  when inserted between two semi-infinite media of relative permittivities 1 and 
16. The r and t coefficients are the reflection and transmission complex coefficients 
obtained when retaining 625 orders in RCWA, and the r" and t"  coefficients are 
those predicted by the second-order E M T  (index given by the two first non-zero 
terms of equation (4)). The  corresponding period-to-wavelength ratios are shown 

in column 1. 
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Efective medium theory of periodic structures 2081 

Table 2. Convergence of the coupled-wave method. The first column shows the number 
N of retained orders in the computation. r and t are, respectively, the reflection and 

transmission complex coefficients. A / 1  = 0.1. 

N r t 

289 -0.5819 + 0.0849i - 04044 + 00001 i 
361 -0.581 3 + 00870i -04045 + 0-0006i 
441 -0.5746 + 01195i - 0.4045 + 0.01 56i 
529 -0.5724 + 0.1 276i -04046 + 001 90i 
62 5 -0.5698 + 0.13661 -0.4045 + 0.0230i 

are obtained for a = 0.1. As can be seen, even with 625 orders, the convergence 
of the rigorous computation is not perfectly guaranteed. Although the real part of 
t is constant for the considered interval (variation less than we note that Y 

and the imaginary part of t are gradually increasing. This effect is weak, since from 
N = 289 to N = 625, the variations observed on the real and imaginary parts of r 
and t are smaller than 0.05. Thus, for the following comparison, we will consider 
the reflection and transmission coefficients computed with 625 retained orders as 
enough accurate to allow a qualitative comparison with our E M T  results. 

For the numerical computation of the EMT, we proceed as follows. Once 
matrix A is inverted and aG,$ are known, s$L and s$L are computed with equations 
(27), (32) and (36). Then qo and q2 are numerically derived by using equations 
(28) and (37), where s$b and s$b, are, respectively, set to 1 and 0. When inverting 
matrix A, the truncation rank MEMT was chosen equal to 40. A truncation rank 
of 40 corresponds to 6561 retained orders with the coupled-wave method, and thus 
can be considered to be large enough to be accurate. The  reflected and transmitted 
amplitudes found by replacing the grating by the homogeneous layer with the 
effective index predicted by the EMT are noted r" and t",  respectively. They are 
shown in the third and fifth columns of table 1. This allows a direct visual 
comparison with the r and t coefficients computed by the rigorous method. 
According to table 1 ,  two operating regions can be distinguished for the comparison. 
For A/A larger than 0.15, there is no match between rigorous computation and 
EMT prediction. For A/A smaller than 0.15, the real parts of the transmitted 
amplitude t" predicted by E M T  never differ by more than 0.01 from the rigourous 
computation results, and the difference between the imaginary parts of the 
transmitted amplitudes (t and t " ) ,  and between the real and imaginary parts of the 
reflected amplitudes ( I  and 1") is never larger than 0.07. This corresponds to a 
difference between the reflected or transmitted intensities which is never larger 
than 0.02. Thus, we first conclude that, for A/A smaller than 0.15, a good qualitative 
agreement between EMT and rigorous computation is obtained. In table 3, a 
comparison between the effective index nRCWA derived from rigorous computations 
and the second-order EMT prediction q''2 is shown. For A/A smaller than 0.15, a 
small difference between nRCWA and q' j2  exists. The difference is smaller than 0.02. 
For A/A larger than 0.15, the difference is significantly larger and reaches 0-2 for 
A/A = 0.1 5 .  

The poor agreement between EMT and rigorous computation for large 
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Table 3. First column, period-to-wavelength ratios. Second and third column, errors and 
effective indices found by minimizing equation (9). Last column, EMT effective 

indices given by the two first non-zero terms of equation (4). 

p A l l  e ~ R C W A  

002 0008 1.443 1 a424 
005 0.020 1.448 1.432 
0075 0031 1.457 1-443 
0.1 0.048 1.471 1-459 
01 5 0035 1.527 1.502 
0.2 0093 1.665 1.561 
0.24 0.168 1.808 1-61 8 

period-to-wavelength ratio raises the following question. Has this bad agreement 
to be attributed to the EMT itself, or to the fact that for large period-to-wavelength 
ratios, a strict analogy between 2-D periodic structures and homogeneous media 
does not exist? To  answer this question, we solve the minimization problem defined 
by equation (9). For A/A = 0-2 and 0.24, the two effective indices found are 
“RCWA = 1.665 and nRCWA = 1.808 (see table 3). The  corresponding errors e are 
large, and are, respectively, equal to 0.093 and to 0.168 (see table 3). For 
comparison, for the I-D grating of section 2.3 which has a comparable index 
modulation, the maximum error found was 0.06. We thus conclude that the analogy 
does not hold for large period-to-wavelength ratios. This poor analogy observed 
for 2-D structures (in comparison with 1-D structures) can be justified by looking 
at the long-wavelength-limit behaviour difference of 1 -D and 2-D periodic 
structures. By expanding the diffracted wave amplitudes Ai in a power series of 
a-I ,  for T E  and T M  polarization of 1-D structures, it is easily shown that [16] 

Consequently, in the long wavelength-limit, waves which propagate in I-D 
periodic structures are simply plane waves A, exp (iqA’’kz), with qo = c0 for TE or 
q, = l / a o  for T M .  For 2-D periodic structures, the wave is no longer a plane wave, 
but a superposition of plane waves, since neither sg, nor SF;,, are zero for 
(m, n) # (0, 0). So 2-D period structures are not strictly equivalent to homogeneous 
media even for infinitely small periods. It is thus reasonable to see that, for large 
period-to-wavelength ratios near the cutoff value, the analogy between 2-D periodic 
structures and homogeneous media is even less accurate or legitimate. 

5. Conclusion 
In this paper, the E M T  of I-D and 2-D periodic structures was studied for 

waves propagating normally to the structure. For 1-D periodic structures, a 
closed-form of the zeroth- and second-order effective indices was derived for T E  
and T M  polarization (see equations (8) and (15)). These formulas can be applied 
to any arbitrary periodic structures, symmetric or not, with continuously-varying- 
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index profiles or step-index profiles. The  validity of equations (8) and (15) was 
tested by RCWA, and a very good agreement between the E M T  results and RCWA 
simulation results was obtained, even for large periods that almost reach the cutoff 
period above which the gratings stop to behave as zeroth-order filters. For 2-D 
periodic structures, formulas for the zeroth- and second-order effective indices of 
symmetric periodic structures were derived (see equations (28) and (37)). These 
formulas can be applied to any arbitrary periodic structures which have a centre 
of symmetry. The numerical evaluation of equations (28) and (37) requires the 
inversion of the same infinite matrix. In practice, the matrix is truncated and is 
inverted numerically with standard library programs. We have shown that the 
zeroth-order EMT (equation (28)) lies in between the lower and upper bounds 
derived in [13]. When validating the second-order EMT by rigorous computation, 
a good qualitative agreement between the E M T  and simulation results was 
obtained. However, it was found that the analogy between subwavelength periodic 
structures and homogeneous media is less accurate for 2-D than for 1-D structures. 
For periods larger than half the cutoff period, the periodic structure of our example 
stops behaving as a homogeneous medium. In the paper, although all simulation 
results are provided for real index profiles, the EMT results can also be used for 
absorptive materials. 
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Appendix 
In this appendix, we derive equations (19). For the sake of generality, the 

exp (iq’/2kz) dependence of equation (3) is first not assumed, and we derive a set 
of second-order differential equations using the Floquet theorem. This formulation 
is similar to that provided by Peng and Morris in [28 ] ,  in which electromagnetic 
scattering of 2-D gratings was analysed by using RCWA with second-order 
differential equations. For ease of reference, we shall follow the notation used in 
this work. 

As the periods in the x and y directions are respectively noted by Alp and A, 
the electric and magnetic fields Ex and H, are expressed as (Floquet theorem) 

H, = (:>”’ U,,, exp [iK(mpx + ny)]  , 
m, n 

where S,,,, and U.,,,, depend on variable z. Similar expressions hold for the y and 
z polarization of the field. We denote by S,,,, S,,,, V,,,, and U,,, their 
dependence with z. The  curl Maxwell’s equations identified in the quasi-plane 
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wave basis are 

P. Lalanne and D. Lemercier-Lalanne 

inKS-, - SL,, + ik Urn, = 0 

-impKS,,, + SL,, + ikU,, = 0 

mpKS,,, - nKS,, + k Urn, = 0 

(A2 a) 

(A2 b) 

(A2 c) 

-impKU', + UL,, - ik c E , ~ ~ , ~ - ~ S ~ ~ ~  = 0 (A2 e) 
P. 4 

where prime denotes the derivative relatively to the z-variable. We now proceed 
with the elimination of U', U,, U' and S, in between the six previous equations. As 
can be seen from our previous work on TE and T M  polarization of 1-D gratings, 
we try to derive second-order differential equations containing a minimum number 
of terms depending on a, or similarly on K .  Setting m = n = 0 in equations (A2), 
we first obtain equations (19a) and (19b) which do not depend on parameter K. 

From equations (A2 d) and (A2 e), we obtain 

(n2 + m2p2)KU,,, + i d & ,  + impUL,, + k c ~ , - ~ , ~ - ~ ( m p S ~ ~ ~  - nSxpq) = 0 
P# 4 

(A3 a) 

nUk, ,  - mpUlvmn - ik C ~ , -~ ,~ - , (mpS ,~ ,  + nSup4) = 0. 
P. 4 

(A3 b) 

From equation (A2 c), U,,, can be expressed as a function of S,,, and Smn. From 
VH = 0 that can be derived from equations (A2 a)-(A2c),  and from equation 
(A3 a), equation (19 c) is derived for any (m, n) # (0,O). From equation (A3 b) and 
(A2f), we obtain 

C Em-p,n-qSkpq = -iK C Em-p,n-q(mpSxpq + nsypq), 044) 
Pv 4 P. 4 

which is simply V(EE) = 0. From equations (A2a) and (A2b), we have 

iKS:,, = ' (nS;,, + mpS:,, - ik(nUL,, - mpU;,,)). (AS) 
n 2 + m p  

Substituting nu;,, - mpU;,,, from equation (A3 b) and (AS), S,,, is seen only as 
a function of S, and S,. Substituting S,, into equation (A4), equation (19d) is 
derived for any (m, n) # (0 ,O).  

References 
[l] WILSON, S. J . ,  and HUTLEY, M. C., 1982, Optica Acta, 29, 993. 
[2] ENGER, R. C., and CASE, S. K., 1983, Appl. Optics, 22, 3220. 
[3] GAYLORD, T. K., BAIRD, W. E., and MOHARAM, M. G., 1986, Appl. Optics, 25, 4562. 
[4] ONO, Y. ,  KIMURA, Y., OTHA, Y., and NISHIDA, N., 1987, Appl. Optics, 26, 1142. 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
A
S
 
C
h
i
n
e
s
e
 
A
c
a
d
e
m
y
 
o
f
 
S
c
i
e
n
c
e
s
]
 
A
t
:
 
0
1
:
1
3
 
2
2
 
M
a
r
c
h
 
2
0
1
1



Effective medium theory of periodic structures 2085 

[S] MOTAMEDI, M. E., SOUTHWELL, W. H., and GUNNING, W. J., 1992, Appl .  Optics, 

[6] RAGUIN, D. H., and MORRIS, G. M., 1993, A p p l .  Optics, 32, 11 54. 
[7] CESCATO, L. H., GLUCH, E., and STREIBL, N., 1990, Appl .  Optics, 29, 3286. 
[8] FLANDERS, D. C., 1983, Appl .  Phys. Let t . ,  42, 492. 
[9] YEH, P., 1978, Optics Commun., 26, 289. 

31, 4371. 

[lo] STORK, W., STREIBL, N., HAIDNER, H., and KIPFER, P., 1991, Optics Lett . ,  16, 1921. 
[ll] FARN, W. M., 1992, Appl .  Optics, 31, 4453. 
[12] CHEN, F. T., and CRAIGHEAD, H. G., 1995, Optics Let t . ,  20, 121. 
[13] CORIELL, S. R., and JACKSON, J. L., 1968, J. Appl .  Phys. ,  39,4733. 
[14] RYTOV, S. M., 1956, Sov. Phys. J E T P ,  2, 466. 
[15] MCPHEDRAN, R. C., B o ~ N ,  L. C., CRAIG, M. S., NEVI~RE, N., and MAYSTRE, D., 1982, 

[16] BELL, J. M., DERRICK, G. H., and MCPHEDRAN, R. C., 1982, Optica Acta,  29, 1475. 
[17] BOUCHITTE, G., and PETIT, R., 1985, Electromagnetics, 5 ,  17. 
[18] HAGGANS, C. W., LI, L., and KOSTUK, R. K., 1993, J. opt.  SOC. A m .  A, 10, 2217. 
[19] CAMPBELL, G., and KOSTUK, R. K., 1995, J .  opt.  SOC. A m .  A, 12, 1113. 
[20] JACKSON, J. L., and CORIELL, S. R., 1968, Appl .  Phys., 39, 2349. 
[21] GRANN, E. B., MOHARAM, M. G., and POMMET, D. A., 1994, J. opt. SOC. A m .  A, 11, 

[22] BRAUER, R., and BRYNGDAHL, A., 1994, Appl .  Optics, 33,7875. 
[23] GRANN, E. B., and MOHARAM, M. G., 1995, OSA Annual Meeting, Portland, September, 

[24] GRADSHTEYN, I. S., and RYZHIK, I. M., 1965, Tables of Integrals Series and Products 

[25] LI, L., and HAGGANS, C. W., 1993, J O S A  A, 10, 1184. 
[26] WANG, S. S., MAGNUSSON, R., BAGBY, J. S., and MOHARAM, M. G., 1990, J. opt. SOC. 

[27] NOPONEN, E., and TURUNEN, J., 1994, J O S A  A, 11, 2494. 
[28] PENG, S., and MORRIS, G. M., 1995, J. opt.  SOC. A m .  A, 12, 1087. 

Optica Acta,  29, 289. 

2695. 

paper Thhh3. 

(New York, San Francisco and London: Academic Press), chapter 1, pp. 38-39. 

A m .  A, 8, 1470. 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
A
S
 
C
h
i
n
e
s
e
 
A
c
a
d
e
m
y
 
o
f
 
S
c
i
e
n
c
e
s
]
 
A
t
:
 
0
1
:
1
3
 
2
2
 
M
a
r
c
h
 
2
0
1
1




