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Abstract

As an illustrative application of the general theory of
quasicrystallographic space groups a non-symmor-
phic aperiodic tiling is constructed with space group
p2’gm using a generalization of the grid method.

1. Introduction

The discovery of alloys called ‘quasicrystals’
(Schechtman, Blech, Gratias & Cahn, 1984; Levine
& Steinhardt, 1984) with diffraction patterns contain-
ing sharp Bragg-like peaks with non-crystallographic
point-group symmetries has stimulated a reexamin-
ation of the basic crystallographic concepts of lattice
and space group.

If the lattice is defined in Fourier space to be the
smallest set of wave vectors k, closed under addition
and subtraction, that contains all wave vectors in the
diffraction pattern, then there is no reason to require
a minimum separation between lattice vectors. Since
the proof that lattice point groups can only have two-,
three-, four- or sixfold axes requires a minimum
separation, such lattices can have arbitrary point-
group symmetries. Of course a lattice with a non-
crystallographic point group will not be dual to a
lattice of translations describing the real-space trans-
lational symmetry of the material producing the
diffraction pattern. Such materials have lattices only
in Fourier space, unless one chooses to view them as
real-space projections of higher-dimensional periodic
structures.

Materials characterized by a Fourier space lattice
with point-group symmetry G can be further classified
by the phase relations between density Fourier
coefficients p(k) at symmetry-related points. These
relations fall into certain equivalence classes,
described more fully below, which in the crystallo-
graphic case correspond precisely to the ordinary
space groups, and which define the concept of a space
group in the non-crystallographic case.

0108-7673/88/050678-11$03.00

Such an analysis of the two-dimensional quasicrys-
tallographic space groups has been given by Rokhsar,
Wright & Mermin (RWM) (1988) for ‘standard lat-
tices’. The standard two-dimensional lattice with N-
fold rotational symmetry is the set of all integral linear
combinations of N wave vectors of equal length
separated by angles of 27/ N. Mermin, Rokhsar &
Wright (1987) have shown that all two-dimensional
lattices are standard when N <46, but for larger N
non-standard lattices abound. (Although there is only
one class of 4-, 8-, 16-, and 32-lattices, there are, for
example, 17 distinct 64-lattices and 359 057 distinct
128-lattices, where ‘distinct” means differing by more
than just a rotation and/or rescaling.)

The two-dimensional space groups belonging to
standard lattices with N-fold symmetry are very
simple when N is not a power of 2: all phase relations
belong to the same class as the trivial one that assigns
identical phases to Fourier coefficients at symmetry-
related points. In the crystallographic case such space
groups are called ‘symmorphic’, and it is natural to
extend this nomenclature to the non-crystallographic
case.

When N is a power of 2, however, the standard
lattice can also have a non-symmorphic space group,
characterized by non-trivial phase relations, which
require systematic extinctions - the vanishing of
Fourier coefficients at certain wave vectors. When the
point group is 2’mm, RWM call the symmorphic and
non-symmorphic quasicrystallographic space groups
p2’mm and p2’gm. This reduces to the standard
crystallographic notation when j =2.

In their paper RWM display patterns with p8mm
and p8gm symmetry, constructed by taking linear
combinations of a small number of plane waves with
the appropriate phase relations. In constructing
models of real materials, however, one exploits
examples of the space groups that consist of sets of
real-space points with a minimum distance between
them. This is commonly done by taking the points to
be the vertices of an aperiodic tiling of the appropriate
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point-group symmetry or, often equivalently, to be
the projection into physical space of a slice of a
higher-dimensional periodic array.

Such methods for constructing tilings with p2/mm
symmetry are well known, and many examples can
be found in the literature (e.g. de Bruijn, 1981;
Duneau & Katz, 1985; Gihler & Rhyner, 1986; Elser,
1986). We describe here a method for constructing
tilings with the non-symmorphic p2’gm space-group
symmetry. The fruits of this procedure are displayed
in Fig. 1, which shows tilings with the symmorphic
space group p8mm and the non-symmorphic space
group p8gm. For comparison Fig. 2 shows the peri-
odic pdmm and pd4gm tilings that result when the
same procedure is applied to the crystallographic
case. Readers content with perusing pictures are
invited to enjoy Fig. 1(b), hunt for evidence of ‘quasi-
glide lines’, and turn to more pressing matters. For
readers interested in the process of construction, the
rest of the paper is organized as follows: In § IT we
describe the new algorithm that gives the p2/gm tilings
(together with the familiar algorithm giving the sym-
morphic p2’mm tilings). In § III we summarize the
definitions and results of RWM that we need to
specify the conditions for a tiling to have the non-
symmorphic space group p2/gm. In § IV we give a
simple formulation of the relation between tilings and
projections from higher dimensions, which some
readers might find of interest in itself. In § V we apply
the formulation of § IV to a proof that the Fourier
coeflicients of a sum of & functions at the vertices of
the tilings described in § II do indeed have the phase
relations described in § ITI.

IL. Tilings with p2/gm symmetry

First we describe the conventional grid method (de
Bruijn, 1981; Socolar, Steinhardt & Levine, 1985;
Gihler & Rhyner, 1986) for constructing a tiling with
2/-fold symmetry and the symmorphic space group
p2’mm. Then we describe a simple modification of
that construction that yields a non-symmorphic tiling
with p2/gm symmetry. These space-group iden-
tifications are made in § V.

A. The symmorphic tiling

Consider an infinite family of parallel lines separ-
ated by a distance L and normal to the direction n
(Fig. 3). Next, consider the grid given by superimpos-
ing D = N/2 such families (in the case of interest for
us N is a power of 2), all with the same wavelength
L, whose normals are separated by angles 27/ N
(Fig.4). For appropriate choice of phase in each
family (for example if all families contain a line
passing through the origin, or if the origin lies midway
between two adjacent lines of each family) the result-
ing grid will have 22mm symmetry. However, as will
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be demonstrated in § IV, the constructions to be
described produce tilings with the desired space
groups for any choice of these phases.

A tiling is constructed from the grid as follows:
pick an arbitrary polygonal cell in the grid and an
arbitrary point in a second plane, the tiling plane,
which we shall say corresponds to the cell in the grid.
Then wander about in the grid. Each time you cross
a boundary to a new cell, draw a line in the tiling
plane of length a along the direction of the outward
normal from the old cell to the new one. That line
connects the point corresponding to the old cell to
the point that will correspond to the new cell (Fig.
5). It is easy to show that the structure you end up
with, after every side shared by every pair of neighbor-
ing cells has been crossed at least once, does not
depend on how you wander through the grid.* This
will also be evident from the formalization of this
intuitive procedure described in § IV, which we use
in § V to show that this construction produces the
symmorphic tiling p2/mm.

B. The non-symmorphic tiling

A very simple modification in the above procedure
produces a tiling with the space group p2/gm. First
label alternate lines in each family ‘odd’ or ‘even’.
Then proceed as before, except that after taking a
step of length a in the tiling plane along the outward
normal when crossing the boundary between two
cells, take a second step of an unrelated length c¢ at
90° to the first.T The second step is to the right or left
of the first, depending on whether the boundary just
crossed is a segment of an odd or even labeled line.
Thus the full steps associated with the lines in each
family are no longer normal to the lines but alternate
from one side of the normal to the other (Fig. 6).

More formal descriptions of these constructions
will be given in §§ IV and V, together with proofs
that they have the space-group symmetries claimed
for them, but first we must specify more precisely
what is meant by a quasicrystallographic space group.

III. Quasicrystallographic space groups

In this section we summarize the definitions and
results of RWM relevant to the construction of tilings
with p2/gm symmetry. We are interested in densities
of the form

p(r) =Y p(k) exp (ik.r), (3.1)

* The resulting tiles are associated with vertices of the grid and
are rhombi except for those vanishingly few vertices at which more
than two lines happen to meet.

t By ‘unrelated’ we mean that the sum of the two steps for one
family must not coincide with the sum of the two steps for any
other family, so that none of the resulting vertices coincide.
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Fig. 1. Quasicrystallographic tilings with (a) symmorphic and (b) non-symmorphic space groups for the point group 8mm.
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where the sum is over all wave vectors in the lattice

generated by n vectors v/ that are linearly indepen-

dent over the integers,

n

k=Y nv". (3.2)
j=1

(For plane lattices with 2’-fold symmetry one requires
27! such generating vectors.)

The point group G of a material is the symmetry
group of all its macroscopic translationally invariant
equilibrium properties. In particular the diffraction
pattern, and hence the lattice of wave vectors it gives
rise to, is invariant under G, as is the product of any
group of Fourier coefficients the sum of whose wave

(a) pAmm

(b) pagm

Fig. 2. The analogous crystallographic tilings with (a) symmor-
phic and (b) non-symmorphic space groups for the point
group 4mm.
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Fig. 3. Three lines from an infinite family with wavelength L and
normal n.
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Fig. 4. Part of an N =8 grid with randomly chosen phases.
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vectors vanishes:
p(k)p(kK)p(k") ... =p(gk)p(gk’)p(gk”)...

whenever k+k'+k"+...=0, (3.3)

for all operations g in G.
Equation (3.3) requires the Fourier coefficients at
symmetry-related points to be related by

p(gk) =exp [27iD,(k)]1p(k), (3.4)

where for each g the ‘phase function” @,(k) must
satisfy

@, (k) + D, (k') + P, (k") +...=0

whenever k+k'+k"+...=0, (3.5)

where = denotes equality to within an integer.

Because of the linearity condition (3.5) it is enough
to specify the phase functions for the generating
vectors vY), j=1,...,n Furthermore, because
pl(gh)k] = p[g(hk)], the phase functions @, for all
elements g of the group G must satisfy

@, (k) = D, (hk) + B, (k). (3.6)

As a result of this relation all the phase functions can
be determined from those for any subset of the ele-
ments that generates the entire group. In the case of
two-dimensional point groups it therefore suffices
to determine the phase function @, for a rota-
tion r through 27/ N, and (if the group possesses

- Ly
7

Fig. 5. The grid on the left produces the tiling on the right by
mapping cells (labeled by letters) to corresponding vertices and
vertices to rhombi as described in § I1.A.

g

Fig. 6. The tiling vectors a ¢ for the non-symmorphic construction
described in §11.B.
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mirrorings) the phase function @,, for any one mirror
element.

The possible phase functions fall naturally into
classes of mutually equivalent functions. This is
because two densities related by

p'(k) = exp [2mix(k)]p(k) (3.7)

give the same value for all quantities of the form (3.3)
and are therefore macroscopically indistinguishable,
if and only if the difference in phase satisfies the
condition

x(K)+ x (k) + x(k")+...=0

whenever k+k'+Kk"+...=0. (3.8)

Such a linear function is called a ‘gauge function’.

If two densities differ in phase only by such a gauge
function (in the terminolgy of quasicrystals they then
differ only by a real-space translation and a phason)
then the corresponding sets of phase functions are
said to be equivalent. Equivalent sets of phase func-
tions are thus related by a ‘gauge transformation’ of
the form

Dy (k) - P, (k) = x(gk) — x(k), (3.9)

where the gauge function y is independent of the
group element g. For the tilings to be discussed here,
distinct space groups correspond to distinct classes
of phase functions.®

For two-dimensional standard lattices RWM show
th:* all phase functions are equivalent to a set of
ideatically zero phase functions (and therefore all
space groups are symmorphic) except when the point
group is 22mm. In that one case, there can be two
distinct space groups: the symmorphic space group
p2Ymm, with all phase functions equivalent to zero,
and the non-symmorphic space group p2gm, for
which the phase function &, can still be taken to be
zero with a suitable choice of gauge, but for which
there is no gauge in which the phase function @,
vanishes. The hallmark of the non-symmorphic space
group is that if m; is the mirroring that leaves the
generating vector v*’ invariant, then @, (v") [which
(3.9) requires to be gauge invariant] satisfies

?,, (v)=3. (3.10)

In conjunction with (3.4) this leads to extinctions:

p(k) must vanish for wave vectors that are odd
multiples of any given generating vectors v"/’,

IV. Tilings and projections: some useful relations

We now describe a way to characterize a very general
class of tilings in terms of projections from higher-

* For our purposes the term ‘space group’ simply means
‘equivalence class of phase functions’. The term can, however, be
given a group theoretic interpretation. This is discussed in the
Appendix.
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dimensional spaces. We shall use this approach in
§ V to establish that the tilings described in § II do
indeed have the space-group symmetries claimed for
them. This way of relating tilings and projections is
in some respects simpler than those to be found in
the literature, so we describe it here in a more general
setting than we shall actually need for the application
in § V.

A. Grid wave vectors and tiling vectors
We are given an arbitrary set of ‘grid wave vectors’,
kV=2m/L, j=1,...,D, 4.1

which span a ‘grid space’ of dimension d < D. Each
wave vector characterizes a family of d-space hyper-
planes normal to the direction n"’ and a distance L,
apart. Each family is also characterized by a fractional
displacement

f=d/L, j=1,...,D, (4.2)

where d; (see Fig. 7) is the distance from the origin
to the (n_gearest hyperplane of the family in the direction
of —n"/’,

Taken together the families of hyperplanes divide
the grid space into cells. We assign to each point R
in the interior of any cell an integer n; which tells
where it is with respect to the hyperplanes in the jth
family:

n=[(1/2m)kY . R+f], (4.3)

where [ x] is the largest integer less than x. This rule
assigns the number 0 to points between the same pair
of hyperplanes as the origin and simply increases the
number n; by 1 as each hyperplane in the family is
crossed in the direction of its normal n"’’ (de Bruijn,
1981; Gahler & Rhyner, 1986).

We are also given a set of tiling vectors a’,
j=1,..., D, which span a d-dimensional tiling
space. The vertices of the tiling consist of all points
of the form

D .
X na"’ (4.4)
s
3 } nt®
d(i)
NV NN N
L L

Fig. 7. The family of Fig. 3 displaced a distance d‘ from the
origin (marked with a solid circle).
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as Rin (4.3) ranges through all cells of the grid. When
the a” are arbitrary and entirely unrelated to the k"’
we have the case discussed by Giahler & Rhyner
(1986). Our intuitive description of the p2’mm tiling
in § II is equivalent to this more formal description
if the families of hyperplanes are taken to be the 2/~'
symmetric families of lines in the plane, and the tiling
vectors are simply the normals to the families:

a¥ = an. (4.5)
In this section, we shall consider more generally any
sets of tiling vectors a’ and grid wave vectors k"’
that are related by the condition®

D . .

El aVkY =276, (4.6)
The p2’mm tiling of § II satisfies condition (4.6) if
we pick the length a to be 2L/ D.

B. Extension to D dimensions

Given any set of tiling vectors aY” that satisfy (4.6)
with a set of grid vectors k", we can extend the two
sets of vectors to mutually orthogonal sets in D
dimensions. For it follows from (4.6) that if

d
Y caf=0, j=1,...,D, (4.7)
m=1

then all the coefficients ¢, must vanish. This estab-
lishes that if

)

a?,..., a9 (4.8)

are considered as a set of d vectors in D dimensions
with components indexed by j=1,..., D, then they
are linearly independent. The same argument can be
made for the set

O, K. (4.9)
Now let the D —d vectors
g, ..., 9% (4.10)

span the (D — d)-dimensional subspace of D-space
orthogonal to the d-dimensional subspace spanned
by the set (4.8), so that we have

D
Y aq¥ =0. (4.11)
Jj=1

Note that in D dimensions the d vectors kff) and the
D —d vectors qﬁ{) constitute a linearly independent

* The advantages of imposing the condition (4.6) on the other-
wise general grid and tiling vectors considered by Gahler & Rhyner
(1986) are the simplicity of the ensuing analysis and the absence
of any need for a final linear transformation in the tiling plane to
establish the connection between tilings and projections. We show
in subsection C below that, given any set of grid vectors (4.1),
there are always sets of tiling vectors that satisfy (4.6).
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set, for if

d . D N
Zl ek + Zdﬂf“qij) (4.12)
p= p=

vanishes for all j, then by multiplying (4.12) by a'/,
summing on j, and appealing to (4.6) and (4.11), one
establishes that the e, all vanish. The vanishing of
the f, as well then follows from the linear indepen-
dence of the g in their (D — d)-dimensional sub-
space.

It follows from this independence that the D x D
matrix whose jth row is given by

j ) (G
k(lj)"'°akdja qu+1,"',qD]) (4'13)
has an inverse; i.e. there are quantities ¢’ and b

satisfying

d D
Y kP + Y bPqP =278y

m=1 p=d+1

(4.14)

Multiplying both sides of (4.14) by a$’, summing
on j, and appealing to (4.6) and (4.11), one establishes
that

¢ =a$). (4.15)

It follows from (4.14) and (4.15) that given any
two sets of D d-dimensional vectors a¥’ and kV’
satisfying (4.6), there are two additional sets of D
vectors bY? and q“’ of dimension D — d, such that the
two sets of D-vectors AY’ = (a"’, b"’) and KV’ = (k"”,
q"’) constitute mutually orthogonal D-dimensional
sets:

AV KV =a® kP +p? . ¢V =278, (4.16)

An important consequence of the D-dimensional
orthonormality condition (4.16) is the D-dimensional
completeness relation,

D
Y AVKY=27s,,, (4.17)

Jj=1
which contains (4.6) and also gives
D

.zl bqV =2x5,,, (4.18)
i

D . .

L a’qy =0, (4.19)
i

D N :

T bk =0. (4.20)

ji=1

C. Existence of tiling vectors for any set of grid vectors

We note, in passing, that given any set of D grid
wave vectors k', one can always find a (not
necessarily unique) set of D tiling vectors a"’ that
satisfy (4.6). To do this note first that because the k"’
span the d-dimensional space, no non-zero d-vector
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can be orthogonal to all of them: if

d
Zlcukﬁ{)=0, j=1,..., D, (4.21)
Pt

then all the coefficients ¢, must vanish. If we again
view the
E2,..., Ky, j=1,...,D (4.22)

as a set of d vectors in D dimensions, then this
establishes their linear independence. One can there-
fore choose D —d additional D-vectors,

qsijlls"'a qg)a j=1""st (4'23)
such that the set
K9 =k, qY), j=1,...,D, (4.24)

spans the entire D-dimensional space. One can next
construct a dual basis AY’, j=1,..., D for the D-
space, that satisfies the orthonormality condition
(4.16). If one expands the AY’ into components in
the d- and (D — d)-dimensional subspaces as the K"/
are expanded in (4.24),

AV =@V pY), j=1,...,D, (4.25)

then the completeness relation (4.17) gives the
required relation (4.6) when u and v are restricted
to the first d components.

D. Tilings and projections

Suppose now that we have a set of integers of the
form (4.3); ie there is a vector R such that, for
j=1,...,D,

n=(1/2mkY . R+fi—);, 0<A;<1. (4.26)

If we multiply (4.26) by the (D —d)-vector bY’, sum
on j, and use the completeness relation (4.20), we
find that

D D
T (m—f)bY==3% A,bY, 0<A;<1. (4.27)
j=1 j=1

P
Conversely, suppose we have a set of integers n;
for which (4.27) holds. If we define

D

R=7Y (n+A;—f)a",
j=1

Jj=

(4.28)

it then follows from (4.27) and the orthonormality
condition (4.16) that the n; do indeed satisfy (4.26).

Consequently a point )_‘,nja(” will be a vertex
of the tiling if and only if the (D-—d)-vector
Y (n; = £;)b" lies in the convex set

D
-¥Y AbY, o< <1, (4.29)
e j

j=1

This analytic result can be given a geometrical
interpretation by noting that the points of the general

D-dimensional lattice primitively generated by the
D-vectors (a’, b)), j=1,..., D, are points of
the form

D

Y ni(a’,p") (4.30)
j=1

for all integral n;. The points 3,2, na"”’ of the tiling
are simply the projection into the tiling space of those
D-dimensional lattice points whose projection
Y2, nb"Y into the perpendicular space lies in the
intersection of the perpendicular space with the D-
dimensional unit parallelepiped

D
¥ A@, b)), —1<4;<0, (4.31)
j=1

shifted by the vector ¥ f£;b".

V. The space groups of the tilings

We now specialize to the case of the two-dimensional
grid space with the 2’7" families of lines described
in § IL.

A. The symmorphic tiling

Suppose we position every family of lines so that
the origin of grid space lies midway between a pair
of adjacent lines (Fig. 8). The grid will then have
2’mm symmetry about the origin, and the tiling will
have 2’mm symmetry about the point in tiling space
that corresponds to the cell containing the origin. If
the set of vertices of the tiling has 2?mm symmetry,
then so must the Fourier coefficients of a sum of §
functions at those vertices, so all phase functions are
zero and the space group is p2'mm.

It remains to show that the space group is unaltered
by any shifts in the position of the families along the
direction of their normals. We do this by showing
that such shifts merely alter the Fourier coefficients
p(k) by a phase that is linear in k - ie. by a gauge
function. In reaching this conclusion we shall, for the
first time, require the order N of the rotational
symmetry to be 2.

X

X

N
X

Fig. 8. Part of an N =8 grid with phases chosen to make it
symmetric about the origin.
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The apparatus developed in § IV applies with the
grid vectors taken to be
k9 =2m/L, j=1,...,D=N/2, (5.1)
where the n’ are separated by angles of 27/ N, and
the tiling vectors are given by
a¥=an"’ (a=2L/D). (5.2)

Let ¢ be the characteristic function of the set (4.29);
i.e. (s)=1 or 0 depending on whether or not the
(D -2)-vector s is in the set (4.29). Then the sum of
two-dimensional § functions at vertices of the tiling
has the form

p)=L.. nZDS(r— T na“’) (ED] (nj-fj)b‘”),
(5.3)

where all the n; are freely summed over.
We can cast this into a simple form by using the
representation

Z. ..Z a[(r, s)—z ny(a?, b‘f’)]
*—Z Zexp[ Zn(k(’) r+q. s)] (~5.4)

vp ‘o

for the sum of D-dimensional 8§ functions over all
points in the D-dimensional lattice that the D inde-
pendent D-vectors (a"’, b"’) generate primitively.
(Here vp is the volume of the D-dimensional
primitive cell of the real-space D-lattice.)

Using this representation, we can equally well write
(5.3) as

P(f)=J ds ¢(s)
XZ .. Z 6[(r, s+f)—z n},(am, b(j))]
_U_D; ZeXp(i}; njk(j).r)

D
X exp (i Y nq? .f)
j=1

D
X J ds exp (i Z n,q(’) . s)q:(s), (5.5)
where
D
f= Z fib, (5.6)

This explicitly displays the density as a sum of
plane waves with wave vectors of the form

D s
k= z njk(]).

j=1

(5.7)

Because D is a Power of 2 (and only for such D),
the 2-vectors k¥ for j=1,...,D are integrally
independent (see RWM or Hardy & Wright, 1979,
pp. 52-53) - i.e. the n; appearing in (5.7) are in fact
single-valued functions of the lattice wave vectors
and therefore satisfy the linearity condition

n(k+K') = n; (k) + n;(K'). (5.8)

As a result of this integral independence, any lattice
wave vector k appears in the Fourier expansion (5.5)
for only a single term in the sums over n,,..., np,
and the dependence of the Fourier coefficient p(k)
on the shifts f; of the grid lines is entirely through
the phase factor exp [2wix(k)], where

2mx (k) =f. Z n;(k)q".

j=1

(5.9)

Since the n;(k) are linear in k and since (k) is
linear in the n;(k), it follows that y (k) is itself linear
in k - i.e. it is a gauge function in the sense of § III.
This establishes that the space group is indeed
independent of the shifts f; in position of the grids.

B. The non-symmorphic tiling

The vertices of the non-symmorphic tiling
described in § II can evidently be described more
formally as follows: take each vertex (4.4) that
appears in the symmorphic tiling, and give it an
additional shift by

D
2 pict” (5.10)
where ¢ is a displacement of length ¢ at 90° to the
right of the displacement a'”, and p; is the parity of
the integer n;, being 0 or 1 depending on whether n;
is even or odd.

To investigate the Fourier transform of a sum of 8
functions at the resultmg set of points, we resolve the

entire tllmg T into 2° subtilings, T,, ,,, associated

with the 2P different parities of the n,,..., np.
Vertices of the subtiling T, , have the form
D : D .
Y na+ ¥ pe?, (5.11)
i=1 i=1

where the integers n; are those integers (4.26) of
the form n;=2m;+ p;. Thus vertices of the subtiling
T,.», are the points of the form

D ) D . .

2y ma”+ ¥ p@a”+c?), (5.12)
j=1 j=1

where the m; are those integers for which there is a
vector R in grid space satisfying

2m;=(1/2m)kY . R+f,—p;—A;, 0<A;<1. (5.13)

Equations (5.12) and (5.13) reveal that the subtiling
T,,..p, is obtained from the subtiling T;_, by shifting
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it in tiling space by ¥ 2, p;(a¥’ +¢"’) and by shifting
each f; by —p;, i.e. shifting f [(5.6)] by —p, where

D
p=Y pbV. (5.14)
j=1

Now the subtiling T;_,, like the symmorphic tiling,
can be given 2’mm symmetry with a suitable choice
of the grid displacements f;. (Arrange for the origin
of grid space again to lie at the center of the 0 ... 0
cell in grid space, and note that T, _, is then just a
subset of the similarly symmetrized version of the
symmorphic tiling, selected from it by an explicitly
symmetric rule.) Consequently, as in the symmorphic
case, the Fourier coefficients of pg o, the sum of &
functions at the vertices of a T;_, tiling from a grid
with general displacements f;, differ by only a linear
gauge function from a set of Fourier coefficients with
zero phase functions.

To exploit this fact we first show that the Fourier
coefficients of the non-symmorphic tiling p(k) are
simply proportional to those of p;_o:

p(k) = S(k)po._o(k). (5.15)
Since the phase functions of p, (k) differ from zero
only by a gauge function, the phase functions of p(k)
will differ from those of S(k) only by a gauge transfor-
mation [(3.7)]. By explicitly computing S(k) we can
therefore determine the space-group symmetry of the
non-symmorphic tiling.

First, following the same lines we pursued in the
symmorphic case, we express the density of vertices

inthe subtiling T, _,in a form similar to the expression
(5.3) for the symmorphic tiling:

Poor)=Y ... % 8(r—2 g mja(”)

my mp

xzp[f (2m; —j;)b‘”]. (5.16)

1

Again using the representation (5.4) of the & function,
we can recast this in the form

Po..o(r) = J ds ¢(s)
xY ... Y 8[(r,s+f)—2 Y mia?, b(j))]
my mp j=1
1
=5b J' ds ¢(s)

D
XZ v Z 6[%([, S+f) - Z mj(a(j), b(j))]
m mp j=1
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D
= Y. ¥ exp(i%z njk(”.r)
np j=1

D m

D
X exp (i% Y niq. f)
j=1
D .
x J ds ¢(s) exp (i% Y nq?. s).

j=1

1
7D

(5.17)

Note (in contrast to the symmorphic case) that the
wave vectors in the Fourier expansion can now have
either integral or half—integral coefficients when
expanded in terms of the k'), The lattice of wave
vectors is therefore generated by the set vV’ =3k,
j=1,..., D, and any wave vector in the lattice has
the expansion

D

k=Y n(k)k". (5.18)
Jj=1

In view of the simple relation between the subtilings

T,, ., and T, g revealed by (5.12) and (5.13) and (as

earlier) in view of the integral independence of

k... k'®, it follows from (5.17) that the Fourier

coefficients p,,_,,(k) and p,_o(k) are related by

D
Pp,...pp(K) = €XP [—ik. Y pi(a”+c)
j=1

D
_i%l’- _Z] "j(k)q(j)]Po..Ao(k)- (5.19)
j=

Using the orthonormality condition (4.16), the
definition (5.14) of p, and the expansion (5.18) of k,
we can simplify (5.19) to

pm«..pp(k) = (—1)555’=1 pn, (k)
D .
X exp (—ik ) ch(}))Po..,o(k). (5.20)
j=

Now the density p(k) of the entire non-symmorphic
tiling is just the sum of the densities of the 2° sub-
tilings corresponding to all possible choices of 0 or
1 for the D parities p;. Thus

D
p(k)=T1 [1+(=1)""* exp (=ik .c"")]po_o(k).
j=1
(5.21)
This establishes (5.15), with the structure factor

S(k)= ﬁ [1+(—1)"1(k) exp (_ik_c(j))]-

j=1

(5.22)

When the additional displacements ¢’ are zero so
the tiling reduces back to the symmorphic one, the
structure factor vanishes except when all the n;(k)
are even, and the enriched lattice (5.18) indeed
reduces back to the lattice of the symmorphic tiling.

Note next that when k is a multiple of a single
generating vector, k= n, v’ =3n, k', then the term
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in the product (5.22) with j = j, vanishes for odd n;,,
since each ¢ is orthogonal to the corresponding k.
The non-symmorphic lattice therefore has precisely
the extinctions noted in § IIT as characteristic of
p2’gm symmetry.

To confirm that the tiling does indeed have point-
group symmetry 2’mm we must show that the phase
functions @,(k) and &,,(k) associated with a rotation
r and a mirroring m are indeed linear in k. In addition,
to be sure that the extinctions are not accidental
extinctions in a structure with space group p2/mm,
we must show that the phase function @,,(k) satisfies
(3.10).

Let the mirroring m be about kp. It is evident
(Fig. 9) that if k, is defined to be —kp, then

mkY) = —kP77, n;(mk) = —np_;(k),
j=1,...,D, (5.23)
and
Mk, ¢ =~k P (D =k, P, (5.24)
with the conventions
@=—¢®  p(k)=-npk). (525)

It follows that

S(mk) = .ﬁ [1+(=1)">-% exp (—ik. PN,
: (5.26)

Changing the product index from j to D —j, we get
back (5.22) with a different set of limits:

D-1

S(mk)= I[ [1+(=1)"® exp (~ik.c")] (5.27)
j=0
or
1)1k} 3 (0)
S(mk) = 1+(-1) exp (—ik.c"”)

1+(=1)"»™® exp (—ik.c'?)

x ﬁ [14+(=1)"% exp (—ik.c?)]. (5.28)

J

@_ M

k '=rk

1
k(s) k( )

©_ @

mk(l)

Fig. 9. Mirrorings (m) and rotations (r) of the generating vectors
for D=N/2=4. Note that ¢ points perpendicularly and
counter-clockwise with respect to k. See equations (5.23) and
(5.24).
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We conclude [see (5.25)] that
S(mk) =(-1)""® exp (ik .c"?)S(k). (5.29)

By the definition (3.4) of the phase functions, we
also have, to within a gauge transformation, that

S(mk) =exp [27iD,,(k)]S(k). (5.30)

To establish that the vanishing of the structure factor
at the extinguished points is not an accident, we must
show that &@,,(}k‘®’)=1. Although np,(3k'®’) =1, and
kP, ¢ =0, we cannot infer this immediately from
(5.29) and (5.30) because the structure factor S
vanishes at 3k'®. We can, however, infer that at all
points with non-zero structure factors, the phase
function is given by

@,.(k) =inp(k)+(1/2m)k . ¢, (5.31)

and this is all we require, because the phase function
at points of vanishing structure factor is defined to
be the linear extension of the diffraction pattern phase
function to those points. Since (5.31) is explicitly
linear in k, it can be applied directly to k=3k'® to
give the required result.

Finally, we must establish that the phase function
@,(k) is linear, where r is a rotation through 27/ N.
For such a rotation (see Fig. 9)

n;(rk) = n;_,(k) (5.32)

and

rk.c”=k.cV ™V, (5.33)

again with the convention (5.25) for ¢! and no(k).
This, however, immediately gives

S(rk)= .ﬁ [1+ (—1)"'-1(") exp (—ik. c(j—l))]

= DI:[1 [1+(-1)"® exp (—ik.c)]. (5.34)
j=0

Since this is the same* as the expression (5.27) for
S(mk), the same argument that established the
linearity of @,,(k) establishes the linearity of @,(k).

APPENDIX

Throughout this paper'it is unnecessary to take the
term ‘space group’ to mean anything more than an
equivalence class of phase functions. The quasi-
crystallographic space groups can, however, be given
the algebraic structure of a group as follows:

(a) Take n vectors v that generate the lattice, in
the sense that all lattice vectors k are integral linear
combinations of the v'”. Depending on circumstances,

* This simplification is a consequence of the particular mirror
we chose to examine, but the conclusion, of course, does not
depend on this choice.
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one may take a generating set with the smallest pos-
sible value of n or prefer a set with larger n if it is
more symmetric. Different choices of n will lead to
different abstract groups.

(b) The n vectors v'”) give a representation of the
point group by n-dimensional matrices (of integers):

g =L/ D¥(g).

(¢) Because the phase functions are linear to within
additive integers, it is enough to specify their values
at the n generating vectors. For each point-group
operation g these values constitute an n-vector @,
with components

(A1)

PP =, (v\"). (A2)
(d) Because each component of a given phase-
function vector @, is determined only to within an
additive integer, @, can be represented by any mem-
ber of the entire n-dimensional set S, of vectors whose
components differ from those of @, by integers.

(e) Given any two representatives @, and @, from
S, and S,, it follows from (3.6) that a vector from
S,» is given by

D, = P,D(h)+ D,,. (A3)

(f) Elements of the space group consist of ordered
pairs (g, D,), (g, P3), (g Pg),... where g is any
point-group element and @,, @,, @;,...are all the

Acta Cryst. (1988). Ad44, 688-691
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vectors in S,. The combination law for two such pairs
is the semidirect product

(8, @g) (h, D) =(gh, @,D(h)+ &,). (A4)
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The Program SAPI and its Applications.
I. Automatic Search of Pseudo-Systematic Extinction for Solving Superstructures

By FAN HAl-Fu, YAO JIA-XING AND QIAN JIN-ZI
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Abstract

The name SAPI is an abbreviation of ‘structure analy-
sis programs with intelligent control’. It may also be
read inversely as ‘Institute of Physics, Academia
Sinica’. SAPI is based on MULTANR&O, but differs
from it by a number of features. These will be
described in a series of papers. The present paper
describes an algorithm which can distinguish super-
structures from ordinary structures by automatically
discovering the pseudo-systematic extinction rule in

0108-7673/88/050688-04$03.00

reciprocal space. This algorithm enables SAPI to
handle superstructures in a fully automatic way,
leading to a complete solution in favourable cases.

Introduction

Superstructures are distinguished by their pseudo-
translational symmetry, which leads to the effect of
pseudo-systematic extinction, i.e. there exists two
classes of reflections, one systematically strong, the
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