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A complete set of the elastic, piezoelectric, and dielectric constants of polarized barium titanate ceramics
is presented. The various electromechanical coupling factors, as derived from the piezoelectric equations,
and their numerical values are also given. The determination of the elastic and piezoelectric constants
using the resonant method applied to small bars, square plates, and disks is discussed.

L INTRODUCTION

O complete set of the elastic, piezoelectric, and
dielectric constants for polarized barium titanate
ceramics has been published. The values of polarized
barium titanate ceramics are to some extent dependent
on its processing and on the electric field applied.
Unpolarized barium titanate cermaics are isotropic.
Under the influence of an applied electric field, the
structure reduces to two-dimensional isotropy in the
plane normal to the direction of polarization; in regard
to all those physical properties that are described by
tensors of ranks up to four and which include dielectric,
piezoelectric, and elastic phenomena, the symmetry
type associated with the crystallographic class Cs,
implies two-dimensional isotropy. If the Z-axis is
taken as the symmetry axis, this crystal class is defined
by five elastic moduli (stiffnesses), ¢y1=c¢a, 613, €12,
€13=Ga3, C4a=Crs, Ces=13(cn—612); by three piezoelectric
moduli (stress constants), eis= ¢4, €31=¢32, €33; and by
two permittivities, e;;= €2, €33. The schemes for s;, da,
and B are identical with the corresponding schemes
above. The plane perpendicular to the Z-axis fulfills
isotropic conditions.

In a recent paper! two-dimensional applications of
the piezoelectric equations of state were considered,
and some planar elastic and piezoelectric constants were
introduced. Polarized barium titanate ceramics, having
high values of the piezoelectric and dielectric constants,
are particularly suitable to illustrate the differences
between the various constants related to different
houndary conditions.

II. ELASTIC, PIEZOELECTRIC, AND DIELECTRIC
CONSTANTS OF BARIUM TITANATE -

Numerical values for barium titanate ceramics are
known?3 for the elastic compliances s ¥ and s1.%;
hence Poisson’s ratio in the plane perpendicular to Z,

* Now with Signal Corps Engineering Laboratories, Fort Mon-
mouth, New Jersey.

1 R, Bechmann, Inst. Radio Engrs. Trans. Ultras. Eng. 3, 43-62

1955).

¢ 2 H. Jaffe, Electromechanical Properties of Tilanate Ceramics,
Brusk Strokes (The Brush Development Company, Cleveland,
Ohio, December, 1951), pp. 1-7.

3 D. Berlincourt, “Recent developments in ferroelectric trans-
ducer materials,” Proc. Natl. Electronics Conference, Chicago
(October 5, 1955).

o=012F=—s5125/s1%, ss6=2(s115—512F). These values
are obtained from frequency measurements of exten-
sional modes of bars and contour modes of disks of
orientation Z. In addition, c3? and 642 =1/54" are
obtained from thickness extensional modes of thin
Z-plates and thickness shear modes of X-plates,
respectively. 547 is obtained from bars of orientation
XZ. In order to determine the full set of elastic con-
stants, more measurements are required. Values for
the three piezoelectric coefficients d;; and the two
permittivities e; at constant stress are also known.
A typical value for density is 5.72-10%kg m3.

Using the pulse method, Huntington and Southwick?
determined the velacities of longitudinal and transverse
waves in the directions parallel to the edges of a
polarized cube of barium titanate ceramic. This leads
to the values for en?, cu?, ces, €337, and €1”. In the
following a full set of the elastic, piezoelectric, and
dielectric constants for the various boundary conditions
is evaluated from Huntington’s observed values of
en® and 6y, the ratio s33%/51"=1.045 observed by
Moseley® for maximum-poled material, and from the
values given in references 2, 3, and including new
measurements by D. Berlincourt and H. Krueger.®
Table I gives the resulting typical values of the elastic
compliances s, and elastic stiffnesses ¢;. for constant
electric field and constant displacement; Table II
gives typical values of the two kinds of piezoelectric
strain constants dj and gy and the stress constants
¢ir and kg ; Table IIT the permittivities ;. at constant
stress and constant strain. All values are expressed in
mks units and refer to a temperature of 25°C. As
already mentioned, the values depend to some extent
on the poling and aging.

The general relationships between the various
constants can be found in the Institute of Radio
Engineers Standards’ on Piezoelectric Crystals, 1949,
and are easily simplified for the crystal class considered.

4 H. B. Huntington and R. D. Southwick, J. Acoust. Soc. Am.
27, 677-679 (1955).

5. S. Moseley, J. Acoust. Soc. Am. 27, 947-950 (1935).

8D. Berlincourt and H. Krueger, “Measurements of elastic
and piezoelectric constants of harium titanate ceramics,” Contract
No. Nonr-1055(00), Technical Repart No. 10 (1956), also partly
given in reference 3.

7 Proc. Inst. Radio Engrs. 37, 1378-1395 (1949).
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TantE I. Typical values (in mks units) of elastic coefficients
(elastic compliances) six and elastic moduli (elastic stiffness) ¢.x.

s11E=8.55-10712,2N 1 " 511P=8.18-10"122N 1

.\'3133 8.93 533D= 6.76
512£=—2.61 51'_-D=—2.98
S13E=—2.85 513D=—1.95
3‘443= 233 5440= 183
sae®=22.3 5660 = 5667 = Sa5
enf=1066-100Nm 2 12 =168-100Nm2
633E= 162 6330= 189
612E= 766 612D= 782
0133= 775 613D=71.0
C“E= 429 644D= 54.6
cesf=44.8 coe?=caeF=Cop

III. PLANAR ELASTIC AND PIEZOELECTRIC MODULI

In an earlier paper® the notation &;(z,k=1,2,6) for
the planar elastic stiffnesses has been used referring
to a plane perpendicular to the Z-axis.? The correspond-
ing planar piezoelectric stress coefficients have been
introduced by &x and Ay, (2=1,2,6). For the crystal
class Ce,,

S11 — 812
tnn==Cp0= , €12= y
s12— 519 12— 8512
1
Cee=3(Cn—Cr)=——————=¢es, C16=8%=0 (1)
2(511—312)
and
1
511:|:612= .
Sutsie
Further
a3
en=_Ep=dn(Enf+é1)=——, @&3=0
suZ451.E
(2)
_ _ £31 _
ha=hsa=ga(Enl+e1?)=———, hs=0.
s 45120

The dielectric constant, €3S, at constant planar strain
is defined by
2ds®

suf4spf  enf4ént

28,2
33T — €3t =285 d3 =

3)

Using the values of Table I, 1t follows:

611E= 129-10°Nm 2 EuD: 141-10°Nm 2
€12%=39.4 514,
Co6=Co6= 4.8

C1a”

From Table IT are obtained the values:
&n=—13.3Cm2 hai=—1.91-108NC,
The values of Table III give
€33%)=1470-10"1Fm.
3 See reference 1, Sec. I.
9 These stiffnesses have been originally introduced by Voigt

as vix. W. Voigt, Lehrbuch der Kristallphysik (Teubner, Leipzig,
1928), second edition.
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The difference between €T and & is given by

633T— 633s= 2631d31+833433= (69+355) .10
=424-10"Fm. (4)

This expression can be written in the form!
2d3, s’
sufd-s12f  cas”

= (2104-214) - 101 =424-10-"FmL. (5)

€337 — €335 =

According to Eq. (3) the term 2dg?%/(su®4s1:F) of
Eq. (5) represents es”— e335%). The dielectric constant
€3S’ determines in first approximation the shunt
capacitance of the equivalent electric circuit of the
planar modes of vibration.

IV. VARIOUS ELECTROMECHANICAL
COUPLING FACTORS

According to the choice of the independent and
dependent variables in the piezoelectric equations of
state, various electromechanical coupling factors can
be defined. The coupling factors and their numerical
values for barium titanate, calculated from Tables I
to III are: for homogeneous variables in the equation
of state, where T, the stress, and E, the electric field,
are taken as independent variables, .S, the strain, and
D, the electric displacement, as dependent variables,
or vice versa:

dlﬁ hl

5
(R18)nom= = =(.476,
: (enTsss®)®  (BuScssP)?
(kal)hom = — = 0208, (6)
(EssTS 113)i
(%32)hom= =0.493.
GsaTS 33E)§

The coupling factors for mixed variables in the equation
of state where § and E are taken as independent
variables, 7" and D as dependent variables, or vice
versa, are
&15 J40)
(%16) mix= = =0.527,
(61156551:")% (,3117'3551)),

M

(k33)mix= =0.414.

(6333633}3)’

Of practical interest is the planar coupling factor %,
for the stress system T',=T,. The homogenous Lype is
defined by

®) V2ds 0.354 ®
p/hom = =0.3 y 8
(633'1'(3‘111':’{‘3‘125"))i

1 See reference 1, Sec. L.
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and the mixed type by
V2dy
(€™ (s 5+s12"))
V2éy
- (e (€117 +6127))

(kp)mix=

=0.378.

Between the homogeneous and mixed coupling
coefficients of &5 in Eqs. (6) and (7) and %, in Eq. (8),

khoma_kmixﬂ+khom2kmix2=0 (9)
and consequently,
km ix2 kho m2
khom2 = or kmix2 = . (10)
'l_kmix2 I_khom2

The consideration of the coupling factors in this section
is of interest as the elastic, piezoelectric, and dielectric
properties are often expressed in terms of coupling
factors.

V. ELASTIC CONSTANTS DETERMINED BY
THE RESONANT METHOD

The elastic compliances si%, s12f, and s¢ and
Poisson’s ratio ¢ can be determined from measurement
of the series resonance frequency f, of piezoelectrically
excited length extensional modes of small bars and
contour extensional modes of square and circular plates
perpendicular to Z. The samples are fully plated.

From measurement of the frequency of the length
extensional mode of a small bar of orientation ZX and
length I, the elastic compliance s1;¥ can be determined
according to the equation:

suf=1/4pNV? (11)
where N= f,-/ is the frequency constant and p is the
density.

To determine s519¥ or Poisson’s ratio ¢, two-dimen-
sional modes of plates are necessary. Suitable modes are
the contour extensional mode of a disk or the contour
extensional modes of a square plate. For isotropic
conditions and d3,= d3,, two kinds of contour extensional
modes of square plates are excitable: the well-known

Taste II. Typical values (in mks units) of piezoelectric
coefficients (piezoelectric strain constants) di; piezoelectric
strain constants g;; piezoelectric moduli (piezoelectric stress
constants) e;:; piezoelectric stress constants /.

d15=270' 10-12CN—1 e15= 11.6Cm™2
d|1= —79 (7] b —'44

d“= 191 en= 18.6

d1s™ 18.8-102m2C? J1s=10.3- 12N C!
n=—4. 1= — 9.,

£33= 1 1.4 hn=-' 148
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Tante III. Typical values (in mks units) of
dielectric constants (permittivities) ;.

enT=1436-10"1F 1
eaa’l‘ 1680

en5=1123-10"1F 1
Gns': 1256

mode ITI"™® and a mode recently described by H.
Baerwald." For the present purpose this mode is desig-
nated as maode IV of square plates.

The frequency constant for the fundamental mode
and the overtones of a thin disk is given by's

K feu\! « 1 i
‘\',,=—(—) =—(7) , (12)
TP 7 \ps1(1—d?)
where « is root of the equation,
1Jo()— (1—a)J1()=0, (13)

and Jo(x) and J,(x) are the Bessel functions of the
orders zero and one. In the vicinity of 6=0.30, the
first root is approximately'®

k1= 2.04885+0.62324(c—0.30)— 0.202(c— 0.30)%. (14)

The higher roots for s=0.30 are: x,=5.39, «3=7.57,
k4=11.73 and for >4, k,—(n+L)r. From the measure-
ment of the frequency constant of one of the three
moades mentioned before:

suf=F*/4pN?, (15)

where for the disk N=f,-¢ and F=F, (¢ is the
diameter of the disk). Similarly for modes III and IV
in Eq. (15), N and F refer to NU[, Fxn and N[v, FIV,
respectively. The values of F as a function of ¢ for the
three modes are given in Table IV. The values of Finr
and Frv are taken from reference 14. The values of ¥
in Table IV are applicable to sufficiently thin plates.
In case of larger thickness-diameter ratio a thickness
correction is necessary and is given for mode IIT and
IV in reference 14. From the measurement of the
longitudinal modes of bars and of the modes of plates,
su and ¢ can be determined. As the frequency constant
of mode IV strongly depends on ¢, the measurements of
both modes IIT and IV of the same plate lead also to
a determination of s,; and ¢. However, the accuracy of
the determination of ¢ is higher. Furthermore, s;: and
o can be determined from the same plate. This eliminates

L H, Ekstein, Phys. Rev. 66, 108-118 (1944),

2 H, Mihly, Helv. Phys. Acta 18, 248-251 (1945).

B R, Bechmann, “Contour modes of plates excited piezoelec-
trically and determination of elastic and piezoelectric coefficients,”
Inst. Radio Engrs. Convention Record, National convention,
Vol. 2, Part 6—Audio and Ultrasonics, 77-85 (1954).

HWH. G. Baerwald and C. Libove, “Breathing vibrations of
planarly isotropic square plates,” Contract No. Nonr-1055(00),
Technical Report No. 8 (December 12, 1955).

15W. P. Mason and H. Jaffe, Proc. Inst. Radio Engrs. 42,
921-930 (1954).

18 H. G. Baerwald, “Electrical admittance of a circular ferro-
electric disc,” Contract No. Nonr-1055(00), Technical Report
Noa. 3 (January 19, 1955).
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TasLe IV. The constants ¢, and F as function of o (Fir and Fiv
according to H. G. Baerwald and C. Libove).
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TaBLE V. The constants 8 as function of ¢ (811 and Biv
according to H. G. Baerwald and C. Libove).

a xt Fa Fin Fiv Fiv/Fm a Ba Bt Biv
0.250 20172 1.3272 1.1218 1.7012 1.5164 0.250 4.8254 6.38 0.058
0.260 2.0236 1.3348 1.1277 1.6974 1.5052 0.260 48287 6.37 0.066
0.270 2.0300 1.3422 1.1336 1.6938 1.4942 0.270 4.8380 6.36 0.075
0.280 2.0362 1.3503 1.1396 1.6903 1.4832 0.280 4.8376 6.35 0.085
0.290 2.0425 1.3587 1.1458 1.6869 1.4729 0.290 4.8369 6.34 0.096
0.300 2.0488 1.3673 1.1519 1.6836 14615 0.300 4.8347 6.32 0.107
0.310 2.0551 1.3761 1.1582 1.6804 1.4508 0.310 4.8323 6.31 0.121
0.320 2.0612 1.3851 1.1646 1.6773 1.4403 0.320 4.8312 6.29 0.135
0.330 2.0673 1.3943 1.1710 1.6744 1.4299 0.330 4.8285 6.27 0.151
0.340 2.0735 1.4037 1.1775 1.6716 1.4197 0.340 4.8280 6.25 0.168
0.350 2.0795 14132 1.1841 1.6690 1.4096 0.350 48271 6.23 0.186

any differences caused by using two different specimens. and 2(14)
The ratio of the frequencies of modes III and 1V, p= :
k*— 1402

Jfiv/ finu=Frv/F, (16)

gives directly Poisson’s ratio. The ratio Fyv/Fnr as a
function of ¢ is also shown in Table IV.

From measurements of higher order frequencies of
small bars X Z, 54,2 = 5552 can be obtained from equation:

suP= 12/ 49Nn2, (17)

where N,= f,-b, and b is the dimension in the direction
of the X-axis. The elastic compliance 532 can be
obtained from measurements on small bars parallel to
the Z-axis excited by the field parallel to the length
direction.

VI. PIEZOELECTRIC CONSTANTS DETERMINED
BY THE RESONANT METHOD

The determination of piezoelectric constant ds, using
the contour extensional mode of a bar, contour exten-
sional mode of a disk or square plate (mode III), has
already been discussed in detail’? For the modes
considered, the piezoelectric constant d; can be
determined by measurement of the frequency constant
and the separation of the resonant and antiresonant
frequencies, 1/r= f.*/f?—1, from the expression

1 p 633T i
d31=:l:'—7 — ) .
N \pB 1+ prx
For the fundamental extensional mode of a bar,

8=32/x* and p=8/x’;

(18)

for the fundamental mode of a disk,
47 (14+0)?

ki k12— 1402

17 See reference 13, Sec. V.

d

for the contour extensional mode III of a square plate
and for very small o, Bin=64/2* and p=8/x% The
values of 34, 81, and Brv for o in the range 0.250-0.350
are listed in Table V. The values of 3 refer to fully
plated samples. The factor x in Eq. (18) takes into
account the influence of the other modes of the specimen
excitable with the same electrode arrangement. For
specimens with a single series of modes, as fulfilled for
thin bars and disks, x==1, values of 0.98 have been
observed (see reference 13). As the excitation of mode
IV is rather weak, following from the small values
of Brv listed in Table V, its influence on mode III of
the square plate can be neglected. In Eq. (18) 337 is
the dielectric constant at constant stress which can be
measured directly at a very low frequency. The agree-
ment of the results of ds obtained from the three
different modes mentioned is usually very satisfactory.

The piezoelectric constant dy5 can be determined from
measurement of resonant and antiresonant frequencies
of higher overtones of small bars of orientation XZ
according to the equation:

1 /pn  en” !
o (Y,
1Vn an 1+Pnr

where for the nth overtone 8,=32/n'n? and p=28/x%2.
The frequency constant N, is defined by f.-b, where b
is the dimension in the direction of the X-axis.

The piezoelectric constant da; can be determined from
length extensional mode of small bars excited in its
length direction.

Some details of methods for measuring piezoelectric,
elastic, and dielectric coefficients of crystals and
ceramics can be found in a paper by W. P. Mason
and H. Jaffe.!®

18 See reference 15, Sec. V.

(19)



