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interesting circuit capabilities. The thin polymer
interlayers allow robust interconnects to be
formed easily by evaporating metal lines over
lithographically defined openings. Thermal
cycling tests showed no changes in their
properties (fig. S10). Figure 4A shows a 3D
n-channel metal oxide semiconductor inverter
(logic gate) in which the drive (L =4 pm, W=
200 um) and load (L = 4 um, W = 30 um) Si
MOSFETs are on different levels. With a sup-
ply voltage of 5 V, this double-layer inverter
exhibits well-defined transfer characteristics
with gains of ~2, comparable to the perform-
ance of conventional planar inverters that use
similar transistors. Figure 4B shows an inverter
with a complementary design (CMOS) with the
use of integrated n-channel Si MOSFETs and
p-channel SWNT TFTs, designed to equalize
the current-driving capability in both pull-up
and pull-down directions. Transfer curves col-
lected with a supply voltage (Vpp) of 5 V and
gate voltage (input) swept from 0 to 5 V ap-
pear in Fig. 4B. The curve shapes and gains
(as high as ~7) are qualitatively consistent
with numerical circuit simulations (fig. S6).
As a third example, we built GaAs metal-
semiconductor-metal (MSM) infrared detectors
(26), integrated with St MOSFETs on flexible PI
substrates, to demonstrate a capability for fab-
ricating unit cells that could be used in active
infrared imagers. In this case, printed nano-
ribbons of GaAs (L =400 um, W= 100 um, and
thickness = 270 nm) transferred onto a substrate
with a printed array of Si nanoribbon MOSFETs
form the basis of the MSMs. Electrodes (Ti/Au)
deposited on the ends of these GaAs nanoribbons
form back-to-back Schottky diodes with sepa-
rations of 10 um. The resulting detector cells
exhibit current enhancement as the intensity of
infrared illumination increases (Fig. 4C), con-

sistent with circuit simulation (fig. S7). A re-
sponsivity of about 0.30 A/W at the 850-nm
wavelength is observed from 1 to 5 V. (This value
underestimates the true responsivity because it
ignores optical reflection). The bendability of this
system, which is comparable to that of the devices
in Fig. 3, could be useful for advanced systems
such as curved focal plane arrays for wide-angle
infrared night vision imagers.

Printed semiconductor nanomaterials provide
new approaches to 3D heterogeneously integrated
systems that could be important in various fields
of application, including not only those suggested
by the systems reported here but also others such
as microfluidic devices with integrated electron-
ics, chemical and biological sensor systems that
incorporate unusual materials with conventional
silicon-based electronics, and photonic and
optoelectronic systems that combine light emit-
ters and detectors of compound semiconductor
with silicon drive electronics or microelectro-
mechanical structures. Furthermore, the compat-
ibility of this approach with thin, lightweight
plastic substrates may create additional oppor-
tunities for devices that have unusual form
factors or mechanical flexibility as key features.
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Quantum Spin Hall Effect and
Topological Phase Transition in
HgTe Quantum Wells

B. Andrei Bernevig,"? Taylor L. Hughes,* Shou-Cheng Zhang™*

We show that the quantum spin Hall (QSH) effect, a state of matter with topological properties
distinct from those of conventional insulators, can be realized in mercury telluride—cadmium
telluride semiconductor quantum wells. When the thickness of the quantum well is varied, the
electronic state changes from a normal to an “inverted” type at a critical thickness d.. We show that
this transition is a topological quantum phase transition between a conventional insulating phase
and a phase exhibiting the QSH effect with a single pair of helical edge states. We also discuss
methods for experimental detection of the QSH effect.

tracted great attention in condensed mat-
ter physics, not only for its fundamental
scientific importance but also because of its
potential application in semiconductor spin-

The spin Hall effect (/-5) has recently at-

www.sciencemag.org SCIENCE VOL 314

tronics. In particular, the intrinsic spin Hall effect
promises the possibility of designing the intrinsic
electronic properties of materials so that the effect
can be maximized. On the basis of this line of
reasoning, it was shown (6) that the intrinsic spin

Hall effect can in principle exist in band in-
sulators, where the spin current can flow without
dissipation. Motivated by this suggestion, re-
searchers have proposed the quantum spin Hall
(QSH) effect for graphene (7) as well as for
semiconductors (8, 9), where the spin current is
carried entirely by the helical edge states in two-
dimensional samples.

Time-reversal symmetry plays an important
role in the dynamics of the helical edge states
(10—12). When there is an even number of pairs
of helical states at each edge, impurity scattering
or many-body interactions can open a gap at the
edge and render the system topologically trivial.
However, when there is an odd number of pairs
of helical states at each edge, these effects can-
not open a gap unless time-reversal symmetry is

Department of Physics, Stanford University, Stanford, CA
94305, USA. 2Kavli Institute for Theoretical Physics, University
of California, Santa Barbara, CA 93106, USA.

*To whom correspondence should be addressed. E-mail:
sczhang@stanford.edu

15 DECEMBER 2006

Downloaded from www.sciencemag.org on August 17, 2010

1757


http://www.sciencemag.org

REPORTS

spontaneously broken at the edge. The stability
of the helical edge states has been confirmed in
extensive numerical calculations (73, /4). The
time-reversal property leads to the Z, classifica-
tion (/0) of the QSH state.

States of matter can be classified according
to their topological properties. For example,
the integer quantum Hall effect is characterized
by a topological integer n (15), which deter-
mines the quantized value of the Hall con-
ductance and the number of chiral edge states.
It is invariant under smooth distortions of the
Hamiltonian, as long as the energy gap does
not collapse. Similarly, the number of helical
edge states, defined modulo 2, of the QSH state
is also invariant under topologically smooth
distortions of the Hamiltonian. Therefore, the
QSH state is a topologically distinct new state
of matter, in the same sense as the charge
quantum Hall effect.

Unfortunately, the initial proposal of the
QSH in graphene (7) was later shown to be
unrealistic (16, 17), as the gap opened by the
spin-orbit interaction turns out to be extremely
small, on the order of 10> meV. There are also
no immediate experimental systems available
for the proposals in (8, /8). Here, we present
theoretical investigations of the type III semi-
conductor quantum wells, and we show that the
QSH state should be realized in the “inverted”
regime where the well thickness d is greater
than a certain critical thickness d,. On the basis
of general symmetry considerations and the
standard band perturbation theory for semi-
conductors, also called & - p theory (19), we
show that the electronic states near the I" point
are described by the relativistic Dirac equation in
2 + 1 dimensions. At the quantum phase
transition at d = d,, the mass term in the Dirac
equation changes sign, leading to two distinct U
(1)-spin and Z, topological numbers on either
side of the transition. Generally, knowledge of
electronic states near one point of the Brillouin
zone is insufficient to determine the topology of
the entire system; however, it does allow robust
and reliable predictions on the change of
topological quantum numbers. The fortunate
presence of a gap-closing transition in the HgTe-
CdTe quantum wells therefore makes our theoret-
ical prediction of the QSH state conclusive.

The potential importance of inverted band-
gap semiconductors such as HgTe for the spin
Hall effect was pointed out in (6, 9). The central
feature of the type III quantum wells is band
inversion: The barrier material (e.g., CdTe) has a
normal band progression, with the s-type I's
band lying above the p-type I's band, and the
well material (HgTe) having an inverted band
progression whereby the I'q band lies below the
I'g band. In both of these materials, the gap is
smallest near the I" point in the Brillouin zone
(Fig. 1). In our discussion we neglect the bulk
split-off I'; band, as it has negligible effects on
the band structure (20, 21). Therefore, we re-
strict ourselves to a six-band model, and we start

with the following six basic atomic states per
unit cell combined into a six-component spinor:

¥ = (|Ts, o) |6, —'5), [Ts, 30
|F8a 1/2>9 |F8’ 71/2>3 |F8’ 7372>) (1)

In quantum wells grown in the [001] direc-
tion, the cubic or spherical symmetry is broken
down to the axial rotation symmetry in the plane.
These six bands combine to form the spin-up
and spin-down () states of three quantum well
subbands: E1, H1, and L1 (21). The L1 subband
is separated from the other two (2/), and we
neglect it, leaving an effective four-band model.
At the I" point with in-plane momentum k; =
0, my is still a good quantum number. At this
point the |E1, m;) quantum well subband state
is formed from the linear combination of the
ITs, my; = +'/,) and [T's, m; = +/,) states, while
the |H1, m;) quantum well subband state is
formed from the [I's, m; = +3/,) states. Away
from the I point, the £1 and H1 states can mix.
Because the |I'g, m; = :tl/ 2) state has even par-
ity, whereas the |['g, m, = £3/,) state has odd
parity under two-dimensional spatial reflection,
the coupling matrix element between these two
states must be an odd function of the in-plane
momentum k. From these symmetry consid-
erations, we deduce the general form of the ef-
fective Hamiltonian for the £1 and H1 states,
expressed in the basis of |E1, m; = /), |H1,
my= 3/2) and |El,mJ = *1/2>, \Hl,mJ = *3/2>I

Hegr (kx, ky) = (H(()k) H*?_k) )’

H(k) = e(k) +d;(k)o; ()

where o; are the Pauli matrices. The form of
H*(—k) in the lower block is determined from
time-reversal symmetry, and H*(—k) is uni-
tarily equivalent to H*(k) for this system (22).
If inversion symmetry and axial symmetry
around the growth axis are not broken, then
the interblock matrix elements vanish, as
presented.

We see that, to the lowest order in %, the
Hamiltonian matrix decomposes into 2 x 2
blocks. From the symmetry arguments given
above, we deduce that d5(k) is an even function
of k, whereas d;(k) and d,(k) are odd functions
of k. Therefore, we can generally expand them
in the following form:

d + idy = A(ky + iky) = Ak,

_ _ 2 2 _ _ 2 2
dy =M — B + k2), e(k) = C— D2 + K2)
(3)

where 4, B, C, and D are expansion parameters
that depend on the heterostructure. The
Hamiltonian in the 2 x 2 subspace therefore
takes the form of the (2 + 1)-dimensional Dirac
Hamiltonian, plus an €(k) term that drops out
in the quantum Hall response. The most im-
portant quantity is the mass or gap parameter
M, which is the energy difference between the
E1 and H1 levels at the " point. The overall
constant C sets the zero of energy to be the
top of the valence band of bulk HgTe. In a
quantum well geometry, the band inversion in
HgTe necessarily leads to a level crossing at
some critical thickness d. of the HgTe layer.
For thickness d < d. (i.e., for a thin HgTe

Fig. 1. (A) Bulk energy
bands of HgTe and CdTe
near the T point. (B)
The CdTe-HgTe-CdTe
quantum well in the
normal regime E1 > H1
with d < d. and in the
inverted regime H1 >
E1 with d > d_. In this
and other figures, T'g/H1
symmetry is indicated in
red and T'¢/E1 symmetry
is indicated in blue.

10 0 10 1.0 o
kinm) k{nmT)
B
HgTe e T HgTe [
LRy Eesd M
CdTe |- - - CdTe (.} CTH) | IENECITSPNEN CdTe
H1 E1
- * r& rﬂ —
d<d. d>d.
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layer), the quantum well is in the “normal”
regime, where the CdTe is predominant and
hence the band energies at the I' point satisfy
E(¢) > E('g). For d > d,, the HgTe layer is
thick and the well is in the inverted regime,
where HgTe dominates and E(I'g) < E(I'g). As
we vary the thickness of the well, the £1 and
H1 bands must therefore cross at some d,, and
M changes sign between the two sides of the
transition (Fig. 2, A and B). Detailed cal-
culations show that, close to transition point,
the £1 and H1 bands—both doubly degenerate

in their spin quantum number—are far away in
energy from any other bands (27), hence
making an effective Hamiltonian description
possible. Indeed, the form of the effective Dirac
Hamiltonian and the sign change of M at d = d,
for the HgTe-CdTe quantum wells deduced
above from general arguments is already
completely sufficient to conclude the existence
of the QSH state in this system. For the sake of
completeness, we also provide the microscopic
derivation directly from the Kane model using
realistic material parameters (22).

(s) g

&ny = 2%

Fig. 2. (A) Energy of £1 (blue) and H1 (red) bands at k; = 0 versus quantum well thickness d. (B)
Energy dispersion relations E(k,,k,) of the £1 and H1 subbands at d = 40, 63.5, and 70 A (from left
to right). Colored shading indicates the symmetry type of the band at that k point. Places where the
cones are more red indicate that the dominant state is H1 at that point; places where they are more
blue indicate that the dominant state is £1. Purple shading is a region where the states are more
evenly mixed. At 40 A, the lower band is dominantly H1 and the upper band is dominantly E1. At
63.5 A, the bands are evenly mixed near the band crossing and retain their d < d. behavior moving
farther out in k-space. At 70 A, the regions near k; = 0 have flipped their character but eventually
revert back to the d < d_ farther out in k-space. Only this dispersion shows the meron structure (red
and blue in the same band). (C) Schematic meron configurations representing the d;(k) vector near
the T" point. The shading of the merons has the same meaning as the dispersion relations above.
The change in meron number across the transition is exactly equal to 1, leading to a quantum jump
of the spin Hall conductance o) = 2¢?/h. We measure all Hall conductances in electrical units. All
of these plots are for Hgg 3,Cdg ¢gTe-HgTe quantum wells.
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Figure 2A shows the energies of both the £1
and H1 bands at & = 0 as a function of quantum
well thickness d obtained from our analytical
solutions. At d = d, ~ 64 A, these bands cross.
Our analytic results are in excellent qualitative
and quantitative agreement with previous nu-
merical calculations for the band structure of
Hg;_,Cd,Te-HgTe-Hg;_,Cd, Te quantum wells
(20, 21). We also observe that for quantum
wells of thickness 40 A < d < 70 A, close to
d., the E1+ and H1+ bands are separated from
all other bands by more than 30 meV (21).

Let us now define an ordered set of four
six-component basis vectors y;, 4 = (|E1, 1),
|H1, +), |E1, =), |H1, —)) and obtain the
Hamiltonian at nonzero in-plane momentum
in perturbation theory. We can write the
effective 4 x 4 Hamiltonian for the Fl1+, H1+
bands as

sz(\yj\H(kx, ky, —10:)|w;)

—

H (ks ky) =

(4)

where H(k,, k,, —i0.) is the six-band Kane model
(19). The form of the effective Hamiltonian is
severely constrained by symmetry with respect
to z. Each band has a definite z symmetry or
antisymmetry, and vanishing matrix elements
between them can be easily identified. For
example,

%Ph j AT, +'(2)|Ts, ~a(2))

eff
H23 -
—00

(5)

where P is the Kane matrix element (79),
vanishes because |['s, +'/2)(z) is even in z, where-
as |[s, —'/2)(z) is odd. The procedure yields
exactly the form of the effective Hamiltonian
(Eq. 2), as we anticipated from the general
symmetry arguments, with the coupling func-
tions taking exactly the form of Eq. 3. The dis-
persion relations (22) have been checked to be in
agreement with prior numerical results (20, 21).
We note that for k € [0, 0.01 A™'] the dispersion
relation is dominated by the Dirac linear terms.
The numerical values for the coefficients depend
on the thickness, and values at ¢ =58 A and d =
70 A are given in (22).

Having presented the realistic & - p calcula-
tion starting from the microscopic six-band
Kane model, we now introduce a simplified
tight-binding model for the £1 and H1 states
based on their symmetry properties. We con-
sider a square lattice with four states per unit
cell. The E1 states are described by the s-orbital
states 1 3 = [s,0 = £!/2), and the H1 states are
described by the spin-orbit coupled p-orbital
states 4 = £(1V/2)|p, £ ip,, & = +!/5), where
o denotes the electron spin. Nearest-neighbor
coupling between these states gives the tight-
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binding Hamiltonian of the form of Eq. 2, with
the matrix elements given by

dy +id, = A[sin(kx) +i sin(ky)]
dy =—2B[2 — (M /2B) — cos(ky) — cos(ky)]
g(k) = C —2D[2 — cos(ky) — cos(k,)] (6)

The tight-binding lattice model simply reduces
to the continuum model Eq. 2 when expanded
around the I' point. The tight-binding calcula-
tion serves dual purposes. For readers un-
initiated in the Kane model and & - p theory,
this gives a simple and intuitive derivation of
our effective Hamiltonian that captures all the
essential symmetries and topology. On the other
hand, it also introduces a short-distance cutoff
so that the topological quantities can be well
defined.

Within each 2 x 2 subblock, the Hamiltonian
is of the general form studied in (9), in the
context of the quantum anomalous Hall effect,
where the Hall conductance is given by

Oy = —55

= H dk.dk,d - Oxd x 0yd (7)

in units of ¢*/A (the square of the charge on the
electron divided by the Planck constant), where
d denotes the unit d{k) vector introduced in the
Hamiltonian Eq. 2. When integrated over the
full Brillouin zone, o,, is quantized to take
integer values that measure the skyrmion num-
ber, or the number of times the unit d winds
around the unit sphere over the Brillouin zone
torus. The topological structure can be best
visualized by plotting d as a function of k. In a
skyrmion with a unit of topological charge, the
d vector points to the north (or the south) pole
at the origin, points to the south (or the north)
pole at the zone boundary, and winds around the
equatorial plane in the middle region.
Substituting the continuum expression for
the d(k) vector as given in Eq. 3, and cutting off
the integral at some finite point in momentum
space, one obtains ,, = !/, sign (M), which is a
well-known result in field theory (23). In the
continuum model, the d vector takes the con-
figuration of a meron, or half of a skyrmion,
where it points to the north (or the south) pole at
the origin and winds around the equator at the
boundary. As the meron is half of a skyrmion,
the integral Eq. 7 gives +!5. The meron
configuration of dy(k) is depicted in Fig. 2, B
and C. In a noninteracting system, half-integral
Hall conductance is not possible, which means
that other points from the Brillouin zone must
either cancel or add to this contribution so that
the total Hall conductance becomes an integer.
The fermion-doubled partner (24) of our low-
energy fermion near the I' point lies in the
higher-energy spectrum of the lattice and
contributes to the total o,,. Therefore, our
effective Hamiltonian near the I" point cannot

yield a precise determination of the Hall
conductance for the whole system. However, as
one changes the quantum well thickness d across
d., M changes sign and the gap closes at the I"
point, leading to a vanishing d;(k = 0) vector at
the transition point d = d.. The sign change of M
leads to a well-defined change of the Hall
conductance Ac,, = 1 across the transition. As
the d(k) vector is regular at the other parts of the
Brillouin zone, these parts cannot lead to any
discontinuous changes across the transition point
atd=d..

So far, we have only discussed one 2 x 2
block of the effective Hamiltonian H. General
time-reversal symmetry dictates that o,,(/7) =
—0,,(H1*); therefore, the total charge Hall
conductance vanishes, and the spin Hall con-
ductance (given by the difference between the
two blocks) is finite and given by Aq(x;) =2in
units of e%/h. From the general relationship
between the quantized Hall conductance and the
number of edge states (25), we conclude that the
two sides of the phase transition at d = d, must
differ in the number of pairs of helical edge
states by 1, thus concluding our proof that one
side of the transition must be Z, odd and
topologically distinct from a fully gapped
conventional insulator.

It is desirable to establish which side of the
transition is topologically nontrivial. For this
purpose, we return to the tight-binding model
Eq. 6. The Hall conductance of this model has
been calculated (25) in the context of the
quantum anomalous Hall effect, and previously
in the context of lattice fermion simulation (26).
Besides the I' point, which becomes gapless at
MJ2B = 0, there are three other high-symmetry
points in the Brillouin zone. The (0,r) and (,0)
points become gapless at M/2B = 2, whereas the
(n,m) point becomes gapless at M/2B = 4.
Therefore, at M/2B = 0, there is only one

gapless Dirac point per 2 x 2 block. This
behavior is qualitatively different from the
Haldane model of graphene (27), which has
two gapless Dirac points in the Brillouin zone.
For MI2B <0, 6,,= 0; for 0 <M/2B<2,06,,= 1.
Because this condition is satisfied in the in-
verted gap regime where M/2B = 2.02 x10* at
70 A (22) and not in the normal regime where
M/2B < 0, we believe that the inverted case is
the topologically nontrivial regime supporting a
QSH state.

We now discuss the experimental detection of
the QSH state. A series of purely electrical
measurements can be used to detect the basic
signature of the QSH state. By sweeping the gate
voltage, one can measure the two-terminal
conductance Gr g from the p-doped to bulk-
insulating to n-doped regime (Fig. 3). In the bulk
insulating regime, Grr should vanish at low
temperatures for a normal insulator at d < d.,
whereas Gpr should approach a value close to
2¢%/h for d > d,. Strikingly, in a six-terminal
measurement, the QSH state would exhibit van-
ishing electric voltage drop between the termi-
nals p; and p, and between 3 and g, in the zero
temperature limit and in the presence of a finite
electric current between the L and R terminals. In
other words, longitudinal resistance should vanish
in the zero temperature limit, with a power-law
dependence, over distances larger than the mean
free path. Because of the absence of back-
scattering, and before spontaneous breaking of
time reversal sets in, the helical edge currents flow
without dissipation, and the voltage drop occurs
only at the drain side of the contact (/7). The
vanishing of the longitudinal resistance is one of
the most remarkable manifestations of the QSH
state. Finally, a spin-filtered measurement can be
used to determine the spin Hall conductance cg,).
Numerical calculations (/3) show that it should
take a value close to cj(g,) =2¢%/h.

Fig. 3. (A) Experimental A W Lo

setup on a six-terminal

Hall bar showing pairs of —

edge states, with spin-up & e
- Y

states in green and spin-
down states in purple. (B)
A two-terminal measure-

ment on a Hall bar would

give Gig close to 2e%h
contact conductance on
the QSH side of the
transition and zero on
the insulating side. In a
six-terminal measure-
ment, the longitudinal
voltage drops p, -
u1 and pg — w3 vanish
on the QSH side with a
power law as the zero

temperature limit is O
approached. The spin

Hall conductance c%) d<d,
has a plateau with the

value close to 2e?/h.

“'Fer;i
normal regime

>
Mrermi

d>d, inverted regime
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Constant experimental progress on HgTe
over the past two decades makes the experimen-
tal realization of our proposal possible. The
mobility of the HgTe-CdTe quantum wells has
reached u ~ 6 x 10° cm® V7' 57! (28). Experi-
ments have already confirmed the different char-
acters of the upper band below (E£1) and above
(H1) the critical thickness d,. (20, 29). The ex-
perimental results are in excellent agreement with
band-structure calculations based on % - p theory.
Our proposed two-terminal and six-terminal elec-
trical measurements can be carried out on existing
samples without radical modification, with sam-
ples of d < d.~ 64 A and d > d, = 64 A yielding
contrasting results. As a consequence, we believe
that the experimental detection of the QSH state in
HgTe-CdTe quantum wells is possible.
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Photoconductive Coaxial Nanotubes
of Molecularly Connected Electron
Donor and Acceptor Layers

Yohei Yamamoto,® Takanori Fukushima,’?* Yuki Suna,* Noriyuki Ishii,> Akinori Saeki,*
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Controlled self-assembly of a trinitrofluorenone-appended gemini-shaped amphiphilic
hexabenzocoronene selectively formed nanotubes or microfibers with different photochemical
properties. In these nanotubes, which are 16 nanometers in diameter and several micrometers
long, a molecular layer of electron-accepting trinitrofluorenone laminates an electron-donating
graphitic layer of m-stacked hexabenzocoronene. The coaxial nanotubular structure allows
photochemical generation of spatially separated charge carriers and a quick photoconductive
response with a large on/off ratio greater than 10 In sharp contrast, the microfibers consist of a
charge-transfer complex between the hexabenzocoronene and trinitrofluorenone parts and exhibit

almost no photocurrent generation.

s exemplified by organic photovoltaic
Adevices (1-3), heterojunction of electron

donor and acceptor layers at a macro-
scopic level allows for the conversion of light
energy into electrical energy (4, 5). If one can
elaborate a nano-object composed of molecularly
conjugated domains of such a redox couple, the
resultant material is expected to serve as a
nanoscopic energy converter. However, donor
and acceptor molecules tend to stack on one
another, rather than segregate (6—8), giving rise to
charge-transfer (CT) assemblies (9—/7), in which
photochemically generated charge carriers are
trapped and readily annihilated through a rapid
recombination. Here we report a coaxial nano-
tubular object formed by controlled self-assembly
of trinitrofluorenone (TNF)-appended hexaben-
zocoronene (HBC) amphiphile 1 (Fig. 1A), in
which a molecular layer of electron-accepting

www.sciencemag.org SCIENCE VOL 314

TNF laminates an electron-donating graphitic
layer of m-stacked HBC (Fig. 2) (/2). This
structure creates an extremely wide interface for
the spatially segregated redox couple so that,
upon photoirradiation, the electrical conduction
has a large on/off ratio (>10) that is difficult to
attain with other carbon-based materials (/3—15).
Such molecularly engineered photoconductive
materials with a tubular morphology are unusual
and join the few examples of photoconductive
nanostructured assemblies that have been
reported (7, 16).

HBC derivatives with symmetrically substi-
tuted paraffinic side chains form discotic liquid-
crystalline materials that exhibit a hole-transport
capability through their one-dimensional columnar
HBC stacks (5, /7-21). Recently, we have
discovered that gemini-shaped amphiphilic HBCs
(structure 3, Fig. 1A) can self-assemble to form

well-defined nanotubular objects, whose walls
consist of a graphitic layer of n-stacked HBC
and whose inner and outer surfaces are covered
by hydrophilic triethylene glycol (TEG) chains
(22, 23). Upon doping with oxidants, the HBC
graphitic nanotubes become electrically conduc-
tive (22, 24). In the present work, we prepared
HBC-TNF 1 and 2, which bear an electron-
accepting 4,5,7-trinitro-9-fluorenone functionali-
ty (25) at each terminus of either (1) and both (2)
of the TEG chains (Fig. 1A). The energy levels of
the highest occupied molecular orbital (HOMO)
and the lowest unoccupied molecular orbital
(LUMO) of HBC 3 (22) and TNF 4 (26) (Fig.
1B) were determined by means of square-wave
voltammetry and electronic absorption spectros-
copy (fig. S1) (27). Apparently, photoinduced
electron transfer is energetically possible between
the HBC and TNF functionalities of 1 and 2.
Compounds 1 and 2 were synthesized by
oxidative cyclization of the corresponding hexa-
phenylbenzene precursors with FeCly in CH,Cl/
MeNO, (27). Both compounds in tetrahydrofuran
(THF) were colored brown, indicating a CT
interaction between the HBC and TNF parts in
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