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Abstract. This paper presents an exact probabilistic description of the work
done by an external agent on a two-level system. We first develop a
general scheme which is suitable for the treatment of functionals of the time-
inhomogeneous Markov processes. Subsequently, we apply the procedure to
the analysis of the isothermal-work probability density and we obtain its exact
analytical forms in two specific settings. In both models, the state energies
change with a constant velocity. On the other hand, the two models differ in
their interstate transition rates. The explicit forms of the probability density
allow a detailed discussion of the mean work. Moreover, we discuss the weight
of the trajectories which display a smaller value of work than the corresponding
equilibrium work. The results are controlled by a single dimensionless parameter
which expresses the ratio of two underlying timescales: the velocity of the energy
changes and the relaxation time in the case of frozen energies. If this parameter
is large, the process is a strongly irreversible one and the work probability density
differs substantially from a Gaussian curve.
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1. Introduction

Consider a macroscopic system in equilibrium with a heat bath. Assume we start changing
one of the system’s external parameters, the schedule of the driving being arbitrary
but fixed. The system responds by changing its state. During the ensuing (generally
nonequilibrium) isothermal process we measure the work done on the system. If we
repeat the experiment with the same driving protocol, we always detect the same single
value of the work. On the other hand, varying the protocol, the work can assume different
values, but it can never fall below a certain limit. As a consequence of the second law
of thermodynamics the limiting value equals the difference of the Helmholtz free energies
which correspond to the equilibrium states compatible with the final and with the initial
values of the external parameters. The value is attained in the case of the quasistatic
process, i.e. for infinitely slow changes of the external parameters.

On the other hand, consider a small system, such as a single RNA molecule in a
solution. Then, by repeating the experiment with the fixed driving protocol, the value
of the work done by the external agent varies from one realization of the experiment to
another. This is because the work is significantly influenced by the thermal fluctuations
and we cannot guarantee the same ‘protocol’ of thermal fluctuations during every
repetition of the experiment. Some values of the work are even smaller than the above
described difference of the Helmholtz free energies. In other words, the work is a random
variable and the experiment yields its probability density.

In several recent years there was extensive theoretical and experimental research in
this field [1]. Thanks to the recent progress in the micromanipulation techniques the
work distributions become accessible experimentally. Let us mention just two examples
of such experiments: dragging of a colloidal particle through a viscous fluid [2, 3] and the
mechanical unfolding of RNA molecules using optical tweezers [4].
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From the theoretical point of view the distribution of work depends on the driving
schedule, but it also contains important information concerning the system itself. In order
to understand this information, the exact theoretical calculation of the work probability
density would be of considerable importance. But there are two difficulties related to
such an exact analysis. First, the underlying evolution equation, e.g. the Fokker–Planck
equation or the Pauli master equation, must reflect the time dependence of the external
parameters. Typically, then, one has to solve the diffusion equation including a time-
dependent potential [5]–[7], or the Pauli equation with the time-dependent transition
rates [7]–[9]. But even the explicit solution of the evolution equation does not suit our
purpose. Actually, the work done on the system represents a functional of the underlying
evolution. In other words, the work done during an arbitrary but fixed time interval
depends on the whole history of the system evolution during the interval. For these two
reasons, the theoretical analysis of the work distribution lags behind its experimental
investigation. On the other hand, the theoretical studies have already predicted several
generic properties of the work distribution. For example, the work probability density
must be compatible with the Jarzynski equality [10] and with the Crooks fluctuation
relation [11].

In the recent literature, one can find several attempts to calculate the work probability
density. Namely, Ritort presents the path integral representation of the work distribution
in the large ensemble of non-interacting two-state systems [12]. Later, these results have
been extended to the interacting mean-field systems beyond the two-state case [13, 14].
Moreover, the works [15]–[17] are focused on the calculation of the probability density
of the work which is being exerted on the long molecule during the pulling experiments.
Also the first measurements of the work (or entropy) probability density were made on
the real periodically driven two-level systems [18, 19].

In the present paper, the analysis will be sharply focused on the exact calculation of
the work probability density within two simple nontrivial settings. The main results are
equations (24)–(27) for the first model, and equations (49)–(52) for the second one. To
the best of our knowledge, these formulae are the first exact work probability densities
available in the literature. We believe that they can be helpful in the interpretation of
the above-mentioned experiments and also as benchmarks in testing computer simulations
within more complicated settings.

2. Work as a functional of the time-inhomogeneous Markov process

Consider a N -state system in contact with a thermal reservoir. Let the individual states
be characterized by their energies Ei, i = 1, . . . , N . At an arbitrary fixed time t, the
state of the system is specified by the occupation probabilities pi(t), i = 1, . . . , N of the
individual energy levels. In many experimentally important situations, the time evolution
of the system state is described as a Markov process and, consequently, the occupation
probabilities are governed by the Pauli master (or rate) equation [20]. The transition rates
in the equation depend on the bath temperature and on the external parameters which
influence the energy levels. Frequently, one focuses on the autonomous relaxation of the
system state in a given environment. Then the transition rates are time-independent.
However, in the context of the present paper, the external parameters will change in time.
Consequently, the energies Ei(t), i = 1, . . . , N , and therefore also the transition rates will
be time-dependent. The underlying Markov process will be a time inhomogeneous one.
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One possible probabilistic approach [21] to the analysis of a continuous time Markov
process consists in its decomposition into (i) the discrete time Markov chain and (ii) the
system of random points on the time axis. The transitions between the states of the
Markov chain occur just at the random instants. Usually, the time intervals between
the neighboring instants are taken as independent and exponentially distributed random
variables. We shall demonstrate below that such a decomposition is particularly well
suited for the calculation of certain functionals of the Markov process in question. Let us
now describe the main points of the decomposition procedure.

Let {Dn}∞n=0 be the conventional time inhomogeneous N -state Markov chain [22].
Usually, the random variables Dn, n = 0, 1, . . ., describe the state of the system at equally
spaced time instants. However, in anticipating the transition towards continuous time, we
assume that the nth transition occurs at the time tn, n = 0, 1, 2, . . ., and we designate the
random variables which form the chain as {D(tn)}∞n=0. Notice that the intervals (tn−tn−1),
n = 1, 2, . . ., are not necessarily of the same duration. We shall call the time instants tn
as the attempt times. If not stated otherwise, we assume t0 = 0.

An arbitrary fixed random variable D(tn) assumes the values from the state
space {di}N

i=1. The complete description of the Markov chain {D(tn)}∞n=0 requires the
specification of the initial condition and the prescription for the transition probabilities.
As for the initial condition, we must prescribe the probabilities pi(0) = 〈i|p(0)〉 =
Prob{D(0) = di}, i = 1, . . . , N . Here and below, we use the bracket notation for
the components of the probability vector. As for the transition probabilities, we must
define the sequence of the matrices K(tn), n = 1, 2, . . ., with the matrix elements
kij(tn) = 〈i|K(tn) |j〉 = Prob{D(tn) = di|D(tn−1) = dj}, i, j = 1, . . . , N . In other words,
kij(t) is the probability of the transition from the jth state to the ith one, provided the
transition occurs at the time t. The transition probabilities reflect the instantaneous
tendency to change the state. The specific way they depend on the time variable reflects
the driving scenario and it will be specified in section 3.

Having described the Markov chain, we now assume that the attempt times form a
random sequence {Tn}∞n=0 on the time axis. More precisely, we identify the attempt times
with the so-called Poisson points [23, 24]: the time intervals between the neighboring
attempt times are independent and exponentially distributed random variables. We
designate φ(t) = ν exp(−νt) the generic probability density for the inter-attempt times
(Tn − Tn−1), n = 1, 2, . . .. The parameter ν represents the mean frequency with which
the attempt times occur, i.e. 1/ν is the mean duration of the time interval between the
neighboring attempt times.

As mentioned above, the process which originates from allowing the state transitions
just at the random attempt times is a time inhomogeneous Markov process; we shall
designate it as D(t). We should be able to derive the dynamical equation for the occupation
probabilities 〈i|p(t)〉 = Prob{D(t) = di}, i = 1, . . . , N . More importantly for the present
paper, the construction allows for a transparent probabilistic description of the individual
sample paths (trajectories) of the process D(t). Let us make this idea quite explicit. We
designate as P (t, n; jn, jn−1, . . . , j1, j0; tn, tn−1, . . . , t1, t0)

∏n
k=1 dtk the probability of a path

including exactly n attempt times within the interval (0, t) which, moreover, evolves as
follows. It departs with probability 1 from the state dj0. The first attempt time is localized
within the time interval (t1, t1 + dt1). Having reached it, the trajectory jumps from the
state dj0 into the state dj1. Similar transitions occur at the attempt times localized in the
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infinitesimal intervals (tk, tk + dtk), k = 2, 3, . . . n. At the last attempt time, the state
variable jumps from the state djn−1 to the state djn. Afterwards, the trajectory remains
in the state djn up to the time t. The trajectory just described has been decomposed
into a sequence of individual events. For example, the probability that the path departs
from the state dj0 is pj(0). Further, the probability that the first attempt time occurs
within the infinitesimal time interval (t1, t1 + dt) is φ(t1) dt1. The probability of the first
transition dj0 → dj1 within the path is kj1j0(t1), and similarly for the other transitions.
Eventually, the probability that there occurs no further attempt time between tn and t is
f(t−tn) = 1−

∫ t−tn
0

φ(t′) dt = exp[−ν(t−tn)]. Collecting the probabilities of all individual
events, the probability of the whole trajectory is

P (t, n; jn, . . . , j0; tn, . . . , t0)

n∏

k=1

dtk = f(t − tn)

n∏

k=1

[kjkjk−1
(tk)φ(tk − tk−1) dtk]pj0(0). (1)

If n = 0, we take the empty product as unity.
Let us now consider all possible trajectories which depart with probability 1 from the

state dj and which, at time t, are found in the state di. The sum of the probabilities
of all such paths is simply the conditional probability Prob{D(t) = di|D(0) = dj}. We
abbreviate this expression as rij(t) and we introduce the (N ×N) matrix with the matrix
elements rij(t) = 〈i|R(t) |j〉. In other words, R(t) is the time-evolution operator for the
state probabilities in the sense that the state vector |p(t)〉 can be calculated by the simple
multiplication R(t) |p(0)〉. Considering simultaneously all N2 pairs of the initial and the
final states and summing up the probabilities of the paths, the evolution operator emerges
in the form

R(t) = f(t)I +

∞∑

n=1

∫ t

0

dtn . . .

∫ t2

0

dt1 f(t − tn)K(tn)φ(tn − tn−1)

× K(tn−1) . . . φ(t2 − t1)K(t1). (2)

The summation takes into account all possible numbers of attempt points within the
path. For an arbitrary fixed number n, the multiple integration incorporates all possible
localizations of the attempt times. Finally, the matrix multiplication after the integration
signs expresses the summation of all possible sequences of the transitions which occur
along the trajectories. The direct evaluation of the right-hand side in equation (2) would
be very difficult. However, if we first carry out its time derivative we get immediately the
Pauli master equation

d

dt
R(t) = −νL(t)R(t), R(0) = I, (3)

where L(t) = I−K(t). Summarizing the derivation up to this point, we have started with
the time inhomogeneous Markov chain, as described by the transition probabilities matrix
K(t), and with the system of Poisson points, as defined by the inter-point probability
density φ(t) = ν exp(−νt). After combining these two ingredients, we have arrived at the
Pauli master equation with the transition rates given by the elements of the matrix νL(t).

We now concentrate on the work done by an external agent along the above described
trajectory. In between the attempt times, the changes of the system state are, by their
very construction, excluded. The work is done on the system by changing its energy
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levels while the occupation of the states remains fixed [11]. For example, if the system
resides during the time interval (t1, t2) in the ith state, the work done on it during this
time interval is Ei(t2) − Ei(t1). Similarly, if the state evolves along the above described
trajectory, the work done on the system during the time interval (t0, t) is

W (t, n; jn, . . . , j0; tn, . . . , t0) = [Ejn(t) − Ejn(tn)] +
n∑

k=1

[Ejk−1
(tk) − Ejk−1

(tk−1)]. (4)

For an arbitrary fixed trajectory, equation (1) describes its probability and equation (4)
expresses the work attributed to this trajectory. These two expressions are needed to
perform an averaging over the trajectories. Symbolically, and more generally, if Z(t) is
any trajectory-dependent random variable, its mean value can be written as

〈Z(t)〉 =
∑

all trajectories

(
probability for

a fixed trajectory

)

×
(

the value of the variable
Z(t) for this trajectory

)

. (5)

For example, if we want to calculate the mean work 〈W(t)〉, we insert into the first bracket
on the right-hand side the expression (1) and into the second bracket the expression (4).
But our main goal is the probability density for the work ρ(w, t) = 〈δ(W(t) − w)〉. We
should therefore identify the random variable Z(t) in the above prescription with the
random variable δ(W(t) − w). However, due to computational reasons, instead of the
direct calculation of the probability density ρ(w, t), we will first calculate its Laplace
transformation with respect to the variable w. In other words, we shall first focus on the
mean value ρ(u, t) = 〈exp[−uW(t)]〉 and the starting point of its calculation assumes the
form

ρ(u, t) = 〈exp[−uW(t)]〉

=

∞∑

n=0

∫ t

0

dtn . . .

∫ t2

0

dt1

N∑

jn=1

. . .

N∑

j0=1

exp[−uW (t, n; jn, . . . , j0; tn, . . . , t0)]

× P (t, n; jn, . . . , j0; tn, . . . , t0). (6)

By pinning down the initial state and the final state, we can again treat separately N2

subgroups of the trajectories. We arrange the marginal averages over these subgroups
into the matrix G(u, t) with the matrix elements

gij(u, t) = 〈i|G(u, t) |j〉 = 〈exp[−uW(t)]〉(ij). (7)

The subscript (ij) in the last expression denotes the marginal average over all those
trajectories which depart from the state dj and which, at the time t, reside in the state
di.

We now insert the specific expression for the trajectory probabilities (cf the right-
hand side of equation (1)) and for the trajectory-dependent work (cf the right-hand side
of equation (4)) into equation (6). After a rather extensive rearrangement, we arrive at
the expression

G(u, t) = E(u, t)

[

f(t) +

∞∑

n=1

∫ t

0

dtn . . .

∫ t2

0

dt1 f(t − tn)M(u, tn)

× φ(tn − tn−1) . . . M(u, t1)φ(t1)

]

E
−1(u, 0). (8)
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Here we have introduced the diagonal matrices E(u, t) = exp[−uH(t)] and H(t) =
diag{E1(t), E2(t), . . . , EN (t)}. Further, the matrix M(u, t) denotes the product
E
−1(u, t)K(t)E(u, t). Similarly to equation (2), the individual terms in the summation

on the right-hand side of the last formula are the conditional averages, the condition
being a fixed number n of attempt times. The multiple integration takes into account all
possible localizations of the attempt times, and the matrix multiplication in the integrated
expression incorporates the summation over all possible sequences of the states.

In the next step, we perform the time derivation of the expression on the right-hand
side of equation (8). Choosing a suitable matrix norm, the sum on the right-hand side
converges and it can be derived term by term. Collecting all terms arising, the resulting
dynamical equation for the matrix G(u, t) is

d

dt
G(u, t) = −

[
uḢ(t) + νL(t)

]
G(u, t), G(u, 0) = I. (9)

The dot in the expression Ḣ(t) denotes the time derivation. The first term in the square
brackets represents the driving scenario, its form being dictated by the specific time
dependence of the state energies Ei(t), i = 1, . . . , N . The second term in the square
brackets expresses the transition scenario in the sense that it contains the instantaneous
values of the transition rates. In section 3, the two scenarios will be fully specified. Due
to the detailed balance condition, the transition scenario is coupled with the driving one.

The formal solution of equation (9) is obviously

G(u, t) = exp←

{

−u [H(t) − H(0)] − ν

∫ t

0

L(t′) dt′
}

, (10)

with exp← designating the time-ordered exponential [25]. On the other hand, the explicit
solution of the system (9) represents a nontrivial mathematical problem and we discuss
it in section 3. Assuming we have the solution, the inverse Laplace transformation of
the matrix elements gij(u, t) = 〈i|G(u, t) |j〉 with respect to the variable u yields the
probability density for the random variable W(t). Actually, the density ρ(w, t) is connected
with the matrix G(w, t) through the simple formula

ρ(w, t) =
N∑

i,j=1

〈i|G(w, t) |j〉 〈j| p(0)〉. (11)

Let us now turn our attention to another quantity which characterizes the time
inhomogeneous Markov process in question. Namely, we focus on the so-called occupation
times for the individual states. Let us fix a state, say the kth one, and consider the
random variable

T(k)(t) =

∫ t

0

Ξ(D(t′) − dk) dt′. (12)

Here the indicator function Ξ(x) equals unity for x = 0 and vanishes for x �= 0. Hence
T(k)(t) is the time the system resides in the kth state during the time interval (0, t). The
occupation times T(k)(t), k = 1, 2, . . . , N , are random variables and we are interested in
their probability densities ψ(k)(s, t) = 〈δ(T(k)(t)−s)〉. Within our scheme, their calculation
proceeds along similar lines, as above.
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Namely, for an arbitrary fixed path as described before equation (1), we first write
the path-dependent occupation time of the kth state in the form

T (k)(t, n; jn, . . . , j0; tn, . . . , t0) = (t − tn) δjn,k +

n∑

m=1

(tm − tm−1) δjm−1,k. (13)

The probability of the individual trajectory is still given by equation (1). We have
now both ingredients required in the averaging prescription (5). Instead of the direct
calculation of the density ψ(k)(s, t), we focus on its Laplace transformation with respect
to the variable v. The transformed function will be designated as ψ(k)(v, t). Therefore, the
role of the random variable Z(t) in equation (5) is presently played by the random variable
exp[−vT(k)(t)]. We again build up the matrix F

(k)(v, t) with the matrix elements given
as the marginal averages over the subgroups of trajectories with the pinned down initial
and final states. Repeating the step before equation (9), the final dynamical equation for
the matrix F

(k)(v, t) is

d

dτ
F

(k)(v, t) = −
[
vQ

(k) + νL(t)
]

F
(k)(v, t), F

(k)(v, 0) = I. (14)

Here Q
(k) = |k〉 〈k|, i.e. 〈i|Q(k) |j〉 = δikδjk, i, j = 1, 2, . . . , N . Finally, assuming we can

solve this matrix equation, the inverse Laplace transformation of the matrix F
(k)(v, t) with

respect to the variable v leads to the probability density ψ(k)(s, t) = 〈δ(T(k)(t) − s)〉. In
this step, we use the formula

ψ(k)(s, t) =
N∑

i,j=1

〈i|F(k)(s, t) |j〉 〈j| p(0)〉. (15)

Before closing this section we wish to add some comments concerning the Jarzynski
equality [1, 10, 11, 26]. It is usually stated in the form 〈exp[−βW(t)] 〉 = exp{−β[F (t) −
F (0)]}, where F (t) and F (0) are the Helmholtz free energies which correspond to the final
and initial equilibrium states. The fixed energies which define the properties of the final
and the initial equilibrium states are equal to the driven energies Ei(t), i = 1, . . . , N , at
the initial time t = 0 (for the initial equilibrium state), and at the final time t (for the
final equilibrium state). The initial state for the non-equilibrium evolution is the Gibbs
equilibrium state defined by the initial values Ei(0). Within our scheme, after explicit
calculation of the free energies required, Jarzynski’s relation assumes the form

〈+|G(β, t)|π(0)〉 =

∑N
i=1 exp[−βEi(t)]

∑N
i=1 exp[−βEi(0)]

=
Z(t)

Z(0)
. (16)

Here |+〉 represents the vector with all elements equal to unity and Z(t) =
∑N

i=1 exp[−βEi(t)] denotes the partition function corresponding to the actual energies
at the time instant t. The vector |π(0)〉 represents the initial equilibrium state. We can
write it in the form |π(0)〉 = E(β, 0)|+〉/Z(0). On the whole, we are to prove the relation
〈+|G(β, t)E(β, 0)|+〉 = 〈+|E(β, t)|+〉.

Starting the proof, we first notice that every summand in the n expansion of the
operator G(β, t) in equation (8) ends with the matrix E

−1(β, 0). Hence we should focus
on the column vector M(β, t)|+〉. After a short analysis, the vector exhibits an important
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property

M(β, t)|+〉 = |+〉 ⇐⇒ kij(t) exp[−βEj(t)] = kji(t) exp[−βEi(t)],

i, j = 1, . . . , N. (17)

The condition on the right-hand side of the equivalence is the (time local) detailed-balance
condition. The equivalence is valid for an arbitrary driving scenario, i.e. for arbitrary
forms of the state energies Ei(t), i = 1, . . . , N . Therefore, assuming the detailed-balance
condition holds, we can write

G(β, t)E(β, 0)|+〉 = E(β, t)|+〉
{

f(t) +

∫ t

0

dt1 f(t − t1)φ(t1)

+

∫ t

0

dt2

∫ t2

0

dt1 f(t − t2)φ(t2 − t1)φ(t1) + · · ·
}

. (18)

Using the Laplace transformation, we can sum up the series in the curly brackets. The
sum equals unity. This concludes the proof of Jarzynski’s equality within our N -level
setting.

The assertion that the curly bracketed expression in equation (18) is equal to 1 holds
true not only for the Poisson renewal process. In fact, it is valid for any renewal [21].
Similarly, the n expansion of the operator G(u, t), which has been used in the proof, is
valid for an arbitrary renewal. Notice, however, that if the renewal process in question
differs from the Poisson process, the resulting process D(t) is not a Markovian one. In this
case, our proof provides an example of a non-Markovian time-nonhomogeneous dynamics
for which Jarzynski’s equality still keeps its validity.

Summing up the section, we have derived the dynamical equation for the Laplace
transformation of the probability density of two physically important quantities. The
solution of equation (9) yields, through the inverse Laplace transformation with respect
to the variable u, the probability density ρ(w, t) for the work done on the system by the
external agent. Similarly, the solution of equation (14) leads, through its inverse Laplace
transformation with respect to the variable v, to the probability density ψ(k)(s, t) for the
occupation time of the kth state.

3. The explicit solution for two transition scenarios

One of the principal motivations behind the present paper has been a comparison of the
exact work probability density in two fairly analogous models. First, in both models,
we consider only two states, i.e. N = 2. Second, the driving scenarios for both models
coincide. Namely, we assume the linear driving regime with the state energies E1(t) = εωt
and E2(t) = −εωt. Hence the energies coincide at t0 = 0 and then their difference
increases linearly with time, the velocity of the increase being measured by the parameter
εω. The energy difference reaches the value 2ε at the time 1/ω. Thus 1/ω settles one
of the two principal timescales, the other being the mean time interval between the
attempt times 1/ν. Third, in both models, we assume that the system departs from
the Gibbs equilibrium. Hence the initial occupation probabilities of the two states are
equal, pi(0) = 1

2
, i = 1, 2.
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On the other hand, the two models in question differ in their transition scenarios. In
order to make this point explicit, let us return to the Pauli master equation (3). In the
present context, it assumes the form

d

dt
R(t) = −ν

(
l1(t) −l2(t)
−l1(t) l2(t)

)

R(t), R(0) = I, (19)

where the functions l1(t) and l2(t) are given by the transition probabilities for the Markov
chain, li(t) = 1 − kii(t), i = 1, 2. We shall specify them below. Differently speaking, the
two time-dependent transition rates in the Pauli master equation are λi(t) = νli(t).

Due to our assumption of having only two levels, the Pauli master equation can be
solved for arbitrary functions l1(t) and l2(t), i.e. for arbitrary transition rates λ1(t) and
λ2(t). The solution is [8]

R(t) = I − 1
2

(
1 −1
−1 1

) {

1 − exp

[

−
∫ t

0

dt′ γ+(t′)

]}

+ 1
2

(
−1 −1
1 1

) ∫ t

0

dt′ exp

[

−
∫ t

t′
dt′′γ+(t′′)

]

γ−(t′), (20)

where γ±(t) = λ1(t) ± λ2(t).
Imagine that the state energies are suddenly frozen at their instantaneous values. The

system is in contact with the thermal environment and hence the following relaxation
process must bring the system towards the equilibrium state. Moreover, the ensuing
equilibrium must be compatible with the fixed values of the energies. This requirement
can be translated into the (time local) detailed balance condition [11, 15]. Namely, the
two transition rates λ1(t) and λ2(t) are no longer independent. They must comply with
the relation λ1(t) exp[−βE1(t)] = λ2(t) exp[−βE2(t)], where β = 1/(kBT ) and T is the
absolute temperature of the thermal environment. Therefore, what remains to be fixed is
just one of the two functions l1(t), l2(t).

Let us now incorporate the assumptions made up to this point into the dynamical
equation (9). We can write it as

d

dt
G(u, t) = −

[

uεω

(
+1 0
0 −1

)

+ νl1(t)

(
+1 −e−2βεωt

−1 +e−2βεωt

)]

G(u, t),

G(u, 0) = I. (21)

This form motivates a convenient dimensionless variable to be used in the following
calculation. First of all, we introduce the dimensionless time τ = 2βεωt. Further, instead
of the variable u in the direct Laplace transformation G(u, t), we shall use the variable
s = u/(2β). This means that the dimensionless work variable will be η = 2βw. If we divide
equation (21) by the expression 2βεω we get the matrix equation for the reduced matrix

G̃(s, τ) = G(u/(2β), 2βεωt). The inverse Laplace transformation of the matrix G̃(s, τ)

with respect to the variable s will be designated as G̃(η, τ). The original matrix G(w, t) is

then related to the reduced one G̃(η, τ) through the formula G(w, t) = 2βG̃(2βw, 2βεωt).
During the reduction procedure, there occurs an important combination of the model
parameters a = ν/(2βεω). This dimensionless parameter will play a crucial role in the
following calculation. It measures the temperature reduced ratio of the two timescales
mentioned above. From a different perspective, the single parameter a will control the
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degree of irreversibility of the resulting isothermal process. If it is small, the ensuing
process departs substantially from the equilibrium one. We shall return to this point in
the last section.

3.1. Metropolis scenario: l1(τ) = 1

As mentioned above, our construction must be completed by the explicit form of the
transition probabilities l1(τ), l2(τ), or, equivalently, by the explicit prescription for the
transition rates λ1(τ) and λ2(τ) in the Pauli master equation (21). Our first choice is
inspired by the idea that is widely used in the Monte Carlo simulations. Namely, we adopt
the well-known Metropolis algorithm. While residing in the state with the higher energy,
the system jumps with probability 1 to the state with the lower energy, whenever there
occurs a possibility to do so. Translated into our construction, we simply take l1(τ) = 1 for
all τ . This assumption, together with the detailed balance condition, already dictates the
transition probability for the transition from the energetically lower state to the higher
one. Namely, we have l2(τ) = e−τ . In words, the probability to leave the lower state
exponentially decreases with the increasing energy difference. This specific choice of the
transition probabilities will be henceforward referred to as the Metropolis scenario.

Upon the direct substitution of the transition rates into equation (20) we obtain the
explicit form of the occupation probabilities. Actually, the solution of the Pauli master
equation is

R(τ) = I − 1
2

(
1 −1
−1 1

)

[1 − e−a(1+τ−e−τ )]

+
a

2

(
−1 −1
1 1

) ∫ τ

0

dτ ′e−a(τ−τ ′−e−τ+e−τ ′ ) (1 − e−τ ′
). (22)

Here the definite integral cannot be written in a closed form, but, if needed, it can be
evaluated numerically. Intuitively, the upper state gradually becomes depleted and the
occupation probability of the lower one approaches unity.

Let us now focus on the dynamical equation (21). Incorporating the present form of
the transition probabilities, it assume the form

d

dτ
G̃(s, τ) = −

[

s

(
1 0
0 −1

)

+ a

(
1 −e−τ

−1 e−τ

)]

G̃(s, τ), G̃(s, 0) = I. (23)

Hence we are faced with two independent systems of two coupled equations for the
individual matrix elements. The solution of the two systems and the subsequent
inverse Laplace transformation with respect to the variable s represent an interesting
mathematical problem. Reference [27] describes its solution in full detail. Therefore we
confine ourselves just to the translations of the results as obtained in [27] into our present

setting. The explicit form of the individual matrix elements of the matrix G̃(η, τ) is

g̃11(η, τ) = δ(τ − η)e−aτ +
a2

2
Θ(τ + η)Θ(τ − η)

× e−ax−(1 − x+)a x+(1 − x−) 1F1(a + 1; 2; ϕ(η, τ)), (24)

g̃21(η, τ) =
a

2
Θ(τ + η)Θ(τ − η) e−ax−(1 − x+)a

1F1(a + 1; 1; ϕ(η, τ)), (25)
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g̃12(η, τ) =
a

2
Θ(τ + η)Θ(τ − η) e−ax−(1 − x+)a (1 − x−) 1F1(a; 1; ϕ(η, τ)), (26)

g̃22(η, τ) = δ(τ + η) exp
[
−a

(
1 − e−τ

)]

+
a2

2
Θ(τ + η)Θ(τ − η) e−ax−(1 − x+)a x− 1F1(a + 1; 2; ϕ(η, τ)) . (27)

Here 1F1(α, β; z) denotes the Kummer function [31] of the variable z with the parameters
α, and β. Further, x± are two functions of two variables defined as x± = x±(η, τ) =
1 − exp(−(τ ± η)/2). Finally, in the formulae (24)–(27), the variable of the Kummer
function is another function of two variables, namely

ϕ(η, τ) = a x+x− = a(1 − e−(τ+η)/2)(1 − e−(τ−η)/2). (28)

Using the formulae (24)–(27) in equation (11), we get the explicit expression for the
reduced work probability density. Provided a equals a positive integer, the Kummer
functions reduces to the product of a polynomial and the exponential function. In this
case, the formulae (24)–(27) assume a considerably simpler form. For example, if a = 1,
the reduced probability density is

ρ̃(η, τ) = 1
4
δ(τ + η) exp

[
−(1 − e−τ )

]
+ 1

4
δ(τ − η) e−τ + 1

4
Θ(τ + η)Θ(τ − η)

× exp
[
e−τ − e−(τ+η)/2

]
e−(τ+η)/2

(
3 − e−(τ+η)/2

)
. (29)

In fact, this function equals one-half of the sum of the matrix elements (24)–(27). We
postpone further discussion of the Metropolis scenario to the last section.

3.2. Heat-bath scenario: l1(τ) = [1 + exp(−τ)]−1

While doing Monte Carlo simulations on, for example, spin systems [30], one frequently
adopts the so-called heat-bath algorithm. This algorithm has motivated our second
choice for the transition probabilities. Namely, in this subsection, we assume l1(τ) =
[1 + exp(−τ)]−1 and, as follows from the detailed balance condition, l2(t) = exp(−τ)[1 +
exp(−τ)]−1. Therefore the jumps out of the energetically upper state are no longer a
certain event. However, the probability to leave it increases with the increasing energy
difference between both states. Adopting these forms of the transition probabilities, we
shall speak about the heat-bath scenario. Within the scenario, our setting is equivalent to
that of [28] where the authors have carried out an extensive series of computer simulations.
In a sense, our present work constitutes a rigorous basis for the results in [28].

We start with inserting the present heat-bath transition probabilities into
equation (20). Hence, at present, the solution of the Pauli master equation is

R(τ) = I − 1

2

(
1 −1
−1 1

)
[
1 − e−aτ

]
+

a

2

(
−1 −1
1 1

) ∫ τ

0

dτ ′e−a(τ−τ ′) tanh

(
τ ′

2

)

. (30)

As for the time asymptotic behavior of the occupation probabilities, we again observe
the complete evacuation of the energetically upper state. However, the dynamics of the
depletion process differs from that in the preceding subsection.
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Further, in the present context, the dynamical equation (21) assumes the form

d

dτ
G̃(s, τ) = −

[

s

(
1 0
0 −1

)

+
a

1 + e−τ

(
1 −e−τ

−1 e−τ

)]

G̃(s, τ), G̃(s, 0) = I. (31)

Again, we are to solve the underlying system of equations for the individual matrix
elements and carry out their inverse Laplace transformation with respect to the variable
s. The rest of this subsection is devoted to these two tasks.

We commence with the substitution F̃(2s, τ) = e−sτ
G̃(s, τ) which yields the dynamical

equation

d

dτ
F̃(s, τ) = −

[

s

(
1 0
0 0

)

+
a

1 + e−τ

(
1 −e−τ

−1 e−τ

)]

F̃(s, τ), F̃(s, 0) = I (32)

for the unknown matrix F̃(s, τ). Again, the matrix equation splits into two independent
systems of two coupled ordinary differential equations. Let us first consider the second
pair, i.e.

d

dτ
f̃12(s, τ) = −a

1

1 + e−τ
f̃12(s, τ) + a

e−τ

1 + e−τ
f̃22(s, τ) − sf̃12(s, τ),

f̃12(s, τ)
∣
∣
∣
τ=0

= 0, (33)

d

dτ
f̃22(s, τ) = a

1

1 + e−τ
f̃12(s, τ) − a

e−τ

1 + e−τ
f̃22(s, τ),

f̃22(s, τ)
∣
∣
∣
τ=0

= 1. (34)

Let us now carry out the three following steps. First, we multiply equation (33) by the
expression (1 + e−τ ) and we carry out the direct Laplace transformation in the variable
τ on both sides of the resulting equation. The Laplace variable conjugated to τ will be

denoted as z. During this step, the product e−τ f̃22(s, τ) is transformed into f̃22(s, z + 1).

Similarly, the product e−τ f̃12(s, τ) transforms into f̃12(s, z + 1). Secondly, we want to

eliminate the unknown function f̃22(s, z). For this purpose, one could use the Laplace
transformation of equation (34). Instead of that, and perhaps more conveniently, one can
first sum the original equations (33), (34) and carry out the direct Laplace transformation

of the emerging sum. In this way, we get the relation (z + s)f̃12(s, z) + zf̃22(s, z) = 1.

Finally, in the third step, we use the last relation to eliminate the function f̃22(s, z) from
the equation obtained in the first step. On the whole, we arrive at the single difference

equation for the function f̃12(s, z). It is

f̃12(s, z) +
(z + a + 1)(z + s + 1)

(z + 1)(z + s + a)
f̃12(s, z + 1) =

a

(z + 1)(z + s + a)
. (35)

Similar equations emerge if we replace on both sides of this equation the variable z with
z + n, n = 1, 2, 3, . . .. Hence we arrive at an infinite system of linear algebraic equations

for the functions f̃12(s, z + n), n = 0, 1, . . .. The system can be rewritten in the matrix
form, the matrix of the coefficients having the nonzero matrix elements just on the main
diagonal and above it. Using standard algebraic methods, we solve the infinite system
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and the functions f̃12(s, z) emerge in the form

f̃12(s, z) = a

∞∑

n=0

(−1)n (s + z + 1)n

(s + z + a)n+1

(z + a + 1)n

(z + 1)n+1
. (36)

Here and below, (z)n = z(z +1)(z +2) . . . (z +n−1) is the Pochhammer symbol [31]. We
have to find the double inverse Laplace transformation of this function.

In order to accomplish the goal, we introduce an important auxiliary function

H(a; s, z) =

∞∑

n=0

(−1)n (s + b)n

(s)n+1

(z + a)n

(z)n+1
, (37)

where b = 1 − a (i.e. the function possesses just one independent parameter). Its
fundamental role stems from the following two observations. First, we have succeeded
in calculating the double inverse Laplace transformation of the function (37). This
calculation is presented in the appendix, the result being

H(a; η, τ) = Θ(η)Θ(τ)
1

(1 + e−η)a

1

(1 + e−τ )1−a 2F1

(

a, 1 − a; 1;−1 − e−η

1 + e−η

1 − e−τ

1 + e−τ

)

. (38)

Here Θ(η) is the unit step function, and 2F1(α, β; γ; z) denotes the Gauss hypergeometric
function [33] of the variable z and with the parameters α, β and γ. Second, as follows
from the comparison of equations (36) and (37), we have that

f̃12(s, z) = aH(a; s + z − b + 1, z + 1), (39)

and hence also the double inverse Laplace transformation of the function f̃12(s, z) must
be related to the double inverse Laplace transformation of the function H(a; s, z). Let
us particularize their relation. We first carry out the inverse Laplace transformation of
the function H(a; s + z − b + 1, z + 1) with respect to the variable s. The result is
exp[−η(z−b+1)] H(a; η, z+1). Thereupon, we perform the inverse Laplace transformation
with respect to the variable z. In this step, the function H(a; η, z+1) will be inverted into
exp(−τ)H(a; η, τ) and the exponential factor exp(−ηz) induces the shift in the original

variable τ . Summing up, the functions f̃12(η, τ) and H(a; η, τ) are related through the
formula

f̃12(η, τ) = ae−(a−1)ηe−τH(a; η, τ − η). (40)

Eventually, making use of the explicit form (38), we have that

f̃12(η, τ) = Θ(η)Θ(τ − η)
a e−aηe−(τ−η)

(1 + e−η)a(1 + e−(τ−η))1−a 2F1(a, 1 − a; 1; ψ(η, τ)). (41)

Here we have introduced the abbreviation ψ(η, τ) = −(1− e−η)(1− e−(τ−η))[(1 + e−η)(1 +
e−(τ−η))]−1.

Let us now turn our attention to the matrix element f̃22(η, τ). It is coupled with

the matrix element f̃12(η, τ) through the system of equations (33) and (34). We now
use the standard rules [32] of the operational calculus and carry out the inverse Laplace
transformation with respect to the variable s on both sides of equation (33). After this
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step, we obtain

f̃22(η, τ) =
1 + e−τ

a e−τ

[
∂

∂τ
f̃12(η, τ) +

∂

∂η
f̃12(η, τ)

]

+ eτ f̃12(η, τ). (42)

In the next step, it suffices to insert the above explicit form (41) and carry out the partial
derivatives required. Notice that the partial derivative of the unit step function produces
a term proportional to the Dirac δ-function, cf the first term on the right-hand side of
equation (43) below. After a rather extensive algebraic manipulation, the result assumes
the form

f̃22(η, τ) = δ(η)

(
1 + e−τ

2

)a

+ Θ(η)Θ(τ − η)
a e−aη(1 − e−(τ−η))

(1 + e−η)a+1(1 + e−(τ−η))1−a

×
[

2F1(a, 1 − a; 1; ψ(η, τ)) − 2(1 − a)(1 + e−τ )

(1 + e−η)(1 + e−(τ−η))

× 2F1(1 + a, 2 − a; 2; ψ(η, τ))

]

. (43)

Now we focus on the second pair of coupled equations that emerge from equation (32),
namely

d

dτ
f̃11(s, τ) = −a

1

1 + e−τ
f̃11(s, τ) + a

e−τ

1 + e−τ
f̃21(s, τ) − sf̃11(s, τ),

f̃11(s, τ)
∣
∣
∣
τ=0

= 1, (44)

d

dτ
f̃21(s, τ) = a

1

1 + e−τ
f̃11(s, τ) − a

e−τ

1 + e−τ
f̃21(s, τ),

f̃21(s, τ)
∣
∣
∣
τ=0

= 0. (45)

Except for the initial conditions, this system is identical to the system (33) and (34).
Hence its solution will proceed along the same steps as above and we restrict ourselves
to the main results. We carry out the direct Laplace transformation with respect to the

variable τ and eliminate the unknown function f̃11(s, z). Further, we compose the infinite

system of algebraic equations for f̃21(s, z + n), n = 0, 1, . . ., its solution yielding

f̃21(s, z) = a
∞∑

n=0

(−1)n (s + z)n

(s + z + a)n+1

(z + a + 1)n

(z)n+1
= aH(a + 1; s + z + a, z). (46)

Next, we perform the double inverse Laplace transformation of the expression (46) and

we arrive at the relation f̃21(η, τ) = ae−aηH(a + 1; η, τ − η), with the auxiliary function
H(a; η, τ) being given in equation (38). The final result of the whole procedure is

f̃21(η, τ) = Θ(η)Θ(τ − η)
a e−aη

(1 + e−η)a+1(1 + e−(τ−η))−a 2F1(1 + a,−a; 1; ψ(η, τ)). (47)

Finally, consider the remaining matrix element f̃11(η, τ). We start with equation (45) and
we carry out the inverse Laplace transformation with respect to the variable s. We obtain
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a relation which interconnects the functions f̃11(η, τ) and f̃21(η, τ). Using the relation and
the explicit form (47), we finally obtain

f̃11(η, τ) = δ(τ − η)

(
2e−τ

1 + e−τ

)a

+ Θ(η)Θ(τ − η)
a e−aηe−(τ−η)(e−η − 1)

(1 + e−η)a+1(1 + e−(τ−η))1−a

×
[

2F1(a + 1,−a; 1; ψ(η, τ)) − 2(a + 1)(1 + e−τ )

(1 + e−η)(1 + e−(τ−η))

× 2F1(a + 2, 1 − a; 2; ψ(η, τ))

]

. (48)

The matrix elements (41), (43), (47) and (48) constitute the matrix F̃(η, τ). We

now consider the above introduced relation F̃(2s, τ) = e−sτ
G̃(s, τ) and perform therein

the inverse Laplace transformation with respect to the variable s. We obtain G̃(η, τ) =
1
2
F̃((τ + η)/2, τ). In other words, the simple substitution brings us to the final form of the

matrix elements g̃ij(η, τ), i, j = 1, 2. Thus the closing result of the present subsection is

g̃11(η, τ) = δ(τ − η)

(
2e−τ

1 + e−τ

)a

+
1

2
Θ(τ + η)Θ(τ − η)

× a e−a(τ+η)/2e−(τ−η)/2(e−(τ+η)/2 − 1)

(1 + e−(τ+η)/2)a+1(1 + e−(τ−η)/2)1−a

[

2F1(a + 1,−a; 1; φ(η, τ))

− 2(1 + a)(1 + e−τ )

(1 + e−(τ+η)/2)(1 + e−(τ−η)/2)
2F1(a + 2, 1 − a; 2; φ(η, τ))

]

, (49)

g̃21(η, τ) =
1

2
Θ(τ + η)Θ(τ − η)

a e−a(τ+η)/2

(1 + e−(τ+η)/2)a+1(1 + e−(τ−η)/2)−a

× 2F1(a + 1,−a; 1; φ(η, τ)), (50)

g̃12(η, τ) =
1

2
Θ(τ + η)Θ(τ − η)

a e−a(τ+η)/2e−(τ−η)/2

(1 + e−(τ+η)/2)a(1 + e−(τ−η)/2)1−a

× 2F1(a, 1 − a; 1; φ(η, τ)), (51)

g̃22(η, τ) = δ(τ + η)

(
1 + e−τ

2

)a

+
1

2
Θ(τ + η)Θ(τ − η)

× a e−a(τ+η)/2(1 − e−(τ−η)/2)

(1 + e−(τ+η)/2)a+1(1 + e−(τ−η)/2)1−a
×

[

2F1(a, 1 − a; 1; φ(η, τ))

− 2(1 − a)(1 + e−τ )

(1 + e−(τ+η)/2)(1 + e−(τ−η)/2)
2F1(a + 1, 2 − a; 2; φ(η, τ))

]

. (52)

Here we used the abbreviation

φ(η, τ) = −1 − e−(τ+η)/2

1 + e−(τ+η)/2

1 − e−(τ−η)/2

1 + e−(τ−η)/2
. (53)

Again, for a being an integer, the hypergeometric function reduces to a polynomial and
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the above formulae simplify. For example, if a = 1, the reduced probability density is

ρ̃(η, τ) = δ(τ − η)
e−τ

(1 + e−τ )
+ δ(τ + η)

1

4(1 + e−τ )

+ Θ(τ + η)Θ(τ − η)
e−(τ+η)/2(1 + e−τ )

(1 + e−(τ+η)/2)3
. (54)

Similarly to equation (29), this function equals one-half of the sum of the matrix elements
(49)–(52).

4. Discussion

Figure 1 presents a representative set of various possible forms of the work probability
density ρ̃(η, τ). Each panel shows the exact work probability density for both scenarios as
discussed in sections 3.1 and 3.2. All curves refer to the reduced time τ = 1. Individual
panels correspond to the four different values of the driving parameter a.

The exact expression for the work probability density yields all one-time properties
of the stochastic process W(t). For example, all moments 〈Wn(t)〉, n = 1, 2, . . ., are
accessible through a single integration. Specifically, in the present section, we shall look
at the reduced mean value w̃mean(τ) and at the reduced variance σ̃2(τ). They are defined
as

w̃mean(τ) =

∫ τ

−τ

η ρ̃(η, τ) dη, (55)

σ̃2(τ) =

∫ τ

−τ

η2 ρ̃(η, τ) dη − w̃2
mean(τ). (56)

As pointed out at the beginning of section 3, there is just one dimensionless parameter
which controls all features of the dimensionless probability density. It is the driving
parameter a = ν/(2βεω). It represents the ratio of two characteristic timescales. The
first timescale 1/ν plays the role of the system’s relaxation time in case the energy levels
would have been frozen. The second timescale 1/(εω) represents the velocity with which
the external agent changes the energies of the system. Contrary to the first scale, the
second one is fully under external control. Moreover, the driving parameter is proportional
to the absolute temperature of the heat bath. It turns out that the driving parameter
reflects the degree of the irreversibility of the isothermal process in question.

If a is small, the process strongly departs from the equilibrium one. This can happen
if one or more of the following three conditions hold. First, if ν is small, the occupation
probabilities of the individual energy levels are effectively frozen during long periods of
time. Therefore they lag behind the Boltzmann distribution which would correspond to
the actual position of the energy levels. More precisely, the population of the energetically
higher (lower) level is always, i.e. at any instant, bigger (smaller) than it would be during
the corresponding reversible process. The work done on the system is then typically
bigger than the equilibrium work. Second, similar consideration is valid in the case of
large ω. Then the externally controlled changes of the energy levels are rapid and the
populations of the energy levels again lag behind the equilibrium one. Third, the strong
irreversibility occurs also in the low temperature limit. Depending on the interpretation
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(a)

(c) (d)

(b)

Figure 1. Comparison of the reduced probability density of work ρ̃(η, τ ) for the
two transition scenarios. The density is illustrated as a function of the reduced
work η, for the reduced time τ = 1, and for four values of the driving parameter
a. The full lines depict the work probability density for the Metropolis scenario,
i.e. they represent one-half of the sum of the individual elements (24)–(27).
Similarly, the broken lines depict the results of section 3.2, i.e. they represent
one-half of the sum of the elements (49)–(52). The weights of the δ functions
on the borders of the support, i.e. at the points η = −τ and τ , are depicted by
the arrows. The heights of these arrows show the weights of the corresponding
δ functions. The full heads belong to the Metropolis scenario, while the empty
heads are related to the heat-bath scenario. In all panels, the arrow inside the
support of the probability density marks the value of the reversible work w̃rev(τ)
(the height of this arrow has no meaning). The values of the driving parameter
used in the individual panels are (a) a = 0.2, (b) a = 1.0, (c) a = 5.0 and
(d) a = 35.0.

of the parameter a, the decreasing temperature either increases the effective relaxation
time, or increases the effective velocity of the driving.

If a is large, the process is close to the reversible one. The occupation probabilities
of the individual energy levels are always, i.e. at any instant, close to the equilibrium
values which would correspond to the actual positions of the energies. Correspondingly,
the mean work is close to the equilibrium work. It has been shown in [29] that, if the
general process approaches its equilibrium limit, the work probability density assumes the
Gaussian shape. The statement has been fully confirmed here. If a � 1, the reduced
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work probability density approaches the form

ρ̃(η, τ) =
1

√
2πσ̃2(τ)

exp

{

− [η − w̃mean(τ)]2

2σ̃2(τ)

}

, (57)

where the functions w̃mean(τ) and σ̃2(τ) are given by the expressions (55) and (56),
respectively. We were not able to derive the form (57) analytically, i.e. using a suitable
asymptotic expansion of our exact results. Instead, using the numerical quadrature, we
have first evaluated the moments (55) and (56). Next, we have inserted the results into the
right-hand side of the expression (57). Eventually, the emerging trial function has been
compared with the exact probabilities for both transition scenarios. Provided a is large,
the trial function coincides with the exact ones. We illustrate this feature in panel 1(d),
where the driving parameter a assumes the value 35.

Contrary to the above asymptotic expansion, we were able to carry out the limit
a → ∞, the result being

lim
a→∞

ρ̃(η, τ) = δ
(
η + 2 log

(
cosh

τ

2

))
. (58)

Therefore, as anticipated, the density collapses into the δ function located at the value
−2 log[cosh(τ/2)]. The value is, of course, nothing but the reversible work. This can
be proved by the explicit evaluation of the Helmholtz free energies corresponding to the
equilibrium state compatible with the energy levels at the final time τ , and at the initial
time τ = 0.

Let us consider another interesting feature of the work probability density ρ̃(η, τ).
In general, the density consists of two qualitatively different components. First, the
singular component is represented by the two δ functions located at η = ±τ . Second, the
continuous component is located in the interval 〈−τ, τ〉. For both transition scenarios,
the weight of the δ function located at η = τ vanishes in the long-time limit. In fact,
the weight represents the probability that the system was initially in the state 1 and
remains there during the whole time interval 〈0, τ〉. On the other hand, the weight of
the δ function located at η = −τ asymptotically approaches the value e−a/2 for the
Metropolis scenario, and the value 2−(a+1) for the heat-bath scenario. Similarly as above,
these weights represent the probability that the system starts in the state 2 and remains
there up to time τ . The weights of both δ functions for the heat-bath scenario were
already reported in [28] under the assumption of a fast driving, i.e. for a being small.
Our calculation verifies these results. Moreover, we show that the values are valid for an
arbitrary value of the driving parameter a. Summing up, the singular component stems
from encompassing the sample paths that have never jumped out of their initial state.
On the other hand, the trajectories that have accomplished at least one jump before the
time τ contribute to the continuous component of the probability density.

Now we turn our attention to the time-asymptotic behavior of the work probability
density. In the long time limit, the energy difference between the two energy levels
becomes large. Therefore l1(τ) → 1 and the transition from the higher level to the
lower one occurs at almost any attempt time. On the other hand, l2(τ) → 0 and the
transitions from the lower level to the higher one are effectively blocked. In other words,
in the asymptotic regime, the system occupies practically only the energetically lower
state (state 2) and consequently the work done per unit of reduced time is −τ . Hence for
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Figure 2. The violation factor χ∞(a) as a function of the driving parameter a.
The calculation has been based on equation (59) where the integrated function
ρ̃(η, τ) equals one-half of the sum of the matrix elements (24)–(27) (full curve),
or the matrix elements (49)–(52) (broken curve).

an arbitrary but finite reduced time τ ′ and for τ → ∞ we have ρ̃(η, τ + τ ′) ≈ ρ̃(η + τ ′, τ).
Similar reasoning yields a time asymptotic evolution of the mean work. Specifically,
w̃mean(τ + τ ′) ≈ w̃mean(τ) − τ ′.

As mentioned above, the second law of thermodynamics assesses the lower limit of
the work done on the system during a general isothermal process. In our setting, the
bound assumes the form w̃mean(τ) ≥ w̃rev(τ). The equality holds for the equilibrium
isothermal process. On the other hand, in our model the work along a certain number
of sample paths is smaller than the reversible work (see figure 1). One could ask what
is the total weight of these sample paths. In other words, one considers the quantity

χ(τ ; a) = Prob{W̃(τ) < w̃rev(τ)}. Its asymptotic value χ∞(a) = limτ→∞ χ(τ ; a) depends
solely on the driving parameter a and it will be referred to as the violation factor. Formally,
the violation factor can be calculated as

χ∞(a) = lim
τ→∞

χ(τ ; a) = lim
τ→∞

∫ w̃rev(τ)

−τ

ρ̃(η, τ) dη. (59)

If a = 0 there are no transitions between the energy levels and therefore all the trajectories
that contribute to χ(τ, a) or to χ∞(a) are those that have initially departed from the state
1. Obviously, this set of trajectories has the total probability p1(0) = 1

2
, and therefore

lima→0+ χ∞(a) = 1
2
. On the other hand, if a � 1, the probability density assumes the

Gaussian shape (57) and the mean work approaches the reversible work. It follows from the
symmetry of the Gaussian curve that lima→∞ χ∞(a) = 1

2
. Figure 2 illustrates the violation

factor χ∞(a) as the function of the driving parameter a. For both transition scenarios
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we observe the well-pronounced minimum at a certain value of the driving parameter.
However, the position of the minimum for the Metropolis scenario differs from that for
the heat-bath scenario.

We have checked our analytical results against the corresponding computer
simulations. Due to our specific treatment of the underlying time-inhomogeneous Markov
process, our simulation procedure differs from that used in [28]. In our approach, we
simply follow step by step the construction as elaborated in section 2. More precisely, we
first generate an attempt time. Second, we evaluate the positions of the energy levels at
that time. Third, we determine the actual transition probabilities. Finally, we generate
a random number and decide whether the system changes its state or not. From its very
beginning, our procedure operates with the continuous time and therefore no transition
from the discrete time steps to continuous time is needed. We have carried out a rather
extensive series of such computer simulations. In any particular case, our analytical results
(24)–(27) and (49)–(52) have been confirmed.

Using the procedure in this paper, we have also investigated systems with more than
two energy levels. For example, in the case of the three-state system, the work probability
density exhibits the δ function at three different positions. Two of them are on the borders
of the support, but the third one is located in between the borders. At this very point,
there occurs a discontinuity of the individual matrix elements of the matrix G(w, t), and
consequently also of the whole work probability density ρ(w, t). The discontinuity is well
pronounced in the strongly irreversible case. Its magnitude decreases with increasing
driving parameter a.

In conclusion, we have calculated the exact probability density for the work done on
the simple two-level system during the irreversible isothermal process. We have compared
two different transition scenarios. The (time-local) detailed balance condition guarantees
that, in the quasistatic limit, both scenarios coincide. But still, for an irreversible
isothermal process, they lead to differences in the resulting work distribution.
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Appendix. The detailed calculation of the function H(a; η, τ )

The double direct Laplace transformation of the function H(a; η, τ), i.e. the function
H(a; s, z), is given by the expression (37). The calculation of the double inverse Laplace
transformation H(a; s, z) −→ H(a; η, τ) represents a crucial step. As a matter of fact,
in section 3.2, it is the function H(a; η, τ) which allows for a further detailed discussion
of the exact probability density ρ̃(η, τ). The appendix presents details on the inversion
procedure in question and equation (A.21) shows the final result.
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First of all, for the reader’s convenience, we repeat equation (37) from the main text:

H(a; s, z) =

∞∑

n=0

(−1)n (s + b)n

(s)n+1

(z + a)n

(z)n+1
. (A.1)

Here and below, b = 1−a. Let us first try to expand the rational functions (s+b)n/(s)n+1

and (z + a)n/(z)n+1 on the right-hand side into the corresponding partial fractions. We
obtain the expression

H(a; s, z) =
∞∑

n=0

(−1)n
n∑

k=0

(b − k)n

k!(n − k)!

(−1)k

s + k

n∑

l=0

(a − l)n

l!(n − l)!

(−1)l

z + l
. (A.2)

The double inverse Laplace transformation of the above formula is quite straightforward:
the simple fractions 1/(s + k) and 1/(z + l) are transformed into Θ(η) exp(−kη) and
Θ(τ) exp(−lτ), respectively. Therefore the explicit form of the function H(a; η, τ) is

H(a; η, τ) = Θ(η)Θ(τ)
∞∑

n=0

(−1)n
n∑

k=0

(b − k)n

(n − k)!

(−e−η)k

k!

n∑

l=0

(a − l)n

(n − l)!

(−e−τ )l

l!
. (A.3)

In principle, this rather complicated formula already represents an accomplishment of our
goal. However, we shall show that the result can be written in a much more elegant way.

Before we proceed, we perform two preparatory steps. First, we take into account the
factorization

H(a; η, τ) = Θ(η)Θ(τ)Ĥ(a; η, τ), (A.4)

and, subsequently, we focus on the calculation of the function Ĥ(a; η, τ). Second, the

function Ĥ(a; η, τ) depends on its variables only through the combinations x = e−η, and
y = e−τ . These two abbreviations will be used below.

The detailed analysis of the summations on the right-hand side of (A.3) reveals the
possibility to write the whole expression as a single matrix element of a certain infinite-
order matrix. More precisely, we introduce the so-called shift operators E+ and E− with
the matrix elements 〈i|E+ |j〉 = δi+1,j , and 〈i|E− |j〉 = δi,j+1, i, j = 0, 1, . . .. In other
words, the operator E+ (E−) has nonzero matrix elements just above (below) the main
diagonal. The shift operators fulfill the obvious relations

E
i
+ |0〉 = |i〉 and E

j
− |i〉 =

{ |i − j〉 for i ≥ j

0 for i < j
with i, j = 0, 1, 2, . . . . (A.5)

They do not commute: E−E+ = I, and E+E− = I − |0〉 〈0|. Using the shift operators, we

now depart from (A.3) and we write the function Ĥ(a; x, y) in the form

Ĥ(a; x, y) = 〈0| 1

(1 − E−)a

1

(1 − yE−)b

1

(1 + xE+)a

1

(1 + E+)b
|0〉 . (A.6)

After a rather lengthy but purely algebraic rearrangement, we obtain an equivalent
expression

Ĥ(a; x, y) =
1

xa

1

yb
〈0| 1

1 − E−

1

[1 − ((y − 1)/y) (1/(1− E−))]b

× 1

[1 − ((x − 1)/x)(1/(1 + E+))]a
1

1 + E+
|0〉 . (A.7)
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In the next step, we expand the second and the third operator into the corresponding
power series. More precisely, we use the formal expansions

1

[1 − ((y − 1)/y) (1/(1− E−))]b
=

∞∑

n=0

(b)n

n!

(
y − 1

y

)n
1

(1 − E−)n
and

1

[1 − ((x − 1)/x) (1/(1 + E+))]a
=

∞∑

m=0

(a)m

m!

(
x − 1

x

)m
1

(1 + E+)m
.

(A.8)

After substituting back into equation (A.7), we arrive at the formula

Ĥ(a; x, y) =
1

xa

1

yb

∞∑

m=0

∞∑

n=0

(b)m (a)n

m! n!

(
y − 1

y

)m(
x − 1

x

)n

× 〈0| 1

(1 − E−)m+1

1

(1 + E+)n+1
|0〉 . (A.9)

We are faced with the matrix elements

κmn = 〈0| 1

(1 − E+)m+1

1

(1 + E−)n+1
|0〉 . (A.10)

More generally, we consider the auxiliary functions

hmn(u) = 〈0| 1

(1 − uE+)m+1

1

(1 + uE−)n+1
|0〉 , (A.11)

and, after their calculation, we aim at carrying out the limits κmn = limu→1− hmn(u). We
again expand the inverse operators in equation (A.11) into the corresponding power series.
After this step, we have that

hmn(u) =
∞∑

k=0

∞∑

l=0

(m + 1)k

k!

(n + 1)l

l!
uk(−u)l 〈0|Ek

−E
l
+ |0〉 . (A.12)

Using the property 〈0|Ek
−E

l
+ |0〉 = δkl, k, l = 0, 1, . . ., the double summation in

equation (A.12) reduces to the single one. The remaining summation can be identified
with the Gauss hypergeometric series [31]. Using the standard notation, the explicit form
of the auxiliary functions (A.11) is

hmn(u) =

∞∑

k=0

(m + 1)k

k!

(n + 1)k

k!

(
−u2

)k
= 2F1(m + 1, n + 1; 1;−u2). (A.13)

All three parameters of the Gauss hypergeometric series are integers and the function
itself reduces to a polynomial in a more complicated variable. Actually, applying first the
Euler transformation [31], we get

2F1(m + 1, n + 1; 1;−u2) =
1

(1 + u2)n+1 2F1

(

−m, n + 1; 1;
u2

1 + u2

)

=
1

(1 + u2)n+1
P(0,n−m)

m

(
1 − u2

1 + u2

)

. (A.14)
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Here P
(α,β)
j (z) is the Jacobi polynomial of the order j, with the parameters α, β, and in

the variable z [31]. In other words, the numbers κmn are

κmn = lim
u→1−

hmn(u) =
1

2n+1
P(0,n−m)

m (0). (A.15)

Summing up these several lines, the function Ĥ(a; x, y) assumes the form

Ĥ(a; x, y) =
1

xa

1

yb

∞∑

m=0

∞∑

n=0

1

2n+1

(b)m (a)n

m! n!

(
y − 1

y

)m(
x − 1

x

)n

P(0,n−m)
m (0). (A.16)

At this point, using the properties of the Jacobi polynomials, we could have used the

explicit formula for the numbers P
(α,β)
j (0). However, in view of their role in the above

summation, we take another route. It is known that the Jacobi polynomials can be written
as integrals in the complex plane [31]. Using this observation, we have that

P(0,n−m)
m (0) =

1

2πi

∮ (
z2 − 1

2z

)m
(1 + z)n−m

z
dz. (A.17)

Here we integrate along the positively oriented unit circle around the origin of the complex
plane. We now substitute the last expression into equation (A.16). After changing the
order of the summation and the integration, and after a further rearrangement, we obtain

Ĥ(a; x, y) =
1

(1 + x)a

1

(1 + y)b

1

2πi

∮
1

z

∞∑

m=0

∞∑

n=0

(b)m

m!

(a)n

n!

(
1

z

1 − y

1 + y

)m(

−z
1 − x

1 + x

)n

dz.

(A.18)

We now integrate the double series term by term. Invoking the residue theorem in the
form

∮
zn−m−1 dz = 2πiδmn, all summands with m �= n vanish and the surviving terms

yield

Ĥ(a; x, y) =
1

(1 + x)a

1

(1 + y)b

∞∑

n=0

(a)n(b)n

n! n!

(

−1 − x

1 + x

1 − y

1 + y

)n

. (A.19)

On the right-hand side, we again recognize the Gauss hypergeometric series. Hence the
final expression is

Ĥ(a; x, y) =
1

(1 + x)a

1

(1 + y)b 2F1

(

a, b; 1;−1 − x

1 + x

1 − y

1 + y

)

. (A.20)

Having attained this elegant expression, we now return to the original variables and to the
original function (A.4). After these two steps, the main result of the appendix assumes
the form

H(a; η, τ) = Θ(η)Θ(τ)
1

(1 + e−η)a

1

(1 + e−τ )b 2F1

(

a, b; 1;−1 − e−η

1 + e−η

1 − e−τ

1 + e−τ

)

. (A.21)

This expression is used in the main text. For the reader’s convenience, we repeat it in
equation (38).

In closing the appendix, we would like to mention an alternative way to get the
result (A.20). First, notice that the variable of the Gauss function vanishes both at x = 1
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and at y = 1. In other words, our solution fulfills the boundary conditions

Ĥ(a; x, y)
∣
∣
∣
x=1

=
1

2a

1

(1 + y)b
and Ĥ(a; x, y)

∣
∣
∣
y=1

=
1

2b

1

(1 + x)a
. (A.22)

The conditions are already incorporated in the system of equations (31).
On the other hand, imagine that we perform the inverse Laplace transformation with

respect to the variable s directly in the original system of equations (31). Then, after some
algebra, we could isolate a single hyperbolic partial differential equation for the function

Ĥ(a; x, y). Specifically, the equation is
[

(1 + xy)
∂

∂x

∂

∂y
+ bx

∂

∂x
+ ay

∂

∂y
+ ab

]

Ĥ(a; x, y) = 0. (A.23)

However, presently, the equation must be explicitly supplemented by the boundary
conditions (A.22). Adopting this strategy, we look for a function which solves the
partial differential equation (A.23) and, at the same time, which fulfills the boundary
conditions (A.22). We have verified by direct substitution that our function (A.20)
actually represents the (unique) solution of the boundary problem thereby formulated.
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