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Electrical Resistance of Ferromagnetic Metals
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In ferromagnetic metals an anomalous electrical resistance is observed which is characteristic of the
magnetization and is additive to the ordinary electrical resistance. The origin of this anomalous
electrical resistance has been discussed by several authors, but all such attempts do not seem to have
satisfactorily explained this phenomenon either quantitatively or qualitatively.

In this paper we calculate the anomalous electrical resistance from the standpoint of s-d interac-
tion as developed by the author. It is our opinion that the anomalous electrical resistance occurs
because the exchange energy between the conduction and the unfilled inner shell electrons depends on
the relative direction of the spins of the electrons, and that this interaction is not periodic in finite
temperatures.

In numerical values as well as in the temperature dependence, our results are in good agreement
with experimental results.

§1. Introduction

In transition metals, Ni, Fe, etc., and also in rare earth metals, especially Gd, the
electrical resistance depends on temperature as shown in Figs. 1" and 2”. We can divide
this resistance into two parts. The first is the normal resistance, proportional to the
absolute temperature T in high temperatures. This temperature dependence suggests that
this part of the resistance may be caused by electron-phonon interaction. The second is
characteristic of ferromagnetism. The main feature of the temperature dependence of this
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part is that when the temperature is higher the Cutie temperature T, the resistance is almost
constant, and when the temperature is lower than T,, the resistance decreases to become
zero at absolute temperature zero.

So far the origin of this anomalous electrical resistance has been discussed by Mott,
etc.,” from the following standpoint. “In metallic ferromagnetics,. one must consider two
energy bands, that is, s-band and d-band. The effective mass of the d-band electron is
vety much larger than that of the s-band electron, and almost the entire electrical current
is carried by s-electrons. Nevertheless, as the state density of the d-band is very large,
the transition' of electrons from s-band into d-band as caused by the electron-phonon interac-
tion, is much more frequent than that from s-band into s-band. Thus the electrical resis-
tance of transition metal is submitted to this s-d interband transition, and such a process
depends on the magnetization of the d-band.”

“This process may actually exist and be important in the transition metals, but we
think because of the following facts this should rather be included in the normal part of
the electrical resistance, and that it does not correspond to the anomalous part in question.
The reasons are as follows. (i) In rare earth metals the unfilled shell, that is the
f-shell, does not seem to constitute a band, but behaves as if it were a free ion. Thus
the above inter-band transition process does not occur. As is shown in Fig: 2, however,
the anomalous resistance does occur in tare earth metals too. (Even in transition metals,
it does not seem to be a good approximation to treat d-electron to form a band). (ii)
The resistance caused by this process should be neatly propottional to the absolute tem-
perature in high temperatures because this process occurs through the interaction with phonons..
Such a temperature dependence, however, does not seem. to explain the experimental facts
of the anomalous electrical resistance, it rather corresponds to the normal one. (iii) Further,
this process seems to be unable to explain- satisfactorily the abrupt decrease of electrical
resistance at the Curie point.

Our standpoint for this phenomenon is based on the s—d interaction described in detail
in the former paper [I]”. We consider that s-electron (corresponding to s-and d-elecirons
in the rare earth metals) is nearly free and carries current, but the unfilled inner shell
electron (d-electron in the transition metals and felectron in the rare earth metals) does
not catty cutrent, being neatly localized. The Coulomb interaction between the con-
duction and the unfilled shell electrons has the same periodicity as that of the crystal,
but the exchange interaction depends on the relative orientation of the spins of both
electrons.  Therefore at absolute temperature zero, all the spins of d-electrons (we
mean by “d-electron” the unfilled shell electron) being in order, there is no resisiance,
while in finite temperatures this order is disturbed and the exchange interaction is no more
periodic, and thus a resistance appears and increases with temperature. Above the Curie
temperature, the direction of d-electron spin becomes perfecily at random, and resistance
remains constant. ‘This temperature dependence is exactly the same as that experimentally
observed.

In the following. -sections we calculate qualitatively the electrical resistance caused by
the above process.
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§2. The basic equations

The basic Hamiltonian of the exchange interaction between the conduction and the
unfilled shell electrons was discussed in detail in [I] and is written

H,,= —l/N-kE PP (lkl_‘kzl)exp[i(ki‘“k2)Rn]

2 Rn
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whete ¢;.* and ;. are the creation and the annihilation operators. of the state of wave
vector k of =4 spin, §, is the spin operator of the unfilled shell electrons located at¢ the
lattice point R,, and J(|k,—k,|) is the generalized exchange energy

2
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Here, ¢4 (r) and ¢,,(r) ate the wave functions of the conduction electron of wave vector
k and the unfilled shell electron at the point R,, and (2) reduces to the ordinary exchange
energy when k,=Uk,. As has already been mentioned, J(|k;,—k,|) depends originally not
only on |k,—k,| but also slightly on k, or k, where, however, the wave vector k& is always
a vector on the Fermi surface, and hence we can completely neglect k; dependence. Eq.
(1) is not applicable when the orbital moment is not quenched.

In the following calculation, we use the approximation of the molecular field because
this method is applicable in the whole temperature range and especially convenient to
observe the behavior at the Curie temperature.

Above the Cutie temperature, each spin S, behaves perfectly independently and the
conduction electrons are scatiered at each lattice point. This situation somewhat resembles
the mechanism of the elecrical resistance of a perfectly disordered alloy. When the tem-
perature is lower than the Curie temperature, an ordering appears and the situation becomes
quite complicated. We must distinguish between the distribution functions of the conduction
electrons of + spins, namely ni. In the approximation that the Fermi energy is much
larger than the exchange energy J(0) and the temperature (in the unit of energy), we:
can consider that the Fermi energies of + spins, & are the same because of the equili-
brium between the kinetic energy and the exchange energy, as was discussed in [I]. In
the first term of (1), a scattering can be caused by the deviation of S} from the average
orientation ¢, namely (§;—c). From (1) we can easily see that in perfect ordeting
there is no scattering due to the first term. The second and the third terms represent
the quantum effect and do not appear in alloys. When §7 changes by + 1 because of
these processes, the change in exchange energy can be written in the approzimation of
the molecular field as Fag, whete « is related to the Curie temperature T, as shown by

a=(3/8(S+1))T, (3)

From the above consideration we can derive our Bloch equation. For simplicity,
however, we calculate the resistance not by solving the Bloch equation, namely the equation
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of the detailed balance, but by solving the equation of the balancing of the total wave
vector K.
The increase of K due to an external field is

(dK/dt) jia=n(e/b) F. C))

The increase of -K due to the scattering is

(). =5 N EER e
X[ Wia|* { (1 =il i, 0 (EE—EL) + (1 —ni)ni; 6(E5—ER)} (S —0)*ws
[ Vaal* (1 —1) n, (§—=S.) (S+S.+1) w. (&R —Ef—ao)
— | Vaal* (1 =25) 17, (§=8.) (S48, + 1) %4110 (64— i+ a0) ]+ (dK /dE),  (5)
where

Wil = Vi "= (1/N*)J* (| b — k) (6)

and w,, is the probability that §; has the value §,, and assuming the thermal equilibrium
of the spin system,

/3 exp(22s,). ?)

S§;=—§

Further, at temperature lower than T,, we have
S
o =2 Ss Wse (8)
S,=—§

and (dK/dt), means the change due to other processes, for example, interactions with the
phonons and impurities. As we are now interested in the anomalous resistance, and as
the resistances due to each process are additive in our approximation method, we neglect
the term (dK/dr), in the following calculations.

‘Next, we assume the distribution function nf as Kramert’s distribution

nf =|exp ((E5 — &) /¥ T —ec-k) +1]™ (9)

This assumption may be satisfactory when the interaction with the phonon is strong enough.
By the equation of the balancing of the total wave vector

(dK/dt) Sfield + (dK/dt) scatt — 0, (1 0)

we can determine c.

§ 3. The ealculations

To solve the equation of §2, we use the following assumptions; the energy spectrum
of the conduction electron can be written by using the effective mass m*; the Fermi energy is
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much larger than the exchange energy J(0) and the temperature ; the crystal is isotropic,
and, as usual, the summation >V may be replaced by an integration over k.

The technique of the calculation is the same as that of ordinary electrical resistance.
The calculation is straightforward and (10) becomes

riF=oll 2 R 5 () St Dl (11)
where k, is the wave vector of the Fermi surface, and
Jorf =400 J (2kx) o dx. (12)
On the other hand, the electric current j is
j=F/p=(e/m)nk T C (13)
and thus the electrical tresistance 0 is
p=(3mm**/NéF) (§—0) (S+o+1)] 47 /& (14)
or introducing the ratio of the effective mass and the mass of electron,
p=m*/m (15)

and putting values of the physical constants,
= —yf 107 , Jer/
p=4.3%10 <__ 2 (S—a) (S+o4-1) I ohm (16)
N &
whete J.;; and &, are measured in the unit of e.V. and N per c.c..

§ 4. Discussions

Equation (16) cortesponds faitly well to the temperature dependence, as we expected.
At absolute temperature zeto, ¢=35 and thus the electrical resistance p=0. When the
temperature is raised, o decreases, and p increases. Above the Curie temperature, o=0,
and ¢ remains constant. To exemine the temperature dependence more in detail, we
should proceed to a higher order of the approximation. At sufficiently low temperatures,
the method of the molecular field is not appropriate and we should use the spin-wave
method. The situation is not simple unless we use the hypothesis that the spin-wave
system is always in thermal equilibrium corresponding to Bloch’s hypothesis for electton-
phonon interaction. In the temperature near Curie tempetature too, we should consider
the short range ordering. For example, the fact that the curving of the resistance-tempera-
ture curve begins at a temperature slightly above the magnetic Cutie point may be the effect
of the short range ordering. Above the Curie temperature, the electrical resistance (16):
is proportional to §(§+1), thus in the metal of large spin, ¢ would be very large. This
tendency is seen also in the experimental results. For example, the anomalous electrical
resistance of Fe is larger than that of Ni, and in Gd (§=7/2) particularly the
anomalous electrical resistance is very large, and the ordinary resistance due to the electron
phonon interaction is rather small at room temperature. In rare earth metals, the anoma:
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lous electrical resistance decreases when the spin value decreases, but in this case, except
for Gd, there remains an orbital moment and our basic Hamiltonian (1) is not applicable.
The calculation for such cases is now in progress.

Finally, we calculate the numerical values of the resistance at a temperature higher
than T, for two cases, that is, Ni and Gd. In Ni, by Zener®

N=0.9X10® per c.c., §=0.3,

J=2J(0) =0.48 e.V., &=3.14/p ev., (17)
and
p=14X10"° 1 ohm. (18)
The obsetved value is about 10X 107 ohm, as shown in Fig. 1,
In Gd,
N=3.07X10* per c.c., §=7/2,
Jori=J (0) =0.157 ewv., E,=4.4/t ev., (19)
and
p=120%X107% £ ohm (20)

where, to estimate J(0), we have used the mean value of the results of the optical spec-
trum®, multiplying by the same factor as in Ni. The experimental value is about 130 X
107% ohm.

In both cases, the theoretical and the experimental values coincide fairly well in th
order of magnitude.

The author expresses his cordial thanks to Prof. Ariyama and also to Prof. Matsu-
bara for their many valuable discussions.
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