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Abstract

Optical biosensors, including the BIACORE, provide an increasingly popular

method for determining reaction rates of biomolecules. In a ¯ow chamber, with one

reactant immobilized on a chip on the sensor surface, a solution containing the other

reactant (the analyte) ¯ows through the chamber. The time course of binding of the

reactants is monitored. Scientists using the BIACORE to understand biomolecular re-

actions need to be able to separate intrinsic reaction rates from the e�ects of transport in

the biosensor. For a model to provide a useful basis for such an analysis, it must re¯ect

transport accurately, while remaining simple enough to couple with a routine for esti-

mating reaction rates from BIACORE data. Models have been proposed previously for

this purpose, consisting of an ordinary di�erential equation with `e�ective rate coe�-

cients' incorporating reaction and transport parameters. In this paper we investigate

both the theoretical basis and numerical accuracy of these and related models. Ó 1999
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1. Introduction

The ®rst step for both cells and biosensors in detecting a speci®c ligand in
solution is the binding of the ligand to a surface receptor. Because detection
starts with the formation of a ligand±receptor complex on a surface, the ki-
netics of binding and dissociation may be in¯uenced by the transport of the
ligand to the surface. If the chemical reaction is slow compared to transport,
the binding kinetics is una�ected by transport and the system acts as if it were
well mixed. If the chemical reaction is fast, for example if the ligand±receptor
forward rate constant or the receptor surface density is high, the binding ki-
netics will be a�ected or even dominated by transport.

Two of the best studied examples of transport-in¯uenced binding kinetics
are the binding of ligands to receptors uniformly distributed on spherical
surfaces, cells or beads, where ligands are transported to the surface by di�u-
sion alone [1±7] and the binding of ligands to receptors uniformly distributed
on ¯at surfaces where, in addition to di�usion, ligands are transported by
laminar ¯ow parallel to the surface [8±14]. The latter occurs in the ¯ow cell of
the commercial optical biosensor, BIACORE. In this instrument, receptors are
attached to a sensor surface and ligand, called the analyte, is injected at one
end of the ¯ow cell, ¯ows past the sensor surface and exits at the other end. In
comparing the e�ects of transport in these two cases there is an important
distinction beyond the di�erences in the modes of transport themselves. In the
case of the spherical cell the in¯uence of transport is the same at all points on
the surface. The probability of a receptor binding a ligand is independent of the
position of the receptor on the sphere. Similarly the probability of a ligand
dissociating from a receptor and escaping into the bulk solution rather than
returning and rebinding to a surface receptor is the same for any ligand±re-
ceptor complex on the spherical surface. This is not true in the BIACORE ¯ow
cell, where transport depends on position. During association, ligands bind
®rst to receptors near the in¯ux channel. During dissociation, when bu�er
alone is injected into the ¯ow cell, ligands that dissociate from receptors near
the channel entrance have the highest probability of rebinding to a receptor
before ¯ow carries them to the channel exit.

We are interested in obtaining a simple, accurate description of the binding
kinetics at the sensor surface of a BIACORE ¯ow cell. Before discussing this
problem, we review how binding has been modeled when ligands interact with
receptors on spherical surfaces. We focus on a compartment model, reviewing
how, under certain conditions, it yields a simple intuitive description of the
binding kinetics in terms of a chemical rate equation with the true rate
constants replaced by e�ective rate coe�cients. Additional questions arise
when one uses this compartmental approach to describe the binding
kinetics in a BIACORE ¯ow cell, where transport to the sensor surface is
non-uniform.
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To obtain a description of the analyte±receptor binding kinetics at the
sensor surface, we start from a full description of the problem, a partial dif-
ferential equation (PDE) that describes transport in the ¯ow cell and boundary
conditions that describe the in¯ux and e�ux of the analyte, the chemical re-
action at the sensor surface, and the con®nement of the analyte to the ¯ow cell.
We discuss the conditions under which this formulation leads to an e�ective
rate description. Finally, we compare numerical solutions of the full descrip-
tion (PDE) with those for the e�ective rate description.

2. Background: compartment models

In studying the binding of ligands to receptors on surfaces, it is the binding
kinetics that one is normally interested in. Thus, one is usually happy to
abandon a detailed description of the spatial changes in the ligand concen-
tration, in order to obtain a valid description of how the bound ligand con-
centration, B, changes with time. A popular approach for obtaining such a
description is to approximate the continuous spatial change in the ligand
concentration by dividing the volume outside the surface into discrete com-
partments, in each of which the ligand concentration is uniform. Consider the
binding of di�using ligands to receptors on a cell. In the standard approxi-
mation, the space outside the sphere is divided into two compartments as
shown in Fig. 1(a), an outer compartment where the ligand concentration is
that of the bulk solution, �C, and an inner compartment where the ligand
concentration, C, changes because ligands bind to, and dissociate from, re-
ceptors and because ligands are transported to and from the outer compart-
ment.

Fig. 1. (a) A compartment model for ligands binding to receptors on a spherical surface of radius a.

The space outside the sphere is divided into an inner region, a < r6 ri, where the ligand concen-

tration is C, and an outer region, r > ri, where the ligand concentration equals the bulk concen-

tration �C. (b) A compartment model for the ¯ow cell of a BIACORE. In the compartment near the

surface where the reaction takes place, 0 < y6 hi, the analyte concentration is C, while in the outer

region, hi < y6 h, the analyte concentration equals the injection concentration CT.
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Let us look at a single cell, with receptors distributed uniformly over its
surface. At time t � 0, the ligand concentration is uniform, except in a small
region about the cell (the inner compartment) where the concentration is 0, i.e.,
at t � 0, �C � CT for r P ri and C � 0 for ri > r P a. Initially, ligands di�use
rapidly into the inner compartment and then bind to the cell surface receptors.
Because the problem has radial symmetry, the net ¯ux is only in the radial
direction. We let V denote the volume of the inner compartment, A the surface
area of the cell, and R the concentration of free receptors on the cell surface.
Then the quantities VC, AR and AB are non-dimensional. The free ligand
concentration C in the inner compartment and the bound ligand concentration
B on the cell surface obey the following equations:

V dC=dt � ÿkaARC � kdAB� k�� �C ÿ C� �1�
dB=dt � kaRC ÿ kdB; �2�

where ka and kd are the fundamental rate constants for association and dis-
sociation of a monovalent ligand with a receptor binding site, and k� is the rate
constant that characterizes di�usion between the inner and outer compartment.

We now assume, and then justify, that after a short transient of duration tt,
during which there is negligible binding, the ligand concentration rises rapidly
in the inner compartment and then changes slowly with time. If this is so, we
can make a quasi-steady state approximation and set dC=dt � 0. When the left
side of Eq. (1) is set equal to zero, one can solve for C and use the equation
obtained to eliminate this variable from Eq. (2). This yields the following
equation for B:

dB=dt � ke
f R �C ÿ ke

r B; �3�
where we have introduced e�ective forward and reverse rate coe�cients

ke
f �

ka

1� kaRA=k�
ke

r �
kd

1� kaRA=k�
: �4�

Since the total concentration of receptors, RT, is conserved (we assume there is
no internalization or degradation of receptors), we have R � RT ÿ B. With this
conservation equation, and the initial condition B�0� � 0, Eq. (3) can be solved
for B. If we are dealing with a single cell in an in®nite volume, �C will be
constant and equal to CT, since binding to the cell surface will not deplete the
ligand. If there is a population of cells, with concentration q cells/ml, then
�C � CT ÿ ABq=�6:02� 1020�, where the ligand concentrations are in molar
(M).

We identify k� as the di�usion limited forward rate constant by letting the
concentration of cell surface receptors become very large (R!1� so that the
reaction at the surface becomes instantaneous and the cell acts like a perfect
absorber. In this limit the rate of reaction is determined by the rate at which
ligands arrive at the surface due to di�usion and Eq. (3) becomes

126 T. Mason et al. / Mathematical Biosciences 159 (1999) 123±144



lim
R!1

dB=dt � k� �C=A: �5�

For two spherical particles whose radii sum to a and whose di�usion coe�-
cients sum to D we have the Smoluchowski [15] result, that

k� � 4pDa: �6�
For a molecule interacting with a cell, to an excellent approximation, a is the
radius of the cell and D the di�usion coe�cient of the ligand. Eq. (6) is ob-
tained by solving the steady state di�usion equation with boundary conditions
that at r � a, C � 0, and at r � 1, C � �C, where the cell is centered at r � 0.
The di�usion limited forward rate constant is obtained from the ¯ux at the
surface, i.e.,

k� � 4pa2D
�C

oC�r�
or

����
r�a

: �7�

To estimate the duration of the transient, tt, before the quasi-steady state ap-
proximation is valid we assume binding is negligible during this period and set
B � 0 and R � RT in Eq. (1). The solution C of the resulting equation increases
with characteristic time

tt � V =�kaART � k��: �8�
An upper bound on the fraction of sites bound during time tt is

B�tt�=RT6 ka
�Ctt6 ka

�C V =k�: �9�
One problem with the compartmental model is that the volume V of the inner
compartment is unspeci®ed. If we take it to be equal to the volume of the cell,
and substitute k� from Eq. (6), then the upper bound in Eq. (9) becomes
ka

�Ca2=�3D�. If di�usion is fast, so that a2=D, the characteristic time to di�use
the length of a cell radius, is short compared to the characteristic reaction time,
1=�ka

�C�, there is negligible binding during the transient and we expect the ef-
fective rate description, Eqs. (3) and (4), to be an excellent approximation of
the compartment model [16].

Although often done, using the same approach to model the binding kinetics
of analyte ¯owing past, and interacting with, receptors immobilized on a sensor
surface is more problematic (Fig. 1(b)). This is because during binding and
dissociation, gradients in the analyte concentration arise that are both per-
pendicular (y direction) and parallel (x direction) to the ¯ow. The concentra-
tion of bound analyte±receptor complex varies along the sensor surface in the x
direction as does the transport limited forward rate constant. To a good ap-
proximation, the transport limited forward rate constant for a BIACORE ¯ow
cell, kM, is

k��x�=A � kM�x� � 1

C�4=3�
4vcD2

9hx

� �1=3

� 0:855
vcD2

hx

� �1=3

; �10a�
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where h is the height of the ¯ow cell, l the length of the sensor surface, and vc

the ¯ow velocity in the center of the ¯ow cell [11]. Averaging Eq. (10a) over the
length of the sensor surface we obtain

kMh i � 1

C�4=3�
3vcD2

2hl

� �1=3

� 1:282
vcD2

hl

� �1=3

: �10b�
It has usually been assumed that a compartment model for the ¯ow cell can be
used with k� in Eq. (4) simply replaced by the value of the transport coe�cient
averaged over x, i.e., by A kMh i. Is that correct? Also, if one is interested in how
the bound analyte is distributed on the sensor surface as a function of position,
can one simply replace k� by AkM�x� as given by Eq. (10a)? Starting from a
more complete description of the problem than a compartment model, we will
answer these questions.

3. The full model

The PDE model for the BIACORE ¯ow cell, which we present here as the
standard for assessing the performance of simpler approximations, is based on
a number of assumptions. We begin by discussing these assumptions, and the
conditions under which they hold.

In a BIACORE ¯ow cell, receptors can be coupled to the sensor surface in a
variety of ways. We assume that the coupling immobilizes the receptor, but
does not introduce any heterogeneities in the binding process. We assume the
receptors are uniformly distributed on the sensor surface and act as binding
sites on a two dimensional surface. If the receptors are distributed in a small
volume above the sensor surface, we assume that the height of the layer does
not in¯uence the binding kinetics. Most often in a BIACORE, a CM5 sensor
chip is used. Here receptors are coupled to uncrosslinked polymers of dextran
which form a layer extending approximately d � 1� 10ÿ5 cm out from the
sensor surface. This layer will not in¯uence the binding kinetics and can be
ignored when the average distance the analyte travels in the dextran layer
before it binds to a receptor, its mean free path, is long compared to the height
of the layer, d. If RT is the surface concentration of receptors (receptors/cm2),
Di is the di�usion coe�cient of the analyte in the dextran layer, and ka is the
forward rate constant for analyte±receptor binding, then the layer can be ig-
nored if

�����������������������
dDi=�kaRT�

p � d.
In the ¯ow cell, analyte is transported by di�usion and ¯ow to the sensor

surface where it reacts with immobilized receptors. The ¯ow cell has a rect-
angular cross section. Standard dimensions are length l � 0:24 cm, width w �
0:05 cm, and height h � 0:005 cm. (In a new model, BIACORE 3000, h is
reduced to less than half this height.) Binding is measured over a central
rectangular portion of the chip, 0.016 cm wide and 0.14 cm long. We make two
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approximations concerning the ¯ow pro®le that are valid for most of the ¯ow
cell, in particular the region where binding is measured. First, we ignore any
gradients that may arise along the width of the ¯ow cell. We use the coordinate
system shown in Fig. 1(b), with the x axis parallel to the direction of ¯ow, and
the y axis normal to the sensor surface. Brody et al. [17] show that for the
speci®c aspect ratio h=w � 0:1, and in general for small aspect ratio h=w, the
velocity pro®le in the y direction does not vary over most of the width of the
chamber; the boundary layers at the chamber walls where the velocity drops to
0 extend less than h=w of the channel width. In the second approximation, we
take the ¯ow to be fully developed throughout the ¯ow cell, so that the velocity
pro®le is parabolic for 06 x6 l, equal to zero at the top (y � h) and bottom
(y � 0) boundaries, and maximal and equal to vc in the center (y � h=2). The
velocity v�y� at a height y above the sensor surface is

v�y� � 4vc�y=h��1ÿ �y=h��: �11�
Brody et al. [17] review results for a similar problem in a simpler geometry, i.e.,
a ¯uid entering a narrow cylindrical channel from a wider one, under condi-
tions of low Reynolds number that are characteristic of the ¯uid dynamics of
microdevices like the BIACORE ¯ow cell. The ¯ow becomes 99% fully de-
veloped over a distance on the order of the small radius. The analogous di-
mension in the BIACORE is the height of the ¯ow cell, which is only 0.02 times
the length of the ¯ow cell. Both of the approximations we make in describing
the ¯ow pro®le were introduced by Lok et al. [11] and used in subsequent PDE
models of the BIACORE [8,9,12,14,18,19].

In the ¯ow channel, the analyte concentration C�t; x; y� is governed by the
following equation [12,18,19]:

oC=ot � D�o2C=ox2 � o2C=oy2� ÿ 4vc�y=h��1ÿ �y=h��oC=ox �12�
with boundary conditions:

oC�t; x; y�=oy � 0 at y � h; �13a�
DoC�t; x; y�=oy � oB�t; x�=ot

� kaC�t; x; 0�R�t; x� ÿ kdB�t; x� at y � 0; �13b�
C�t; x; y� � CT at x � 0; �13c�
oC�t; x; y�=ox � 0 at x � l; �13d�

C�t; x; 0� is the free analyte concentration at time t and position x, just above the
sensor surface. B�t; x� is the concentration of bound analyte±receptor complex
on the cell surface and R�t; x� � RT ÿ B�t; x� is the free surface receptor con-
centration. RT is the total receptor concentration, which is constant with respect
to both position and time. The rate constants for the reaction are ka and kd.

At the top boundary, y � h, the ¯ux vanishes because the surface is im-
penetrable and unreactive. At the bottom boundary, y � 0, the ¯ux into the
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sensor surface equals the time rate of change in the amount of bound analyte at
the surface.

At the ¯ow cell inlet (x � 0) the analyte concentration is constant and equal
to the injection concentration, CT. At the outlet (x � l), we treat the exit of
analyte as if it were due entirely to ¯ow. Although this is an approximation, we
will show later that the ¯ow is fast compared to di�usion and therefore errors
introduced by using Eq. (13d) propagate in the direction of ¯ow, outside the
computational domain, but have a negligible e�ect on the processes occurring
in the ¯ow cell.

4. Numerical solution of the full model

After Eqs. (12), (13a)±(13d) were nondimensionalized (see Section 5), the
model was solved numerically by a method of lines algorithm. The di�usive
terms were discretized using central di�erencing, and the convective term using
®rst order up-winding. Several higher order schemes for strongly convective
systems were tested against a highly resolved ®nite element solution. In these
empirical tests, the ®rst order discretization was comparable to the higher order
schemes in terms of convergence and had the best stability properties. We think
that this is tied to the implementation of the non-linear boundary condition.
The time stepping was done with a midpoint scheme and an adaptive time step
based on step doubling error checking. Higher order schemes in time were not
necessary because of the stability constraints on the time step [20].

Because most of the variation in analyte concentration occurs near the
sensor surface (y � 0), the domain was discretized using a non-uniform grid
which concentrates the grid points near y � 0, as shown in Fig. 2. In the lower
quarter of the grid, the distance between grid lines is half that for the upper
portion of the grid.

The boundary conditions were implemented numerically by a ®rst order
discretization using ghost points. In numerical trials, higher order implemen-
tations failed to improve results.

At the point (0,0), the boundary conditions, Eqs. (13b) and (13c), require
that C � CT and that DoC�t; x; y�=oy � oB�t; x�=ot. To resolve this con¯ict, we
set C � CT at (0,0) and, for this single point, ignore the condition imposed by
Eq. (13b). This results in a boundary layer in the numerical solution that did
not propagate through the domain. We also implemented the boundary con-
dition of Eq. (13b) instead of C � CT at (0,0) and found that our solution was
independent of the implementation we picked.

The program was checked by comparing it with an existing code that used a
®nite element method to solve Eq. (12) numerically, subject to Eqs. (13a)±(13d)
[12]. Convergence was also checked by comparing results on increasingly re-
®ned grids.
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5. Derivations of e�ective rate models

To derive an approximate model for B, the amount of analyte bound to
receptors on the sensor surface, we need an approximate expression for the
concentration C of free analyte near the sensor surface. As in the case of
binding to a spherical surface, we expect that there will be a brief transient
during which the free analyte concentration will rise steeply but binding will be
negligible, after which the analyte concentration will change slowly in time.
Further, for the ¯ow velocities used in a BIACORE, transport in the x di-
rection will be dominated by ¯ow and di�usion can be neglected, i.e., the
characteristic time to di�use the length of the ¯ow cell is much longer than the
time to transverse this distance by ¯ow: l2=D� l=�v or equivalently, 1�
D=�l�v� where �v � 2vc=3 is the average ¯ow velocity. In BIACORE experiments,
l � 0:24 cm, vc � 1ÿ 10 cm/s and D < 10ÿ5 cm2/s, so that 3D=�2vcl� < 10ÿ4.
Finally, since we are only interested in the concentration near the sensor sur-
face, we can linearize the ¯ow velocity. Making these approximations, the
governing equation (12), becomes

0 � Do2C=oy2 ÿ 4vc�y=h�oC=ox: �14�
This equation was introduced in Ref. [11] and can be justi®ed rigorously, using
singular perturbation theory [18,19]. The justi®cation is discussed in Appen-
dix A .

Fig. 2. Computational grid for an `8�8' discretization. By an `n� n' grid we mean a grid con-

structed in the following manner: An n� n grid is formed with equal spacing between grid lines in

both the horizontal and vertical directions. For the lower quarter of the domain the spacing be-

tween grid points is halved in both the x and y directions. For the points on the interface of the

coarse and ®ne grid, y � 1=4, that do not fall on the coarse grid, linear interpolation is used to

de®ne the analyte concentration.
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Before proceeding we introduce the following non-dimensional quantities:

s � Dt=h2; x � x=l; y � y=h; �15a�
c � C=CT; b � B=RT; r � R=RT; �15b�
ja � kaCTh2=D; jd � kdh2=D; �15c�
e � h=l; p � 4vch=D; r � hCT=RT: �15d�

Then Eq. (14) becomes

0 � o2c=oy2 ÿ epy oc=ox: �16�
Once di�usion in the x direction is ignored, we can drop one boundary con-
dition, Eq. (13d). Also, in solving Eq. (16), we replace the condition at the
upper boundary, Eq. (13a), by the condition that the solution remains ®nite as
y goes to in®nity. By only considering the velocity near y� 0 and dropping the
y2 term in Eq. (11) we have already assumed that the top boundary does not
in¯uence the concentration of analyte at the sensor surface. We expect this to
be a reasonable approximation when the ¯ow in the x direction is fast com-
pared to di�usion in the y direction, i.e., l=vc � h2=D (or equivalently, the
Peclet number Pe � vch2=Dl� 1), and analyte that is re¯ected from the upper
boundary is carried to the exit of the ¯ow cell before it can di�use to the vi-
cinity of the sensor surface and contribute to the analyte concentration near
y � 0. This requirement is met in BIACORE experiments, where Pe > 102. The
remaining boundary conditions are

roc�s; x; y�=oy � ob�s; x�=os

� jac�s; x; 0��1ÿ b�s; x�� ÿ jdb�s; x� at y � 0 �17a�
c�s; x; y� � 1 at x � 0 �17b�

Eq. (16) is linear, and so we can solve it, subject to the boundary conditions, to
obtain the non-dimensional concentration c of free analyte at the sensor sur-
face (y � 0). Let ĉ denote the Laplace transform of c with respect to x and let s
denote the transform variable. Then taking Laplace transforms in Eq. (16) and
changing to the variables

~c�s; s; ~y� � ĉ�s; s; y� ÿ 1=s; ~y � �eps�1=3y �18�
we ®nd that ~c satis®es

0 � o2~c=o~y2 ÿ ~y~c: �19�
The solutions to Eq. (19) are Airy functions, Ai�~y� and Bi�~y� [21]. Since Bi�~y�
becomes in®nite as ~y becomes in®nite, the solution to Eq. (19) that remains
®nite has the form ~c � aAi�~y�. Then

ĉ�s; s; y� � 1=s� aAi��eps�1=3y�: �20�
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We obtain the constant a from the Laplace transform in x of the boundary
condition at y � 0, Eq. (17a), and ®nd that

ĉ�s; s; 0� � 1

s
ÿ c1

_̂b

c2r�eps�1=3
; �21�

where [21]

c1 � Ai�0� � 1=�32=3C�2=3�� � 0:35502; �22a�
c2 � ÿAi0�0� � 1=�31=3C�1=3�� � 0:25881; �22b�

and _b � ob�s; x�=os. Inverting the Laplace transform in Eq. (21) we obtain

c�s; x; 0� � 1ÿ c1

c2rC�1=3��ep�1=3

Zx
0

_b�s; u��xÿ u�ÿ2=3
du: �23�

Finally, substituting for c in Eq. (17a) we obtain an integro-di�erential equa-
tion for the non-dimensional concentration of bound analyte

_b � ja 1

0@ ÿ c1

c2rC�1=3��ep�1=3

Zx
0

_b�s; u��xÿ u�ÿ2=3
du

1A�1ÿ b� ÿ jdb:

�24�

In Section 6, we show that predictions of the time course of analyte binding
and dissociation in a BIACORE experiment, based on Eq. (24), match
predictions of the full PDE model (Eqs. (12), (13a)±(13d)) closely, for pa-
rameters ranging from the di�usion-limited regime through the reaction-
limited case.

Although Eq. (24) gives an accurate approximation to the full model and
can be solved much more rapidly (see Appendix B for the numerical scheme),
an accurate e�ective rate approximation would be even simpler to use. We now
turn to the derivation of two e�ective rate models, one that gives the ap-
proximate concentration of bound analyte as a function of position x in the
direction of ¯ow, and one that gives the approximate concentration averaged
over x.

If we expand _b�s; u� in Eq. (24) in a power series in u, about u � x, and
simply keep the ®rst term, i.e., ignore all spatial derivatives and setZx

0

_b�s; u��xÿ u�ÿ2=3
du � 3x1=3 _b�s; x� �25�

then we obtain an equation for b�s; x� in the form of a standard chemical rate
equation. In dimensional form, we have Eq. (3) for B�t; x�, with e�ective rate
coe�cients
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ke
f �

ka

1� ka�RT ÿ B�=�bkM�x�� ; ke
r �

kd

1� ka�RT ÿ B�=�bkM�x�� ; �26a�

where kM�x� is given by Eq. (10a) and

b � C�4=3�C�2=3� � 1:209: �26b�
Since the output of a BIACORE, in its current form, is a spatial average of the
concentration of bound analyte, it is reasonable to look for an e�ective rate
equation for bh i, the average of b over x. From Eq. (17a) we see that

_bh i � ja c�s; x; 0��1h ÿ b�s; x��i ÿ jd b�s; x�h i: �27�
Note that

cbh i � ch i bh i � �ch ÿ ch i��bÿ bh i�i: �28�
We ignore the second term in Eq. (28) and make the approximation that

c�s; x; 0�b�s; x�h i � c�s; x; 0�h i b�s; x�h i: �29�
Eq. (29) is exact at t � 0, when c � 0, and, if binding is allowed to reach
equilibrium, at long times, when b is uniform. If dissociation is initiated when
the system has reached equilibrium, again Eq. (29) is exact at the beginning
and end of the process. In the reaction limit, when transport is rapid compared
to binding, c is essentially uniform and Eq. (29) holds for all time. Then from
Eqs. (27) and (29),

_bh i � ja ch i�1ÿ bh i� ÿ jd bh i �30�
To obtain an equation for bh i we need an expression for ch i. We replace _b by its
average, _bh i, in Eq. (21) or, equivalently, in Eq. (23), and then average c over x.
The resulting expression can now be substituted into Eq. (30) to give an or-
dinary di�erential equation for the average concentration of bound analyte.
When the equation is written in dimensional form, we recognize the following
analogue of Eq. (3):

d Bh i=dt � ke
f �RT ÿ Bh i�CT ÿ ke

r Bh i �31�
with e�ective rate coe�cients:

ke
f �

ka

1� ka�RT ÿ Bh i�=�a kMh i� ;

ke
r �

kd

1� ka�RT ÿ Bh i�=�a kMh i� :
�32a�

The transport coe�cient kMh i is given by Eq. (10b) and

a � �4=3�C�4=3��2=3�C�2=3� � 1:075: �32b�
Except for the small numerical correction, the constant a multiplying kMh i, this
is identical to the result obtained with a two compartment model [12].
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In Section 6 we see how solutions to the e�ective rate models, with e�ective
rate coe�cients given by Eq. (26a) or Eq. (32a), compare with the numerical
solution of the full PDE, Eq. (12).

6. Comparisons of approximate equations with numerical solutions of the full

model

We compared solutions of each approximate model with the solution to the
full PDE model for binding and transport in a BIACORE (Eqs. (12), (13a)±
(13d)), focussing on conditions where we expect transport to in¯uence binding.
To ensure that the solutions to the full model are su�ciently accurate to make
such comparisons, we ®rst compared numerical solutions using di�erent grids.
For a wide range of feasible parameters, there is a negligible di�erence between
a 96�96 and a 128�128 grid. In the remainder of this section we compare the
approximate models to numerical solutions of the full model using a 96�96
grid.

First we see how well the approximate models do in predicting the average
concentration of bound analyte as a function of time. The parameters used in
the simulations in Fig. 3 were chosen so that the binding kinetics would be
dominated by transport. From the form of Eq. (4), Eq. (10a) and Eq. (10b) it
follows that when kaR= kMh i � 1 the binding kinetics is determined by trans-
port while when kaR= kMh i � 1 the binding kinetics is determined by the
chemical reaction. For the parameters used in Fig. 3, kaRT= kMh i � 29:8, so that
at the start of the simulation, the binding is limited by transport of analyte to
the sensor surface.

In Fig. 3(a) and Fig. 3(b) the solid line is the solution obtained from the full
PDE model. The dotted line in Fig. 3(b) is the solution for a well mixed system,
i.e., it is the solution to Eq. (3) with ke

f � ka and ke
r � kd. We will call this the

rapid mixing model. Comparing the dotted and solid curve in Fig. 3(b) we see
the dramatic di�erence between the transport limited and the reaction limited
binding kinetics. In the 60 s period of association, transport e�ects slow the
forward kinetics so that binding remains far from equilibrium, whereas the
rapid mixing model predicts rapid equilibration. The dotted line in Fig. 3(a) is
the solution to the integro-di�erential equation, Eq. (24), averaged over x. That
it is in good agreement with the full PDE model shows that for the parameters
used in Fig. 3, approximating the full PDE, Eq. (12), by Eq. (14), i.e., setting
oC=ot � 0 and ignoring di�usion in the x direction, is an excellent approxi-
mation. We have also compared two forms of the e�ective rate model for Bh i.
The dash±dot curve in Fig. 3(a) is the solution to the ordinary di�erential
equation, Eq. (3), with e�ective rate coe�cients given by Eqs. (32a) and (32b).
The dashed curve in Fig. 3 (b) is the solution to the same equation, but with
a � 1 rather than 1.075. It is the equation obtained from the two compartment
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model by requiring that in the transport limit, Eq. (5) is satis®ed. It is therefore
not surprising that since we are in this limit, choosing the e�ective rate constant
in this way works so well.

In Fig. 4 we consider the case where transport in¯uences the binding kinetics,
but to a lesser degree than in Fig. 3. The parameters used in the simulations in
Fig. 4 give kaRT= kMh i � 1:92, approximately 15 times smaller than in Fig. 3.
Again, by comparing the solid line in Fig. 4(b), the full PDE model, with the
dotted line, the rapid mixing model, we see that transport has a signi®cant in-
¯uence on the binding kinetics. Using the e�ective rate coe�cients given by
Eq. (32a) with a � 1:075 we now get better agreement (dash±dot curve in
Fig. 4(a)) with the solution to the full PDE model than when we set a � 1
(dashed curve in Fig. 4 (b)). There is no single best choice for the value of a. For
kaRT= kMh i � 1, a � 1 is best, but when kaRT= kMh i � 2, a � 1:075 gives better
results. Of course when kaRT= kMh i � 1, the e�ective rate coe�cients reduce to
the true rate constants and the choice of a is irrelevant. Results of other sim-
ulations, with the analyte concentration varying over 2 orders of magnitude
(CT � 0:0988 nM ± 8.0 nM), give the same trends and similar accuracy.

In Fig. 5 we show snap shots in time of the predicted distribution of
free analyte in the ¯ow cell, for the two cases we have discussed and whose

Fig. 3. Simulation of binding kinetics in the transport limit. Predictions of the time development of

the average bound analyte concentration are plotted, for the following parameter values: ka � 1�
108 Mÿ1 sÿ1, kd � 8� 10ÿ2 sÿ1, D � 1� 10ÿ7 cm 2/s, vc � 10 cm/s and RT � 1:67� 10ÿ10 M cm.

CT � 0:889 nM for the ®rst 60 s (binding phase) and zero for the last 60 s (dissociation phase). (a)

The solid line is the solution to the full model, Eq. (12) and Eqs. (13a)±(13d). The dotted line,

which is almost indistinguishable from the solid line, is the solution to the integro-di�erential

equation, Eq. (24), averaged over x. The dash±dot line is the solution to the ordinary di�erential

equation, Eq. (3), with e�ective rate coe�cients given by Eqs. (32a) and (32b). (b) As in (a), the

solid line is the solution to the full model. The dashed line is the solution to Eq. (3), with e�ective

rate coe�cients given by Eq. (32a), but with a � 1 rather than 1.075. The dotted line is the solution

for the rapid mixing model, Eq. (3) with the true rate constants rather than the e�ective rate

coe�cients.
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simulations are shown in Fig. 3 and Fig. 4. For the di�usion limited case, Fig. 5(a),
we see that a strong gradient exists at 20 s. This gradient continues to exist until
dissociation is initiated at 60 s (simulation not shown). For the case where
transport in¯uences the kinetics but to a lesser degree, Fig. 5(b), the gradient
can be seen to dissipate in time and by 40 s (not shown) the analyte concen-
tration is essentially uniform throughout the ¯ow cell. The upper boundary
only in¯uences the distribution of analyte at very short times. In both cases, by
1 s the analyte concentration is uniform over more than 80% of the ¯ow cell.

Although the current output of the BIACORE is a time course of the average
concentration of bound analyte, it is possible that in the future, biosensors will
yield concentrations at di�erent locations along the sensor surface. Fig. 6
compares the time courses predicted for x� 0.25 by the full model and the ef-
fective rate model with spatial dependence, Eq. (3) with e�ective rates given by
Eq. (26a) and b � 1:209 or b � 1. (Comparisons at x� 0.50 and 0.75 were also
done with similar results.) The same trends as were seen in Figs. 3 and 4 are seen
again. Both approximations give predictions that are close to those of the full
model. In the transport limit, Fig. 6(a), the e�ective rate model with b � 1 is
closer to the full model. In Fig. 6(b) when both transport and reaction con-
tribute to the kinetics, the choice of b � 1:209 gives the more accurate ap-
proximation. As expected, during the association phase binding is higher close
to the inlet than downstream (simulations not shown). In contrast, during the
dissociation phase binding decreases more rapidly near the inlet and more
slowly downstream, because analyte that dissociates from receptors ¯ow away
from the inlet and may rebind, closer to the outlet of the chamber.

Fig. 4. Simulation of transport-in¯uenced binding kinetics. To reduce the in¯uence of transport in

these simulations, relative to the case simulated in Fig. 3, the di�usion coe�cient of the analyte was

increased by a factor of ten, D � 1� 10ÿ6 cm2/s, and the receptor density was decreased by a factor

of 3.3, RT � 5� 10ÿ11 M cm. All other parameters are the same as in Fig. 3 and the same com-

parisons are made. Although the solutions to both the full model and the integro-di�erential

equation are plotted in panel (a), on this scale they are indistinguishable.
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7. Discussion

A spectrum of models is available for the determination of fundamental
parameters from BIACORE data. The simplest omits potential e�ects of ¯ow
and di�usion of the analyte by assuming that the concentration of the analyte
is uniform throughout the ¯ow cell and doesn't change with time. This model
can be thought of as a `rapid mixing' model. On the other end of the spectrum
is the partial di�erential equation model given by Eq. (12) and Eqs. (13a)±
(13d) that accounts fully for transport and binding. This `full' model provides a
standard against which to test approximations, but is not a feasible tool for
extracting parameters that give the best ®t of the model to data.

Fig. 5. The predicted distribution of analyte in the ¯ow cell for 0.1, 1.0, 10 and 20 s after the start of

binding. Black corresponds to an analyte concentration of zero and white to an analyte concen-

tration equal to the injection concentration. In (a) and (b), the top panels show the entire ¯ow cell

while the bottom panels show the 20% of the ¯ow cell above the reacting surface. (a) The di�usion-

limited case, where parameters are given in Fig. 3. (b) The di�usion-in¯uenced case, where pa-

rameters given in Fig. 4.
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A model that is easy to implement in a laboratory setting consists of an
ordinary di�erential equation for the concentration of bound analyte, using
e�ective forward and reverse rate coe�cients that capture the e�ects of di�u-
sion and ¯ow. The general form of such a model for the concentration B of
analyte bound to receptors with a total concentration RT, on a surface of area
A, is

dB=dt � ka

1� ka�RT ÿ B�A=k�
�RT ÿ B� �C ÿ kd

1� ka�RT ÿ B�A=k�
B; �33�

where ka and kd are fundamental rate constants for association and dissociation
and �C is the concentration of ligand far from the surface where binding occurs.
All of the information in the model concerning the transport of ligand and the
geometry of the system resides in the constant k�.

Compartmental models can lead to such a formulation, as we illustrated in
the case of ligands binding to receptors on spherical cells or beads (where k� is
identi®ed as a di�usion- limited forward rate constant), and as demonstrated in
[12] for the ¯ow chamber of a biosensor.

We have asked, starting not from a compartmental model but from the full
model, what form of k� is an appropriate choice for an e�ective rate constant
model giving: (1) the concentration of bound analyte as a function of position
and time, B�t; x�, or (2) the average concentration of bound analyte, Bh i, as a
function of time, in a BIACORE ¯ow cell? The expressions we obtained are
given in Eqs. (26a) and (26b) and Eqs. (32a) and (32b), respectively. We have
shown in simulations (Figs. 3, 4 and 6) that both models are close to the full
model in their predictions of binding kinetics.

Fig. 6. Predictions of the time development of the bound analyte concentration at x� 0.25. Shown

are the time courses predicted by the full model and the e�ective rate model with spatial depen-

dence. The parameters used in panels a and b are the same as those used in Figs. 3 and 4, re-

spectively. The solid line is the solution of the full model. The two other curves are solutions to the

e�ective rate model with spatial dependence, Eq. (3) with e�ective rates given by Eq. (26a) and b �
1:209 (dotted) or b � 1 (dashed).

T. Mason et al. / Mathematical Biosciences 159 (1999) 123±144 139



In the case of the model for Bh i, our results are close to those of Myszka et
al. [12], derived from the two-compartment model, the expressions for k�
di�ering by a factor of 1.075. The two expressions di�er slightly in their pre-
dictions for Bh i. Myszka et al. [12] showed that using their model, they could
recover parameters from data that were simulated based on the full model, with
or without noise. Note that if Eq. (33) is used to ®t BIACORE binding data
and obtain estimates for the fundamental rate constants, k� will be treated as a
free parameter and the choice of the factor will be irrelevant. Using this ap-
proach has been highly successful in ®tting experimental data and determining
ka and kd [22,23]. In the latest software supplied with the BIACORE instru-
ment, BIAevaluation 3.0, the two compartment model, Eqs. (1) and (2), from
which Eq. (33) follows, is available for ®tting data.

We have also considered a second model which provides a good approxi-
mation for the concentration of bound analyte as a function of position in the
direction of ¯ow in a biosensor. The present generation of BIACORE instru-
ments reports a spatial average of the concentration of bound analyte. If a next
generation of biosensors is developed that obtains spatial data, this model can
serve as a simple tool in its analysis.
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Appendix A

In this section we outline the use of perturbation methods to derive Eq. (14),
or equivalently, its non-dimensional form, Eq. (16), from Eq. (12). We non-
dimensionalize according to Eqs. (15a)±(15d). The time scale implicit in the
de®nition of s is that of di�usion in the vertical direction (i.e., h2=D is the
characteristic time for a molecule to di�use a distance equal to the height of the
BIACORE). Then Eq. (12) becomes

oc
os
� e2 o2c

ox2
� o2c

oy2
ÿ epy�1ÿ y� oc

ox
: �A:1�

The product ep is related to the Peclet number, Pe:

Pe � ep=4 � h2=D
l=vc

� characteristic diffusion time in y
characteristic convection time in x

:
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As already noted, for BIACORE experiments, Pe > 102 and the aspect ratio
e � h=l � 0:02.

In order to do a boundary layer analysis near the sensor surface, we de®ne a
new variable to stretch the y coordinate, g � y=d. Then from Eq. (A.1), the
inner solution, ci, satis®es

d2 oci

os
� d2e2 o2ci

ox2
� o2ci

og2
ÿ epd3g�1ÿ dg� oci

ox
: �A:2�

To keep the convection term, let d � ep� �ÿ1=3
. Then the zero order term, c0, in

the expansion for ci as a power series in d satis®es the partial di�erential
equation

0 � o2c0�s; x; g�
og2

ÿ g
oc0�s; x; g�

ox
: �A:3�

To express Eq. (A.3) in terms of y, recall that g � yd � y�ep�ÿ1=3
. Substitution

for g in Eq. (A.3) yields Eq. (16).The outer solution, co, away from the
boundary layer, satis®es Eq. (A.1) with d substituted for �ep�ÿ1=3

. To lowest
order in d, the equation is

oco

ox
� 0:

Subject to the boundary condition co � 1 at x � 0, the outer solution is con-
stant, co � 1. For the inner and outer solutions to match, the inner solution
must approach 1 as g!1.

Appendix B

In this Appendix, we describe the procedure we used for solving the integro-
di�erential equation, Eq. (24), numerically. De®ne an operator T by

Tg�s; x� � a�1ÿ b�s; x��
Zx

0

�xÿ s�ÿ2=3g�s; s�ds; �B:1�

where

a � c1ja=�c2C�1=3�r�ep�1=3� �B:2�
and the function b, the constants c1 and c2, and the non-dimensional param-
eters are as de®ned in Eqs. (15a)±(15d) and Eqs. (22a) and (22b). Then Eq. (24)
can be rewritten as

�I � T � _b � ja ÿ �ja � jd�b:
Under the assumption that �I � T �ÿ1

exists,

_b � �I � T �ÿ1�ja ÿ �ja � jd�b�: �B:3�
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Let Dx and Ds denote the sizes of steps in space and time. Discretizing the time
derivative in Eq. (B.3), we obtain

b�s� Ds; x� � b�s; x� � Dsf �s; x� �B:4�
where

f �s; x� � �I � T �ÿ1�ja ÿ �ja � jd�b�s; x��: �B:5�
In order to approximate the right-hand side of Eq. (B.4) at xi � iDx,
i � 0; . . . ; n, we use Eq. (B.5) in the form

�I � T �f �s; xi� � ja ÿ �ja � jd�b�s; xi� �B:6�
to obtain a system of linear equations that can be solved for the f �s; xi�. To
approximate the integral in Tf (Eq. (B.1)), at a point xj, we writeZxj

0

�xj ÿ s�ÿ2=3f �s; s�ds �
Xj

i�1

Zxi�1

xi

f �s; s��xj ÿ s�ÿ2=3
ds:

In evaluating the integrals, we approximate f �s; s� linearly on each of the
subintervals [xi; xi�1], i.e.,

f �s; s� � �Dx�ÿ1��f �s; xi��xi�1 ÿ s� � �f �s; xi�1��sÿ xi�� on �xi; xi�1�
Then the matrix equation to solve for the f �s; xi� is

a0;0 0 0 � � � 0
a1;0 a1;1 0 � � � 0

..

. ..
. ..

. ..
.

an;0 an;1 an;2 � � � an;n

26664
37775

f �s; x0�
f �s; x1�

..

.

f �s; xn�

26664
37775 �

ja ÿ ja � jd� �b�s; x0�
ja ÿ ja � jd� �b�s; x1�

..

.

ja ÿ ja � jd� �b�s; xn�

26664
37775;

where, if b�xi� � a�1ÿ b�s; xi��, the entries in the matrix are

aj;0 � b�xj��Dx�ÿ1

Zx1

x0

�xj ÿ s�ÿ2=3�x1 ÿ s�ds;

aj;k � b�xj��Dx�ÿ1

Zxk

xkÿ1

�xj

0B@ ÿ s�ÿ2=3�sÿ xkÿ1�ds

�
Zxk�1

xk

�xj ÿ s�ÿ2=3�xk�1 ÿ s�ds

1CA 16 k6 jÿ 1;

aj;j � 1� b�xj��Dx�ÿ1

Zxj

xjÿ1

�xj ÿ s�ÿ2=3�sÿ xjÿ1�ds;

aj;k � 0 j < k:
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Each of the integrals can be evaluated in terms of the xi. Starting with the fact
that b�0; xi� � 0 for all i, we ®nd the f �0; xi�. For any s, once we know f �s; xi�
for all i, we update the bound ligand function, i.e., use Eq. (B.4) to ®nd
b�s� Ds; xi�.
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