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response. Parameters are estimated by matching the

performed to illustrate both methods.

INTRODUCTION

Dynamic tracer response methods are often used by
chemical engineers for quantitative evaluation of
transport and kinetic parameters in chemical and
catalytic reactors as well as in other types of flow
vessels. Some examples of -the diverse reactor types
where tracers have been used for such purposes
include gas-solid fixed-beds (Schneider and- Smith,
1968a, b: Suzuki and Smith, 1971), liquid-solid slurry
reactors (Furusawa and Smith;, 1973a; b, 1974;
Furusawa and Suzuki, 1975), gas-liquid—solid slurry
reactors (Niyama and Smith, 1976; Ramachandran
and Smith, 1977, '1978a, b), trickle-bed reactors
(Colombo er al., 1976; Eroglu and Dogu, 1983; Kan
and Greenfield, 1983; Mills et al., 1979; Mills and
Dudukovi¢, 1981; Ramachandran and Smith, 1979;
Schwartz et al., 1976; Sicardi et al., 1980; Van Swaaij
et al., 1969), gas-solid single-pellet devices (Dogu and
Smith, 1975; Dogu et al., 1986; Waldram et al., 1988)
and gas-solid fluidized-beds (Pamuk and. Dogu,
1978). Numerous other examples of tracer applica-
tions in the various engineering disciplines, catalysis’
and medical applications, to name a few, have-been
summarized in assorted reviews and monographs on
- the subject (Dudukovi¢, 1986; Fahim and Wakao,
.. 1982; Kobayashi and Kobayashi, 1974; Furusawa er
al, 1976; Nauman and Buffham, 1983; Pehtd and
Noble, 1982; Ramachandran and Smith, 1978b)
Ramachandran and Chaudhari, 1983; Wen and Fan,
1975). Thus, tracer testing and the information

TAuthor to whom all correspondence should be addressed.
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Abstract—Two methods are presented for evaluation of model parameters from nonideal tracer responses
that represent convolution of the unit impulse response of the system under investigation and the response
of other components. Both methods rely on time domain matching of experimental and model predicted
curves. The first one relies on obtaining the unit impulse response of the system by deconvolution from
the overall response. This method does not require an a priori model for the system, but its numerical
implementation is possible only when an appropriate filter is used to reduce random noise which is present
in the data to acceptable levels. Parameters are estimated by matching the deconvoluted unit impulse

the fast Fourier transform and proper selection of

regularization parameters in the implementation of this method are also described. The second method
convolutes the model unit response with the response of other components to obtain the overall system

overall system response to the experimental one.

Interpretation of nonideal pulse tracer- response data from a laboratory trickle-bed reactor is also

derived from it has been considered quite useful in a
number of applied science areas.

An integral part of successful tracer testing in-
volves interpretation of the tracer response data.

‘Some limited information, such as fluid holdups and

partition coefficients, can be obtained from tracer
data. without the use of a flow model by application
of the central volume principle (Dudukovi¢, 1986;
Nauman and Buffham, 1983). However, the real

utility of tracer testing occurs when a flow model is

developed to describe the physicochemical processes,
and ‘the model parameters are determined from the
experimental tracer data using parameter estimation
techniques (Seinfeld and Lapidus, 1974). The pre-
ferred model is one that matches the data with the
smallest.‘error, yet described the physics with the
smallest number of realistic parameters.' Various fac-
tors associated with- model building have been sum-
marized elsewhere (Nauman and Buffham, 1983;
Seinfeld and Lapidus, 1974; Shinnar, 1978; Wen and
Fan, 1975).

Techniques for determination of model parameters
in tracer flow models .using experimental tracer re-
sponse data include the method of moments (Aris,
1959; Bischoff, 1960; Colombo et al., 1976; Dogu and
Smith, 1975; Dogu et al., 1986; Eroglu and Dogu,
1983; Furusawa and Smith; 1973a, b, 1974; Furusawa
and Suzuki, 1975; Mills et al., 1979; Mills and
Dudukovi¢, 1981; Niyama and Smith, 1976; Pamuk
and Dogu, 1978; Schneider and Smith, 1968a, b;
Schwartz et al., 1976; Suzuki and Smith, 1971; Van
Swaaij et al., 1969; Wakao and Tanaka, 1973), the
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method of weighted moments (Anderssen and White,
1977; Michelsen and Ostergaard, 1970; Mixon et.al.,
1967; Ostergaard and Michelsen, 1969; Wolff et al.,
1979; 1980), Laplace and Fourier transform domain
analysis (Anderssen and White, 1970; Chou and
Hegedus, 1977; Clements, 1969; Felder er al., 1974;
Gangwal et al., 1971; Gosset, 1974; Harrison et al.,
1974; Haynes, 1978; Hays et al., 1967, Michelsen and
Ostergaard, 1970; Ostergaard and Michelsen, 1969;
Rajakumar and Krishnaswamy, 1975; Ramachan-
dran et al., 1986) and time-domain parameter estima-
tion (Boersma-Klein and Moulijn, 1979; Fu, 1970;
Lee er al., 1981; Michelsen, 1972; Sicardi et al., 1980;
Wakao and Tanaka, 1973; Wakao et al., 1978, 1980).
The governing relationships for each of these meth-
ods are given in the various réferences cited above, in
assorted monographs (Nauman and Buffham, 1983;
Pehtd and Noble, 1982; Ramachandran and Chaud-
hari, 1983; Seinfeld and Lapidus, 1974; Wen and Fan,
1975) and review papers (Dudukovi¢, 1986; Fahim
and Wakao, 1982; Ramachandran and Smith,
1978a, b; Weinstein and Dudukovi¢, 1975) so that
these will not be described here. A key conclusion
obtained from these independent sources is that
time-domain analysis of tracer response data is the
preferred technique for discrimination between vari-
ous flow models and for flow model parameter
estimation. However, time-domain analysis is more
difficult to implement which explains why the method
of moments, despite its notable drawbacks (Radeke,
1981), continues to be used (cf. Dogu, 1986; Van Zee
et al., 1987). A general approach for performing
time-domain analysis of tracer response data for
linear systems which can be implemented on available
computers using modern and efficient mathematical
methods would appear to fill an existing gap in this
area. .
The primary objective of this work is to present
two independent computer-based methods for time-
domain analysis of nonideal pulse tracer response
data that are based upon the concepts of convolution

and deconvolution (Baker, 1977; Blass and Halsey, '

1981; de Hoog, 1980; Jakeman and Young, 1980;
Jansson, 1984; Ziolkowski, 1984). The latter one is
not widely employed in chemical engineering applica-
tions, although it is mentioned in one of the standard
textbooks in chemical reaction engineering (Leven-
spiel, 1972) and has been recognized as a formidable
problem in a few recent publications (Dudukovic,
1986; Van Zee et al., 1987) on tracer applications.
Another objective is to present computer algorithms
that implement the convolution and deconvolution
methods, and to illustrate their usage by application
to tracer response data obtained from a laboratory-
scale trickle-bed reactor. A final objective is to com-
pare the results obtained by each method and to point
out their limitations where applicable.

The convolution and deconvolution techniques
presented here provide two independent means of
flow model discrimination and parameter estimation.

P. L. MiLLs and M. P. DubukoviC

In both cases, it is assumed that the experimenty
tracer response data have been cast into normalizeg
form to yield the input forcing function x(z) gpq
system output response y(#). The function x(¢) repy, -
sents the tracer response of the nonideal tracer inje,,
tion and sampling system which, in an ideal systep,
is described by the Dirac delta function x(7) = 8(1)
In the case of deconvolution, the impulse response of
the reactor or test section E(¢) is first determined by
inversion of the convolution integral operator Using
x(1) and y(t). The vector of model parameters P thy(
appear on the impulse response of an assumed floy
model E(z, P) are then obtained by minimization of
a suitable least squares objective function. In the cag
of convolution, the impulse response of an assumeq
flow model is convoluted with the forcing functioy
x(r) to obtain a model predicted outpul response
y,{t, P). The model parameters are determined using
the same approach described above for deconvolu.
tion, except the objective function is based upon an
error criterion that uses the model-predicted output k
response y,(t, P) and experimental output response
y(@). )

This paper presents the methodology for system
atic application of the above two procedures while .
reducing the inherent errors and addresses the ques-
tion as to which method should be preferred.

3

EXPERIMENTAL PRELIMINARIES

: : Fig.
Before presenting the details of the convolution :
and deconvolution methods, it is instructive to de- |
scribe typical tracer experiments for which the pro- ,
posed methods can be utilized. A specific example will ' components
be given in a later section. The setting is assumed to spond  to
be one where one or more phases, such as gas and x{(1)=6( -
liquid, are metered at known flowrates to a chemical. sponse x(1)
reactor or other test section. Upstream of the reactor, simple delte
an appropriate valving arrangement is used to intro- response. ©
duce -a quantity of tracer at some prescribed time : & type so tha'
{=0 into one of the flowing phases where it is output resj
introduced to the reactor. Downstream of the rea¢ nature of t
tor, the tracer concentration, or some quantity thatis The exp
linearly related to the tracer concentration (s one examp
voltage), is measured with an appropriate sensor of . " be applied
detector to give a discrete data record for the systems, 1
impulse response of the system Y(jAr) where " response O
j=0,1,...,N =1 is the sample number and A1 “to physice
the sampling interval. The test section is then r¢ “whose par
moved, the inlet and exit lines used for transport of ples or ex
the flowing phase are connected without addition of provide aj

any significant external system volume, and the ex
periment is repeated at the same conditions (flowrate,
tracer concentration, etc.). The resulting data record.
corresponds to the impulse response of the combine
injection-sampling system and detector Xy
Figure 1 compares hypothetical tracer responses thal
would be obtained from such an experiment for both
an ideal (Fig. 1a) and a nonideal (Fig. 1b) test syste™
For the ideal system, the response of all system

i
i
|
i
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M, of tracer
is introduced
att = 0
I INJECTION-
SAMPLING | »| REACTOR
Q SYSTEM a
c(t) ‘ x(t) A y{t)
’ il
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i j\
) .0 0 ty
t— t ——— { —
(@)
M; of tracer
is introduced
att = 0
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a SAMPLING »{ REACTOR (et
SYSTEM Qs
oft) ) vt |
0
t— t — t —
(b)

Fig. 1. Comparison‘of tracer impulse responses for sys

tems having an ideal injection-sampling system (a)

and a nonideal injection-sampling system (b).

components that are external to the reactor corre-
spond to plug-flow with a time delay, i.e.
x(t) = 6(t — ;). The nonideal system exhibits a re-
sponse x () which deviates from plug flow so that-a
simple delta function does not accurately-describe the
response. Most practical tracer tests are of the latter
type so that proper time-domain interpretation of the
output response y(¢) must account for the nonideal
nature of the input x().

The experiment described above represents only
one example where the methods presented below can
be applied. In many cases, such as in commercial
systems, it is often not feasible to measure the
response of the injection-sampling system X(jAt)due
to physical restrictions. A reasonable flow model
whose parameters can be calculated from first princi-
ples or existing correlations should then be used to
provide approximate values for the normalized input
response x;. This can then be used in conjuction with
experimental values for the overall system output
response Y (jAt) for subsequent data reduction and
interpretation.

Another situation of interest is the case where a
tracer input is introduced into a system and the
response is simultancously measured downstream of
the injection point at two different locations using
probes or other sensors. A typical example is given in

Levenspiel (1972) and more recently by Van Zeeetal
(1987). The responses at the upstream and down-
stream locations would then correspond to X(jAD
and Y(jAt), respectively. Interpretation of the flow
processes between these two points using these re-
sponses would be one of the objectives.

Additional details on correct experimental proce-
dures for conducting tracer tests, reduction of the raw
experimental  data- and evaluation of the various
tracer probability density functions are given else-
where (Dudukovi¢, 1986; Nauman and Buffham,
1983). Use of the time-domain data interpretation
methods outlined below will be worth doing only if
these preliminary steps have been properly followed
so that the data can be considered reliable.

DECONVOLUTION METHOD

Deconvolution of nonideal input—output tracer
response data, such as that shown earlier in Fig. 1b,
to obtain the normalized impulse response of the test
section (chemical reactor, etc.) is described below.
The numerical difficulties associated with using con-
ventional approaches are outlined first. ‘This is then
followed by the recommended method based upon
discrete Fourier transforms with signal filtering.
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Matrix solution

If the normalized input—output tracer responses
(Dudukovi¢, 1986) are denoted by x; and y; and the
system is linear, i.e. the principle of superposition can
be experimentally verified, then the impulse response
of the test section ¢, is related to x; and y; by the
discrete periodic convolution:

. N1 :
w=zte= Y x_jg k=0,1,...,N—1
i=0
M

In equation (1), the normalized responses x; and y;
have been periodically extended with the period N,
i.e. their indices are calculated as modulo N so that
X; 1y =%; for any integer m, and similarly for e; and
¥:. Measurement errors and random noise that are
present in the data, which can be associated with the
given tracer detection equipment, or which occur as
a result of minor fluctuations in experimental vari-
ables, are denoted by ¢,. Although it might be
possible to define limits on the magnitude of the
errors €, a priori assignment of these at each sampled
point k is generally impossible. If these were known,
the exact values for the sytem response would be
given by z, = y, — ¢,. Expansion of equation (1) gives:
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sampled complex function g, for j=0,1,... N -1

- ¢, respectively. While the ratio of Fourier transforms

call that the discrete Fourier transform (DFT) of X for the DFT wi

al data: This seems
another  indeper
;immelblau, 1986)
cquation (6) leads to

those
is (Brigham, 1974):

1N —2mijn
An)=— % Ta,exp[ / —‘;
NS0 L |
L....N—1,

N
n=0,

©)
where i =./—1 and T is the sampling period. Equy.
tion (5) is the approximation obtained when (h,
continuous function a(f) is defined as a periodi
function a, (¢) over (0, T) and trapezoidal quadratur,
with a spacing At = T/N is applied, neglecting eng
corrections. Applying the DFT convolution theoren
(Brigham, 1974) to equation (1) and solving for the
DFT of the impulse response e; gives:

Z(n)  B(n) Y@y
X(n) X@n) X@)

where X(n), Z(n) and B(n) are the DFTs of x;, z;and

Fourier transform so

The problems ass«
merically unstable sy
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gons in applied ma
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En)= (6)

of the output-input Z{(n)/X(n) in equation (6) i
well-behaved and stable for the class of linear systems
encountered in normal pulse testing (Seinfeld and
Lapidus, 1974; Wen and Fan, 1975), the correspond-

Yo Xo Xy
N X Xo

Yn-2 An-2 Xn—3
Yn-1i Xn—1 Xy-2

The above system of linear equations, whose un-
knowns are the sampled values of the impulse re-
sponse ¢;, can be written in matrix form as

J =xe. -3
Solving for the impulse response of the test from
equation (3) gives: ~

7. @

Despite the apparent simplicity of equation (4) for
deconvolution, it cannot be used in practical applica-
tions for several reasons. First, the sampling rates
necessary to accurately define the tracer response
curve may consist of hundreds, or even thousands of
points. This makes the inversion of the dense matrix
x impractical, or even impossible, even on the largest
computers. Second, the matrix x is ill-conditioned
(Baker, 1977; de Hoog, 1980; Jakeman and Young,
1980) so that small errors in the x; can result in large
perturbations when the matrix inverse x~' is evalu-
ated.

€ =x

Unfiltered Fourier transform solution

The problems associated with the solution of equa-
tion (2) for the impulse response sequence e; can be
better appreciated by using Fourier transforms. Re-

regulari:
X x ) (e ) method of eg

imate solution to
B & sponse, say €,, is
F=xé — Jj is minir
@ j h trai
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ing ratio of DFTs for the error and input denoted by
B(n)/X(n) will be the dominarit term. The end result
is that the DFT of the impulse response E(n) and the
inverse ¢; cannot be obtained using this simplistic
approach since it is often obliterated by low to high -
frequency noise generated by the B(n)/X (n) term. An-
example of the application of equation (6) to actua
tracer response data will be given in a later sectio
which illustrates this point. -

Rather than using -the DFT, which can b
efficiently implemented by the fast Fourier transform
(FFT) algorithm using various commercially-avail
able software packages, some previous results give
in chemical engineering literature (Boersma-Klei
and Moulijn, 1979; Clements, 1969; Felder et al.
1974; Gangwal er al., 1971; Harrison et al., 1974
Haynes, 1978; Hays et al., 1967) have employed othe
quadrature rules and related approximations to eval
uate the numerical Fourier transform. It has be¢
suggested (Haynes, 1986) that the poor results ob
tained through application of equation (6) are due?
the use of both the DFT and the FFT. Our experient
in using these alternate methods have shown that th
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Himmelblau, 1986) where the operation defined by
cquation (6) leads to apparently unacceptable results.

Fourier transform solution with filtering

The problems associated with solution of the ju-
merically unstable system of linear equations defined
by equation (1) has resulted in numerous investiga-
tions in applied mathematics literature on develop-

ment of stable deconvolution methods. Many of these -

have been classified according to a particular method-
ology and summarized in several monographs on
integral equations and deconvolution methods
(Baker, 1977; Blass and Halsey, 1981; Jakeman and
Young, 1980; Jansson, 1984, Ziolkowski, 1984). A
review of these suggests that those which involve the

~ use of biased estimators-or digital filters are preferred

for analysis of tracer data since they can be efficiently
implemented using the fast Fourier transform which
avoids the difficulties associated with inversion of
large, ill-conditioned matrices. A particularly useful
method was first proposed by Phillips (1962) and later
extended by Twomey (1965) and is based upon the
method of regularization. In this method, an approx-
imate solution to equation (3) for the impulse re-
sponse, say &,, is sought such that the residual
7 = xé — y is minimized in a least-squares sense sub-
ject to the constraint that the solution &, satisfies an
nth order smoothness formula. Formally, this results
in the following objective function when the Lagran-
gian multiplier method is used (Hunt, 1970, 1971) for
incorporation of the constraint:

¢ (éa) = (Xe—a - ﬁ)r(xe_a - }-)) + Y(Ce_a)r(ce_a )’ (7)

where T denotes the matrix transpose. The matrix C
in equation (7) is formed, if second-order smoothness
is desired, by convolution with the sequence
(-1, 2, 1) and its associated convolution matrix. The
reciprocal of 7, i.e. y~', represents the Lagrangian
multiplier. Minimization of equation (7) with respect
to ¢, leads to the following expression (Hunt, 1971)
for the impulse response from experimental input-
output tracer response data:

&, = (x"x +yCCT)"'xj. ®)

By considering the properties of the various ma-
trices and making appropriate assumptions regarding
the matrix C in equation (8), Hunt (1970) showed
that equation (8) can be cast into an equivalent form
in terms of discrete Fourier transforms. The details of
this derivation are lengthy and are omitted here for
brevity. The final working relationship for the DFT

~of the impulse response is:

Y ()X ()
Cm)C*(n)
MY Y a)

E,(n)= ©
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where X(n), Y(n) and C(n) are the DFT$ of the
normalized experimental input response x;, output
response y;, and smoothing formula coefficients ¢;,
respectively, which are obtained using equation (5).
The quantities marked with an asterisk denote the
complex conjugate.

Inspection of equation (9) shows that the term
yC(n)C*(n)/ X (n)X *(n) is present which has the form
of a digital filter. This removes measurement errors
and noise from the data in an amount that depends
primarily upon the assumed magnitude of the
filtering parameter y. If this parameter can be
properly selected, then an approximation to the
time-domain impulse response can be obtained from
equation (9) using the inverse discrete Fourier trans-
form (IDFT):

1 Z 2mijn
ea,j=7-. Z Ea(n) CXP[ Ai jl,

n=0

j=0,1,2,...,N=1. (10)

Selection of the filtering parameier y

Inspection of equation (9) shows that the DFT of
the impulse response E,(n) has an infinite number of
solutions since the filtering parameter y is unbounded
in (0, o0). In the limit as y —0, it reduces to equation
(6), i.e.’ E,(n) = Y(n)/X(n), which is the DFT of the
impulse response without filtering of the measure-
ment errors and noise. In the limit as y —o0, then
E,(n) = 0 which is an unacceptable solution based on
physical grounds. These two limits suggest that a

proper choice of the filtering parameter y will remove

the frequency components of the errors so that E,(n)
is well-behaved while preventing oversmoothing so
that the essential frequency components of the solu-

_ tion are not deleted. As pointed out in applied

mathematics literature (Baker, 1977; de Hoog, 1980;
Jakeman and Young, 1980), regularization methods
have the drawback of requiring the user to specify
some technique for determining 7.

" The technique used here to identify the filtering
parameter y employs the additivity property for the
moments of the normalized tracer impulse responses
(Levenspiel, 1972). From the normalized tracer data
for the input-output responses x, and y;, respectively,
one must first evaluate the nth absolute moments for
the normalized impulse response of the test section
denoted here by p,, according to:

Hpr = #n,y = Huxo ) (1 1)

where the nth absolute moment of the injection-sam-
pling system response is:

= J (1) dr. (12)
0 .

The nth absolute moment of the system output

response 4, is defined by replacing x(r) with y(z) in

equation (12). Numerical evaluation of these moment

relations is performed by Simpson’s one-third rule or
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a similar quadrature rule for 0 <7 <¢*, while the
contribution for t* <t < oo is obtamed by fitting the
tail to a single exponential decay with closed-form
evaluation of the resulting integral. Additional details
on this aspect are given by Dudukovi¢ (1986).

As described in the previous section, deconvolution
of the input—output tracer response data for an
assumed value of y yields an approximation to the
impulse response of the test section according to
equation (10), ie. ¢;=e,;. Numerical evaluation of
_ equation (12) with x(r) replaced by e, ; yields indepen-
dent values for the nth absolute moments of the test
section, say i, . The appropriate value of the filtering
parameter 7 has been chosen when these moments
differ by those obtained from equation (11) within a
certain prescribed error. The problem then becomes
one of determining the value of y such that:

nmax

Z ll - /‘tr/l,r/.un.r|2 <€, (13)

n=0
where ¢ is a prescribed error criterion and nmax is the
maximum order of the absolute moment, e.g.
nmax = 2. For a given value of ¢, y can be determined
by any suitable root-finding technique, such as Weg-
stein’s method.

A few comments are in order regarding the method
outlined above for identifying the filtering parameter
v. Since a priori estimates of y are not available, it
becomes necessary to use an arbitrarily selected value
to initiate the iteration process. In our experience, the
use of interactive computer graphics that plots both
the Fourier transform and time-domain impulse re-
sponses along with the normalized input and output
responses is recommended. This allows the user to
decide whether or not the initial and subsequent
values of y lead to deconvoluted responses which

agree with common sense judgment. For example, the .

impulse response should have features that represent,
more or less, a weighted average of the input and
output responses. In addition, depending on the
relative accuracy of the tails of the input-output
tracer responses, one may also decide that only the
zeroth and first absolute moments should be used for
the determination of y from equation (13).

As mentioned earlier, the solution of the convolu-
tion integral equation is well-known as being an
ill-posed problem, especially when the forcing func-
tion x(r) and output response y(¢) are based upon
experimental measurements which contain random
errors. Thus, precise specification of y is not realistic
and usually a range of values can be identified which
will give acceptable results. In practice, a value of y
should be selected so that the moments of the impulse
response satisfy equation (11) for 0 <»n <2. Evalua-
tion of the third and higher moments for pulse
responses is usually not reliable (Radeke, 1981) and
is not recommended for determination of 7.

Once the proper value for the filtering parameter
has been identified using the method outlined above,
the user can also obtain an estimate of the mean-
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-transform domain will be:

squared error (MSE) or residual between the approy
imate solution for the 1mpulse response &, and .
exact solution é. It can be shown that the MSE ;
given by (Hunt, 1971):

N N-1

The model pre
omain is readil

Jhncd by cqua;

_ Y(n)Y*(n)
L ZO xmx*mp
= n= [1 +’>J_I ]

C(n)C*(n)
This involves a straightforward finite summation ¢
discrete Fourier transforms that are already availap
from the previous steps of the calculation. If
estimate of the MSE can- be made, then applicatig,
of a 1-D root finding method to equation (14) w;
permit an a priori estimate of the filtering paramete

Y.

PAl

ion methods is
inear flow mod
sstimation techn
ple given late

Deconvolution m

CONVOLUTION METHOD A major diffe
deconvolution w
quire an assur
impulse respons
sponse is produ
ta. In certain

An alternate approach for time-domain analyy
of tracer response data is based upon convolutig
This method avoids the numerical instabilities assoc
ated with deconvolution since inversion of the il
conditioned convolution operator through matr
operations, or through division of discrete Foun
transforms, is avoided. '

The key starting relationships have already beens
forth in the previous section so that only a fe
addmonal ones are needed. As in the case of decor
volution, normalized tracer response data for ¢
injection-sampling system x; (input) and for the co
bined injection-sampling system and test section
(output) are assumed to be available. If a particul
linear flow model that describes the tracer transpo
processes is assumed, then a closed-form expressi
for the model-predicted impulse response in
Laplace transform domain E(s, P) can usually
obtained where s is the transform variable and P
the vector of model parameters. If the DFT convol
tion theorem (Brigham, 1974) is applied, then t
model-predicted output response in the Four

me-domain ce

n this equatios
eSPONSE &, ; ATt

Y, (n, P) = E(n, P)*X(n),

where X (n) = DFT(x)) as defined earlier by equati
(5) and i =./—1. In the above equation, the shol
hand notation E(n, P) = E(s = 2n in/N, P) has besh
used to denote the DFT of the model-predic
response. In practice, this is obtained by substituti
s = iw in E(s, P) and identifying the real and ima
nary parts of E(iw, P) = Eio, P) + iE(io, P). Th
are then sampled at the discrete frequency val
w,=2nn/N for n=0,1,...,N—1 to form
complex form of E(n, P). Despite the presence
measurement errors and noise in the x;, these ar¢
amplified when the DFT is taken and the multipli
tion of two complex numbers, namely X n) 2 ere it is
E(n, P), is performed as indicated above by equati

(15).




ual between the appro
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The ‘model predicted output respénse in the time-
qis readily obtained by applying the IDFT

fined by equation (10) to Y,(n, P) given above.

us:

Y(n)Y*(n)

p ! X)X () (14
C(n)C*(n)

IDFT{Y,(n, B)  j=0,1,...

PARAMETER ESTIMATION
ird finite summatiop, ,,
1at are already availap|
the calculation. If 4
made, then applicati,
d to equation (14) yj
f the filtering parametg;

The utility of both the convolution and deconvolu-
.1 methods is that the parameters in one or more
sar flow models can be obtained by parameter
imation techniques. The methods used in the ex-
ample given later are summarized below.

convolution method

METHOD A major difference between the convolution and

‘ convolution methods is that the latter one does not
require an assumed ‘inear flow model to obtain the
impulse response of the test section since this re-
sponse is produced directly from the input-output
data. In certain applications, development of a linear
flow model that describes the tracer transport may
not be an important objective and only the experi-
mental impulée response of the test section may be
needed. For cases where parameters are desired,
however, the following objective function based upon
the squared relative errors between the model-pre-
dicted and experimental impulse responses in the
time-domain can be defined: :

N-—1 2
€, €,
bo= Y wjl:_Pi__“i:! _

Jj=0

r time-domain analysjs
1sed upon convolutioy,
rical instabilities assogj
ce inversion of the ||
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ses the tracer transport -
closed-form expression
pulse response in the
E(s, P) can usually be
form variable and Pis
:s. If the DFT convolu-
1) is applied, then the
>onse in the Fourier

(17

In this equation, values for the experimental impulse
response e, ; are the ones obtained. from equation (10)
using the deconvolution method with filtering. Time-
‘domain values for the model-predicted impulse re-
sponse can be obtained from either a closed-form
expression for E(t, P) or by numerical inversion of
the Laplace-transformed impulse response EGs, P).
‘The results given here are based upon the latter
approach using the following Laplace transform in-
version formula (Crump, 1976):

F

. b

ned earlier by equation _e._i [l E(a, P)

ve equation, the short: T |2 :

=2r in/N, P) has been * - kni knt;
f the model-predicted + kz_:] Re {E<b +— F )} cos —

btained by substituting
ing the real and imagi-
, P) + iE(iw, P). These

El b ki P s‘nﬁt—j + error
+—7—.._, ‘ 1 T .

crete frequency values (18)
’ N —1 to form the he approximation error in the numerical inverse is:
espite the presence of ,

. Me 13

in the x;, these are ,nOt error < —r—5—» 0<? <2T (19)
¢en and the multiplica: e-h 1

'rs, namely X(n) and

\ted above by equalio re it is assumed that |E(t, P)| < Me®. The

arameter f is. chosen such that = max{Re(x,)}
ere x, is a pole of E(s, P). The parameter b is the
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real part of the Laplace transform parameter s and is
selected so that:

In E,

b 3
L 2T

B (20)
where E, is an estimate of the rounding error. The
parameter T is the sampling time period over which
the model-predicted impulse response is desired. A
computer program that implements equation (18) is .
available in the IMSL library (1982).

Convolution method

The convolution method vyields the model-
predicted response in both the Fourier transform and
the time-domain according to equations (15) and
(16), respectively. Since the objective here is to per-
form a direct time-domain comparison of the normal-
ized experimental output response y; to the
model-predicted response y,;, the following objective
function for parameter estimation can be defined:

W, [&y:&]z
J

Minimization of the above objective function, which
is based upon the squared relative error, was per-
formed in this work using Marquardt’s method (Sein-
feld and Lapidus, 1974). The weighting factors w;
were assigned to be unity corresponding to a uniform
weighting of all data. Initial parameter estimates were
_obtained, in the case of two-parameter models, by
comparison of the theoretical expressions for the
moments (mean and variance) to those calculated
from the data. For models having more than two
parameters, two of the parameters were obtained
using the above approach while the remaining Qries
. (e.g. mass transfer coefficients, etc.) were estimated
from literature correlations. k

N—-1

¢C= Z

j=0

@n

COMPUTER SOFTWARE

Computer software has been developed which im-
plements the convolution and deconvolution meth-
ods described above in. FORTRAN 77 on an IBM
3081. Calculated results are output to disk files where
they are plotted using the ISSCO graphics package
called DISSPLA on either an IBM 3179G terminal,
or a HP 7550A 8-pen plotter. Evaluation of either the
DFT or the IDFT according to equations (5) or (10),
respectively is performed by a program that imple-

* ments the base 2 FFT algorithm of Cooley and Tukey
(Brigham, 1974) on the DFT. This same program,
and others which are commercially available, can be
used to evaluate the IDFT by appropriate
modifications to the input and output data arrays.
Details on this are available in standard reference
texts on the subject (Brigham, 1974). Typical CPU
times to perform deconvolution or convolution and
parameter estimation for the four-parameter model
given below were 10's or less. :
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EXAMPLE APPLICATION

The methods described above for convolution and
deconvolution have been applied to experimental
tracer response data obtained in our laboratory from
a trickle-bed reactor. A description of the experimen-
tal apparatus and procedure are available elsewhere
(Mills and Dudukovi¢, 1981) to which the reader is
referred for details. To briefly summarize, pulse tracer
response measurements were performed - under
isothermal conditions at 7 =295K using a
1.35 cm i.d. x 40-cm long reactor containing granu-
lar nonporous alumina particles with an average
particle dia 0.0718 cm. For the two-phase flow exper-
iments reported here, He and n-hexane were used as
the gas and liquid phases with superficial mass veloc-
ities of 0.15 and 0.12kgm™*—s~', respectively.
These conditions correspond to the trickle-flow
regime on the flow map of Charpentier and Favier
(Ramachandran and Chaudhari, 1983). The tracer
was n-pentane which had been shown in previous
liquid-full tracer experiments to be nonadsorbing
when the reduced data were compared to the expres-
sion for the first absolute moment from a dispersion
type flow model that included tracer adsorption, mass
transfer and diffusion (Mills and Dudukovi¢, 1981).
By carefully connecting the tubing between the tracer
injection valve and the reactor inlet with the tubing
that connected the reactor exit with the refractive
index detector, the tracer impulse response of the
combined injection-sampling system could be ob-
tained at a given liquid flowrate. The same tracer
response experiments were then repeated with the
reactor in place to obtain the responses of the overall
system.

Figure 2 shows a typical set of normalized tracer
responses obtained from the above experiments. A
time sampling increment of At = 2 s was used for the
combined injection-sampling system, while an incre-
ment of At = 3 s was used for the overall system. The

0.015
& INJECTION-SAMPLING
ooz} [} SYSTEM RESPONSE
@
u :
2 0009} i
] :
9
7]
u
& 0.006}
& OUTPUT
5 RESPONSE
o
£ 0003
o} i e 1 L )
0 150 300 450 600 750 900

ts

Fig. 2. Normalized tracer response data obtained from

trickle-bed reactor experiments with nonporous packing.

Parameters:  d,=7.18x 10~*m, d=135x 10~ m,

L,=04m, L,=015kg m-?s”!, G,=012kgm 2s7},

7 =295K, liquid-phase = hexane, gas-phase = helium,
tracer = pentane.

_in the Fourier-transform domain that is highly irreg

indicated values for the first absolute moment ang
the variance o2 = y, — (1;)” of the response curves ,
based upon evaluation of equation (12) as descri},
in an earlier section. According to equation (11), o
reactor impulse response e(z) should have a ﬁrst;
absolute moment of pu;,=356s and a Variang
0?=6113.7s’. The tracer mass balance for both tp,
input and output responses was satisfied withj
0.4-0.6% when the total amount of tracer injecteq
was compared to that determined from the zergy
moments and the measured value of the liquid voly.
metric flowrate. ‘

Figure 3 shows typical results that are obtained
when deconvolution of the input—output tracer g
sponses given above in Fig. 2 is attempted using thg
conventional approach without filtering. According
to this method, the reactor impulse response in the
Fourier transform domain at a given frequency
simply the Fourier transform of the output responge
divided by the Fourier transform of the input re
sponse as defined by equation (6). Figures 3a and b
show the real and imaginary parts of the Fourier
transformed input and output responses X(n) and
Y(n), respectively. Both of these are smooth, damped
functions that do not show any obvious presence of
measurement errors and noise in the Fourier trans:
form domain. The Fourier-transformed input re.
sponse X (n) has oscillations that approach zero at 2
larger value' of frequency when compared to th
Fourier-transformed output response Y (n). Figure 3¢
shows that the quotient of these transforms
E(n) = Y(n)/Z(n) yields a reactor impulse respons

ular and does not approach a limiting value of zero
with increasing values of ffequency as expected.
Instead, the magnitude of the oscillations appear to
increase with increasing frequency values. As pointe
out earlier below equation (6), the Fourier-transform |
of the reactor impulse response E(n) is defined it
terms of the sum of Z(n)/X(n) and B(n)/X (n) whete. ¢
X(n), Z(n) and B(n) are the Fourier transforms of
the input response, error-free output response an
measurement error response, respectively. The result
in Fig. 3¢ provide direct evidence that the ratio 0
B(n)/X(n) is a significant factor in the reactor in
pulse response that must be reduced before reliabl
values of E(n) can be obtained. ,

Having shown that the conventional method for
deconvolution of tracer input—output responses fails
to produce correct results for the reactor impuls
response, application of the filtering method fQ
deconvolution is now illustrated. Figures 4a—c sho
the effect of the smoothing parameter y on the react?
impulse response in the Fourier-transform domall
In this case, the real and imaginary parts of Fh
response were obtained from equation (9), assumil
C(n)=DFT [1, —=2,1,0,...] corresponding 0
second-order smoothing formula. Numerical expef
ments using first-order, third-order and fourth-Ofde
smoothing formulae produced values for E,(m) tha
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obtained by deconvolution: (a) y =

N =1024, T,=NAr = 2048 s.
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could not be distinguished when plotted. Increash}g
the smoothing parameter from lO‘ﬁ‘to 1'02 res.ults in
he removal of the 1rregt}1ar oscillations in the
Fourier-transform reactor impulse response, espe-
sally for @ 2 0.015. When gompared tg the r'c‘actor
impulse response obtained thhout. filtering (Fig. 3c),
he results in Fig. 4 are quite significant in terms of
dcmonstrating how the ill-effects of measurement
orrors and noise can be removed.

Another way of viewing the importance of using
fltering when performing deconvolution is by exam-
inat
domain. Although a knowledge of the reactor
;mpulse response in the Fourier transform as shown
in Fig. 4 is quite useful, one objective of this work was
{0 obtain the time-domain impulse response for
subsequent applications, such as flow-model parame-
wer estimation. Figures Sa—c show the results obtained
when the Fourier-transformed reactor impulse re-
sponses given in Figs 4a—c are inverted to the time-
Jomain using the inverse discrete Fourier transform
via equation (10). Figure Sa shows that choosing
y=1x 10® gives a time-domain response which
shows some resemblance to a skewed pulse response
peak, but otherwise contains many sharp spikes.
Increasing y by three orders-of-magnitude to
y=1x 1077 as shown in Fig. 5b results in a substan-
tial reduction of the spikes, but the overall quality is
still.not acceptable. Figure 5c shows that choosing
y =1 x 10” removes all of the remaining spikes from
the impulse response so that a smooth curve is
obtained. ‘

As mentioned earlier, proper choice’ for the
smoothing parameter y will ensure that the reactor
impulse response obtained by deconvolution of the
input-output responses satisfies the convolution inte-
gral and other guantities related to it, for example the
moment generating property. According to equation
(11), the nth absolute moment of the reactor impulse
response should be equal to the difference between

the nth absolute moments of the normalized output .

and input responses. This latter criteria is tested in
Figs 6a-—c where the zeroth, first absolute and vari-
ance obtained from Figs 5a-c are plotted as .a func-
tion of the smoothing parameter y by following the
procedure described after equation (12). Figure 6a
shows that the zeroth moment has a constant value
of 4, = 0.9984 over the indicated range of y, i.e. the
area under e,; vs ¢ is nearly unity. This is in good
agreement with the theoretical result that would be
obtained if the tracer mass balance was satisfied. It
Suggests that the deconvolution procedure satisfies
conservation of mass, at least over the indicated
mange of y. The difference between the theoretical
Value and calculated value for the zeroth moment, i.e.
=|1.0 — 0.9984| = 0.0016, is within the numerical
uadrature error of equation (12). Both the first
olute moment and variance, as shown by Figs 6b
nd c, respectively, remain constant with increasing
es of y until the range y = 10°-10° is approached.

13—

ion of the reactor impulse response in the time-
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For y = 10 they either increase or decrease, neither

of which is acceptable.

The above results suggest that evaluation of the
moments of the reactor impulse response provide a
fuzzy estimate of the upper limit on the value of the
smoothing parameter, but no lower limit appears to
emerge. This latter one can be estimated by inspection
of the time-domain inverse at a series of y values, such
as those illustrated previously in Fig. 5. For the
input—output data used in this example, a value of
y =1 x 10? removed the spurious noise from the
impulse response, while providing moments that were
in reasonable agreement with those obtained by
differences from the output—input response curves.

Verification that the reactor impulse response ob-
tained by the deconvolution procedure is acceptable
is shown in Fig. 7a. Here, the normalized experimen-
tal output response y; is compared to the output

response obtained by convolution of the normalized

experimental input response x; with the reactor im-
pulse response ¢,;. The agreement between the exper-
imental output response and the calculated output
response is excellent with a squared relative error of
0.35 x 1072, Figure 7b shows the results of the same

operation, except that a smoothing . parameter of

y = 10° has been used. This value of y is clearly too
large since the calculated output response underpre-
dicts the experimental output response.

The reactor impulse response given in Fig. 5c can
be used as the basis for parameter estimation in
selected linear flow models. Here, the piston-
diffusion-exchange or PDE model of Van Swaaij et
al. (1969) is selected as the basis for obtaining model
predictions. In Fig. 8, a sketch of the model is given
along with the dimensionless forms of the tracer mass
balance equations in both the mobile and stagnant
phases. In this case, the stagnant phase refers to that
portion of the reactor volume which is occupied by
a stationary phase. This would include the catalyst
packing and stagnant pockets of liquid that exist on
the catalyst surfaces, such as at catalyst particle
contact points. Definitions for the various quantities
that appear in the equations are given in the Nomen-
clature. If tracer exchange between the mobile and
stagnant phase is neglected, then the PDE model
reduces to the piston-diffusion or PD model. Also,
the number of unknown model parameters is reduced
from four (Pe,, 1,k and «) to two (Pe, and- 7).
Closed-form expressions for the impulse responses of
both models in the Laplace transform domain E(s, P)

when Danckwerts boundary conditions are used can.

be readily developed by standard methods and are
omitted here for brevity.

In Fig. 9 comparisons between the experimental
tracer responses and the model predictions are given.
Figure 9a shows the results obtained when the reactor
impulse response e, ; determined by the deconvolution
method using equations (9) and (10) is compared to
the PD and PDE model prediction e, using equation
(18). The model parameters indicated on the figure
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are based upon minimization of the objective func-
tion defined by equation (17). Figure 9b is similar to
Fig. 9a, except that the normalized experimental
output response y; is compared to the model-pre-
dicted output response y,; where the latter one is
obtained by the convolution approach using equa-
tions (15) and (16). Here, the indicated parameters
are based upon the minimization of equation (21) as
explained in more detail in a previous section.

"In terms of model discrimination, inspection of
Fig. 9 shows that the predictions of the four-parame-
ter PDE model are in better agreement with the data

than the two-parameter PD model. The two addi--

tional parameters that are incorporated into the PDE
model, namely the stagnant-to-mobile phase holdup
parameter - o« = H,/H,, and the mobile-to-stagnant
phase exchange coefficient k = k. a, appear to be
Necessary to accurately describe the tail of the re-
sponse curves where tracer diffusion between the
- Mmobile and stagnant phases is most pronounced. This
- Eenerally agrees with the independent observations of
 Sicardi et al. (1980) who interpreted step-response
ata from a laboratory trickle-bed reactor using the

Cy =103
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Fig. 7. Comparison of the normalized experimental system

output response to the one obtained by convolution of X ()

with E(n) where the latter is derived from equation (9): (a)

and (b) y =105 Other parameters: Af=2s,
N =1024, T, = NAt = 2048 s.

It is worth noting that in the work of Sicardi et al.
(1980), the step input was assumed to be an ideal one
since x(¢) = H(r) was used as the normalized forcing
function where H(¢) denotes the Heaviside step func-
fion. Parameter estimation was then performed by
minimization of an objective function whose form
was identical to equation (21) which is based upon
matching the model-predicted and experimental out-
put responses. It is impossible to assess whether the
final values for the parameters were affected by the
use of an ideal step vs a nonideal step as forcing
functions since this comparison was not made.

PISTON-DIFFUSION-EXCHANGE (P.D.E.) MODEL

M(t)
VSTAGNANT PHASE%
a, kK [Ta
‘ MOBILE PHASE
mn= 1] n = 1

a8, _ 1 0% . a6
D o 1 0 - T (e + 1) (B, - O
3 Po, o2 p™ (o + 1) (8. — 8g)

a8,
T ms = kr(a + 1) {0, — Bg)

Fig. 8. Illustration of the piston-diffusion-exchange model
for tracer transport in a packed-bed and the governing
tracer mass balance equations.
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Fig. 9. Comparison of the piston-diffusion and piston-

diffusion-exchange model predictions with the normalized

tracer responses: (a) comparison of the reactor impulse

response obtained by deconvolution with the model-pre-

dicted impulse response; and (by comparison of the normal-

ized experimental output response with the model-predicted
output response obtained by convolution.

_ An important issue that arises is whether or not the
model parameters obtained by time-domain parame-
ter estimation using the deconvoluted reactor impulse

response agree with those obtained from the convolu- -

tion method. Although the methods differ in their
approach, they should, in principle,-lead to identical
values for the model parameters since both are
directly related through the convolution integral. The
PD model results are not included in this discussion
since, as mentioned above, it fails to accurately
represent the experimental data when compared to
the PDE model.

In Table 1, a comparison of the PDE model
parameters obtained from both methods is given in
terms of both absolute differences, and percentage
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tively. The Peclet number of the mobile phase Pe, anq

relative differences. Since convolution is a well-posed
operation when compared to deconvolution, the cop,
volution-based parameters were selected as the nq,
malizing factor when evaluating the relatjy,
differences. Inspection of the relative difference
shows that they colilectively range from 1 io aboy
24%. The mean residence time of the external liquig
¢ and the ratio of liquid holdups «, which gy
parameters that depend upon the first moment of the
PDE model impulse response (Van Swaaij er al,
1969), have relative differences of 1 and 18%; respec.

the dimensionless exchange coefficient k, which de.
pend upon the variance and skewness of the impuls
response, have relative differences of nearly 18 ang
24%, respectively. These results suggest that parame.
ters associated with the curve moments which are
greater than unity have the greatest errors, since
slight differences in the tailing of the response curves
have the greatest influence in estimating higher order
moments (Dudukovi¢, 1986; Nauman and Buffham,
1983; Ramachandran and Chaudhari, 1983).

To assess parametric sensitivity, some additional

comparisons were made. The parameters given in
Fig. 9b, obtained via parameter estimation using the

normalized tracer output response data by the convo- '

lution method, were first used to obtain a PDE
model-predicted impulse response. This impulse re-
sponse was then compared to the one obtained by
deconvolution of the input—output response data, as
shown in the smooth curve in Fig. 5c or the points on
Fig. 9a. To investigate the reverse situation, the

‘parameters given in Fig. 9a, corresponding to those

obtained by fitting the deconvolution impulse re-
sponse to the PDE model impuise response, were
used to obtain a PDE model-predicted output re-
sponse. This output response was then compared to
the one shown in Fig. 9b.

The results of the above exercise are shown in
Fig. 10. The dashed lines in both figures show the

PDE model predictions when parameter estimation is

performed in the usual fashion as described above
and shown earlier by the dashed lines of Fig. 9. The
solid lines show the results obtained when the
parameters obtained from deconvolution are used to
obtain model-predictions for convolution and vice
versa. The differences between the model-predicted
responses obtained by these two methods are very

Table 1. Comparison of PDE model parameters obtained by convolution and deconvolution

. Convolution Deconvolution Absolute
Parameter method method difference’ Relative error (%)
T 323.0 319.6 34 . 1.05
u 0.101 0.119 0.018 17.82
Pe, 107.1 122.5 15.4 14.38
k - 0.130 x 1072 0.161 x 1072 3.0 x1074 23.85

'Defined as |parameter value (convolution method) — parameter v_alue (deconvolution methdd)l.

*Defined as l

parameter value (convolution method) — parameter value (deconvolution method)\ 100
% 100.

Parameter value (convolution method)
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Fig. 10. Comparison of the normalized tracer response data

to the PDE model predictions: (a) comparison of impulse
responses; and (b) comparison of output responses.

slight, but they can be seen in the initial part and the
tail of the response curve. These differences, however,
are within the accuracy of the experimental tracer
response measurements so that both sets of par-
ameters listed in Table 1 are acceptable. Confidence
~limits on the parameters can only be assigned when
data from repeated experiments is available for proper
statistical error analysis. This is complicated enough
to be considered as a topic for a possible future study.

SUMMARY AND CLOSING REMARKS

Two methods have been presented for analysis of
nonideal pulse tracer response data that use the
discrete form of the convolution integral as the basis.
In both cases, it was assumed that experimental
input—output tracer data were available that repre-
sented real-world transient response measurements
for a particular system. For situations where the
input response could not be readily obtained, such as
in large-scale commercial reactor systems, an appro-
priate flow model that provides a reasonable descrip-
tion of the tracer transport in the injection-sampling

_ system could be incorporated.

The first method used the principle of deconvolu-
tion to obtain the impulse response of the test section
from the given discrete data sequences of the input
X(jAr) and the output Y(jA?). It was pointed out
 that application of standard matrix methods cannot
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be used for most problems of practical interest since
the data record lengths are too large for most com-
puters, and the inverse operator is ill-defined. It was
also shown that standard Fourier transform methods
also fail since measurement errors and noise in the
data give an apparent impulse response that is dom-
inated by the noise.

To overcome the above problems associated with
the standard methods, a method for performing
deconvolution based upon regularization was intro-
duced. Expressions derived from this method which
yield the impulse response in both the Fourier trans-
form and time-domain were set forth, and their
implementation was summarized. Techniques based
upon the method of moments and convolution prin-
ciples were presented for identifying reasonable esti-
mates of the regularization parameter. Up until now,
these had not been demonstrated on real data so that
previous attempts at selecting this parameter were
somewhat arbitrary. .Graphical inspection of the im-
pulse response at a series of regularization parameter
values as well as utilization of the above-stated
methods is recommended to ensure validity of the
results. .

The second method for interpretation of nonideal:
pulse tracer responses was based upon discrete con-
volution of the input response with an assumed linear
flow model to produce a model-predicted output
response. By performing the convolution using the
discrete Fourier transform, the output response in the
time-domain could be readily evaluated by the in-
verse operation. Comparison of this latter output
response to the normalized experimental output al-
lowed the model parameters to be obtained by
parameter estimation methods. This approach of
performing the convolution operation in the Fourier
-transform domain followed by inversion to the time-
domain using the fast Fourier transform avoids the
direct matrix evaluation of the convolution integral.
This latter operation, as in the case of matrix decon-
volution, cannot be performed on most computers
for most practical input-output tracer response data

sets due to excessive matrix storage requirements.
Unlike the case of deconvolution, however, the con-
volution operation is well-posed so that the presence
of measurements errors and noise in the data does not
introduce spurious solution behavior.

Both the convolution and deconvolution methods
described here can be viewed as more advanced

techniques for analysis of tracer response data than
previous ones, for example, the popular method of
moments. If the ultimate goal is to discriminate
between various linear tracer flow models and to
perform parameter estimation, then the convolution
method is recommended since it is the casiest to
apply. If, for example, the various experimental
tracer age functions for the test section are desired for
some subsequent purpose, then deconvolution of the
input—output data to obtain the impulse response is
essential. :
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NOMENCLATURE

a = Interfacial area for mass transfer of the tracer
between the mobile and stagnant phases per unit
volume of the combined mobile and stagnant
phases, cm ™!

a,= Sampled value of a time domain complex func-

" tion ay{t) appearing in equation (5)

a,, = Interfacial area for mass transfer of the tracer
between the mobile and stagnant phases per unit
volume of the mobile phase, a(l +«), cm™!

A(n) = Sampled value of the discrete Fourier transform
a; defined by equation (5) :
b=Real part of the Laplace transform variables
defined by equation (20)
B(n) = Sampled value of the discrete Fourier transform
of the noise sequence ¢, appearing in equation
(6)
¢;=Sampled value of the smoothing formula
coefficients first appearing after equation (9)
C(n) = Sampled value of the discrete Fourier transform
of the ¢; first appearing in equation (9)
C*(n) = Complex conjugate of C(n) appearing in equa-
tion (9) o )

C = Matrix that contains the smoothing formula
coefficients first appearing in equation (7)

C,(t) = Concentration of tracer in the mobile phase at
the reactor inlet, (M,/Q,)5(t), molem™> of
mobile phase

C,, = Concentration of tracer in the mobile phase,
mol cm~? of mobile phase

C, = Concentration of tracer in the stagnant phase,
mol cm~? of stagnant phase R

D, = Axial dispersion coefficient of the mobile phase
based on the reactor cross-sectional area, cm’s ™!

e; = Sampled value of the exact time-domain impulse
response first appearing in equation (1)

&= Column matrix whose elements are the e; first
appearing in equation (3) '

E(n) = Sampled value of the discrete Fourier transform
of ¢, defined by equation (6) )

e,;= Sampled value of the approximate time-domain
impulse response defined by equation (10)

&, = Column matrix whose elements are the e, ; first
appearing in equation (7)

E,(n) = Sampled value of the discrete Fourier transform -

of e, defined by equation (9) _
e,, = Sampled value of the model-predicted impulse

response defined by equation (18)

E(s, P) = Closed-form expression for the model-predicted
Laplace transformed impulse response first ap-
pearing above equation (15)

‘E(n, P) = Sampled value of the discrete Fourier transform
of E(s, P) appearing in equation (15)

E, = Imaginary part of E(s, P) appearing after equa- -

tion (15)
E, = Real part of E(s, P) appearing after equation (15)
E, = Rounding error appearing in equation (20)
E (1, P) = Closed-form expression for the model-predicted
impulse response in the time-domain, s~
E(t) = Continuous form of the normalized impulse re-
sponse, s~
H,, = Holdup of the mobile phase, cm*® of mobile phase
cm~? of reactor ‘
H, = Holdup of the stagnant phase, cm® of stagnant
phase cm™? of reactor
i=./—1
J = Summation index
k = Volumetric mass transfer coefficient for trans-
port of the tracer between the mobile and stag-
nant phases, k,a, s~
k,, = Mass transfer coefficient for transport of the
tracer between the mobile and stagnant phases,
s—l

|l

L = Reactor length, cm
M = Constant appearing in equation (19)
MSE = Mean-squared error defined by equation {1
n=1Index used to denote a particular sample,
variable used to denote the order of a particyl,
response curve moment ‘
N = Total number of points, or total number o ‘
sampled function values
P = Column matrix of model parameter values
Pe, = Peclet number of the mobile phase, L“sm/DL
dimensionless N
Q, = Volumetric flowrate of the mobile phase, cmis-1
7=Column vector of residual values appearing
above equation (7)
s = Laplace transform variable, s"
t = time, s
T = Sampling time period, NAz, s
u,, = Superficial velocity of the mobile phase, cm s~
w,; = Weights assigned to sample j first appearing i
equation (17)
x; = Sampled value of the normalized experimenty|
system input response, X (j At)/(M;/Q,), s™!
x = Matrix whose elements are the x; first appearing
in equation (3) ‘

X(jAt) = Sampled value of the system input respons
measured by the detector before normalizatiop,
arbitrary units

x(t) = Continuous form of the normalized input re-
sponse, s~
X (n) = Sampled value of the discrete Fourier transform
- of x; first appearing in equation 6)
X*(n) = Complex conjugate of X(n) appearing in equa-
’ tion (9)
y;= Sampled value of the normalized experimental
system output response, Y(jAD)/(M;/Q,), s
7 = Column matrix whose elements are the y; defined
) by equation (3)

Y(jAt) = Sampled value of the system output response
measured by the detector before normalization,
arbitrary units

Y(n) = Sampled value of the discrete Fourier transform
of y, first appearing in equation (6)

.. Y*(n) = Complex conjugate of Y(n) appearing in equa-

tion (14)
»(t) = Continuous form of the normalized output re-
sponse, s~ )
Y (n, P) = Sampled value of the discrete Fourier transform
of the model-predicted output response defined
by equation (15)
Y, = Sampled value of the model-predicted output
response defined by equation (16)
z;=Sampled value of the normalized error-free out-
put response appearing in equation (1)
Z(n) = Sampled value of the discrete Fourier transform
of z; appearing in equation (6)

Greek

o = Ratio of stagnant phase to mobile phase fluid
holdups, H,/H,,, cm® of stagnant phase cm ™ of
mobile phase

y = Smoothing parameter first appearing in equation
(N

8(t) = Dirac delta function, s™' -

¢, = Difference between the experimental value of the
normalized output response and the exact value
defined by equation (1), s~

n = Reactor axial distance, z/L, dimensionless

4,,=nth absolute moment of the reactor impu s¢
response, s"

4., =nth absolute moment of the reactor impy
response calculated from the deconvolutio?
method, s"

H,. = nth absolute moment of the input responsé
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input response, $

— pth absolute moment of the input response, s”
!éi:Concentration of tracer in the mobile phase;
C,/Co(t), dimensionless
05=Concentration of tracer in the stagnant phase,
C,/C,o(t), dimensionless
¢ = Mean residence time of tracer in the mobile
phase, LH [t S
— Regularization objective function defined by
equation (7)
.= Objective function used for parameter estimation
by the convolution method defined by equation
@n :
$y = Objective function used for parameter estimation
by the deconvolution method defined by equa-
tion (17)

w, = Frequency value, 27n/T, rad s~'
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